1
|
Filamentous Pseudomonas Phage Pf4 in the Context of Therapy-Inducibility, Infectivity, Lysogenic Conversion, and Potential Application. Viruses 2022; 14:v14061261. [PMID: 35746731 PMCID: PMC9228429 DOI: 10.3390/v14061261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
More than 20% of all Pseudomonas aeruginosa are infected with Pf4-related filamentous phage and although their role in virulence of P. aeruginosa strain PAO1 is well documented, its properties related to therapy are not elucidated in detail. The aim of this study was to determine how phage and antibiotic therapy induce Pf4, whether the released virions can infect other strains and how the phage influences the phenotype of new hosts. The subinhibitory concentrations of ciprofloxacin and mitomycin C increased Pf4 production for more than 50% during the first and sixth hour of exposure, respectively, while mutants appearing after infection with obligatory lytic phage at low MOI produced Pf4 more than four times after 12–24 h of treatment. This indicates that production of Pf4 is enhanced during therapy with these agents. The released virions can infect new P. aeruginosa strains, as confirmed for models UCBPP-PA14 (PA14) and LESB58, existing both episomally and in a form of a prophage, as confirmed by PCR, RFLP, and sequencing. The differences in properties of Pf4-infected, and uninfected PA14 and LESB58 strains were obvious, as infection with Pf4 significantly decreased cell autoaggregation, pyoverdine, and pyocyanin production, while significantly increased swimming motility and biofilm production in both strains. In addition, in strain PA14, Pf4 increased cell surface hydrophobicity and small colony variants’ appearance, but also decreased twitching and swarming motility. This indicates that released Pf4 during therapy can infect new strains and cause lysogenic conversion. The infection with Pf4 increased LESB58 sensitivity to ciprofloxacin, gentamicin, ceftazidime, tetracycline, and streptomycin, and PA14 to ciprofloxacin and ceftazidime. Moreover, the Pf4-infected LESB58 was re-sensitized to ceftazidime and tetracycline, with changes from resistant to intermediate resistant and sensitive, respectively. The obtained results open a new field in phage therapy—treatment with selected filamentous phages in order to re-sensitize pathogenic bacteria to certain antibiotics. However, this approach should be considered with precautions, taking into account potential lysogenic conversion.
Collapse
|
2
|
Zlatkov N, Nadeem A, Uhlin BE, Wai SN. Eco-evolutionary feedbacks mediated by bacterial membrane vesicles. FEMS Microbiol Rev 2021; 45:fuaa047. [PMID: 32926132 PMCID: PMC7968517 DOI: 10.1093/femsre/fuaa047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/11/2020] [Indexed: 12/27/2022] Open
Abstract
Bacterial membrane vesicles (BMVs) are spherical extracellular organelles whose cargo is enclosed by a biological membrane. The cargo can be delivered to distant parts of a given habitat in a protected and concentrated manner. This review presents current knowledge about BMVs in the context of bacterial eco-evolutionary dynamics among different environments and hosts. BMVs may play an important role in establishing and stabilizing bacterial communities in such environments; for example, bacterial populations may benefit from BMVs to delay the negative effect of certain evolutionary trade-offs that can result in deleterious phenotypes. BMVs can also perform ecosystem engineering by serving as detergents, mediators in biochemical cycles, components of different biofilms, substrates for cross-feeding, defense systems against different dangers and enzyme-delivery mechanisms that can change substrate availability. BMVs further contribute to bacteria as mediators in different interactions, with either other bacterial species or their hosts. In short, BMVs extend and deliver phenotypic traits that can have ecological and evolutionary value to both their producers and the ecosystem as a whole.
Collapse
Affiliation(s)
- Nikola Zlatkov
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| | - Aftab Nadeem
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
3
|
Sharma RS, Karmakar S, Kumar P, Mishra V. Application of filamentous phages in environment: A tectonic shift in the science and practice of ecorestoration. Ecol Evol 2019; 9:2263-2304. [PMID: 30847110 PMCID: PMC6392359 DOI: 10.1002/ece3.4743] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/25/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
Theories in soil biology, such as plant-microbe interactions and microbial cooperation and antagonism, have guided the practice of ecological restoration (ecorestoration). Below-ground biodiversity (bacteria, fungi, invertebrates, etc.) influences the development of above-ground biodiversity (vegetation structure). The role of rhizosphere bacteria in plant growth has been largely investigated but the role of phages (bacterial viruses) has received a little attention. Below the ground, phages govern the ecology and evolution of microbial communities by affecting genetic diversity, host fitness, population dynamics, community composition, and nutrient cycling. However, few restoration efforts take into account the interactions between bacteria and phages. Unlike other phages, filamentous phages are highly specific, nonlethal, and influence host fitness in several ways, which make them useful as target bacterial inocula. Also, the ease with which filamentous phages can be genetically manipulated to express a desired peptide to track and control pathogens and contaminants makes them useful in biosensing. Based on ecology and biology of filamentous phages, we developed a hypothesis on the application of phages in environment to derive benefits at different levels of biological organization ranging from individual bacteria to ecosystem for ecorestoration. We examined the potential applications of filamentous phages in improving bacterial inocula to restore vegetation and to monitor changes in habitat during ecorestoration and, based on our results, recommend a reorientation of the existing framework of using microbial inocula for such restoration and monitoring. Because bacterial inocula and biomonitoring tools based on filamentous phages are likely to prove useful in developing cost-effective methods of restoring vegetation, we propose that filamentous phages be incorporated into nature-based restoration efforts and that the tripartite relationship between phages, bacteria, and plants be explored further. Possible impacts of filamentous phages on native microflora are discussed and future areas of research are suggested to preclude any potential risks associated with such an approach.
Collapse
Affiliation(s)
- Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Swagata Karmakar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Pankaj Kumar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| |
Collapse
|
4
|
Pascelli C, Laffy PW, Kupresanin M, Ravasi T, Webster NS. Morphological characterization of virus-like particles in coral reef sponges. PeerJ 2018; 6:e5625. [PMID: 30356950 PMCID: PMC6195793 DOI: 10.7717/peerj.5625] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/22/2018] [Indexed: 12/03/2022] Open
Abstract
Marine sponges host complex microbial consortia that vary in their abundance, diversity and stability amongst host species. While our understanding of sponge-microbe interactions has dramatically increased over the past decade, little is known about how sponges and their microbial symbionts interact with viruses, the most abundant entities in the ocean. In this study, we employed three transmission electron microscopy (TEM) preparation methods to provide the first comprehensive morphological assessment of sponge-associated viruses. The combined approaches revealed 50 different morphologies of viral-like particles (VLPs) represented across the different sponge species. VLPs were visualized within sponge cells, within the sponge extracellular mesohyl matrix, on the sponge ectoderm and within sponge-associated microbes. Non-enveloped, non-tailed icosahedral VLPs were the most commonly observed morphotypes, although tailed bacteriophage, brick-shaped, geminate and filamentous VLPs were also detected. Visualization of sponge-associated viruses using TEM has confirmed that sponges harbor not only diverse communities of microorganisms but also diverse communities of viruses.
Collapse
Affiliation(s)
- Cecília Pascelli
- Australian Institute of Marine Science, Townsville, Queensland, Australia.,James Cook University, Townsville, Queensland, Australia.,AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland, Australia
| | - Patrick W Laffy
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Marija Kupresanin
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Timothy Ravasi
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia.,AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland, Australia.,Australian Centre for Ecogenomics, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Petrova AB, Herold C, Petrov EP. Conformations and membrane-driven self-organization of rodlike fd virus particles on freestanding lipid membranes. SOFT MATTER 2017; 13:7172-7187. [PMID: 28930355 DOI: 10.1039/c7sm00829e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Membrane-mediated interactions and aggregation of colloidal particles adsorbed to responsive elastic membranes are challenging problems relevant for understanding the microscopic organization and dynamics of biological membranes. We experimentally study the behavior of rodlike semiflexible fd virus particles electrostatically adsorbed to freestanding cationic lipid membranes and find that their behavior can be controlled by tuning the membrane charge and ionic strength of the surrounding medium. Three distinct interaction regimes of rodlike virus particles with responsive elastic membranes can be observed. (i) A weakly charged freestanding cationic lipid bilayer in a low ionic strength medium represents a gentle quasi-2D substrate preserving the integrity, structure, and mechanical properties of the membrane-bound semiflexible fd virus, which under these conditions is characterized by a monomer length of 884 ± 4 nm and a persistence length of 2.5 ± 0.2 μm, in perfect agreement with its properties in bulk media. (ii) An increase in the membrane charge leads to the membrane-driven collapse of fd virus particles on freestanding lipid bilayers and lipid nanotubes into compact globules. (iii) When the membrane charge is low, and the mutual electrostatic repulsion of membrane-bound virus particles is screened to a considerable degree, membrane-driven self-organization of membrane-bound fd virus particles into long linear tip-to-tip aggregates showing dynamic self-assembly/disassembly and quasi-semiflexible behavior takes place. These observations are in perfect agreement with the results of recent theoretical and simulation studies predicting that membrane-mediated interactions can control the behavior of colloidal particles adsorbed on responsive elastic membranes.
Collapse
Affiliation(s)
- Anastasiia B Petrova
- Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, 82152 Martinsried, Germany.
| | | | | |
Collapse
|
6
|
Fibre diffraction studies of biological macromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 127:43-87. [DOI: 10.1016/j.pbiomolbio.2017.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 12/27/2022]
|
7
|
Mai-Prochnow A, Hui JGK, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. FEMS Microbiol Rev 2015; 39:465-87. [PMID: 25670735 DOI: 10.1093/femsre/fuu007] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 12/17/2014] [Indexed: 01/01/2023] Open
Abstract
This review synthesizes recent and past observations on filamentous phages and describes how these phages contribute to host phentoypes. For example, the CTXφ phage of Vibrio cholerae encodes the cholera toxin genes, responsible for causing the epidemic disease, cholera. The CTXφ phage can transduce non-toxigenic strains, converting them into toxigenic strains, contributing to the emergence of new pathogenic strains. Other effects of filamentous phage include horizontal gene transfer, biofilm development, motility, metal resistance and the formation of host morphotypic variants, important for the biofilm stress resistance. These phages infect a wide range of Gram-negative bacteria, including deep-sea, pressure-adapted bacteria. Many filamentous phages integrate into the host genome as prophage. In some cases, filamentous phages encode their own integrase genes to facilitate this process, while others rely on host-encoded genes. These differences are mediated by different sets of 'core' and 'accessory' genes, with the latter group accounting for some of the mechanisms that alter the host behaviours in unique ways. It is increasingly clear that despite their relatively small genomes, these phages exert signficant influence on their hosts and ultimately alter the fitness and other behaviours of their hosts.
Collapse
Affiliation(s)
- Anne Mai-Prochnow
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia
| | - Janice Gee Kay Hui
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia
| | - Staffan Kjelleberg
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Diane McDougald
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Scott A Rice
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| |
Collapse
|
8
|
Marvin DA, Symmons MF, Straus SK. Structure and assembly of filamentous bacteriophages. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:80-122. [PMID: 24582831 DOI: 10.1016/j.pbiomolbio.2014.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/09/2014] [Indexed: 12/24/2022]
Abstract
Filamentous bacteriophages are interesting paradigms in structural molecular biology, in part because of the unusual mechanism of filamentous phage assembly. During assembly, several thousand copies of an intracellular DNA-binding protein bind to each copy of the replicating phage DNA, and are then displaced by membrane-spanning phage coat proteins as the nascent phage is extruded through the bacterial plasma membrane. This complicated process takes place without killing the host bacterium. The bacteriophage is a semi-flexible worm-like nucleoprotein filament. The virion comprises a tube of several thousand identical major coat protein subunits around a core of single-stranded circular DNA. Each protein subunit is a polymer of about 50 amino-acid residues, largely arranged in an α-helix. The subunits assemble into a helical sheath, with each subunit oriented at a small angle to the virion axis and interdigitated with neighbouring subunits. A few copies of "minor" phage proteins necessary for infection and/or extrusion of the virion are located at each end of the completed virion. Here we review both the structure of the virion and aspects of its function, such as the way the virion enters the host, multiplies, and exits to prey on further hosts. In particular we focus on our understanding of the way the components of the virion come together during assembly at the membrane. We try to follow a basic rule of empirical science, that one should chose the simplest theoretical explanation for experiments, but be prepared to modify or even abandon this explanation as new experiments add more detail.
Collapse
Affiliation(s)
- D A Marvin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - M F Symmons
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - S K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
9
|
|
10
|
Suo Z, Yang X, Avci R, Kellerman L, Pascual DW, Fries M, Steele A. HEPES-stabilized encapsulation of Salmonella typhimurium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:1365-74. [PMID: 17241060 DOI: 10.1021/la0621721] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Most bacteria, planktonic and sessile, are encapsulated inside loosely bound extracellular polymeric substance (EPS) in their physiological environment. Imaging a bacterium with its capsule requires lengthy sample preparation to enhance the capsular contrast. In this study, Salmonella typhimurium was investigated using atomic force microscopy for a practical means of imaging an encapsulated bacterium in air. The investigation further aimed to determine the relation between the buffers used for preparing the bacterium and the preservation of the capsular material surrounding it. It was observed that rinsing bacteria with HEPES buffer could stabilize and promote capsule formation, while rinsing with PBS, Tris, or glycine removes most of the capsular EPS. For bacteria rinsed with HEPES and air-dried, the height images showed only the contour of the capsular material, while the phase and amplitude images presented the detailed structures of the bacterial surface, including the flagella encapsulated inside the capsular EPS. The encapsulation was attributed to the cross-linking of the acidic exopolysaccharides mediated by the piperazine moiety of HEPES through electrostatic attraction. This explanation is supported by encapsulated bacteria observed for samples rinsed with N,N'-bis(2-hydroxyethyl)-piperazine solution and by the presence of entrapped HEPES within the dry capsular EPS suggested by micro-Raman spectroscopy.
Collapse
Affiliation(s)
- Zhiyong Suo
- Imaging and Chemical Analysis Laboratory, Department of Physics, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Stopar D, Spruijt RB, Wolfs CJAM, Hemminga MA. Protein-lipid interactions of bacteriophage M13 major coat protein. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1611:5-15. [PMID: 12659940 DOI: 10.1016/s0005-2736(03)00047-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the past years, remarkable progress has been made in our understanding of the replication cycle of bacteriophage M13 and the molecular details that enable phage proteins to navigate in the complex environment of the host cell. With new developments in molecular membrane biology in combination with spectroscopic techniques, we are now in a position to ask how phages carry out this delicate process on a molecular level, and what sort of protein-lipid and protein-protein interactions are involved. In this review we will focus on the molecular details of the protein-protein and protein-lipid interactions of the major coat protein (gp8) that may play a role during the infection of Escherichia coli by bacteriophage M13.
Collapse
Affiliation(s)
- David Stopar
- Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
12
|
Oh JS, Davies DR, Lawson JD, Arnold GE, Dunker AK. Isolation of chloroform-resistant mutants of filamentous phage: localization in models of phage structure. J Mol Biol 1999; 287:449-57. [PMID: 10092451 DOI: 10.1006/jmbi.1999.2599] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interaction of fd or M13 filamentous phage with a chloroform/water interface induces morphological change, contracting the filaments sequentially into shortened rods (I-forms), and then into spheroidal particles (S-forms). To further investigate this phage contraction, 34 and 26 chloroform-resistant isolates of fd and M13, respectively, were selected after chloroform treatment of wild-type phages at pH 8. 2 and 4 degrees C. DNA sequencing of gene VIII of the 34 fd isolates revealed five different mutants: these were D5H, M28L, V31L, I37T, and S50T. All 26 M13 isolates were I37T. These mutants exhibited variable sensitivity to chloroform, but all contracted much more slowly than wild-type phage during treatment at 4 degrees C. They all contracted like wild-type phage at 37 degrees C. Site-directed mutagenesis showed that the indicated single mutations carried the chloroform resistance. In structural models of the phage, the D5H locus is on the outside and the S50T locus is on the inside. The M28L and I37T loci are buried in a mostly hydrophobic region in the middle. Although these four mutants are spread out radially, they are localized in the axial direction into a thin disk in the model. The last mutant locus, V31L, is out of this disk, but this locus is proximal to the M28L and I37T loci and also in contact with the surface via a deep hydrophobic hole or depression. These five mutants, their locations, and their variable affects on contraction suggest that chloroform-induced contraction involves a specific mechanism rather than a generalized solvent-induced denaturation and that the critical structural changes occur in a localized level in the phage. These results add weight to suggestions that the sequential contraction of filaments-->I-forms-->S-forms mimic corresponding steps in phage penetration, and, in the reverse order, for phage assembly.
Collapse
Affiliation(s)
- J S Oh
- Department of Biochemistry and Biophysics, Washington State University, Pullman, WA, 99164, USA
| | | | | | | | | |
Collapse
|
13
|
Kuo TT, Chiang CC, Chen SY, Lin JH, Kuo JL. A long lytic cycle in filamentous phage Cf1tv infecting Xanthomonas campestris pv. citri. Arch Virol 1994; 135:253-64. [PMID: 7979966 DOI: 10.1007/bf01310012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this study the lytic cycle of a filamentous phage is reported. Under normal laboratory cultivation conditions a virulent form could spontaneously and easily arise from a temperate phage. The virulent one could superinfect cells containing Cf1t lysogen. Therefore, we have named it Cf1tv. In a colony formation assay using cells from an infected culture, two types of colonies were observed, small and large. It could be proven that the formation of small colonies is the result of killing during Cf1tv infection. The number of small colony forming units (cfu) increased with infection time and reached a maximum at 16 h after infection, then dropped to the initial cell concentration at 28 h after infection; 28 h were required to kill all infected cells. Large colonies contained uninfected or phage-resistant cells, but no lysogenic cells. Bacterial death was further confirmed by a microculture assay. At 2 h after infection, normal-dividing cells (cfu giving large colonies) contained about 40% of Cf1tv-infected cells, then the percentage decreased with infection time. Slow-dividing cells (infected cfu giving small colonies) initially contained 55% of cells; this percentage increased slightly at 4 h after infection, then decreased at 8 h after infection. Non-dividing cells initially contained 5% of infected cells, then their numbers rapidly increased with time after infection. The cell division was seriously affected and finally stopped. During one-step growth, the latent period was 30 min and there was no burst; phages were released at 30 min after infection and the rate of release increased gradually with time after infection. Phage DNA integration into host chromosome could not be observed.
Collapse
Affiliation(s)
- T T Kuo
- Institute of Botany, Academia Sinica, Taipei, Republic of China
| | | | | | | | | |
Collapse
|
14
|
Hemminga MA, Sanders JC, Wolfs CJ, Spruijt RB. Chapter 8 Lipid-protein interactions involved in bacteriophage M13 infection. PROTEIN-LIPID INTERACTIONS 1993. [DOI: 10.1016/s0167-7306(08)60237-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Abstract
Below 15 degrees C, chloroform causes fd phage to contract to I-forms, which are compact structures about 1/3 as long as the original phage. Above 15 degrees C, chloroform causes I-forms to contract to even more compact spheroidal S-forms. Here we show that the coat protein structure in I-forms is the same as the protein structure in the phage and the protein structure in S-forms is the same as the protein structure in bilayers. The conversions from fd----I-forms----S-forms are therefore suggested to mimic steps in fd penetration. The same conversions, in reverse order, are suggested to mimic steps in fd assembly.
Collapse
Affiliation(s)
- A K Dunker
- Department of Biochemistry and Biophysics, Washington State University, Pullman 99164
| | | | | | | |
Collapse
|
16
|
Localization of penicillin-binding protein 1b in Escherichia coli: immunoelectron microscopy and immunotransfer studies. J Bacteriol 1990; 172:125-35. [PMID: 2403537 PMCID: PMC208409 DOI: 10.1128/jb.172.1.125-135.1990] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report the localization of penicillin-binding protein 1b (PBP 1b) in Escherichia coli KN126 and in an overproducing construct containing plasmid pHK231. We used PBP 1b-specific antiserum for the immunoelectron microscopy of ultrathin sections of whole cells and for immunoelectrophoresis of cytoplasm and isolated membrane fractions. We studied ultrathin sections of both glutaraldehyde-fixed cells that had been embedded after progressively lowering the temperature and cryofixed cells that had been freeze-substituted in Lowicryl K4M and HM20. Most of the PBP 1b-specific label was observed in the inner membrane (IM) and the adjacent cytoplasm, much less was observed in the outer membrane (OM); appreciable amounts were also seen in the bulk cytoplasm. Distribution and intensity of label were both temperature dependent: temperature shift-up to 37 degrees C, causing PBP 1b overproduction in the construct, showed a statistically highly significant increase in label of the IM, including a cytoplasmic zone (of at least 30 nm in depth) adjacent to the IM, a zone we termed the membrane-associated area. Concomitant with the temperature shift-up, a decrease in label density was observed in the bulk cytoplasm. Increased label was also found in IM-OM contact areas (zones of membrane adhesion). The periplasm did not show significant label. Western blotting (immunoblotting) revealed PBP 1b in most of the isolated membrane fractions; however, the highest label density was found in membrane fractions of intermediate density, supporting the suggestion of an increased concentration of PBP 1b in the membrane adhesion zones. In summarizing, we propose that PBP 1b is present in the membrane-associated area of the cytoplasm, from where proteins (such as PBP 1b or thioredoxin) gain access to their specific insertion sites in the envelope. The use of several methods of immunoelectron microscopy provided the first unequivocal evidence for localization of PBP 1b at membrane adhesion sites. Since such sites are specifically labeled with anti-PBP 1b serum, we hypothesize that they contain parts of the machinery for assembly and growth of the murein layer.
Collapse
|
17
|
Abstract
The highly hydrated capsule of E. coli strains is composed of a large number of polysaccharide fibers of which the thinnest measure about 2 nm in width. The fibers may span the entire distance from the outer membrane to the outer rim of the capsule and show a propensity to associate with each other to form thicker filaments. Presence of thick filaments may also indicate a partial collapse of the capsular organization due to removal of water. The in vivo capsule represents a relatively open structure with the negatively charged polysaccharide fibers permitting the binding of large quantities of water and ions, and providing intracellular space for diffusing molecules to access the envelope membranes even in conditions of high cell density. Negative charge and steric hindrance of the polysaccharide strands protect the cells against attack by a large variety of harmful macromolecules and against infection by most bacteriophages. Two types of procedure have been most successful in maintaining the size and overall structure of the capsule: (a) the interaction of cationic molecules with the in vivo capsule, and (b) the use of antibody to stabilize capsules for subsequent dehydration and plastic embedding. A further type of potentially useful procedure, cryofixation and cryosubstitution, has shown interesting results in a number of cases. These techniques are expected to play a significant role in structural studies in the near future. The sites of export of capsular antigen have been described in earlier conventional electron microscopic studies. Data obtained from the recent technique of "on-section" labeling support the model that both the capsular antigen and the O antigen are assembled at junctions of the inner and outer membrane. It is anticipated that one will be able to discern in greater ultrastructural detail the membranes at which the antigen is translocated. Novel membrane fixation and isolation techniques will have to be established and employed in a combination of sensitive microscopic techniques and immuno- and enzyme localization methods. These developments will make it possible to explore questions pertaining to the maintenance and structural organization of microbial capsules and the functional interaction of polysaccharides with natural surfaces, man-made substances and drugs.
Collapse
Affiliation(s)
- M E Bayer
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA 19111
| |
Collapse
|
18
|
Walderich B, Höltje JV. Specific localization of the lysis protein of bacteriophage MS2 in membrane adhesion sites of Escherichia coli. J Bacteriol 1989; 171:3331-6. [PMID: 2656650 PMCID: PMC210054 DOI: 10.1128/jb.171.6.3331-3336.1989] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Specific localization of the lysis (L) protein of bacteriophage MS2 in the cell wall of Escherichia coli was determined by immunoelectron microscopy. After induction of the cloned lysis gene, the cells were plasmolyzed, fixed, and embedded in either Epon or Lowicryl K4M. Polyclonal L-protein-specific antiserum was purified by preabsorption to membranes from cells harboring a control plasmid. Protein A-gold was used to label the protein-antibody complexes. Between 42.8% (Lowicryl) and 33.8% (Epon) of the label was found in inner and outer membranes, but 30.3% (Lowicryl) and 32.8% (Epon) was present mostly in clusters in the adhesion sites visible after plasmolysis. The remaining label (26.9 and 33.4%, respectively) appeared to be present in the periplasmic space but may also have been part of membrane junctions not visible because of poor contrast of the specimen. In contrast, a quite different distribution of the L protein was found in cells grown under conditions of penicillin tolerance, i.e., at pH 5, a condition that had previously been shown to protect cells from L-protein-induced lysis. At tolerant conditions, only 21.0% of the L protein was in the adhesion sites; most of the protein (68.2%) was found in inner and outer membranes. It is concluded that lysis of the host, E. coli, was a result of the formation of specific L-protein-mediated membrane adhesion sites.
Collapse
Affiliation(s)
- B Walderich
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Tübingen, Federal Republic of Germany
| | | |
Collapse
|
19
|
Abstract
Telescoping of Inovirus (filamentous bacteriophage) into short hollow tubes by organic solvents suggests a molecular mechanism both for infection and for maturation of the virion at adhesions between the inner and outer bacterial membranes. The symmetry of alpha-helix subunit arrangement in the virion is related to the symmetry of leaf arrangement in plants (phyllotaxis) and is conserved in a molecular rearrangement model of the telescope.
Collapse
Affiliation(s)
- D A Marvin
- Department of Biochemistry, University of Cambridge, UK
| |
Collapse
|
20
|
Bayer ME, Bayer MH, Lunn CA, Pigiet V. Association of thioredoxin with the inner membrane and adhesion sites in Escherichia coli. J Bacteriol 1987; 169:2659-66. [PMID: 3294802 PMCID: PMC212149 DOI: 10.1128/jb.169.6.2659-2666.1987] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The intracellular localization of thioredoxin in Escherichia coli was determined by immunoelectron microscopy and correlated to previous biochemical data which had suggested that thioredoxin resides at inner-outer membrane adhesion sites. Since a considerable amount of thioredoxin was lost during preparation of cells for electron microscopy, we immobilized the protein with the heterobifunctional photoactivatable cross-linker p-azidophenacylbromide before the cells were fixed with aldehyde and embedded in Lowicryl K4M. Thin sections were labeled with affinity-purified antithioredoxin antiserum and protein A-gold complexes. Densities of immunolabel in a designated membrane-associated area and in the rest of the cytoplasm were compared and the data were statistically evaluated. Wild-type strain W3110 and strain SK3981, an overproducer of thioredoxin, exhibited increased labeling at the inner membrane and its adjacent cytoplasmic area. In contrast, the more centrally located cytoplasm of both strains showed much lower label density. This label distribution did not change with cell growth or in the stationary phase. Immunolabel was often found at bridges between the inner and outer membranes; this result is consistent with a model which places at least a portion of the thioredoxin at membrane adhesion sites, corresponding to an osmotically sensitive cytoplasmic compartment bounded by a hybrid inner-outer membrane (C.A. Lunn and V. Pigiet, J. Biol. Chem. 257:11424-11430, 1982; C.A. Lunn and V. Pigiet, J. Biol. Chem. 261:832-838, 1986). Specific label was absent in the periplasmic space.
Collapse
|
21
|
|