1
|
The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev 2009; 73:451-80, Table of Contents. [PMID: 19721086 DOI: 10.1128/mmbr.00012-09] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.
Collapse
|
2
|
Pseudodiploid genome organization AIDS full-length human immunodeficiency virus type 1 DNA synthesis. J Virol 2007; 82:2376-84. [PMID: 18094172 DOI: 10.1128/jvi.02100-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Template switching between copackaged human immunodeficiency virus type 1 (HIV-1) genomic RNAs is genetically silent when identical RNAs are copackaged but yields recombinants when virions contain two distinct RNAs. Sequencing has revealed that errors at retroviral recombination junctions are infrequent, suggesting that template switching is not intrinsically mutagenic. Here, we tested the hypothesis that template switching may instead contribute to replication fidelity. This hypothesis predicts that reverse transcription of a single-copy gene will be more error prone than replication in the presence of a second copy. To test this, HIV-1-based vectors containing both lacZ and the puromycin resistance marker were expressed either alone or with an excess of an "empty" vector lacking lacZ and puro. This resulted in virions with either RNA homodimers or haploid genomes with only a single lacZ-puro RNA. In untreated cells, lacZ inactivation rates suggested that haploid vector reverse transcription was slightly more error prone than that of homodimerized pseudodiploid vectors. Haploid reverse transcription was at least threefold more error prone than pseudodiploid-templated synthesis when slowed by hydroxyurea treatment or stopped prematurely with zidovudine. Individual products of one- and two-copy genes revealed both nucleotide substitutions and deletions, with deletions more frequent than point mutations among haploid genome products. Similar spectra of defective products were observed at early reverse transcription time points and among products of haploid virions. These results indicate that faithful, full-length reverse transcription products were underrepresented in the absence of a reserve of genetic information and suggest that template switching contributes to HIV-1 genomic integrity.
Collapse
|
3
|
Logg CR, Logg A, Tai CK, Cannon PM, Kasahara N. Genomic stability of murine leukemia viruses containing insertions at the Env-3' untranslated region boundary. J Virol 2001; 75:6989-98. [PMID: 11435579 PMCID: PMC114427 DOI: 10.1128/jvi.75.15.6989-6998.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviruses containing inserts of exogenous sequences frequently eliminate the inserted sequences upon spread in susceptible cells. We have constructed replication-competent murine leukemia virus (MLV) vectors containing internal ribosome entry site (IRES)-transgene cassettes at the env-3' untranslated region boundary in order to examine the effects of insert sequence and size on the loss of inserts during viral replication. A virus containing an insertion of 1.6 kb replicated with greatly attenuated kinetics relative to wild-type virus and lost the inserted sequences in a single infection cycle. In contrast, MLVs containing inserts of 1.15 to 1.30 kb replicated with kinetics only slightly attenuated compared to wild-type MLV and exhibited much greater stability, maintaining their genomic integrity over multiple serial infection cycles. Eventually, multiple species of deletion mutants were detected simultaneously in later infection cycles; once detected, these variants rapidly dominated the population and thereafter appeared to be maintained at a relative equilibrium. Sequence analysis of these variants identified preferred sites of recombination in the parental viruses, including both short direct repeats and inverted repeats. One instance of insert deletion through recombination with an endogenous retrovirus was also observed. When specific sequences involved in these recombination events were eliminated, deletion variants still arose with the same kinetics upon virus passage and by apparently similar mechanisms, although at different locations in the vectors. Our results suggest that while lengthened, insert-containing genomes can be maintained over multiple replication cycles, preferential deletions resulting in loss of the inserted sequences confer a strong selective advantage.
Collapse
Affiliation(s)
- C R Logg
- Department of Pathology and Institute for Genetic Medicine, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
4
|
Shin NH, Hartigan-O'Connor D, Pfeiffer JK, Telesnitsky A. Replication of lengthened Moloney murine leukemia virus genomes is impaired at multiple stages. J Virol 2000; 74:2694-702. [PMID: 10684285 PMCID: PMC111759 DOI: 10.1128/jvi.74.6.2694-2702.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been assumed that RNA packaging constraints limit the size of retroviral genomes. This notion of a retroviral "headful" was tested by examining the ability of Moloney murine leukemia virus genomes lengthened by 4, 8, or 11 kb to participate in a single replication cycle. Overall, replication of these lengthened genomes was 5- to 10-fold less efficient than that of native-length genomes. When RNA expression and virion formation, RNA packaging, and early stages of replication were compared, long genomes were found to complete each step less efficiently than did normal-length genomes. To test whether short RNAs might facilitate the packaging of lengthy RNAs by heterodimerization, some experiments involved coexpression of a short packageable RNA. However, enhancement of neither long vector RNA packaging nor long vector DNA synthesis was observed in the presence of the short RNA. Most of the proviruses templated by 12 and 16 kb vectors appeared to be full length. Most products of a 19. 2-kb vector contained deletions, but some integrated proviruses were around twice the native genome length. These results demonstrate that lengthy retroviral genomes can be packaged and that genome length is not strictly limited at any individual replication step. These observations also suggest that the lengthy read-through RNAs postulated to be intermediates in retroviral transduction can be packaged directly without further processing.
Collapse
Affiliation(s)
- N H Shin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | | | | | |
Collapse
|
5
|
Gomez-Lucia E, Zhi Y, Nabavi M, Zhang W, Kabat D, Hoatlin ME. An array of novel murine spleen focus-forming viruses that activate the erythropoietin receptor. J Virol 1998; 72:3742-50. [PMID: 9557656 PMCID: PMC109596 DOI: 10.1128/jvi.72.5.3742-3750.1998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Friend spleen focus-forming virus (SFFV) env gene encodes a 409-amino-acid glycoprotein with an apparent Mr of 55,000 (gp55) that binds to erythropoietin receptors (EpoR) to stimulate erythroblastosis. We reported previously the in vivo selection during serial passages in mice of several evolutionary intermediates that culminated in the formation of a novel SFFV (M. E. Hoatlin, E. Gomez-Lucia, F. Lilly, J. H. Beckstead, and D. Kabat, J. Virol. 72:3602-3609, 1998). A mouse injected with a retroviral vector in the presence of a nonpathogenic helper virus developed long-latency erythroblastosis, and subsequent viral passages resulted in more pathogenic isolates. The viruses taken from these mice converted an erythropoietin-dependent cell line (BaF3/EpoR) into factor-independent derivatives. Western blot analysis of cell extracts with an antiserum that broadly reacts with murine retroviral envelope glycoproteins suggested that the spleen from the initial mouse with mild erythoblastosis contained an array of viral components that were capable of activating EpoR. DNA sequence analysis of the viral genomes cloned from different factor-independent cell clones revealed env genes with open reading frames encoding 644, 449, and 187 amino acids. All three env genes contained 3' regions identical to that of SFFV, including a 6-bp duplication and a single-base insertion that have been shown previously to be critical for pathogenesis. However, the three env gene sequences did not contain any polytropic sequences and were divergent in their 5' regions, suggesting that they had originated by recombination and partial deletions of endogenously inherited MuLV env sequences. These results suggest that the requirements for EpoR activation by SFFV-related viruses are dependent on sequences at the 3' end of the env gene and not on the polytropic regions or on the 585-base deletions that are common among the classical strains of SFFV. Moreover, sequence analysis of the different recombinants and deletion mutants revealed that short direct and indirect repeat sequences frequently flanked the deletions that had occurred, suggesting a reverse transcriptase template jumping mechanism for this rapid retroviral diversification.
Collapse
Affiliation(s)
- E Gomez-Lucia
- Department of Biochemistry, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | | | | | | | |
Collapse
|
6
|
Nakaya T, Fujinaga K, Doi H, Suzuki S, Takahashi H, Nishino Y, Kishi M, Azuma I, Luftig RB, Ikuta K. Serial passage of human immunodeficiency virus type 1 generates misalignment deletions in non-essential accessory genes. Virus Res 1996; 46:139-47. [PMID: 9029786 DOI: 10.1016/s0168-1702(96)01396-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) derived from an infectious molecular clone pNL432 was extensively passaged in tissue culture by repeated rounds of acute infection. We previously showed the natural occurrence of a nonsense mutation in the vpr gene during continued passage of this virus. In this report, we show that two forms of large deletions (561 and 518 base pairs containing short direct repeats at the deletion junctions) occur after passage 50 in the region that spans the vif and vpr open reading frames. One model to explain the occurrence of these deletion regions is that such mutations result from misalignment of the growing point at a limited number of nucleotide positions. Infection of CD4+ T-cells with a recombinant HIV-1 construct containing the same vif to vpr deletion showed virtually no cytopathogenic phenotype. Thus, misalignment deletions at non-essential accessory genes of HIV-1 might be induced during replication, which result in the generation of virus with a low cytopathogenic potential.
Collapse
Affiliation(s)
- T Nakaya
- Section of Serology, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang L, Simpson SB, Stoltzfus CM. Selection and characterization of replication-competent revertants of a Rous sarcoma virus src gene oversplicing mutant. J Virol 1996; 70:3636-44. [PMID: 8648698 PMCID: PMC190239 DOI: 10.1128/jvi.70.6.3636-3644.1996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
All retroviruses require both unspliced and spliced RNA for a productive infection. One mechanism by which Rous sarcoma virus achieves incomplete splicing involves suboptimal env and src 3' splice sites. We have previously shown that mutagenesis of the nonconsensus src polypyrimidine tract to a 14-nucleotide uninterrupted polypyrimidine tract results in an oversplicing phenotype and a concomitant defective replication in permissive chicken embryo fibroblasts. In this report, we show that splicing at the src 3' splice site (3'ss) is further negatively regulated by the suppressor of src splicing cis element which is located approximately 100 nucleotides upstream of the src 3'ss. The increase in splicing at the src 3'ss results in a corresponding increase in splicing at a cryptic 5'ss within the env gene. Two classes of replication-competent revertants of the src oversplicing mutant (pSAP1) were produced after infection, and these mutants were characterized by molecular cloning and sequence analysis. Class I revertants are transformation-defective revertants in which the src 3'ss and the src gene are deleted by homologous recombination at several different sites within the imperfect direct repeat sequences that flank the src gene. Cells infected with these transformation-defective revertants produce lower levels of virus particles than cells infected with the wild-type virus. Class II revertants bear small deletions in the region containing the branchpoint sequence or polypyrimidine tract of the src 3'ss. Insertion of these mutated sequences into pSAP1 restored inefficient splicing at the src 3'ss and efficient replication in chicken embryo fibroblasts. All of these mutations caused reduced splicing at the src 3'ss when they were tested in an in vitro splicing system. These results indicate that maintenance of a weak src 3'ss is necessary for efficient Rous sarcoma virus replication.
Collapse
Affiliation(s)
- L Zhang
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
8
|
Wu W, Palaniappan C, Bambara RA, Fay PJ. Differences in mutagenesis during minus strand, plus strand and strand transfer (recombination) synthesis of the HIV-1 gene in vitro. Nucleic Acids Res 1996; 24:1710-8. [PMID: 8649990 PMCID: PMC145854 DOI: 10.1093/nar/24.9.1710] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have developed an HIV nef-Escherichia coli lacZ fusion system in vitro that allows the detection of low frequency mutations, including frameshifts, deletions and insertions. A portion of the nef gene that encompasses a hypervariable region was fused in-frame with a downstream lacZalpha peptide coding region. The resulting lacZalpha peptide fusion protein remained functional. Any frameshift mutations in the nef insert would put the downstream lacZ alpha peptide gene out of frame, eliminating alpha complementation. With this system we compared the error rates of frameshift mutations that arise during DNA-directed and RNA-directed DNA synthesis. Results showed that DNA-directed and RNA-directed DNA synthesis did not contribute equally to the generation of mutations. DNA-directed DNA synthesis generated frameshift mutations at a frequency approximately 10-fold higher than those arising from RNA-directed DNA synthesis. RNA-directed DNA synthesis in the presence of acceptor templates showed an increase in mutation rate and differences in the mutation spectrum. The enhancement of mutation rate was caused by the appearance of mutations at three new locations that correlated with likely recombination sites. Results indicate that recombination is another source of mutations during viral replication.
Collapse
Affiliation(s)
- W Wu
- Department of Biochemistry, University of Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
9
|
Berkhout B, van Wamel JL. Identification of a novel splice acceptor in the HIV-1 genome: independent expression of the cytoplasmic tail of the envelope protein. Arch Virol 1996; 141:839-55. [PMID: 8678830 DOI: 10.1007/bf01718159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Multiple splicing sites exist in the RNA genome of the human immunodeficiency virus type 1 (HIV-1). In a screen for subgenomic forms of the HIV-1 genome that could be transferred to fresh cells by virus infection, we identified a novel spliced variant of HIV-1 RNA that uses a hitherto unknown splice acceptor site within the envelope (Env) gene. We demonstrate that this splice acceptor is infrequently used in HIV-infected T cells. Interestingly, an AUG initiator codon is created at this splice junction which has the potential to direct the synthesis of the cytoplasmic tail of the Env gp41 protein. Transient transfection experiments with the new cDNA cloned in an expression vector demonstrated efficient utilization of this start codon and the C-terminus of the Env open reading frame. Independent expression of the 152 amino acid long, intracellular Env domain provides novel regulatory mechanisms for modulating viral infectivity and perhaps pathogenicity.
Collapse
Affiliation(s)
- B Berkhout
- Department of Virology, University of Amsterdam, The Netherlands
| | | |
Collapse
|
10
|
Parthasarathi S, Varela-Echavarría A, Ron Y, Preston BD, Dougherty JP. Genetic rearrangements occurring during a single cycle of murine leukemia virus vector replication: characterization and implications. J Virol 1995; 69:7991-8000. [PMID: 7494312 PMCID: PMC189744 DOI: 10.1128/jvi.69.12.7991-8000.1995] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Retroviruses evolve at rapid rates, which is presumably advantageous for responding to selective pressures. Understanding the basic mutational processes involved during retroviral replication is important for comprehending the ability of retroviruses to escape immunosurveillance and antiviral drug treatment. Moreover, since retroviral vectors are important vehicles for somatic cell gene therapy, knowledge of the mechanism of retroviral variation is critical for anticipating untoward mutational events occurring during retrovirus-medicated gene transfer. The focus of this report is to examine the spectrum of genomic rearrangements arising during a single cycle of Moloney murine leukemia virus (MoMLV) vector virus replication. An MoMLV vector containing the herpes simplex virus thymidine kinase (tk) gene was constructed. MoMLV vector virus was produced in packaging lines, and target cells were infected. From a total of 224 mutant proviruses analyzed, 114 had gross rearrangements readily detectable by Southern blotting. The remaining proviruses were of parental size. PCR and DNA sequence analysis of 73 of the grossly rearranged mutant proviruses indicated they resulted from deletions, combined with insertions, duplications, and complex mutations that were a result of multiple genomic alterations in the same provirus. Complex hypermutations distinct from those previously described for spleen necrosis virus and human immunodeficiency virus were detected. There was a correlation between the mutation breakpoints and single-stranded regions in the predicted viral RNA secondary structure. The results also confirmed that the tk gene is inactivated at an average rate of about 8.8% per cycle of retroviral replication, which corresponds to a rate of mutation of 3%/kbp.
Collapse
Affiliation(s)
- S Parthasarathi
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854-5635, USA
| | | | | | | | | |
Collapse
|
11
|
Morrison HL, Soni B, Lenz J. Long terminal repeat enhancer core sequences in proviruses adjacent to c-myc in T-cell lymphomas induced by a murine retrovirus. J Virol 1995; 69:446-55. [PMID: 7983741 PMCID: PMC188593 DOI: 10.1128/jvi.69.1.446-455.1995] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The transcriptional enhancer in the long terminal repeat (LTR) of the T-lymphomagenic retrovirus SL3-3 differs from that of the nonleukemogenic virus Akv at several sites, including a single base pair difference in an element termed the enhancer core. Mutation of this T-A base pair to the C-G C-G sequence found in Akv significantly attenuated the leukemogenicity of SL3-3. Thus, this difference is important for viral leukemogenicity. Since Akv is an endogenous virus, this suggests that the C-G in its core is an adaptation to being minimally pathogenic. Most tumors that occurred in mice inoculated with the mutant virus, called SAA, contained proviruses with reversion or potential suppressor mutations in the enhancer core. We also found that the 72-bp tandem repeats constituting the viral enhancer could vary in number. Most tumors contained mixtures of proviruses with various numbers of 72-bp units, usually between one and four. Variation in repeat number was most likely due to recombination events involving template misalignment during viral replication. Thus, two processes during viral replication, misincorporation and recombination, combined to alter LTR enhancer structure and generate more pathogenic variants from the mutant virus. In SAA-induced tumors, enhancers of proviruses adjacent to c-myc had the largest number of core reversion or suppressor mutations of all of the viral enhancers in those tumors. This observation was consistent with the hypothesis that one function of the LTR enhancers in leukemogenesis is to activate proto-oncogenes such as c-myc.
Collapse
Affiliation(s)
- H L Morrison
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
12
|
Varela-Echavarría A, Prorock CM, Ron Y, Dougherty JP. High rate of genetic rearrangement during replication of a Moloney murine leukemia virus-based vector. J Virol 1993; 67:6357-64. [PMID: 7692080 PMCID: PMC238070 DOI: 10.1128/jvi.67.11.6357-6364.1993] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A protocol was designed to measure the forward mutation rate over an entire gene replicated as part of a Moloney murine leukemia virus-based vector. For these studies, the herpes simplex virus thymidine kinase (tk) gene under the control of the spleen necrosis virus U3 promoter was used as target sequence since it allows selection for either the functional or the inactivated gene. Our results indicate that after one round of retroviral replication, the tk gene is inactivated at an average rate of 0.08 per cycle of replication. Southern blotting revealed that the majority of the mutant proviruses resulted from gross rearrangements and that deletions of spleen necrosis virus and tk sequences were the most frequent cause of the gene inactivation. Sequence analysis of the mutant proviruses suggested that homologous as well as nonhomologous recombination was involved in the observed rearrangements. Some mutations consisted of simple deletions, and others consisted of deletions combined with insertions. The frequency at which these mutations occurred during one cycle of retroviral replication provides evidence indicating that Moloney murine leukemia virus-based vectors may undergo genetic rearrangement at high rates. The high rate of rearrangement and its relevance for retrovirus-mediated gene transfer are discussed.
Collapse
Affiliation(s)
- A Varela-Echavarría
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854-5635
| | | | | | | |
Collapse
|
13
|
Affiliation(s)
- J M Coffin
- Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
14
|
Olsen JC, Bova-Hill C, Grandgenett DP, Quinn TP, Manfredi JP, Swanstrom R. Rearrangements in unintegrated retroviral DNA are complex and are the result of multiple genetic determinants. J Virol 1990; 64:5475-84. [PMID: 2170682 PMCID: PMC248599 DOI: 10.1128/jvi.64.11.5475-5484.1990] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We used a replication-competent retrovirus shuttle vector based on a DNA clone of the Schmidt-Ruppin A strain of Rous sarcoma virus to characterize rearrangements in circular viral DNA. In this system, circular molecules of viral DNA present after acute infection of cultured cells were cloned as plasmids directly into bacteria. The use of a replication-competent shuttle vector permitted convenient isolation of a large number of viral DNA clones; in this study, over 1,000 clones were analyzed. The circular DNA molecules could be placed into a limited number of categories. Approximately one-third of the rescued molecules had deletions in which one boundary was very near the edge of a long terminal repeat (LTR) unit. Subtle differences in the patterns of deletions in circular DNAs with one versus two copies of the LTR sequence were observed, and differences between deletions emanating from the right and left boundaries of the LTR were seen. A virus with a missense mutation in the region of the pol gene responsible for integration and exhibiting a temperature sensitivity phenotype for replication had a marked decrease in the number of rescued molecules with LTR-associated deletions when infection was performed at the nonpermissive temperature. This result suggests that determinants in the pol gene, possibly in the integration protein, play a role in the generation of LTR-associated deletions. Sequences in a second region of the genome, probably within the viral gag gene, were also found to affect the types of circular viral DNA molecules present after infection. Sequences in this region from different strains of avian sarcoma-leukosis viruses influenced the fraction of circular molecules with LTR-associated deletions, as well as the relative proportion of circular molecules with either one or two copies of the LTR. Thus, the profile of rearrangements in unintegrated viral DNA is complex and dependent upon the nature of sequences in the gag and pol regions.
Collapse
Affiliation(s)
- J C Olsen
- Department of Biochemistry, University of North Carolina, Chapel Hill 27599
| | | | | | | | | | | |
Collapse
|
15
|
Pathak VK, Temin HM. Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: deletions and deletions with insertions. Proc Natl Acad Sci U S A 1990; 87:6024-8. [PMID: 2166940 PMCID: PMC54464 DOI: 10.1073/pnas.87.16.6024] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the preceding paper we described an experiment that determined the in vivo forward mutation rate in a single replication cycle for spleen necrosis virus. In addition to substitutions, frameshifts, and hypermutations, the mutated proviruses contained two classes of deletions. One class of deletions contained short direct repeats at the deletion junctions. Another class of deletions had short stretches of sequences inserted at the deletion junctions. In this report, we describe the deletion mutations, and we present models for their generation. Detailed analysis of two deletions with insertions indicates that these mutations occurred as a result of template switching during plus-strand DNA synthesis. The analysis also indicates that fragments of viral RNA generated by the viral RNase H endonuclease are used as templates and contribute to the sequences inserted at the deletion junctions.
Collapse
Affiliation(s)
- V K Pathak
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706
| | | |
Collapse
|
16
|
Spiro C, Li JP, Bestwick RK, Kabat D. An enhancer sequence instability that diversifies the cell repertoire for expression of a murine leukemia virus. Virology 1988; 164:350-61. [PMID: 2835856 DOI: 10.1016/0042-6822(88)90548-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Studies of recombinants between murine leukemia viruses (MuLVs) that cause thymic or erythroid leukemias have shown that enhancer sequences in the long-terminal repeats (LTRs) can determine the target tissues for pathogenesis. It has been inferred that the enhancers may specifically target viral expression into the cells that then become neoplastic. However, the neoplasms in those studies formed after latencies and contained ultimate viruses (called MCFs) that differed from the injected viruses in their enhancer sequences and envelope (env) genes. Transcriptional activities of LTRs from these proximal and ultimate viruses have not been thoroughly analyzed in different hematopoietic lineages. We present evidence that the enhancer of Friend spleen focus-forming virus (SFFV), an ultimate erythroleukemogenic retrovirus, contains an unstable 42-nucleotide direct repeat. Other ultimate erythroleukemogenic MuLVs (Friend MCFs) contain an enhancer nearly identical to that of SFFV both in its sequence and in its specific instability. The instability occurs in sequences that contain inverted repeats and we propose that it occurs by a simple reverse transcriptase hop mechanism. We constructed plasmids that contain the two forms of the SFFV LTR linked to the bacterial chloramphenicol acetyltransferase (CAT) gene, and we compared these in transient transfection assays with LTR-CAT plasmids constructed from Friend and Moloney MuLVs. The assays employed erythroleukemia cells, thymic lymphoma cells, and fibroblasts. The tropisms of expression correlated only weakly with tissue specificities of pathogenesis and each LTR was active in all cells. The SFFV 42-nucleotide duplication reduced expression in erythroid cells and increased expression in fibroblasts. We conclude that retroviral enhancers do not stringently direct gene expression into specific cell lineages, but on the contrary they are leaky and contain replicative instabilities that also may facilitate viral entrenchment throughout the host. These results have important implications for understanding murine retroviral evolution and the multi-step process of leukemogenesis.
Collapse
Affiliation(s)
- C Spiro
- Department of Biochemistry, School of Medicine, Oregon Health Sciences University, Portland 97201
| | | | | | | |
Collapse
|
17
|
Fu XD, Katz RA, Skalka AM, Leis J. Site-directed mutagenesis of the avian retrovirus nucleocapsid protein, pp 12. Mutation which affects RNA binding in vitro blocks viral replication. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)69182-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Stoltzfus CM, Chang LJ, Cripe TP, Turek LP. Efficient transformation by Prague A Rous sarcoma virus plasmid DNA requires the presence of cis-acting regions within the gag gene. J Virol 1987; 61:3401-9. [PMID: 2822950 PMCID: PMC255935 DOI: 10.1128/jvi.61.11.3401-3409.1987] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A region in addition to and outside the long terminal repeats (LTRs) in the gag gene of the Prague A strain of Rous sarcoma virus was found to be essential in cis for efficient cell transformation by cloned viral DNA. Transformation in chicken embryo fibroblasts, which requires infectious virus production and reinfection, was facilitated in cis by sequences between nucleotides 630 and 1659. Efficient transformation of NIH 3T3 cells in which secondary spread of virus is not necessary (as it is in chicken embryo fibroblasts) required sequences between nucleotides 630 and 1149. A src cDNA clone which also lacks this region demonstrated low transformation efficiency, indicating that the role of the cis element cannot be attributed to interference with RNA splicing. The gag gene segment required in cis for transformation, between nucleotides 630 and 1149, could substitute for the simian virus 40 enhancer in either orientation, and cells transfected with Rous sarcoma virus LTR-driven plasmids containing the gag cis element had a two- to threefold increase in steady-state viral RNA levels compared with plasmids lacking this region. Thus, additional cis-acting regulatory elements located outside the viral LTRs may modulate viral gene expression and contribute to the efficiency of cell transformation.
Collapse
Affiliation(s)
- C M Stoltzfus
- Department of Microbiology, University of Iowa, Iowa City
| | | | | | | |
Collapse
|
19
|
Abstract
Retrovirus vectors were constructed with large (0.85- to 1.3-kilobase-pair) direct repeats in their genomes. Deletions involving the direct repeats occurred at a high frequency. Deletions occurred both when the direct repeats were in tandem and when they were separated by additional sequences. These deletions occurred during virus replication.
Collapse
|
20
|
Hiramatsu K, Yoshikura H. Frequent partial deletion of human adult T-cell leukemia virus type I proviruses in experimental transmission: pattern and possible implication. J Virol 1986; 58:508-12. [PMID: 3009864 PMCID: PMC252938 DOI: 10.1128/jvi.58.2.508-512.1986] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human T-cell leukemia virus type I (HTLV I) propagated in human diploid fibroblast IMR90 was transmitted to human promyelocytic leukemia HL60 cells by coculture. Of 14 provirus-positive HL60 clones, five harbored only defective proviruses, five had defective proviruses in addition to full-sized HTLV I, and four had full-sized proviruses integrated in their chromosomes. The frequency of defective proviruses was unexpectedly high (41% of total proviruses). Analysis of the genomic structure of these defective proviruses revealed polarity of deletion, that is, preferred conservation of the 3' end of the proviral genome (pX and the 3' long terminal repeat). The implication of these findings are discussed with reference to the replication and pathogenesis of HTLV I.
Collapse
|