1
|
Kyratsous CA, Silverstein SJ. Components of nuclear domain 10 bodies regulate varicella-zoster virus replication. J Virol 2009; 83:4262-74. [PMID: 19211749 PMCID: PMC2668482 DOI: 10.1128/jvi.00021-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/04/2009] [Indexed: 11/20/2022] Open
Abstract
PML, Sp100, and Daxx are proteins that normally reside within nuclear domains 10 (ND10s). They associate with DNA virus genomes and repress the very early stages of the DNA virus replication cycle. Virus-encoded proteins counteract this innate antiviral response. ICP0, a herpes simplex virus (HSV) immediate-early protein, is necessary and sufficient to dissociate ND10s and target their two major components, PML and Sp100, for proteasomal degradation. In this report, we show that ORF61p, the varicella-zoster virus (VZV) ortholog of ICP0, does not degrade PML and alters Sp100 levels only slightly. Furthermore, we demonstrate that other virus proteins cannot substitute for this lack of function during infection. By using short interfering RNAs, we depleted PML, Sp100, and Daxx and studied their roles in plaquing efficiency, virus protein accumulation, infectious-center titer, and virus spread. The results of these studies show that components of ND10s can accelerate VZV replication but do not ultimately control cell-associated virus titers. We conclude that while both ICP0 and ORF61p activate virus gene expression, they modulate host innate repression mechanisms in two different ways. As a result, HSV and VZV commandeer their host cells by distinct mechanisms to ensure their replication and spread.
Collapse
Affiliation(s)
- Christos A Kyratsous
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
2
|
Li WZ, Cun W, Liu LD, Che YC, Luo J, Wang LC, Dong CH, Yang Q, Li QH. Expression of HSV-1 ICP0 antigen peptide in prokaryotic cells and preparation of specific antibody. Virol Sin 2007. [DOI: 10.1007/s12250-007-0003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
3
|
Sobol PT, Mossman KL. ICP0 prevents RNase L-independent rRNA cleavage in herpes simplex virus type 1-infected cells. J Virol 2007; 80:218-25. [PMID: 16352546 PMCID: PMC1317541 DOI: 10.1128/jvi.80.1.218-225.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The classical interferon (IFN)-dependent antiviral response to viral infection involves the regulation of IFN-stimulated genes (ISGs), one being the gene encoding cellular endoribonuclease RNase L, which arrests protein synthesis and induces apoptosis by nonspecifically cleaving rRNA. Recently, the herpes simplex virus type 1 (HSV-1) protein ICP0 has been shown to block the induction of ISGs by subverting the IFN pathway upstream of the 2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway. We report that ICP0 also prevents rRNA degradation at late stages of HSV-1 infection, independent of its E3 ubiquitin ligase activity, and that the resultant rRNA degradation is independent of the classical RNase L antiviral pathway. Moreover, the degradation is independent of the viral RNase vhs and is independent of IFN response factor 3. These studies indicate the existence of another, previously unidentified, RNase that is part of the host antiviral response to viral infection.
Collapse
Affiliation(s)
- Paul T Sobol
- Department of Biochemistry and Biomedical Sciences, Centre for Gene Therapeutics, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | |
Collapse
|
4
|
Stallings CL, Duigou GJ, Gershon AA, Gershon MD, Silverstein SJ. The cellular localization pattern of Varicella-Zoster virus ORF29p is influenced by proteasome-mediated degradation. J Virol 2006; 80:1497-512. [PMID: 16415026 PMCID: PMC1346923 DOI: 10.1128/jvi.80.3.1497-1512.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 29 (ORF29) encodes a single-stranded DNA binding protein. During lytic infection, ORF29p is localized primarily to infected-cell nuclei, whereas during latency it appears in the cytoplasm of infected neurons. Following reactivation, ORF29p accumulates in the nucleus. In this report, we analyze the cellular localization patterns of ORF29p during VZV infection and during autonomous expression. Our results demonstrate that ORF29p is excluded from the nucleus in a cell-type-specific manner and that its cellular localization pattern may be altered by subsequent expression of VZV ORF61p or herpes simplex virus type 1 ICP0. In these cases, ORF61p and ICP0 induce nuclear accumulation of ORF29p in cell lines where it normally remains cytoplasmic. One cellular system utilized by ICP0 to influence protein abundance is the proteasome degradation pathway. Inhibition of the 26S proteasome, but not heat shock treatment, resulted in accumulation of ORF29p in the nucleus, similar to the effect of ICP0 expression. Immunofluorescence microscopy and pulse-chase experiments reveal that stabilization of ORF29p correlates with its nuclear accumulation and is dependent on a functional nuclear localization signal. ORF29p nuclear translocation in cultured enteric neurons and cells derived from an astrocytoma is reversible, as the protein's distribution and stability revert to the previous states when the proteasomal activity is restored. Thus, stabilization of ORF29p leads to its nuclear accumulation. Although proteasome inhibition induces ORF29p nuclear accumulation, this is not sufficient to reactivate latent VZV or target the immediate-early protein ORF62p to the nucleus in cultured guinea pig enteric neurons.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Line
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Enteric Nervous System/metabolism
- Enteric Nervous System/virology
- Exons
- Guinea Pigs
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/metabolism
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/metabolism
- Herpesvirus 3, Human/pathogenicity
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Leupeptins/pharmacology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation
- Open Reading Frames
- Protease Inhibitors/pharmacology
- Proteasome Endopeptidase Complex/metabolism
- Proteasome Inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Subcellular Fractions/metabolism
- Subcellular Fractions/virology
- Tissue Culture Techniques
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Christina L Stallings
- Integrated Program in Cellular, Molecular and Biophysical Studies, and Department of Microbiology, Columbia University College of Physicians and Surgeons, 701 W. 168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
5
|
Hobbs WE, Brough DE, Kovesdi I, DeLuca NA. Efficient activation of viral genomes by levels of herpes simplex virus ICP0 insufficient to affect cellular gene expression or cell survival. J Virol 2001; 75:3391-403. [PMID: 11238865 PMCID: PMC114132 DOI: 10.1128/jvi.75.7.3391-3403.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2000] [Accepted: 01/05/2001] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) ICP0 can effectively activate gene expression from otherwise silent promoters contained on persisting viral genomes. However, the expression of high levels of ICP0, as from ICP4(-) HSV type 1 (HSV-1) vectors, results in marked toxicity. We have analyzed the results of ICP0 expressed from an E1(-) E4(-) adenovirus vector (AdS.11E4ICP0) in which ICP0 expression is controlled from the endogenous adenoviral E4 promoter. In this system, the expression level of ICP0 was reduced more than 1,000-fold relative to the level of expression from HSV-1 vectors. This low level of ICP0 did not affect cellular division or greatly perturb cellular metabolism as assessed by gene expression array analysis comparing the effects of HSV and adenovirus vector strains. However, this amount of ICP0 was sufficient to quantitatively destroy ND10 structures as measured by promyelocytic leukemia immunofluorescence. The levels of adenovirus-expressed ICP0 were sufficient to activate quiescent viral genomes in trans and promote persistent transgene expression in cis. Moreover, infection of complementing cells with AdS.11E4ICP0 promoted viral growth and resulted in a 20-fold increase in the plaquing efficiency of d109, a virus defective for all five immediate-early genes. Thus, the low level expression of ICP0 from the E1(-) E4(-) adenovirus vector may increase the utility of adenovirus vectors and also provides a means to efficiently quantify and possibly propagate HSV vectors defective in ICP0. Importantly, the results demonstrate that the activation function of ICP0 may not result from changes in cellular gene expression, but possibly as a direct consequence of an enzymatic function inherent to the protein that may involve its action at ND10 resulting in the preferential activation of viral genomes.
Collapse
Affiliation(s)
- W E Hobbs
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
6
|
Mozes G, Mohacsi T, Gloviczki P, Menawat S, Kullo I, Spector D, Taylor J, Crotty TB, O'Brien T. Adenovirus-mediated gene transfer of macrophage colony stimulating factor to the arterial wall in vivo. Arterioscler Thromb Vasc Biol 1998; 18:1157-63. [PMID: 9672077 DOI: 10.1161/01.atv.18.7.1157] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Macrophage colony stimulating factor (MCSF) is believed to play a key role in one of the earliest events in atherosclerosis, ie, monocyte to macrophage differentiation in the arterial intima. The aim of this study was to examine the biological effects of vascular wall expression of MCSF. A recombinant adenovirus vector encoding human MCSF (AdMCSF) was generated by standard techniques of homologous recombination in 293 cells. The rabbit carotid artery was transduced with AdMCSF. As negative controls, carotid arteries were transduced with either an adenoviral vector encoding beta-galactosidase, an adenoviral vector encoding apolipoprotein E, or diluent alone. Intima-media thickness ratio was calculated 5 and 21 days after transduction. The cell type present in intimal infiltrates was analyzed by immunohistochemistry. MCSF expression was demonstrated in the vessel wall of AdMCSF-transduced vessels by reverse transcription-polymerase chain reaction and immunofluorescence. In contrast to control vessels, adenovirus-mediated MCSF expression was associated with an intimal cellular infiltrate consisting of smooth muscle cells and small numbers of macrophages. Whereas the intima-media thickness ratio was greater in AdMCSF-transduced vessels at 5 days, this difference was no longer statistically significant at 21 days. These results suggest that MCSF may play a role in recruitment of monocytes and macrophages to the vessel wall and may contribute to smooth muscle cell proliferation and migration.
Collapse
Affiliation(s)
- G Mozes
- Division of Vascular Surgery, The Mayo Clinic, Rochester, Minn 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wilcox CL, Smith RL, Everett RD, Mysofski D. The herpes simplex virus type 1 immediate-early protein ICP0 is necessary for the efficient establishment of latent infection. J Virol 1997; 71:6777-85. [PMID: 9261402 PMCID: PMC191958 DOI: 10.1128/jvi.71.9.6777-6785.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The immediate-early protein ICP0 of herpes simplex virus type 1 (HSV-1) is not essential for viral replication. However, ICP0 is important for efficient viral replication during the productive infection and for reactivation of latent HSV-1 in vivo. The in vitro model of HSV-1 latency in dorsal root ganglia neurons was used to examine the role of ICP0 in the individual steps that could lead to the appearance of a decreased reactivation phenotype of ICP0 mutant viruses. After establishment of latent infections in the neuronal cultures, induction of reactivation by nerve growth factor (NGF) deprivation resulted in the production of infectious virus with delayed kinetics and a burst size that was significantly decreased for the ICP0 mutants compared with wild-type HSV-1. The efficiency of establishment of latency with the ICP0 mutants was similarly decreased at least 10-fold, as measured by three criteria: (i) the percentage of neurons expressing the major latency-associated transcript during the latent infection, (ii) the amount of viral DNA detected in the neuronal cultures, and (iii) the percentage of neurons expressing ICP4 immunoreactivity after the induction of reactivation. The most striking finding was that ICP0 supplied by an adenovirus vector significantly restored the ability of an ICP0 mutant to establish latency and reactivation. These results strongly indicate a critical role for ICP0 in the establishment of the latent HSV-1 infection in the in vitro neuronal model.
Collapse
Affiliation(s)
- C L Wilcox
- Colorado State University, Department of Microbiology, Fort Collins 80523, USA.
| | | | | | | |
Collapse
|
8
|
Hitt MM, Addison CL, Graham FL. Human adenovirus vectors for gene transfer into mammalian cells. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 40:137-206. [PMID: 9217926 DOI: 10.1016/s1054-3589(08)60140-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M M Hitt
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
9
|
Massie B, Dionne J, Lamarche N, Fleurent J, Langelier Y. Improved adenovirus vector provides herpes simplex virus ribonucleotide reductase R1 and R2 subunits very efficiently. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1995; 13:602-8. [PMID: 9634800 DOI: 10.1038/nbt0695-602] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have constructed a new adenovirus (Ad) expression vector, pAdBM5, that allows for the production of unprecedented levels of recombinant protein in the human 293 cell line using the Ad expression system. The main feature of this vector is a combination of enhancer sequences that increases the activity of the ectopic major late promoter (MLP) in recombinant Ad. In 293 cells infected with helper-free Ad recombinants generated with the pAdBM5 transfer vector, both herpes simplex virus (HSV) ribonucleotide reductase R1 and R2 subunits represent the most abundant polypeptides, accounting for as much as 15-20% of total cellular proteins. Our data suggest that this level of expression is probably very close to the upper limit of the system. Furthermore, when compared to the widely utilized baculovirus (Bac)/Sf9 expression system, the improved Ad vector showed a better performance for the production and purification of active HSV-2 ribonucleotide reductase R1 and R2 subunits. The R2 subunit was about 5-fold more abundant in recombinant Ad-infected 293 cells than in Bac-infected Sf9 cells while the R1 subunit was produced at roughly similar levels with either system. However, the amount of active soluble R1 obtained from recombinant Ad-infected 293 cells was at least 5 times higher because most of the R1 produced in Sf9 cells was insoluble.
Collapse
Affiliation(s)
- B Massie
- Institut de Recherches en Biotechnologie, Montréal, Québec, Canada.
| | | | | | | | | |
Collapse
|
10
|
Acsadi G, Massie B, Jani A. Adenovirus-mediated gene transfer into striated muscles. J Mol Med (Berl) 1995; 73:165-80. [PMID: 7627637 DOI: 10.1007/bf00188137] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- G Acsadi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
11
|
Ciufo DM, Mullen MA, Hayward GS. Identification of a dimerization domain in the C-terminal segment of the IE110 transactivator protein from herpes simplex virus. J Virol 1994; 68:3267-82. [PMID: 8151788 PMCID: PMC236817 DOI: 10.1128/jvi.68.5.3267-3282.1994] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The 775-amino-acid IE110 (or ICP0) phosphoprotein of herpes simplex virus (HSV) functions as an accessory transcription factor during the lytic cycle and plays a critical role in reactivation from latent infection. By immunofluorescence analysis, IE110 localizes in a novel pattern consisting of several dozen spherical punctate granules in the nuclei of DNA-transfected cells. We constructed a hybrid version of IE110 that contained an epitope-tagged domain from the N terminus of the HSV IE175 protein and lacked the IE110 N-terminal domain that confers punctate characteristics. This hybrid IE175(N)/IE110(C) protein gave an irregular nuclear diffuse pattern on its own but was redistributed very efficiently into spherical punctate granules after cotransfection with the wild-type HSV-1 IE110 protein. Similar colocalization interactions occurred with internally deleted forms of IE110 that lacked the zinc finger region or large segments from the center of the protein, including both cytoplasmic and elongated punctate forms, but C-terminal truncated versions of IE110 did not interact. In all such interactions, the punctate phenotype was dominant. Evidence that C-terminal segments of IE110 could also form stable mixed-subunit oligomers in vitro was obtained by coimmunoprecipitation of in vitro-translated IE110 polypeptides with different-size hemagglutinin epitope-tagged forms of the protein. This occurred only when the two forms were cotranslated, not when they were simply mixed together. An in vitro-synthesized IE110 C-terminal polypeptide also gave immunoprecipitable homodimers and heterodimers when two different-size forms were cross-linked with glutaraldehyde and reacted specifically with a bacterial glutathione S-transferase/IE110 C-terminal protein in far-Western blotting experiments. The use of various N-terminal and C-terminal truncated forms of IE110 in the in vivo assays revealed that the outer boundaries of the interaction domain mapped between codons 617 and 711, although inclusion of adjacent codons on either side increased the efficiency severalfold in some assays. We conclude that the C-terminal region of IE110 contains a high-affinity self-interaction domain that leads to stable dimer and higher-order complex formation both in DNA-transfected cells and in in vitro assays. This segment of IE110 is highly conserved between HSV-1 and HSV-2 and appears to have the potential to play an important role in the interaction with the IE175 protein, as well as in correct intracellular localization, but it is not present in the equivalent proteins from varicella-zoster virus, pseudorabies virus, or equine abortion virus.
Collapse
Affiliation(s)
- D M Ciufo
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
12
|
Mullen MA, Ciufo DM, Hayward GS. Mapping of intracellular localization domains and evidence for colocalization interactions between the IE110 and IE175 nuclear transactivator proteins of herpes simplex virus. J Virol 1994; 68:3250-66. [PMID: 8151787 PMCID: PMC236816 DOI: 10.1128/jvi.68.5.3250-3266.1994] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transcriptional regulation by the IE175 (ICP4) and IE110 (ICP0) phosphorylated nuclear proteins encoded by herpes simplex virus (HSV) appears to be a key determinant for the establishment of successful lytic cycle infection. By indirect immunofluorescence in transient DNA transfection assays, we have examined the intracellular distribution of deletion and truncation mutants of both IE175 and IE110 from HSV-1. Insertion of short oligonucleotides encoding the basic amino acid motifs 726-GRKRKSP-732 from IE175 and 500-VRPRKRR-506 from IE110 into deleted cytoplasmic forms of the two proteins restored the karyophilic phenotype and confirmed that these motifs are both necessary and sufficient for proper nuclear localization. Analysis of IE110 deletion mutants and a panel of IE110/IE175 hybrid proteins was also used to evaluate the characteristic IE110 distribution within nuclear punctate granules as seen by immunofluorescence and phase-contrast microscopy. The phase-dense punctate pattern persisted with both large C-terminal truncations and deletions of the Cys-rich zinc finger region and even with a form of IE110 that localized in the cytoplasm, implying that the punctate characteristic is an intrinsic property of the N-terminal segment of the IE110 protein. Transfer of the full IE110-like punctate phenotype to the normally uniform diffuse nuclear pattern of the IE175 protein by exchange of the N-terminal domains of the two proteins demonstrated that the first 105 to 244 amino acids of IE110 represent the most important region for conferring punctate characteristics. Surprisingly, cotransfection of a wild-type nuclear IE175 gene together with the IE110 gene revealed that much of the IE175 protein produced was redistributed into a punctate pattern that colocalized with the IE110-associated punctate granules seen in the same cells. This colocalization did not occur after cotransfection of IE110 with the IE72 (IE1) nuclear protein of human cytomegalovirus and therefore cannot represent simple nonspecific trapping. Evidently, the punctate phenotype of IE110 represents a dominant characteristic that reveals the potential of IE110 and IE175 to physically interact with each other either directly or indirectly within the intracellular environment.
Collapse
Affiliation(s)
- M A Mullen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
13
|
Chen J, Panagiotidis C, Silverstein S. Multimerization of ICP0, a herpes simplex virus immediate-early protein. J Virol 1992; 66:5598-602. [PMID: 1323713 PMCID: PMC289122 DOI: 10.1128/jvi.66.9.5598-5602.1992] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
ICP0, a herpes simplex virus immediate-early gene product, is a highly phosphorylated nuclear protein that is a potent activator of virus and host genes. Using biochemical and genetic assays employing plasmids encoding mutant forms of ICP0 and a recombinant adenovirus that expresses ICP0, we mutant forms of ICP0 and a recombinant adenovirus that expresses ICP0, we provide evidence that the protein multimerizes. Some mutant forms of ICP0 were transdominant and interfered with activation of a target reporter gene or with complementation of an ICP0-minus virus.
Collapse
Affiliation(s)
- J Chen
- Department of Microbiology, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
14
|
Chen J, Silverstein S. Herpes simplex viruses with mutations in the gene encoding ICP0 are defective in gene expression. J Virol 1992; 66:2916-27. [PMID: 1313910 PMCID: PMC241050 DOI: 10.1128/jvi.66.5.2916-2927.1992] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) mutants with codon insertions and deletions in IE-0, the gene encoding ICP0, were constructed. The HSV-1 deletion mutant dl1403 (N. D. Stow and E. C. Stow, J. Gen. Virol. 67:2571-2585, 1986) and an IE-0:lacZ transplacement vector isolated in this study were used to facilitate the construction of mutant viruses. Mutant viruses, all of which produced stable ICP0, were examined for their ability to plaque and grow on both Vero and HeLa cells because previous results showed that HSV-1 immediate-early (IE) gene promoters and their products are differentially expressed in these cells (J. Chen, X. Zhu, and S. Silverstein, Virology 180:207-220, 1991; I. H. Gelman and S. Silverstein, J. Virol. 61:2286-2296, 1987). Viruses with IE-0 genes that only poorly activated reporter genes in transient expression assays plaqued less efficiently on Vero cells and consistently accumulated decreased levels of late proteins. These mutants were also examined in single-step growth curve experiments and for the dependence of virus yield on multiplicity of infection (MOI). At low MOIs, their yields were less in Vero cells than in HeLa cells; by contrast, at high MOIs, there was no apparent difference in yield in either cell type, although each virus produced considerably fewer progeny than wild-type virus. Analysis of steady-state levels of RNA from genes representing each of the three major kinetic classes demonstrated that lower levels of RNAs accumulate in these mutants. We conclude from these studies that while ICP0 is not essential for virus growth in tissue culture, defects in this gene result in impairment of virus replication and delay the expression of early and late gene transcripts.
Collapse
Affiliation(s)
- J Chen
- Department of Microbiology, Columbia University, New York, New York 10032
| | | |
Collapse
|
15
|
Zhu XX, Papavassiliou AG, Stunnenburg HG, Silverstein S. Transactivation by herpes simplex virus proteins ICP4 and ICP0 in vaccinia virus infected cells. Virology 1991; 184:67-78. [PMID: 1651605 DOI: 10.1016/0042-6822(91)90822-s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vaccinia virus recombinants containing the sequences from herpes simplex virus type 1 (HSV-1) encoding the immediate early (IE)(alpha) proteins ICP4 and ICP0, under the control of a mutated vaccinia virus 11K late promoter, were constructed. A cDNA copy of the gene encoding ICPO and an ICP4-encoding genomic segment were each inserted into the vaccinia virus genome at the thymidine kinase (TK) locus by homologous recombination. Steady-state analyses revealed that RNAs homologous to the IE-0 and IE-4 sequences accumulated in cells infected by recombinants with the kinetics of a typical vaccinia late mRNA. Western blot analyses demonstrated that the expression level of both ICPO and ICP4, produced by the recombinant viruses, was comparable to that in HSV-1-infected cells at late times postinfection. Both proteins synthesized in cells infected by the recombinants were located in the nucleus as revealed by immunofluorescence. Although in vitro studies reveal that extracts from vaccinia-virus-infected cells lose the ability to transcribe genes that contain RNA polymerase II promoters (Puckett and Moss (1983), Cell 35, 441-448) both ICPO and ICP4 expressed by the recombinant viruses can transactivate plasmids containing a reporter gene driven by the promoters for the HSV-1 TK and glycoprotein C genes. Nuclear extracts prepared from cells infected with the vaccinia virus vector expressing ICP4 exhibited sequence-specific DNA-binding activity.
Collapse
Affiliation(s)
- X X Zhu
- Department of Microbiology, Columbia University, New York, New York 10032
| | | | | | | |
Collapse
|
16
|
Chengalvala M, Lubeck MD, Davis AR, Mizutani S, Molnar-Kimber K, Morin J, Hung PP. Evaluation of adenovirus type 4 and type 7 recombinant hepatitis B vaccines in dogs. Vaccine 1991; 9:485-90. [PMID: 1832806 DOI: 10.1016/0264-410x(91)90033-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recombinant hepatitis B virus vaccines based on adenovirus (Ad) vectors Ad4 and Ad7 have been prepared. However, immunogenicity testing of such vaccines in experimental animals is difficult because these human adenoviruses exhibit a highly restricted host range. In this study, the dog was evaluated as a model for screening Ad4- and Ad7-vectored vaccines. Intratracheal inoculation of dogs with Ad4 and Ad7 induced substantial type-specific humoral immune responses that were significantly higher than responses obtained following pharyngeal or oral inoculations. Inoculation of dogs with recombinant Ad7 and Ad4 vaccines expressing hepatitis B surface antigen (HBsAg) elicited large antibody responses to HBsAg (anti-HBs). Substantial secondary anti-HBs responses were produced upon sequential immunizations with heterotypic Ad7 and Ad4 recombinant vaccines. These data thus indicate that the dog is a useful model for evaluating immune responses to vaccines based on Ad4 and Ad7 vectors.
Collapse
Affiliation(s)
- M Chengalvala
- Biotechnology and Microbiology Division, Wyeth-Ayerst Research, Philadelphia, PA 19101
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhu XX, Chen JX, Young CS, Silverstein S. Reactivation of latent herpes simplex virus by adenovirus recombinants encoding mutant IE-0 gene products. J Virol 1990; 64:4489-98. [PMID: 2166826 PMCID: PMC247919 DOI: 10.1128/jvi.64.9.4489-4498.1990] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have previously shown that adenovirus recombinants expressing functional ICP0 reactivate latent herpes simplex virus type 2 (HSV-2) in an in vitro latency system. This study demonstrated that ICP0, independent of other HSV gene products, is sufficient to reactivate latent HSV-2 in this in vitro system. To assess the effects of defined mutations in the sequence encoding ICP0 (IE-0) on reactivation, seven in-frame insertion and three in-frame deletion mutants were moved into an adenovirus expression vector. Each recombinant directed the synthesis of stable ICP0 of the correct size. The transactivation activity of the mutated sequences in these recombinants was similar to that when they were tested in plasmids. When these recombinants were examined for their ability to reactivate in the in vitro latency system, mutants with dramatic defects in transactivation (Ad-0/125, Ad-0/89, Ad-0/2/7, and Ad-0/88/93) were unable to reactivate latent HSV-2 independent of the multiplicity of infection. An exception to this correlation was the finding that Ad-0/89, which transactivated poorly, was able to reactivate latent virus after prolonged incubation whereas other transactivation-deficient mutants could not. Moreover, the presence of ICP4 did not compensate for the inability of any of the recombinants tested to reactivate HSV-2. These results show that (i) the transactivation domains of ICP0 are also used in reactivation, (ii) the presence of another essential HSV regulatory protein ICP4 does not alter the pattern of reactivation by ICP0, and (iii) mutations in some regions of IE-0 previously shown to affect viral growth and plaque formation did not alter its ability to reactivate in this in vitro system.
Collapse
Affiliation(s)
- X X Zhu
- Department of Microbiology, Columbia University, New York, New York 10032
| | | | | | | |
Collapse
|
18
|
Harris RA, Everett RD, Zhu XX, Silverstein S, Preston CM. Herpes simplex virus type 1 immediate-early protein Vmw110 reactivates latent herpes simplex virus type 2 in an in vitro latency system. J Virol 1989; 63:3513-5. [PMID: 2545921 PMCID: PMC250929 DOI: 10.1128/jvi.63.8.3513-3515.1989] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Reactivation of latent herpes simplex virus type 2 (HSV-2) by the immediate-early protein Vmw110 was studied by using an in vitro latency system. Adenovirus recombinants that express Vmw110 reactivated latent HSV-2. An HSV-1 mutant possessing a deletion in a carboxy-terminal region of Vmw110 reactivated latent HSV-2, whereas mutant FXE, which has a deletion in the second exon, did not. Therefore, Vmw110 alone is required to reactivate latent HSV-2 in vitro, and the region of Vmw110 defined by the deletion in FXE is important for this process.
Collapse
Affiliation(s)
- R A Harris
- Medical Research Council Virology Unit, Institute of Virology, Glasgow, Scotland
| | | | | | | | | |
Collapse
|