1
|
Slow Receptor Binding of the Noncytopathic HIV-2 UC1 Envs Is Balanced by Long-Lived Activation State and Efficient Fusion Activity. Cell Rep 2021; 31:107749. [PMID: 32521274 DOI: 10.1016/j.celrep.2020.107749] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023] Open
Abstract
Many HIV strains downregulate the levels of CD4 receptor on the surface of infected cells to prevent superinfection. In contrast, the rare HIV-2UC1 strain is noncytopathic and has no effect on CD4 expression in infected cells but still replicates as efficiently as more cytopathic strains in peripheral blood mononuclear cells (PBMCs). Here, we show that HIV-2UC1 Env interactions with the CD4 receptor exhibit slow association kinetics, whereas the dissociation kinetics is within the range of cytopathic strains. Despite the resulting 10- to 100-fold decrease in binding affinity, HIV-2UC1 Envs exhibit long-lived activation state and efficient fusion activity. These observations suggest that HIV-2UC1 Envs evolved to balance low affinity with an improved and readily triggerable molecular machinery to mediate entry. Resistance to cold exposure, similar to many primary HIV-1 isolates, and to sCD4 neutralization suggests that HIV-2UC1 Envs preferentially sample a closed Env conformation. Our data provide insights into the mechanism of HIV entry.
Collapse
|
2
|
Abstract
The CD8+ T cell noncytotoxic antiviral response (CNAR) was discovered during studies of asymptomatic HIV-infected subjects more than 30 years ago. In contrast to CD8+ T cell cytotoxic lymphocyte (CTL) activity, CNAR suppresses HIV replication without target cell killing. This activity has characteristics of innate immunity: it acts on all retroviruses and thus is neither epitope specific nor HLA restricted. The HIV-associated CNAR does not affect other virus families. It is mediated, at least in part, by a CD8+ T cell antiviral factor (CAF) that blocks HIV transcription. A variety of assays used to measure CNAR/CAF and the effects on other retrovirus infections are described. Notably, CD8+ T cell noncytotoxic antiviral responses have now been observed with other virus families but are mediated by different cytokines. Characterizing the protein structure of CAF has been challenging despite many biologic, immunologic, and molecular studies. It represents a low-abundance protein that may be identified by future next-generation sequencing approaches. Since CNAR/CAF is a natural noncytotoxic activity, it could provide promising strategies for HIV/AIDS therapy, cure, and prevention.
Collapse
Affiliation(s)
- Maelig G Morvan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Fernando C Teque
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | | - Jay A Levy
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
He S, Wu Y. Relationships Between HIV-Mediated Chemokine Coreceptor Signaling, Cofilin Hyperactivation, Viral Tropism Switch and HIV-Mediated CD4 Depletion. Curr HIV Res 2021; 17:388-396. [PMID: 31702526 DOI: 10.2174/1570162x17666191106112018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 11/22/2022]
Abstract
HIV infection causes CD4 depletion and immune deficiency. The virus infects CD4 T cells through binding to CD4 and one of the chemokine coreceptors, CXCR4 (X4) or CCR5 (R5). It has also been known that HIV tropism switch, from R5 to X4, is associated with rapid CD4 depletion, suggesting a key role of viral factors in driving CD4 depletion. However, the virological driver for HIV-mediated CD4 depletion has not been fully elucidated. We hypothesized that HIV-mediated chemokine coreceptor signaling, particularly chronic signaling through CXCR4, plays a major role in CD4 dysfunction and depletion; we also hypothesized that there is an R5X4 signaling (R5X4sig) viral subspecies, evolving from the natural replication course of R5-utilizing viruses, that is responsible for CD4 T cell depletion in R5 virus infection. To gain traction for our hypothesis, in this review, we discuss a recent finding from Cui and co-authors who described the rapid tropism switch and high pathogenicity of an HIV-1 R5 virus, CRF01_AE. We speculate that CRF01_AE may be the hypothetical R5X4sig viral species that is rapidly evolving towards the X4 phenotype. We also attempt to discuss the intricate relationships between HIV-mediated chemokine coreceptor signaling, viral tropism switch and HIV-mediated CD4 depletion, in hopes of providing a deeper understanding of HIV pathogenesis in blood CD4 T cells.
Collapse
Affiliation(s)
- Sijia He
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States
| |
Collapse
|
4
|
Oka S, Ikeda K, Takano M, Ogane M, Tanuma J, Tsukada K, Gatanaga H. Pathogenesis, clinical course, and recent issues in HIV-1-infected Japanese hemophiliacs: a three-decade follow-up. Glob Health Med 2020; 2:9-17. [PMID: 33330768 PMCID: PMC7731362 DOI: 10.35772/ghm.2019.01030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 11/08/2022]
Abstract
Nearly 30% of Japanese hemophiliacs were infected with HIV-1 in the early 1980s. They have unique characteristics compared to HIV-1-infected individuals through other routes, including date of infection of 1986 or earlier, mean age of nearly 50 years, and common co-infection with hepatitis C, but rarely with other sexually transmitted diseases. Antiretroviral therapy (ART) was introduced in Japan in 1997. The clinical courses before and after 1997 were quite different. Careful analysis of the pre-1997 clinical data allowed expansion of our knowledge about the natural course and pathogenesis of the disease. Switching to the second receptor agents proved critical in subsequent disease progression. HIV-1 continued to escape immune pressure, pushing disease progression faster. In contrast, ART was effective enough to overcome the natural course. Prognosis improved dramatically and cause of death changed from AIDS-related opportunistic infections and malignancies before 1997, to hepatitis C virus-related cirrhosis and hepatocellular carcinoma (HCC) around 2010, and again to non-AIDS defining malignancies recently. In most cases, hepatitis C was cured with direct acting antiviral therapy. However, HCV progressed to cirrhosis in some cases and risk of HCC is still high among these patients. Together with improvement in anticoagulants and aging of the patients, risk of myocardial infarction has increased recently. In addition, the numbers of patients with life-style related co-morbidities, such as diabetes mellitus, hypertension, and chronic kidney disease have been also increasing. Finally, stigma is still an important barrier to a better life in HIV-1-positive individuals.
Collapse
Affiliation(s)
- Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuko Ikeda
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Misao Takano
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Miwa Ogane
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Junko Tanuma
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kunihisa Tsukada
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
5
|
The evolution of HIV-1 interactions with coreceptors and mannose C-type lectin receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:109-40. [PMID: 25595802 DOI: 10.1016/bs.pmbts.2014.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phenotype of human immunodeficiency virus type 1 (HIV-1) commonly evolves between and within infected individuals, at virus transmission, and during disease progression. This evolution includes altered interactions between the virus and its coreceptors, i.e., chemokine receptors, as well as mannose C-type lectin receptors (CLRs). Transmitted/founder viruses are predominantly restricted to CCR5, whereas the subsequent intrapatient evolution of HIV-1 coreceptor use during progressive disease can be subdivided into two distinct pathways. Accordingly, the CCR5-restricted virus population is either gradually replaced by virus variants able to use CXCR4 or evolves toward an altered, more flexible use of CCR5. Despite a strong dependency on these coreceptors for host cell entry, HIV-1 also interacts with other cell surface molecules during target cell attachment, including the CLRs. The virus interaction with the CLRs may result either in the efficient transfer of virus to CD4(+) T cells or in the degradation of the virus in endosomal compartments. The determinants of the diverse outcomes depend on which CLR is engaged and also on the glycan makeup of the envelope glycoproteins, which may evolve with the strength of the immune pressure during the disease course. With the current clinical introduction of CCR5 antagonists and the development of additional entry inhibitors, knowledge on the evolution and baseline characteristics of HIV-1 interactions with coreceptor and CLR interactions may play important roles for individualized and optimized treatment strategies. This review summarizes our current understanding of the evolution of HIV-1 interactions with these receptors.
Collapse
|
6
|
Sarrami-Forooshani R, Mesman AW, van Teijlingen NH, Sprokholt JK, van der Vlist M, Ribeiro CMS, Geijtenbeek TBH. Human immature Langerhans cells restrict CXCR4-using HIV-1 transmission. Retrovirology 2014; 11:52. [PMID: 24990163 PMCID: PMC4227116 DOI: 10.1186/1742-4690-11-52] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/12/2014] [Indexed: 01/29/2023] Open
Abstract
Background Sexual transmission is the main route of HIV-1 infection and the CCR5-using (R5) HIV-1 is predominantly transmitted, even though CXCR4-using (X4) HIV-1 is often abundant in chronic HIV-1 patients. The mechanisms underlying this tropism selection are unclear. Mucosal Langerhans cells (LCs) are the first immune cells to encounter HIV-1 and here we investigated the role of LCs in selection of R5 HIV-1 using an ex vivo epidermal and vaginal transmission models. Results Immature LCs were productively infected by X4 as well as R5 HIV-1. However, only R5 but not X4 viruses were selectively transmitted by immature LCs to T cells. Transmission of HIV-1 was depended on de novo production of HIV-1 in LCs, since it could be inhibited by CCR5 fusion inhibitors as well as reverse transcription inhibitors. Notably, the activation state of LCs affected the restriction in X4 HIV-1 transmission; immune activation by TNF facilitated transmission of X4 as well as R5 HIV-1. Conclusions These data suggest that LCs play a crucial role in R5 selection and that immature LCs effectively restrict X4 at the level of transmission.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Hodcroft E, Hadfield JD, Fearnhill E, Phillips A, Dunn D, O'Shea S, Pillay D, Leigh Brown AJ. The contribution of viral genotype to plasma viral set-point in HIV infection. PLoS Pathog 2014; 10:e1004112. [PMID: 24789308 PMCID: PMC4006911 DOI: 10.1371/journal.ppat.1004112] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/22/2014] [Indexed: 12/24/2022] Open
Abstract
Disease progression in HIV-infected individuals varies greatly, and while the environmental and host factors influencing this variation have been widely investigated, the viral contribution to variation in set-point viral load, a predictor of disease progression, is less clear. Previous studies, using transmission-pairs and analysis of phylogenetic signal in small numbers of individuals, have produced a wide range of viral genetic effect estimates. Here we present a novel application of a population-scale method based in quantitative genetics to estimate the viral genetic effect on set-point viral load in the UK subtype B HIV-1 epidemic, based on a very large data set. Analyzing the initial viral load and associated pol sequence, both taken before anti-retroviral therapy, of 8,483 patients, we estimate the proportion of variance in viral load explained by viral genetic effects to be 5.7% (CI 2.8-8.6%). We also estimated the change in viral load over time due to selection on the virus and environmental effects to be a decline of 0.05 log10 copies/mL/year, in contrast to recent studies which suggested a reported small increase in viral load over the last 20 years might be due to evolutionary changes in the virus. Our results suggest that in the UK epidemic, subtype B has a small but significant viral genetic effect on viral load. By allowing the analysis of large sample sizes, we expect our approach to be applicable to the estimation of the genetic contribution to traits in many organisms.
Collapse
Affiliation(s)
- Emma Hodcroft
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Jarrod D. Hadfield
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | | | - Andrew Phillips
- Infection and Population Health, University College London, Royal Free Hospital, London, United Kingdom
| | - David Dunn
- MRC Clinical Trials Unit Aviation House, London, United Kingdom
| | - Siobhan O'Shea
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Deenan Pillay
- Research Department of Infection, University College London, London, United Kingdom
| | - Andrew J. Leigh Brown
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | | |
Collapse
|
8
|
Phenotypic Susceptibility Assays for Human Immunodeficiency Virus Type 1. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Rossetti B, Bianco C, Bellazzi LI, Bruzzone B, Colao G, Corsi P, Monno L, Pagano G, Paolucci S, Punzi G, Setti M, Zazzi M, De Luca A. Virological and immunological response to antiretroviral regimens containing maraviroc in HIV type 1-infected patients in clinical practice: role of different tropism testing results and of concomitant treatments. AIDS Res Hum Retroviruses 2014; 30:17-24. [PMID: 23971941 DOI: 10.1089/aid.2012.0235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We assessed the immunovirological response to antiretroviral regimens containing maraviroc in HIV-infected viremic patients with viral tropism predicted by different assays. We selected antiretroviral treatment-experienced HIV-1-infected patients initiating regimens containing maraviroc after different phenotypic or genotypic viral tropism assays, with at least one HIV-1 RNA determination during follow-up. Survival analysis was employed to assess the virological response as time to HIV-1 RNA <50 copies/ml and immunological response as time to a CD4 cell count increase of ≥ 100/μl from baseline. Predictors of these outcomes were analyzed by multivariate Cox regression models. In 191 treatments with maraviroc, virological response was achieved in 65.4% and the response was modestly influenced by the baseline viral load and concomitant drug activity but not influenced by the type of tropism assay employed. Immunological response was achieved in 58.1%; independent predictors were baseline HIV-1 RNA (per log10 higher: HR 1.29, 95% CI 1.05-1.60) and concomitant therapy with enfuvirtide (HR 2.05, 0.96-4.39) but not tropism assay results. Of 17 patients with baseline R5-tropic virus and available tropism results while viremic during follow-up on maraviroc, seven (41%) showed a tropism switch to non-R5 virus. A significant proportion of experienced patients treated with regimens containing maraviroc achieved virological response. The tropism test type used was not associated with immunovirological response and concomitant treatment with enfuvirtide increased the chance of immunological response. More than half of virological failures with maraviroc were not accompanied by tropism switch.
Collapse
Affiliation(s)
| | | | | | | | - Grazia Colao
- Laboratory of Virology, Careggi Hospital, Florence, Italy
| | - Paola Corsi
- Infectious Diseases Clinic, Careggi Hospital, Florence, Italy
| | - Laura Monno
- Infectious Diseases Clinic, University of Bari, Bari, Italy
| | | | | | - Grazia Punzi
- Laboratory of Virology, Bari Hospital, Bari, Italy
| | - Maurizio Setti
- Division of Clinical Immunology, S. Martino Hospital, Genoa, Italy
| | - Maurizio Zazzi
- Department of Biotechnology, University of Siena, Siena, Italy
| | | |
Collapse
|
10
|
A brief history of the global effort to develop a preventive HIV vaccine. Vaccine 2013; 31:3502-18. [PMID: 23707164 DOI: 10.1016/j.vaccine.2013.05.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/01/2013] [Accepted: 05/07/2013] [Indexed: 01/09/2023]
Abstract
Soon after HIV was discovered as the cause of AIDS in 1983-1984, there was an expectation that a preventive vaccine would be rapidly developed. In trying to achieve that goal, three successive scientific paradigms have been explored: induction of neutralizing antibodies, induction of cell mediated immunity, and exploration of combination approaches and novel concepts. Although major progress has been made in understanding the scientific basis for HIV vaccine development, efficacy trials have been critical in moving the field forward. In 2009, the field was reinvigorated with the modest results obtained from the RV144 trial conducted in Thailand. Here, we review those vaccine development efforts, with an emphasis on events that occurred during the earlier years. The goal is to provide younger generations of scientists with information and inspiration to continue the search for an HIV vaccine.
Collapse
|
11
|
Lin NH, Becerril C, Giguel F, Novitsky V, Moyo S, Makhema J, Essex M, Lockman S, Kuritzkes DR, Sagar M. Env sequence determinants in CXCR4-using human immunodeficiency virus type-1 subtype C. Virology 2012; 433:296-307. [PMID: 22954962 DOI: 10.1016/j.virol.2012.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/12/2012] [Accepted: 08/01/2012] [Indexed: 02/09/2023]
Abstract
HIV-1 subtype C (HIV-1C) CXCR4-using virus is isolated infrequently and is poorly characterized. Understanding HIV-1C env characteristics has implications for the clinical use of antiretrovirals that target viral entry. A total of 209 env clones derived from 10 samples with mixed CCR5-(R5), CXCR4-using (X4) or dual-tropic HIV-1C were phenotyped for coreceptor usage. Intra-patient X4 and R5 variants generally formed distinct monophyletic phylogenetic clusters. X4 compared to R5 envs had significantly greater amino acid variability and insertions, higher net positive charge, fewer glycosylation sites and increased basic amino acid substitutions in the GPGQ crown. Basic amino acid substitution and/or insertion prior to the crown are highly sensitive characteristics for predicting X4 viruses. Chimeric env functional studies suggest that the V3 loop is necessary but often not sufficient to impart CXCR4 utilization. Our studies provide insights into the unique genotypic characteristics of X4 variants in HIV-1C.
Collapse
Affiliation(s)
- Nina H Lin
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang W, Guo J, Yu D, Vorster PJ, Chen W, Wu Y. A dichotomy in cortical actin and chemotactic actin activity between human memory and naive T cells contributes to their differential susceptibility to HIV-1 infection. J Biol Chem 2012; 287:35455-35469. [PMID: 22879601 DOI: 10.1074/jbc.m112.362400] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human memory and naive CD4 T cells can mainly be identified by the reciprocal expression of the CD45RO or CD45RA isoforms. In HIV-1 infection, blood CD45RO memory CD4 T cells are preferentially infected and serve as a major viral reservoir. The molecular mechanism dictating this differential susceptibility to HIV-1 remains largely obscure. Here, we report that the different susceptibility of memory and naive T cells to HIV is not determined by restriction factors such as Apobec3G or BST2. However, we observed a phenotypic distinction between human CD45RO and CD45RA resting CD4 T cells in their cortical actin density and actin dynamics. CD45RO CD4 T cells possess a higher cortical actin density and can be distinguished as CD45RO(+)Actin(high). In contrast, CD45RA T cells are phenotypically CD45RA(+)Actin(low). In addition, the cortical actin in CD45RO memory CD4 T cells is more dynamic and can respond to low dosages of chemotactic induction by SDF-1, whereas that of naive cells cannot, despite a similar level of the chemokine receptor CXCR4 present on both cells. We further demonstrate that this difference in the cortical actin contributes to their differential susceptibility to HIV-1; resting memory but not naive T cells are highly responsive to HIV-mediated actin dynamics that promote higher levels of viral entry and early DNA synthesis in resting memory CD4 T cells. Furthermore, transient induction of actin dynamics in resting naive T cells rescues HIV latent infection following CD3/CD28 stimulation. These results suggest a key role of chemotactic actin activity in facilitating HIV-1 latent infection of these T cell subsets.
Collapse
Affiliation(s)
- Weifeng Wang
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110
| | - Jia Guo
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110
| | - Dongyang Yu
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110
| | - Paul J Vorster
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110
| | - WanJun Chen
- Mucosal Immunology Section, Oral Infection and Immunity Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110.
| |
Collapse
|
13
|
Dahiya S, Nonnemacher MR, Wigdahl B. Deployment of the human immunodeficiency virus type 1 protein arsenal: combating the host to enhance viral transcription and providing targets for therapeutic development. J Gen Virol 2012; 93:1151-1172. [PMID: 22422068 DOI: 10.1099/vir.0.041186-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy in combating human immunodeficiency virus type 1 (HIV-1) infection, the virus still persists in viral reservoirs, often in a state of transcriptional silence. This review focuses on the HIV-1 protein and regulatory machinery and how expanding knowledge of the function of individual HIV-1-coded proteins has provided valuable insights into understanding HIV transcriptional regulation in selected susceptible cell types. Historically, Tat has been the most studied primary transactivator protein, but emerging knowledge of HIV-1 transcriptional regulation in cells of the monocyte-macrophage lineage has more recently established that a number of the HIV-1 accessory proteins like Vpr may directly or indirectly regulate the transcriptional process. The viral proteins Nef and matrix play important roles in modulating the cellular activation pathways to facilitate viral replication. These observations highlight the cross talk between the HIV-1 transcriptional machinery and cellular activation pathways. The review also discusses the proposed transcriptional regulation mechanisms that intersect with the pathways regulated by microRNAs and how development of the knowledge of chromatin biology has enhanced our understanding of key protein-protein and protein-DNA interactions that form the HIV-1 transcriptome. Finally, we discuss the potential pharmacological approaches to target viral persistence and enhance effective transcription to purge the virus in cellular reservoirs, especially within the central nervous system, and the novel therapeutics that are currently in various stages of development to achieve a much superior prognosis for the HIV-1-infected population.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
14
|
Correlation of partial env gene sequences with disease progression parameters in HIV-positive pregnant women from India. Med Microbiol Immunol 2012; 201:271-6. [PMID: 22274805 DOI: 10.1007/s00430-011-0226-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/27/2011] [Indexed: 12/22/2022]
Abstract
Ever since the beginning of the epidemic of HIV, one of the poignant aspects of HIV infection is transmission of the virus from mother to child. It is not known whether pregnancy accelerates the progression of HIV infection from a clinically asymptomatic stage to a progressive clinical phase. Present study was carried out to understand disease progression in pregnant women from India. We studied co-receptor utilization (the major determinant of HIV disease progression), N-glycosylation sites, and sequence variability. Blood samples were collected from 25 HIV sero-positive patients, eleven from the antenatal risk group (experimental group), nine from heterosexual male, and five from heterosexual female risk group (control group). Partial env gene was amplified by PCR and sequenced. BLAST search and phylogenetic analysis were used to determine the subtype. The deduced amino acid sequence of the V3 region was used to predict co-receptor, determine sequence variability and N-glycosylation site. The experimental group comprising the antenatal risk group did not exhibit any difference in terms of co-receptor, N-glycosylation, and sequence variability when compared with the control, non-pregnant group. Pregnancy does not seem to accelerate the clinical course of HIV infection. The female body during the gestation phase possibly acquires certain strategies to impede or at least alleviate the disease progression during the crucial immune-compromised pregnancy phase, which would otherwise adversely affect the mother as well as the fetus during the infection.
Collapse
|
15
|
Fenyö EM, Esbjörnsson J, Medstrand P, Jansson M. Human immunodeficiency virus type 1 biological variation and coreceptor use: from concept to clinical significance. J Intern Med 2011; 270:520-31. [PMID: 21929694 DOI: 10.1111/j.1365-2796.2011.02455.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
There is ample evidence for intra-patient evolution of the human immunodeficiency virus type 1 (HIV-1) biological phenotype during the pathogenic process. Evolution often involves switch of coreceptor use from CCR5 to CXCR4, but change to more flexible use of CCR5 occurs over time even in patients with maintained CCR5 use. The increasing use of entry inhibitors in the clinic, often specific for one or the other HIV-1 coreceptor or with different binding properties to CCR5, calls for virus testing in patients prior to treatment initiation. Cell lines expressing CCR5/CXCR4 chimeric receptors are tools for testing viruses for mode of CCR5 use. It is conceivable that small-molecule entry inhibitors that differentially bind to CCR5 can be matched for best effect against HIV-1 with different modes of CCR5 use, thereby allowing an individualized drug choice specifically tailored for each patient.
Collapse
Affiliation(s)
- E M Fenyö
- Department of Laboratory Medicine, Division of Medical Microbiology, Lund, Sweden.
| | | | | | | |
Collapse
|
16
|
Ammersbach M, Bienzle D. Methods for assessing feline immunodeficiency virus infection, infectivity and purification. Vet Immunol Immunopathol 2011; 143:202-14. [DOI: 10.1016/j.vetimm.2011.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Grivel JC, Shattock RJ, Margolis LB. Selective transmission of R5 HIV-1 variants: where is the gatekeeper? J Transl Med 2011; 9 Suppl 1:S6. [PMID: 21284905 PMCID: PMC3105506 DOI: 10.1186/1479-5876-9-s1-s6] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To enter target cells HIV-1 uses CD4 and a coreceptor. In vivo the coreceptor function is provided either by CCR5 (for R5) or CXCR4 (for X4 HIV-1). Although both R5 and X4 HIV-1 variants are present in body fluids (semen, blood, cervicovaginal and rectal secretions), R5 HIV-1 appears to transmit infection and dominates early stages of HIV disease. Moreover, recent sequence analysis of virus in acute infection shows that, in the majority of cases of transmission, infection is initiated by a single virus. Therefore, the existence of a "gatekeeper" that selects R5 over X4 HIV-1 and that operates among R5 HIV-1 variants has been suggested. In the present review we consider various routes of HIV-transmission and discuss potential gatekeeping mechanisms associated with each of these routes. Although many mechanisms have been identified none of them explains the almost perfect selection of R5 over X4 in HIV-1 transmission. We suggest that instead of one strong gatekeeper there are multiple functional gatekeepers and that their superimposition is sufficient to protect against X4 HIV-1 infection and potentially select among R5 HIV-1 variants. In conclusion, we propose that the principle of multiple barriers is more general and not restricted to protection against X4 HIV-1 but rather can be applied to other phenomena when one factor has a selective advantage over the other(s). In the case of gatekeepers for HIV-1 transmission, the task is to identify them and to decipher their molecular mechanisms. Knowledge of the gatekeepers' localization and function may enable us to enhance existing barriers against R5 transmission and to erect the new ones against all HIV-1 variants.
Collapse
Affiliation(s)
- Jean-Charles Grivel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | | | | |
Collapse
|
18
|
Arias JF, Nishihara R, Bala M, Ikuta K. High systemic levels of interleukin-10, interleukin-22 and C-reactive protein in Indian patients are associated with low in vitro replication of HIV-1 subtype C viruses. Retrovirology 2010; 7:15. [PMID: 20211031 PMCID: PMC2841095 DOI: 10.1186/1742-4690-7-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/09/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND HIV-1 subtype C (HIV-1C) accounts for almost 50% of all HIV-1 infections worldwide and predominates in countries with the highest case-loads globally. Functional studies suggest that HIV-1C is unique in its biological properties, and there are contradicting reports about its replicative characteristics. The present study was conducted to evaluate whether the host cytokine environment modulates the in vitro replication capacity of HIV-1C viruses. METHODS A small subset of HIV-1C isolates showing efficient replication in peripheral blood mononuclear cells (PBMC) is described, and the association of in vitro replication capacity with disease progression markers and the host cytokine response was evaluated. Viruses were isolated from patient samples, and the corresponding in vitro growth kinetics were determined by monitoring for p24 production. Genotype, phenotype and co-receptor usage were determined for all isolates, while clinical category, CD4 cell counts and viral loads were recorded for all patients. Plasmatic concentrations of cytokines and, acute-phase response, and microbial translocation markers were determined; and the effect of cytokine treatment on in vitro replication rates was also measured. RESULTS We identified a small number of viral isolates showing high in vitro replication capacity in healthy-donor PBMC. HIV-1C usage of CXCR4 co-receptor was rare; therefore, it did not account for the differences in replication potential observed. There was also no correlation between the in vitro replication capacity of HIV-1C isolates and patients' disease status. Efficient virus growth was significantly associated with low interleukin-10 (IL-10), interleukin-22 (IL-22), and C-reactive protein (CRP) levels in plasma (p < .0001). In vitro, pretreatment of virus cultures with IL-10 and CRP resulted in a significant reduction of virus production, whereas IL-22, which lacks action on immune cells appears to mediate its anti-HIV effect through interaction with both IL-10 and CRP, and its own protective effect on mucosal membranes. CONCLUSIONS These results indicate that high systemic levels of IL-10, CRP and IL-22 in HIV-1C-infected Indian patients are associated with low viral replication in vitro, and that the former two have direct inhibitory effects whereas the latter acts through downstream mechanisms that remain uncertain.
Collapse
Affiliation(s)
- Juan F Arias
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Viral Emergent Diseases Research Group (VIREM), Universidad del Valle, Cali, Colombia
| | - Reiko Nishihara
- Department of Health Promotion Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Manju Bala
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Regional STD Teaching, Training and Research Center, VM Medical College & Safdarjang Hospital, New Delhi, India
| | - Kazuyoshi Ikuta
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Abstract
Binding of the HIV-1 envelope to its chemokine coreceptors mediates two major biological events: membrane fusion and signaling transduction. The fusion process has been well studied, yet the role of chemokine coreceptor signaling in viral infection has remained elusive through the past decade. With the recent demonstration of the signaling requirement for HIV latent infection of resting CD4 T cells, the issue of coreceptor signaling needs to be thoroughly revisited. It is likely that virus-mediated signaling events may facilitate infection in various immunologic settings in vivo where cellular conditions need to be primed; in other words, HIV may exploit the chemokine signaling network shared among immune cells to gain access to downstream cellular components, which can then serve as effective tools to break cellular barriers. This virus-hijacked aberrant signaling process may in turn facilitate pathogenesis. In this review, we summarize past and present studies on HIV coreceptor signaling. We also discuss possible roles of coreceptor signaling in facilitating viral infection and pathogenesis.
Collapse
|
20
|
Comparison of human immunodeficiency virus type 1 tropism profiles in clinical samples by the Trofile and MT-2 assays. Antimicrob Agents Chemother 2009; 53:4686-93. [PMID: 19687240 DOI: 10.1128/aac.00229-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recent availability of CCR5 antagonists as anti-human immunodeficiency virus (anti-HIV) therapeutics has highlighted the need to accurately identify CXCR4-using variants in patient samples when use of this new drug class is considered. The Trofile assay (Monogram Biosciences) has become the method that is the most widely used to define tropism in the clinic prior to the use of a CCR5 antagonist. By comparison, the MT-2 assay has been used since early in the HIV epidemic to define tropism in clinical specimens. Given that there are few data from direct comparisons of these two assays, we evaluated the performance of the plasma-based Trofile assay and the peripheral blood mononuclear cell (PBMC)-based MT-2 assay for the detection of CXCR4 use in defining the tropism of HIV isolates derived from clinical samples. The various samples used for this comparison were derived from participants of the Amsterdam Cohort Studies on HIV infection and AIDS who underwent consecutive MT-2 assay testing of their PBMCs at approximately 3-month intervals. This unique sample set was specifically selected because consecutive MT-2 assays had demonstrated a shift from negative to positive in PBMCs, reflecting the first emergence of CXCR4-using virus in PBMCs above the level of detection of the assay in these individuals. Trofile testing was performed with clonal HIV type 1 (HIV-1) variants (n = 21), MT-2 cell culture-derived cells (n = 20) and supernatants (n = 42), and plasma samples (n = 76). Among the clonal HIV-1 variants and MT-2 cell culture-derived samples, the results of the Trofile and MT-2 assays demonstrated a high degree of concordance (95% to 98%). Among consecutive plasma samples, detection of CXCR4-using virus was at or before the time of first detection by the MT-2 assay in 5/10 patients by the original Trofile assay and in 9/10 patients by the enhanced-sensitivity Trofile assay. Differences in the time to the first detection of CXCR4 use between the MT-2 assay (PBMCs) and the original Trofile assay (plasma) were greatly reduced by the enhanced-sensitivity Trofile assay, suggesting that sensitivity for the detection of minor CXCR4-using variants may be a more important determinant of discordant findings than compartmentalization. The similarities in performance of the enhanced-sensitivity Trofile and MT-2 assays suggest that either may be an appropriate methodology to define tropism in patient specimens.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW HIV-1 entry into target cells is a complex multistage process involving the envelope glycoprotein, primary cellular receptor CD4, and at least two main cellular coreceptors, CCR5 and CXCR4. The identification of the HIV-1 coreceptors led to the rapid development of several drug candidates that selectively block this interaction, that is, CCR5 or CXCR4 antagonists. Here, we review different methodologies used to determine the ability of the virus to use one or both coreceptors and their potential role in managing HIV-infected individuals treated with these novel drugs. RECENT FINDINGS Most commercially available HIV-1 tropism assays are cell-based (phenotypic) tests, which use different methodologies to generate env-recombinant viruses and distinct detection systems. On the other hand, a large effort is being devoted to develop more robust bioinformatic (genotypic) tools that may expedite HIV-1 tropism assays without compromising their accuracy. The main goal, however, continues to be to improve the sensitivity to detect minor CXCR4-tropic variants within the in-vivo HIV-1 quasispecies. SUMMARY An accurate determination, and perhaps quantification, of HIV-1 coreceptor usage is necessary for the successful management of HIV-infected individuals in the new era of entry inhibitors. Further studies, aimed to the development of novel methodologies, are essential for the success of this new class of drugs.
Collapse
|
22
|
Wu Y. The co-receptor signaling model of HIV-1 pathogenesis in peripheral CD4 T cells. Retrovirology 2009; 6:41. [PMID: 19409100 PMCID: PMC2679705 DOI: 10.1186/1742-4690-6-41] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 05/01/2009] [Indexed: 01/21/2023] Open
Abstract
HIV-mediated CD4 depletion is the hallmark of AIDS and is the most reliable predictor of disease progression. While HIV replication is associated with CD4 depletion in general, plasma viremia by itself predicts the rate of CD4 loss only minimally in untreated patients. To resolve this paradox, I hypothesize the existence of a subpopulation of R5X4-signaling viruses. I also suggest that the gradual evolution and emergence of this subpopulation are largely responsible for the slow depletion of peripheral CD4 T cells.
Collapse
Affiliation(s)
- Yuntao Wu
- Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
23
|
Sagar M, Laeyendecker O, Lee S, Gamiel J, Wawer MJ, Gray RH, Serwadda D, Sewankambo NK, Shepherd JC, Toma J, Huang W, Quinn TC. Selection of HIV variants with signature genotypic characteristics during heterosexual transmission. J Infect Dis 2009; 199:580-9. [PMID: 19143562 DOI: 10.1086/596557] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Newly infected subjects acquire a limited number of human immunodeficiency virus type 1 (HIV-1) variants with specific genotypic and phenotypic features from the array of viruses present in a chronically infected transmitting partner. METHODS We examined HIV-1 envelope sequences from the earliest available serum sample after HIV-1 acquisition in 13 newly infected subjects and from their epidemiologically linked HIV-1-infected heterosexual partner. Samples from both members were collected on the same day in the Rakai Community Cohort Study. RESULTS Ten couples were infected with subtype D HIV-1, and 3 pairs had subtype A HIV-1. Newly infected subjects acquired a subset of the viruses that were circulating in the transmitting partner; transmitted variants had less diversity and divergence and were more closely related to the ancestral sequences. The majority of signature amino acid differences among donor and recipient sequences were in and immediately following the V3 loop. Envelopes from recipients were significantly shorter and had a lower V3 charge than envelopes from donors, but there was no significant difference in the number of potential N-linked glycosylation sites. CONCLUSION A minority subset of HIV-1 variants with signature genotypes is favored for transmission in this population.
Collapse
Affiliation(s)
- Manish Sagar
- Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Graham SM, Holte S, Kimata JT, Wener MH, Overbaugh J. A decrease in albumin in early SIV infection is related to viral pathogenicity. AIDS Res Hum Retroviruses 2009; 25:433-40. [PMID: 19320603 DOI: 10.1089/aid.2008.0267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A decrease in circulating albumin levels after seroconversion has been reported as a predictor of disease progression in HIV-infected adults. We hypothesized that a similar decrease would be seen in pig-tailed macaques in early SIV infection, and that the degree of this decrease would be related to the pathogenicity of the infecting viral strain. Ten juvenile pig-tailed macaques were previously inoculated with virus derived from molecular clones representing different stages of infection: early (SIVMneCL8, n = 2), intermediate (SIVMne35wkSU, n = 2), late blood (SIVMne170, n = 3), or late lymph node (SIVMne027, n = 3). Albumin was measured in stored samples. Changes from baseline were evaluated by paired sample t tests and by linear regression with generalized estimating equations (GEE). Albumin levels decreased in the week after SIV inoculation (p = 0.02), increased above baseline at week 5, then fell, returning below baseline by week 16 (p = 0.03). In GEE modeling, albumin decreased significantly in both early and chronic infection (weeks 0-3, p < 0.001; weeks 5-16, p = 0.004) and this change differed significantly between infections caused by late versus early or intermediate virus variants (weeks 0-3, p = 0.002; weeks 5-16, p = 0.001). A decrease in albumin levels occurs in both early and chronic SIV infection, and is more marked in macaques infected with more pathogenic virus variants. These results suggest that both early and late events in SIV pathogenesis are influenced by properties of the infecting viral strain.
Collapse
Affiliation(s)
- Susan M. Graham
- Department of Medicine, University of Washington, Seattle, Washington 98104
- Department of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Holte
- Department of Biostatistics, University of Washington, Seattle, Washington 98104
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Mark H. Wener
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98104
| | - Julie Overbaugh
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
25
|
Predicted co-receptor tropism and sequence characteristics of China HIV-1 V3 loops: implications for the future usage of CCR5 antagonists and AIDS vaccine development. Int J Infect Dis 2009; 13:e212-6. [PMID: 19217335 DOI: 10.1016/j.ijid.2008.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 09/29/2008] [Accepted: 12/10/2008] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The co-receptor tropism of any given HIV-1 isolate is closely associated with the progression of AIDS. Understanding the co-receptor tropism and genetic diversity of circulating HIV-1 strains is critical for AIDS treatment and vaccine development. METHODS All available China HIV-1 V3 sequences with known subtypes/circulating recombinant forms (CRFs) and transmission routes were retrieved from the Los Alamos HIV Sequence Database. HIV-1 co-receptor tropism was predicted using online tool HIV-1 PhenoPred. RESULTS All C/CRF07_BC/CRF08_BC strains appeared to use CCR5 for cell entry (R5 strains), while 61.1% of subtype B and 38.7% of CRF01_AE were also R5, indicating a higher prevalence of R5 (76.9%) than X4. The prevalence of R5 remained relatively stable over the different sample years regardless of C/CRF07_BC/CRF08_BC, B, or CRF01_AE subtypes. The co-receptor usage of HIV-1 appeared to be associated with the different subtypes, rather than transmission route. Furthermore, the V3 sequences of C/CRF07_BC/CRF08_BC were more genetically homogeneous relative to both subtypes B and CRF01_AE. CONCLUSIONS The higher prevalence of R5 and higher level of homogeneity of V3 sequences in C/CRF07_BC/CRF08_BC suggest that CCR5 antagonists will be promising drugs for future AIDS treatment in China, and that circulating R5 strains are valuable candidates for AIDS vaccine development.
Collapse
|
26
|
CXCR4-Using HIV Type 1 Variants Are More Commonly Found in Peripheral Blood Mononuclear Cell DNA Than in Plasma RNA. J Acquir Immune Defic Syndr 2009; 50:126-36. [DOI: 10.1097/qai.0b013e31819118fa] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Chen Y, Shen C, Wu H, Caruso L, Ratner D, Rodriguez M, Chen X, Gupta P. Biological properties of HIV-1 subtype B' isolates from infected Chinese blood donors at different disease stages. Virology 2009; 384:161-8. [DOI: 10.1016/j.virol.2008.10.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/10/2008] [Accepted: 10/30/2008] [Indexed: 11/30/2022]
|
28
|
HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T cells. Cell 2008; 134:782-92. [PMID: 18775311 DOI: 10.1016/j.cell.2008.06.036] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 03/17/2008] [Accepted: 06/14/2008] [Indexed: 01/29/2023]
Abstract
Binding of the HIV envelope to the chemokine coreceptors triggers membrane fusion and signal transduction. The fusion process has been well characterized, yet the role of coreceptor signaling remains elusive. Here, we describe a critical function of the chemokine coreceptor signaling in facilitating HIV infection of resting CD4 T cells. We find that static cortical actin in resting T cells represents a restriction and that HIV utilizes the Galphai-dependent signaling from the chemokine coreceptor CXCR4 to activate a cellular actin-depolymerizing factor, cofilin, to overcome this restriction. HIV envelope-mediated cofilin activation and actin dynamics are important for a postentry process that leads to viral nuclear localization. Inhibition of HIV-mediated actin rearrangement markedly diminishes viral latent infection of resting T cells. Conversely, induction of active cofilin greatly facilitates it. These findings shed light on viral exploitation of cellular machinery in resting T cells, where chemokine receptor signaling becomes obligatory.
Collapse
|
29
|
Soulié C, Calvez V. [HIV tropism assays when first CCR5-antagonist becomes available]. Med Mal Infect 2008; 38 Suppl 1:S7-11. [PMID: 18455056 DOI: 10.1016/s0399-077x(08)70538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Since its co-receptors were discovered, HIV tropism is defined by the type of co-receptor used to infect its host cells : R5 for viruses using only CCR5, X4 for viruses using only CXCR4, and R5/X4 or dual for viruses using either CCR5 or CXCR4. Tropism prediction actually made is via recombinant phenotypic assays, which are labour-intensive, long-lasting and expensive, available in only a few highly qualified laboratories. Prescription of CCR5-antagonists requires screening for the presence of X4 variants before starting therapy. With development of this new class of antiretrovirals there is a need for genotypic tests, based on V3 loop gp 120 env gene sequencing and its interpretation with an algorithm. As for resistance tests 10 years ago, these genotypic tests will be easier to introduce into routine clinical practice. These genotypic tropism assays will help to select patients before CCR5-antagonist prescription and to follow patients treated by this class of antiretrovirals, looking for a potential switch of tropism during therapy.
Collapse
Affiliation(s)
- C Soulié
- Laboratoire de Virologie, CERVI, Hôpital de la Pitié-Salpêtrière, Paris cedex 13, France
| | | |
Collapse
|
30
|
Saracino A, Monno L, Punzi G, Cibelli DC, Tartaglia A, Scudeller L, Brindicci G, Lagioia A, Scotto G, Angarano G. HIV-1 biological phenotype and predicted coreceptor usage based on V3 loop sequence in paired PBMC and plasma samples. Virus Res 2007; 130:34-42. [PMID: 17582634 DOI: 10.1016/j.virusres.2007.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/26/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
Paired PBMCs and plasma samples from 34 HIV-infected patients were studied to verify the relationship between coreceptor use based on genotyping of V3 region of HIV-1 envelope gp120 and biological phenotype with virus isolation and subsequent correlation to clinical characteristics. The "11/25" rule, geno2pheno and PSSM were compared. All SI patients were HIV-1 subtype B (p=0.04) and had a lower CD4 count than NSI patients (p=0.01), while no differences were observed in mean HIV-RNA (log) (p=0.6). SI phenotype was not associated with AIDS-defining events (p=0.1) or with concurrent antiretroviral therapy (p=0.4). With geno2pheno, which shows the highest sensibility (83%), an X4 or X4/R5 genotype in PBMC DNA was also associated to B-subtype and lower CD4 count (p=0.01) compared to R5 isolates. Based on plasma RNA sequences, the predicted coreceptor usage agreed with PBMC DNA in 79% of cases with the "11/25" rule, 82% with geno2pheno, and 82% with PSSM. A X4 virus in plasma (but not in PBMCs) was significantly associated with HAART in all three methods (p=0.01 for "11/25" rule, p=0.01 for geno2pheno and p=0.03 for PSSM). Due to viral mixtures and/or difficulties in genotype interpretation, current V3 sequence-based methods cannot accurately predict HIV-1 coreceptor use.
Collapse
Affiliation(s)
- A Saracino
- Clinic of Infectious Diseases, University of Foggia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Karlsson I, Malleret B, Brochard P, Delache B, Calvo J, Le Grand R, Vaslin B. Dynamics of T-cell responses and memory T cells during primary simian immunodeficiency virus infection in cynomolgus macaques. J Virol 2007; 81:13456-68. [PMID: 17913797 PMCID: PMC2168859 DOI: 10.1128/jvi.01619-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cellular immune responses make an important contribution to both the control of human immunodeficiency virus (HIV) replication and disease progression. We used a pathogenic model of SIVmac251 infection of cynomolgus macaques to longitudinally evaluate cellular immune responses in association with various rates of disease progression. We found an inverse relationship between plasma viral load and the simian immunodeficiency virus (SIV)-specific T cells responses in peripheral blood and lymph nodes. SIV-specific T-cell responses in peripheral blood were transient during primary infection, with the highest responses detected around 3 months after infection. There was also a transient increase of central memory CD8(+) T cells in peripheral blood during primary infection, and effector memory T-cell counts in peripheral lymph nodes were increased. This study emphasizes the importance of the early virus-specific immune responses in the outcome of HIV/SIV disease and provides details about the changes of virus-specific immune responses over time.
Collapse
Affiliation(s)
- Ingrid Karlsson
- CEA, Service d'Immuno-Virologie, DSV/iMETI, IPSC, Fontenay-aux-Roses, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Karlsson I, Malleret B, Brochard P, Delache B, Calvo J, Le Grand R, Vaslin B. FoxP3+ CD25+ CD8+ T-cell induction during primary simian immunodeficiency virus infection in cynomolgus macaques correlates with low CD4+ T-cell activation and high viral load. J Virol 2007; 81:13444-55. [PMID: 17898053 PMCID: PMC2168878 DOI: 10.1128/jvi.01466-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The early immune response fails to prevent the establishment of chronic human immunodeficiency virus (HIV) infection but may influence viremia during primary infection, thereby possibly affecting long-term disease progression. CD25(+) FoxP3(+) regulatory T cells may contribute to HIV/simian immunodeficiency virus (SIV) pathogenesis by suppressing efficient antiviral responses during primary infection, favoring high levels of viral replication and the establishment of chronic infection. In contrast, they may decrease immune activation during chronic infection. CD4(+) regulatory T cells have been studied in the most detail, but CD8(+) CD25(+) FoxP3(+) T cells also have regulatory properties. We monitored the dynamics of CD25(+) FoxP3(+) T cells during primary and chronic SIVmac251 infection in cynomolgus macaques. The number of peripheral CD4(+) CD25(+) FoxP3(+) T cells paralleled that of memory CD4(+) T cells, with a rapid decline during primary infection followed by a rebound to levels just below baseline and gradual depletion during the course of infection. No change in the proportion of CD25(+) FoxP3(+) T cells was observed in peripheral lymph nodes. A small number of CD4(+) CD25(+) FoxP3(+) T cells at set point was associated with a high plasma viral load. In contrast, peripheral CD8(+) CD25(+) FoxP3(+) T cells were induced a few days after peak plasma viral load during primary infection. The number of these cells was positively correlated with viral load and negatively correlated with CD4(+) T-cell activation, SIV antigen-specific proliferative responses during primary infection, and plasma viral load at set point, with large numbers of CD8(+) CD25(+) FoxP3(+) T cells being indicative of a poor prognosis.
Collapse
Affiliation(s)
- Ingrid Karlsson
- CEA, Service d'Immuno-Virologie, DSV/iMETI, IPSC, Fontenay-aux-Roses, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Huang W, Eshleman SH, Toma J, Fransen S, Stawiski E, Paxinos EE, Whitcomb JM, Young AM, Donnell D, Mmiro F, Musoke P, Guay LA, Jackson JB, Parkin NT, Petropoulos CJ. Coreceptor tropism in human immunodeficiency virus type 1 subtype D: high prevalence of CXCR4 tropism and heterogeneous composition of viral populations. J Virol 2007; 81:7885-93. [PMID: 17507467 PMCID: PMC1951291 DOI: 10.1128/jvi.00218-07] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In human immunodeficiency virus type 1 (HIV-1) subtype B, CXCR4 coreceptor use ranges from approximately 20% in early infection to approximately 50% in advanced disease. Coreceptor use by non-subtype B HIV is less well characterized. We studied coreceptor tropism of subtype A and D HIV-1 collected from 68 pregnant, antiretroviral drug-naive Ugandan women (HIVNET 012 trial). None of 33 subtype A or 10 A/D-recombinant viruses used the CXCR4 coreceptor. In contrast, nine (36%) of 25 subtype D viruses used both CXCR4 and CCR5 coreceptors. Clonal analyses of the nine subtype D samples with dual or mixed tropism revealed heterogeneous viral populations comprised of X4-, R5-, and dual-tropic HIV-1 variants. In five of the six samples with dual-tropic strains, V3 loop sequences of dual-tropic clones were identical to those of cocirculating R5-tropic clones, indicating the presence of CXCR4 tropism determinants outside of the V3 loop. These dual-tropic variants with R5-tropic-like V3 loops, which we designated "dual-R," use CCR5 much more efficiently than CXCR4, in contrast to dual-tropic clones with X4-tropic-like V3 loops ("dual-X"). These observations have implications for pathogenesis and treatment of subtype D-infected individuals, for the association between V3 sequence and coreceptor tropism phenotype, and for understanding potential mechanisms of evolution from exclusive CCR5 use to efficient CXCR4 use by subtype D HIV-1.
Collapse
Affiliation(s)
- Wei Huang
- Monogram Biosciences, 345 Oyster Point Blvd., South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cardozo T, Kimura T, Philpott S, Weiser B, Burger H, Zolla-Pazner S. Structural basis for coreceptor selectivity by the HIV type 1 V3 loop. AIDS Res Hum Retroviruses 2007; 23:415-26. [PMID: 17411375 DOI: 10.1089/aid.2006.0130] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The third variable region (V3) of the HIV-1 surface glycoprotein, gp120, plays a central role in the interaction of the virus envelope with the cell surface chemokine receptors, triggering membrane fusion and virus entry into human lymphocytes and macrophages. The CXCR4 and CCR5 chemokine receptors are used by "X4-tropic" and "R5-tropic" viruses, respectively. Recently, the crown of the V3 loop was shown to bear a close structural homology to the beta2-beta3 loop in the CXC and CC chemokines, the natural ligands of CXCR4 and CCR5, respectively. This homology can serve as the foundation for 3D molecular modeling of the V3 loops from primary isolates whose coreceptor usage was experimentally defined. The modeling revealed a charged "patch" on the surface of V3 that correlates with coreceptor usage. This V3 surface patch is positively charged in X4-tropic viruses and negatively charged or neutral in R5-tropic viruses, and is formed by two amino acids, at position 11 and at position 24 or 25; amino acids 11 and 24 or 11 and 25 contact each other in 3D space. Residues at positions 11 and 25 were known previously to influence coreceptor usage, and the charge of the residues at these two positions is often used to predict viral tropism. However, we found that the predictive value of using the charge of residues 11, 24, and 25 to identify X4 or R5 tropism was improved over using only the charge of residues 11 and 25. Thus, the data suggest a new " 11/24/25 rule" : a positively charged amino acid at position 11, 24, or 25 defines X4; otherwise R5. This rule gave an overall predictive value of 94% for 217 viruses whose tropism had been determined experimentally as either X4 or R5. The results have additional implications for the design of HIV therapeutics, vaccines, and strategies for monitoring disease progression.
Collapse
Affiliation(s)
- Timothy Cardozo
- Department of Pharmacology and New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
35
|
Melby T. HIV Coreceptor Use in Heavily Treatment-Experienced Patients: Does It Take Two to Tangle? Clin Infect Dis 2007; 44:596-8. [PMID: 17243066 DOI: 10.1086/511046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 11/13/2006] [Indexed: 11/03/2022] Open
|
36
|
Poveda E, Briz V, Quiñones-Mateu M, Soriano V. HIV tropism: diagnostic tools and implications for disease progression and treatment with entry inhibitors. AIDS 2006; 20:1359-67. [PMID: 16791010 DOI: 10.1097/01.aids.0000233569.74769.69] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Mild M, Björndal A, Medstrand P, Fenyö EM. Isolation of human immunodeficiency virus-type 1 (HIV-1) clones with biological and molecular properties of the primary isolate. Virology 2006; 350:58-66. [PMID: 16563458 DOI: 10.1016/j.virol.2006.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 12/21/2005] [Accepted: 02/08/2006] [Indexed: 11/24/2022]
Abstract
We developed a new biological cloning system for HIV-1 isolates using the U87.CD4 cell lines that express different chemokine receptors. We demonstrate that our method is sensitive and specific because the clones isolated had the same coreceptor usage and genotype as viruses of the primary isolate. We evaluated our cloning system by isolating 27 biological clones from two primary HIV-1 R3R5X4 isolates. Three HIV-1 phenotypes (R3R5X4, R3R5 and R5) were identified in isolate 29 and two (R3R5X4 or R5X4) in isolate 31. Each phenotype was distinguished by a unique genotype. Sequencing of 20 molecular clones from each isolate did not reveal additional genotypes. One of the three genotypes identified from isolate 29 was not found by molecular cloning of the original isolate, suggesting high specificity and sensitivity of the biological cloning system in isolating minor virus populations. Our results suggest that the new cloning approach can be used as an alternative to the existing method for isolating biological clones in PBMC.
Collapse
Affiliation(s)
- Mattias Mild
- Department of Laboratory Medicine, Division of Medical Microbiology/Virology, Lund University, Sölvegatan 23, 223 62 Lund, Sweden.
| | | | | | | |
Collapse
|
38
|
Margolis L, Shattock R. Selective transmission of CCR5-utilizing HIV-1: the 'gatekeeper' problem resolved? Nat Rev Microbiol 2006; 4:312-7. [PMID: 16541138 DOI: 10.1038/nrmicro1387] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding the mechanisms of HIV-1 transmission is crucial for the development of effective preventive microbicides and vaccine strategies, and remains one of the main goals of HIV research. Over the past decade, many studies have focused on trying to identify the 'gatekeeping' mechanism that restricts the transmission of CXCR4-utilizing HIV-1 more efficiently than CCR5-utilizing HIV-1. However, to date, no study has explained the almost perfect negative selection of the former in vivo. Here, we propose that there is no single gatekeeper and that, instead, the selective transmission of R5 HIV-1 depends on the superimposition of multiple imperfect gatekeepers.
Collapse
Affiliation(s)
- Leonid Margolis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20895, USA.
| | | |
Collapse
|
39
|
Choge I, Cilliers T, Walker P, Taylor N, Phoswa M, Meyers T, Viljoen J, Violari A, Gray G, Moore PL, Papathanosopoulos M, Morris L. Genotypic and phenotypic characterization of viral isolates from HIV-1 subtype C-infected children with slow and rapid disease progression. AIDS Res Hum Retroviruses 2006; 22:458-65. [PMID: 16706624 DOI: 10.1089/aid.2006.22.458] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The genotypes and biological phenotypes of HIV-1 isolates obtained from 40 perinatally infected children in South Africa were analyzed. This included 15 infants who had HIV-related symptoms, most of whom died within 2 years of birth (rapid progressors), and 25 children who survived between 4 and 9 years with varying signs of disease (slow progressors). Heteroduplex mobility assays and sequence analysis confirmed that within the env and gag regions, all isolates were HIV-1 subtype C. Viral isolates from 14 of the 15 rapid progressors used the CCR5 coreceptor, whereas 1 (02ZARP1) used both the CXCR4 and CCR5 coreceptors. Among the 25 slow progressors, 22 isolates used CCR5 only, 2 used CXCR4 only, and 1 used both CCR5 and CXCR4. Two of the slow-progressing children who harbored CXCR4-using viruses had AIDS. All four CXCR4-using viruses had genotypic changes in the V3 region previously shown to be associated with CXCR4 usage. This cross-sectional study shows that HIV-1 subtype C viruses from both rapid- and slow-progressing perinatally infected children used predominantly CCR5. Similar to adults, CXCR4 usage was uncommon among HIV-1 subtype C isolates from pediatric infections.
Collapse
Affiliation(s)
- Isaac Choge
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Biswas P, Nozza S, Scarlatti G, Lazzarin A, Tambussi G. Oral CCR5 inhibitors: will they make it through? Expert Opin Investig Drugs 2006; 15:451-64. [PMID: 16634684 DOI: 10.1517/13543784.15.5.451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The therapeutic armamentarium against HIV has recently gained a drug belonging to a novel class of antiretrovirals, the entry inhibitors. The last decade has driven an in-depth knowledge of the HIV entry process, unravelling the multiple engagements of the HIV envelope proteins with the cellular receptorial complex that is composed of a primary receptor (CD4) and a co-receptor (CCR5 or CXCR4). The vast majority of HIV-infected subjects exhibit biological viral variants that use CCR5 as a co-receptor. Individuals with a mutated CCR5 gene, both homo- and heterozygotes, appear to be healthy. For these and other reasons, CCR5 represents an appealing target for treatment intervention, although certain challenges can not be ignored. Promising small-molecule, orally bioavailable CCR5 antagonists are under development for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Priscilla Biswas
- San Raffaele Scientific Institute, Laboratory of Clinical Immunology, Clinic of Infectious Diseases, Via Stamira d'Ancona 20, 20127 Milan, Italy.
| | | | | | | | | |
Collapse
|
41
|
Favrot C, Wilhelm S, Grest P, Meli ML, Hofmann-Lehmann R, Kipar A. Two cases of FeLV-associated dermatoses. Vet Dermatol 2006; 16:407-12. [PMID: 16359309 DOI: 10.1111/j.1365-3164.2005.00480.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two cases of feline leukaemia virus (FeLV)-associated dermatosis are described. The first cat was affected by an ulcerative dermatitis identified as a giant-cell dermatosis. The second case was a cutaneous lymphoma. In both cases, FeLV antigens and FeLV genome were demonstrated in the affected skin immunologically and with polymerase chain reaction, respectively. The first case suggests that, like other retroviruses, at least some strains of FeLV can induce syncytium formation. As FeLV antigens and genome were demonstrated in a serologically negative cat, the second case suggests that focal skin FeLV replication may occur. FeLV-associated dermatoses are rare skin conditions that may be under-diagnosed.
Collapse
Affiliation(s)
- C Favrot
- Clinic for Small Animal Internal Medicine, Dermatology Unit, Universit of Zürich, Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Great progress has been made in our understanding of HIV since its initial discovery about 20 years ago. The ability of HIV to infect CD4+ lymphocytes and a wide variety of other cells in the body is appreciated, as is its role in immunologic, gastrointestinal, and brain disorders. HIV enters cells via the CD4 molecule, chemokine co-receptors (CXCR4, CCR5), and other cell-surface proteins. Several accessory virus-associated genes (e.g., Rev, Tat, Nef) have uncovered unique pathways that can also be observed in normal cells. Recently, the discovery of natural cellular resistant factors (APOBEC3G and TRIM5a) has provided avenues for novel antiviral therapies. Studies of long-term survivors have given insight into immune responses that control HIV and can prevent infection. Neutralizing antibodies and CD8+ cell cytotoxic responses, as well as plasmacytoid dendritic cells and CD8+ cell non-cytotoxic antiviral responses, are adaptive and innate immune activities mediating this anti-HIV effect. HIV vaccine studies have indicated that conventional approaches do not work against this integrated intracellular parasite. While much has been learned about HIV, more details are needed about its infection cycle and its pathologic effects in the body. The past 20 years have yielded important information on HIV/AIDS that should lead to effective anti-HIV therapies and a vaccine.
Collapse
Affiliation(s)
- J A Levy
- Laboratory for Tumor and AIDS Research, University of California, San Francisco, 513 Parnassus Avenue, Suite S1280, San Francisco, CA 94143-1270, USA.
| |
Collapse
|
43
|
Vasan A, Renjifo B, Hertzmark E, Chaplin B, Msamanga G, Essex M, Fawzi W, Hunter D. Different rates of disease progression of HIV type 1 infection in Tanzania based on infecting subtype. Clin Infect Dis 2006; 42:843-52. [PMID: 16477563 DOI: 10.1086/499952] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 09/25/2005] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Many different subtypes of human immunodeficiency virus (HIV) type 1 have been identified, particularly in sub-Saharan Africa. However, much remains unknown regarding the relative pathogenicity of these subtypes and their influence on the clinical progression of HIV infection. We examined prospectively the associations between HIV-1 subtypes A, C, and D and recombinant viruses, as well as the rates of disease progression in a cohort of seropositive women from Dar es Salaam, Tanzania. METHODS A total of 428 pregnant mothers participating in a larger controlled trial of the effect of vitamin supplements were selected for DNA sequencing of their HIV-1 subtype. Plasma viral load was measured at baseline, and CD4+ cell counts was assessed at baseline and at regular intervals throughout the follow-up period. Proportional hazards regression (hazards ratio [HR]) analysis was used to measure the association between viral subtype and the rate of disease progression. RESULTS Relative to patients with subtype A, patients with subtype D experienced the most rapid progression to death (HR, 2.27; 95% confidence interval [CI], 1.46-3.52) or to the World Health Organization stage 4 of illness (HR, 1.94; 95% CI, 1.20-3.14) and to a CD4+ cell count of <200 cells/mm3 (HR, 2.12; 95% CI, 1.42-3.17). After adjustment for viral load, CD4+ cell count, and other baseline covariates, the associations remained similar. CONCLUSIONS We observed heterogeneity in the rates of disease progression of HIV-1 disease in infected persons, on the basis of the infecting subtype. Subtype D was associated with the most rapid progression of the disease, relative to the other 3 categories of viruses in our cohort.
Collapse
Affiliation(s)
- Ashwin Vasan
- Department of Epidemiology, Harvard School of Public Health, AIDS Institute, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Stilianakis NI, Schenzle D. On the intra-host dynamics of HIV-1 infections. Math Biosci 2005; 199:1-25. [PMID: 16343556 DOI: 10.1016/j.mbs.2005.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 05/23/2005] [Accepted: 09/21/2005] [Indexed: 11/22/2022]
Abstract
An extension of a previously proposed theory for the pathogenesis of AIDS is presented and analyzed using a mathematical modelling approach. This theory is based on the observation that human immunodeficiency virus type 1 (HIV-1) predominantly infects and replicates in (CD4+)-T cells, and that the infection process within an infected individual is characterized by ongoing generation and selection of HIV variants with increasing reproductive capacity. This evolutionary process is considered to be the reason for the gradual loss of immunocompetence and the final destruction of the immune system observed in most patients. The extension presented here incorporates the effect of the permanently increasing susceptibility of (CD4+)-T cell clones, as a result of the evolutionary process. The presented model reproduces and possibly explains a wide variety of findings about the HIV infection process. Numerical results indicate that the effect of the initial dose is minimal, and restricted to the primary phase of infection. According to the model predictions the impact of the HIV evolutionary speed is crucial for the progression to disease. An important progression determinant is the initial infection rate, being a component of the viral reproductive capacity. An influential role in disease progression seems to be played by the initial (CD4+)-T cell count.
Collapse
Affiliation(s)
- Nikolaos I Stilianakis
- Department of Biometry and Epidemiology, Friedrich-Alexander-University of Erlangen-Nuremberg, Waldstr. 6, 91054 Erlangen, Germany.
| | | |
Collapse
|
45
|
Casper C, Mild M, Jansson M, Karlsson A, Holmberg V, Bratt G, Van Paaschen H, Biberfeld P, Björndal A, Albert J, Popovic M, Fenyö EM. Coreceptor usage of primary HIV type 1 isolates obtained from different lymph node subsets. AIDS Res Hum Retroviruses 2005; 21:1003-10. [PMID: 16379603 DOI: 10.1089/aid.2005.21.1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biological characteristics of virus quantitatively rescued from different cell types present in lymph nodes of HIV-1-infected individuals in various stages of their disease were determined, not including patients with AIDS defining illness. Viruses were obtained by cocultivation with donor monocyte-derived macrophages and T-lymphocytes and their biological phenotype compared to viruses obtained from the peripheral blood mononuclear cells of the same patient. The biological phenotype was determined on established cell lines (U937-2, CEM, and MT-2) and on the U87.CD4 coreceptor indicator cell lines and variable region 3 (V3) of the envelope was subjected to direct sequencing. All isolates obtained from lymph node subsets used CCR5 as coreceptor. Furthermore, these viruses were also sensitive to inhibition by beta-chemokines as analyzed for viruses of one patient. All 12 V3 regions showed a unique sequence indicating compartmentalization within each patient. The biological phenotype of CCR5-dependent (R5) HIV-1 isolates obtained from PBMC resembles the phenotype of viruses isolated from different lymph node cell subsets.
Collapse
Affiliation(s)
- Charlotte Casper
- Microbiology and Tumorbiology Center, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
McDonald R, Burnett V. Novel single-round PCR and cloning of full-length envelope genes of HIV-1 may yield new insight into biomolecular antibacterial drug development. J Virol Methods 2005; 126:111-8. [PMID: 15847926 DOI: 10.1016/j.jviromet.2005.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 01/17/2005] [Accepted: 01/18/2005] [Indexed: 11/20/2022]
Abstract
Nested or semi-nested polymerase chain reaction (PCR) with a 'hot start' is the preferred amplification method for full-length, in-frame envelope genes (gp160) of the human immunodeficiency virus type 1 (HIV-1). This generally follows an extensive screening process. This paper describes an effective single-round PCR method and cloning process for HIV-1 gp160 from clinical samples, and cell and tissue cultures developed during the early stages of construction of a molecular HIV-1 vaccine. The amplification method and cloning process are adaptable to full-length HIV-1, HIV-2, and other viral production processes. Also described within, is one solution to the most-often extensive screening process for inserts containing full-length, in-frame gp160. Of note, was a perceived toxicity of gp160 to bacteria during the culturing and the scaling-up process that created the extensive screening process. The toxicity association was not found with the individual gp160 genes, the gp120 or the gp41 gene, with other viral regions similar or larger in molecular weight to gp160, or with other non-gp160 full-length genes of HIV-1 such as pol and gag genes. The HIV-1 gp160 toxicity issue may provide insight towards the development of the next generation of novel biomolecular drugs against bacterial infections.
Collapse
Affiliation(s)
- Richard McDonald
- Biomedical Health Sciences Division, Genovar Diagnostics, 1030 Heeley Close, Sittingbourne Research Centre, Sittingbourne ME9 8HL, Kent, UK.
| | | |
Collapse
|
47
|
Joos B, Trkola A, Fischer M, Kuster H, Rusert P, Leemann C, Böni J, Oxenius A, Price DA, Phillips RE, Wong JK, Hirschel B, Weber R, Günthard HF. Low human immunodeficiency virus envelope diversity correlates with low in vitro replication capacity and predicts spontaneous control of plasma viremia after treatment interruptions. J Virol 2005; 79:9026-37. [PMID: 15994796 PMCID: PMC1168724 DOI: 10.1128/jvi.79.14.9026-9037.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic diversity of viral isolates in human immunodeficiency virus (HIV)-infected individuals varies substantially. However, it remains unclear whether HIV-related disease progresses more rapidly in patients harboring virus swarms with low or high diversity and, in the same context, whether high or low diversity is required to induce potent humoral and cellular immune responses. To explore whether viral diversity predicts virologic control, we studied HIV-infected patients who received antiretroviral therapy (ART) for years before undergoing structured treatment interruptions (STI). Viral diversity before initiation of ART and the ability of the patients to contain viremia after STI and final cessation of treatment was evaluated. Seven out of 21 patients contained plasma viremia at low levels after the final treatment cessation. Clonal sequences encompassing the envelope C2V3C3 domain derived from plasma prior to treatment, exhibited significantly lower diversity in these patients compared to those derived from patients with poor control of viremia. Viral diversity pre-ART correlated with the viral replication capacity of rebounding virus isolates during STI. Neutralizing antibody activity against autologous virus was significantly higher in patients who controlled viremia and was associated with lower pretreatment diversity. No such association was found with binding antibodies directed to gp120. In summary, lower pretreatment viral diversity was associated with spontaneous control of viremia, reduced viral replication capacity and higher neutralizing antibody titers, suggesting a link between viral diversity, replication capacity, and neutralizing antibody activity.
Collapse
Affiliation(s)
- Beda Joos
- University Hospital Zurich, Department of Medicine, Division of Infectious Diseases and Hospital Epidemiology, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Locher CP, Witt SA, Kassel R, Dowell NL, Fujimura S, Levy JA. Differential effects of R5 and X4 human immunodeficiency virus type 1 infection on CD4+ cell proliferation and activation. J Gen Virol 2005; 86:1171-1179. [PMID: 15784911 DOI: 10.1099/vir.0.80674-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) isolates can be distinguished by their chemokine coreceptor usage. Non-syncytium-inducing (NSI), macrophage-tropic viruses utilize CCR5 and are called R5 viruses; syncytium-inducing (SI) isolates use CXCR4 and are known as X4 viruses. R5 and X4 HIV isolates are both transmitted but, in most cases, R5 viruses predominate in the blood prior to the development of AIDS-related pathogenesis. The reason for the selective growth of the R5 strain is not known, but could reflect a replication advantage of R5 viruses over X4 viruses in CD4+ cells. To explore this possibility, eight phenotypically distinct viruses were used to infect CD4+ cells and cellular proliferation and activation were evaluated. In unstimulated CD4+ cells, R5 virus isolates increased the level of cell activation compared with X4 virus isolates and uninfected control cells. In CD4+ cells that were stimulated with interleukin 2, both R5 and X4 viruses were found to decrease the level of cell proliferation and reduce the majority of the activation markers studied when compared with uninfected control CD4+ cells from the same donors. However, although equal amounts of CD4+ cells were infected, R5 virus-infected CD4+ cells showed a two- to fourfold increase in cellular proliferation over X4 viruses, as measured by [3H]thymidine incorporation (P=0.001) and nuclear expression of Ki67 (P=0.001). In addition, a larger proportion of CD4+ T cells infected with R5 viruses had significantly higher levels of activation-marker expression (e.g. CD25, CD71 and HLA-DR) than CD4+ T lymphocytes infected with X4 viruses (P<0.02). Taken together, these results indicate that CD4+ cells infected with R5 virus isolates may have a selective advantage over X4 virus-infected CD4+ T cells for survival and, hence, virus spread.
Collapse
Affiliation(s)
- Christopher P Locher
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, CA 94143, USA
| | - Stephanie A Witt
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, CA 94143, USA
| | - Rachel Kassel
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, CA 94143, USA
| | - Noah L Dowell
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, CA 94143, USA
| | - Sue Fujimura
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, CA 94143, USA
| | - Jay A Levy
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
49
|
Abstract
HIV-1, like the other lentiviruses, has evolved the ability to infect nondividing cells including macrophages. HIV-1 replication in monocytes/macrophages entails peculiar features and differs in many respects from that in CD4 T lymphocytes. HIV-1 exhibits different tropism for CD4 T cells and macrophages. The virus can enter macrophages via several routes. Mitosis is not required for nuclear import of viral DNA or for its integration into the host cell genome. Specific cellular factors are required for HIV-1 transcription in macrophages. The assembly and budding of viral particles in macrophages take place in late endosomal compartments. Viral particles can use the exosome pathway to exit cells. Given their functions in host defence against pathogens and the regulation of the immune response plus their permissivity to HIV-1 infection, monocytes/macrophages exert a dual role in HIV infection. They contribute to the establishment and persistence of HIV-1 infection, and may activate surrounding T cells favouring their infection. Furthermore, monocytes/macrophages act as a Trojan horse to transmit HIV-1 to the central nervous system. They also exhibit antiviral activity and express many molecules that inhibit HIV-1 replication. Activated microglia and macrophages may also exert a neurotrophic and neuroprotective effect on infected brain regulating glutamate metabolism or by secretion of neurotrophins. This review will discuss specific aspects of viral replication in monocytes/macrophages and the role of their interactions with the cellular environment in HIV-1 infection swinging between protection and pathogenesis.
Collapse
Affiliation(s)
- Alessia Verani
- Human Virology Unit, DIBIT, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
50
|
Marozsan AJ, Fraundorf E, Abraha A, Baird H, Moore D, Troyer R, Nankja I, Arts EJ. Relationships between infectious titer, capsid protein levels, and reverse transcriptase activities of diverse human immunodeficiency virus type 1 isolates. J Virol 2004; 78:11130-41. [PMID: 15452233 PMCID: PMC521859 DOI: 10.1128/jvi.78.20.11130-11141.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most studies on human immunodeficiency virus type 1 (HIV-1) replication kinetics or fitness must rely on a particular assay to initially standardize inocula from virus stocks. The most accurate measure of infectious HIV-1 titers involves a limiting dilution-infection assay and a calculation of the dose required for 50% infectivity of susceptible cells in tissue culture (TCID(50)). Surrogate assays are now commonly used to measure the amount of p24 capsid, the endogenous reverse transcriptase (RT) activity, or the amount of viral genomic RNA in virus particles. However, a direct comparison of these surrogate assays and actual infectious HIV-1 titers from TCID(50) assays has not been performed with even the most conserved laboratory strains, let alone the highly divergent primary HIV-1 isolates of different subtypes. This study indicates that endogenous RT activity, not p24 content or viral RNA load, is the best surrogate measure of infectious HIV-1 titer in both cell-free supernatants and viruses purified on sucrose cushions. Sequence variation between HIV-1 subtypes did not appear to affect the function or activity of the RT enzyme in this endogenous assay but did affect the detection of p24 capsid by both enzyme immunoassays and Western blots. Clear groupings of non-syncytium-inducing (NSI), CCR5-tropic (R5), and SI/CXCR4-tropic (X4) HIV-1 isolates were observed when we compared the slopes derived from correlations of RT activity with infectious titers. Finally, the replication efficiency or fitness of both the NSI/R5 and SI/X4 HIV-1 isolates was not linked to the titers of the virus stocks.
Collapse
Affiliation(s)
- Andre J Marozsan
- Division of Infectious Diseases, BRB 1029, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|