1
|
Cell Culture Evolution of a Herpes Simplex Virus 1 (HSV-1)/Varicella-Zoster Virus (VZV) UL34/ORF24 Chimeric Virus Reveals Novel Functions for HSV Genes in Capsid Nuclear Egress. J Virol 2021; 95:e0095721. [PMID: 34523964 DOI: 10.1128/jvi.00957-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) and varicella-zoster virus (VZV) are both members of the alphaherpesvirus subfamily but belong to different genera. Substitution of the HSV-1 UL34 coding sequence with that of its VZV homolog, open reading frame 24 (ORF24), results in a virus that has defects in viral growth, spread, capsid egress, and nuclear lamina disruption very similar to those seen in a UL34-null virus despite normal interaction between ORF24 protein and HSV pUL31 and proper localization of the nuclear egress complex at the nuclear envelope. Minimal selection for growth in cell culture resulted in viruses that grew and spread much more efficiently that the parental chimeric virus. These viruses varied in their ability to support nuclear lamina disruption, normal nuclear egress complex localization, and capsid de-envelopment. Single mutations that suppress the growth defect were mapped to the coding sequences of ORF24, ICP22, and ICP4, and one virus carried single mutations in each of the ICP22 and US3 coding sequences. The phenotypes of these viruses support a role for ICP22 in nuclear lamina disruption and a completely unexpected role for the major transcriptional regulator, ICP4, in capsid nuclear egress. IMPORTANCE Interactions among virus proteins are critical for assembly and egress of virus particles, and such interactions are attractive targets for antiviral therapy. Identification of critical functional interactions can be slow and tedious. Capsid nuclear egress of herpesviruses is a critical event in the assembly and egress pathway and is mediated by two proteins, pUL31 and pUL34, that are conserved among herpesviruses. Here, we describe a cell culture evolution approach to identify other viral gene products that functionally interact with pUL34.
Collapse
|
2
|
Requirement of the N-terminal activation domain of herpes simplex virus ICP4 for viral gene expression. J Virol 2012; 87:1010-8. [PMID: 23135715 DOI: 10.1128/jvi.02844-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ICP4 is the major activator of herpes simplex virus (HSV) transcription. Previous studies have defined several regions of ICP4 that are important for viral gene expression, including a DNA binding domain and transactivation domains that are contained in the C-terminal and N-terminal 520 and 274 amino acids, respectively. Here we show that the N-terminal 210 amino acids of ICP4 are required for interactions with components of TFIID and mediator and, as a consequence, are necessary for the activation of viral genes. A mutant of ICP4 deleted for amino acids 30 to 210, d3-10, was unable to complement an ICP4 null virus at the level of viral replication. This was the result of a severe deficiency in viral gene and protein expression. The absence of viral gene expression coincided with a defect in the recruitment of RNA polymerase II to a representative early promoter (thymidine kinase [TK]). Affinity purification experiments demonstrated that d3-10 ICP4 was not found in complexes with components of TFIID and mediator, suggesting that the defect in RNA polymerase II (Pol II) recruitment was the result of ablated interactions between d3-10 and TFIID and mediator. Complementation assays suggested that the N-terminal and C-terminal regions of ICP4 cooperate to mediate gene expression. The complementation was the result of the formation of more functional heterodimers, which restored the ability of the d3-10-containing molecules to interact with TFIID. Together, these studies suggest that the N terminus contains a true activation domain, mediating interactions with TFIID, mediator, and perhaps other transcription factors, and that the C terminus of the molecule contains activities that augment the functions of the activation domain.
Collapse
|
3
|
Role of the IE62 consensus binding site in transactivation by the varicella-zoster virus IE62 protein. J Virol 2010; 84:3767-79. [PMID: 20130051 DOI: 10.1128/jvi.02522-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The varicella-zoster virus (VZV) IE62 protein is the major transcriptional activator. IE62 is capable of associating with DNA both nonspecifically and in a sequence-specific manner via a consensus binding site (5'-ATCGT-3'). However, the function of the consensus site is poorly understood, since IE62 efficiently transactivates promoter elements lacking this sequence. In the work presented here, sequence analysis of the VZV genome revealed the presence of 245 IE62 consensus sites throughout the genome. Some 54 sites were found to be present within putative VZV promoters. Electrophoretic mobility shift assay (EMSA) experiments using an IE62 fragment containing the IE62 DNA-binding domain and duplex oligonucleotides that did or did not contain the IE62 consensus binding sequence yielded K(D) (equilibrium dissociation constant) values in the nanomolar range. Further, the IE62 DNA binding domain was shown to have a 5-fold-increased affinity for its consensus site compared to nonconsensus sequences. The effect of consensus site presence and position on IE62-mediated activation of native VZV and model promoters was examined using site-specific mutagenesis and transfection and superinfection reporter assays. In all promoters examined, the consensus sequence functioned as a distance-dependent repressive element. Protein recruitment assays utilizing the VZV gI promoter indicated that the presence of the consensus site increased the recruitment of IE62 but not Sp1. These data suggest a model where the IE62 consensus site functions to down-modulate IE62 activation, and interaction of IE62 with this sequence may result in loss or decrease of the ability of IE62 to recruit cellular factors needed for full promoter activation.
Collapse
|
4
|
Lee S, Zheng M, Kim B, Rouse BT. Role of matrix metalloproteinase-9 in angiogenesis caused by ocular infection with herpes simplex virus. J Clin Invest 2002. [DOI: 10.1172/jci0215755] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
5
|
Lee S, Zheng M, Kim B, Rouse BT. Role of matrix metalloproteinase-9 in angiogenesis caused by ocular infection with herpes simplex virus. J Clin Invest 2002; 110:1105-11. [PMID: 12393846 PMCID: PMC150797 DOI: 10.1172/jci15755] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this report, we demonstrate that herpes simplex virus (HSV) infection of the cornea results in the upregulation of the matrix-degrading metalloproteinase enzyme MMP-9. This enzyme was shown to contribute to the neovascularization process that occurs in the corneal stroma in response to HSV infection. The likely source of MMP-9, at least initially after infection, was neutrophils that were signaled to invade the cornea soon after infection. Corneal infiltrating neutrophils were shown to express MMP-9, and preventing the neutrophil response with specific mAb diminished MMP-9 expression as well as the extent of angiogenesis. Further supporting a role for MMP-9 in HSV-induced corneal angiogenesis was the observation that inhibition of MMP-9 with the specific inhibitor TIMP-1 resulted in reduced angiogenesis. In addition, angiogenesis was diminished in ocularly infected MMP-9 knockout mice. Our results demonstrate that MMP-9 is involved in angiogenesis caused by HSV. Since angiogenesis appears to represent a vital step in the pathogenesis of herpetic stromal keratitis, these results indicate that targeting MMP-9 for inhibition should prove useful for the therapy of herpetic stromal keratitis.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee 37996-0845, USA
| | | | | | | |
Collapse
|
6
|
Grondin B, DeLuca N. Herpes simplex virus type 1 ICP4 promotes transcription preinitiation complex formation by enhancing the binding of TFIID to DNA. J Virol 2000; 74:11504-10. [PMID: 11090147 PMCID: PMC112430 DOI: 10.1128/jvi.74.24.11504-11510.2000] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infected-cell polypeptide 4 (ICP4) of herpes simplex virus type 1 (HSV-1) activates the expression of many HSV genes during infection. It functions along with the cellular general transcription factors to increase the transcription rates of genes. In this study, an HSV late promoter consisting of only a TATA box and an INR element was immobilized on a magnetic resin and incubated with nuclear extracts or purified TFIID in the presence and absence of ICP4. Analysis of the complexes formed on these promoters revealed that ICP4 increased the formation of transcription preinitiation complexes (PICs) in a TATA box-dependent manner, as determined by the presence of ICP4, TFIID, TFIIB, and polymerase II on the promoter. With both nuclear extract and purified TFIID, it was determined that ICP4 helped TFIID bind to the promoter and the TATA box. These observations differed from those for the activator Gal4-VP16. As previously observed by others, Gal4-VP16 also increased the formation of PICs without helping TFIID bind to the promoter, suggesting that ICP4 and VP16 differ in their mechanism of activation and that ICP4 functions to facilitate PIC formation at an earlier step in the formation of PICs. We also observed that the DNA binding activity of ICP4 was not sufficient to help TFIID bind to the promoter and that the region of ICP4 that was responsible for this activity is located between residues 30 and 274. Taken together these results demonstrate that a specific region of ICP4 helps TFIID bind to the TATA box and that this in turn facilitates the formation of transcription PICs.
Collapse
Affiliation(s)
- B Grondin
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
7
|
Thomas J, Kanangat S, Rouse BT. Herpes simplex virus replication-induced expression of chemokines and proinflammatory cytokines in the eye: implications in herpetic stromal keratitis. J Interferon Cytokine Res 1998; 18:681-90. [PMID: 9781806 DOI: 10.1089/jir.1998.18.681] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
On infection of the cornea with herpes simplex virus (HSV), an immunopathologic response termed herpetic stromal keratitis (HSK) ensues. This response is mediated primarily by CD4+ T cells and only occurs if mice are infected with replication-competent virus, although replication-defective mutants induce cellular immune responses following infection. To determine the consequences of HSV replication in the cornea, which is crucial for HSK manifestation, corneas infected with productive virus and replication-defective mutants were analyzed for chemokines and proinflammatory cytokine mRNA expression by RT-PCR at various times. While productive infection resulted in rapid upregulation and sustained expression of such chemokines as N51/KC, macrophage inflammatory protein-1beta (MIP-1beta), MIP-2, and monocyte chemotactic protein-1 (MCP-1) and such cytokines as interleukin-1 (IL-1), IL-6, IL-12, and tumor necrosis factor-alpha (TNF-alpha), expression of such inflammatory mediators was minimal and transient after unproductive infection. Expression of MIP-1alpha and lymphotactin along with a biphasic expression of IL-6 and MIP-2 were seen only with productive infection. Initial PMN recruitment into the cornea was approximately 50-fold greater with productive infection than with unproductive infection. These data suggest that a replication-induced proinflammatory milieu in the cornea is crucial for the subsequent progression of HSK possibly because of enhancement of the expression of corneal agonists that drive HSK manifestation.
Collapse
Affiliation(s)
- J Thomas
- Department of Microbiology, University of Tennessee, Knoxville 37996, USA
| | | | | |
Collapse
|
8
|
Samaniego LA, Wu N, DeLuca NA. The herpes simplex virus immediate-early protein ICP0 affects transcription from the viral genome and infected-cell survival in the absence of ICP4 and ICP27. J Virol 1997; 71:4614-25. [PMID: 9151855 PMCID: PMC191683 DOI: 10.1128/jvi.71.6.4614-4625.1997] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ICP4, ICP0, and ICP27 are the immediate-early (IE) regulatory proteins of herpes simplex virus that have the greatest effect on viral gene expression and growth. Comparative analysis of viral mutants defective in various subsets of these IE genes should help elucidate how these proteins affect cellular and viral processes. This study focuses on the mutant d97, which is defective for the genes encoding ICP4, ICP0, and ICP27 and expresses the bacterial beta-galactosidase (beta-gal) gene from the ICP0 promoter. Together with the d92 virus (ICP4- ICP27-) and the ICP0-complementing cell line L7, d97 provided a unique opportunity to evaluate ICP0 function in the absence of the regulatory activities specified by ICP4 and ICP27. The pattern of protein synthesis in d97-infected cells was unique relative to other IE gene mutants in that it was similar to that seen in the absence of prior viral protein synthesis, possibly approximating the effect of cellular factors and virion components alone. Inactivation of ICP0 in the absence of ICP4 produced a significant decrease in the levels of the early mRNAs ICP6 and thymidine kinase (tk). There was also a marginal reduction in the levels of the IE ICP22 mRNA, and this was most notable at low multiplicity of infection (MOI). In d97-infected L7 cells, the levels of the viral mRNAs were mostly restored to those observed in infections with d92. Nuclear runoff transcription analysis demonstrated that the presence of ICP0 resulted in an increase in the transcription rates of the analyzed genes. The transcription rates of the early genes were dramatically reduced in the absence of ICP0. At low MOI, the transcription rates of ICP6 and tk were comparable to the rate of transcription of a cellular gene. Relevant to the potential use of d97 as a transfer vector, it was also determined that the absence of ICP0 reduced the cellular toxicity of the virus compared to that of d92. The beta-gal transgene expressed from an IE promoter was detected for up to 14 days postinfection; however, the level of beta-gal expression declined dramatically after 1 day postinfection. In the presence of ICP0, the level of expression of beta-gal was increased; however the infected monolayer was destroyed by 3 days postinfection. Therefore, deletion of ICP0 in the absence of ICP4 and ICP27 reduces toxicity and lowers the level of expression of genes from the viral genome.
Collapse
Affiliation(s)
- L A Samaniego
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | |
Collapse
|
9
|
Robertson BJ, McCann PJ, Matusick-Kumar L, Newcomb WW, Brown JC, Colonno RJ, Gao M. Separate functional domains of the herpes simplex virus type 1 protease: evidence for cleavage inside capsids. J Virol 1996; 70:4317-28. [PMID: 8676454 PMCID: PMC190364 DOI: 10.1128/jvi.70.7.4317-4328.1996] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) protease (Pra) and related proteins are involved in the assembly of viral capsids and virion maturation. Pra is a serine protease, and the active-site residue has been mapped to amino acid (aa) 129 (Ser). This 635-aa protease, encoded by the UL26 gene, is autoproteolytically processed at two sites, the release (R) site between amino acid residues 247 and 248 and the maturation (M) site between residues 610 and 611. When the protease cleaves itself at both sites, it releases Nb, the catalytic domain (N0), and the C-terminal 25 aa. ICP35, a substrate of the HSV-1 protease, is the product of the UL26.5 gene. As it is translated from a Met codon within the UL26 gene, ICP35 cd are identical to the C-terminal 329-aa sequence of the protease and are trans cleaved at an identical C-terminal site to generate ICP35 e,f and a 25-aa peptide. Only fully processed Pra (N0 and Nb) and ICP35 (ICP35 e,f) are present in B capsids, which are believed to be precursors of mature virions. Using an R-site mutant A247S virus, we have recently shown that this mutant protease retains enzymatic activity but fails to support viral growth, suggesting that the release of N0 is required for viral replication. Here we report that another mutant protease, with an amino acid substitution (Ser to Cys) at the active site, can complement the A247S mutant but not a protease deletion mutant. Cell lines expressing the active-site mutant protease were isolated and shown to complement the A247S mutant at the levels of capsid assembly, DNA packaging, and viral growth. Therefore, the complementation between the R-site mutant and the active-site mutant reconstituted wild-type Pra function. One feature of this intragenic complementation is that following sedimentation of infected-cell lysates on sucrose gradients, both N-terminally unprocessed and processed proteases were isolated from the fractions where normal B capsids sediment, suggesting that proteolytic processing occurs inside capsids. Our results demonstrate that the HSV-1 protease has distinct functional domains and some of these functions can complement in trans.
Collapse
Affiliation(s)
- B J Robertson
- Department of Virology, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492-7660, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Carrozza MJ, DeLuca NA. Interaction of the viral activator protein ICP4 with TFIID through TAF250. Mol Cell Biol 1996; 16:3085-93. [PMID: 8649420 PMCID: PMC231303 DOI: 10.1128/mcb.16.6.3085] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
ICP4 of herpes simplex virus is responsible for the activation of viral transcription during infection. It also efficiently activates and represses transcription in vitro depending on the promoter context. The contacts made between ICP4 and the cellular proteins that result in activated transcription have not been identified. The inability of ICP4 to activate transcription with TATA-binding protein in place of TFIID and the requirement for an initiator element for efficient ICP-4-activated transcription suggest that coactivators, such as TBP-associated factors, are involved (B. Gu and N. DeLuca, J. Virol. 68:7953-7965, 1994). In this study we showed that ICP4 activates transcription in vitro using an immunopurified TFIID, indicating that TBP-associated factors may be a sufficient subset of coactivators for ICP4-activated transcription. Similar to results seen in vivo, the presence of the ICP4 C-terminal region (amino acids 774 to 1298) was important for activation in vitro. With epitope-tagged ICP4 molecules in immunoaffinity experiments, it was shown that the C-terminal region was also required for ICP4 to interact with TFIID present in a crude transcription factor fraction. In the same assay, ICP4 was unable to interact with the basal transcription factors, TFIIB, TFIIE, TFIIF, and TFIIH and RNA polymerase II. ICP4 could also interact with TBP, independent of the C-terminal region. However, reflective of the interaction between ICP4 and TFIID, the ICP4 C-terminal region was required for an interaction with FAF250-TBP complexes and with TAF250 alone. Therefore, the interfaces or conformation of TBP mediating the interaction between ICP4 and TBP in solution is probably masked when TBP is bound to TAF250. With a series of mutant ICP4 molecules purified from herpes simplex virus-infected cells, it was shown that ICP4 molecules that can bind DNA and interact with TAF250 could activate transcription. Taken together, these results demonstrate that ICP4 interaction with TFIID involves the TAF250 molecule and the C-terminal region of ICP4 and that this interaction is part of the mechanism by which ICP4 activates transcription.
Collapse
Affiliation(s)
- M J Carrozza
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | |
Collapse
|
11
|
Gallinari P, Wiebauer K, Nardi MC, Jiricny J. Localization of a 34-amino-acid segment implicated in dimerization of the herpes simplex virus type 1 ICP4 polypeptide by a dimerization trap. J Virol 1994; 68:3809-20. [PMID: 8189519 PMCID: PMC236886 DOI: 10.1128/jvi.68.6.3809-3820.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The herpes simplex virus type 1 immediate-early protein ICP4 plays an essential role in the regulation of the expression of all viral genes. It is the major trans activator of early and late genes and also has a negative regulatory effect on immediate-early gene transcription. ICP4 is a sequence-specific DNA-binding protein and has always been purified in a dimeric form. The part of the protein that consists of the entire highly conserved region 2 and of the distal portion of region 1 retains the ability to specifically associate with DNA and to form homodimers in solution. In an attempt to map the dimerization domain of ICP4, we used a dimerization trap assay, in which we screened deletion fragments of this 217-amino-acid stretch for sequences that could confer dimerization properties on a heterologous cellular transcription factor (LFB1), which binds to its cognate DNA sequence only as a dimer. The analysis of these chimeric proteins expressed in vitro ultimately identified a stretch of 34 amino acids (343 to 376) that could still confer DNA-binding activity on the LFB1 reporter protein and thus apparently contained the ICP4 dimerization motif. Consistent with this result, a truncated ICP4 protein containing amino acids 343 to 490, in spite of the complete loss of DNA-binding activity, appeared to retain the capacity to form a heterodimer with a longer ICP4 peptide after coexpression in an in vitro translation system.
Collapse
Affiliation(s)
- P Gallinari
- Istituto di Richerche di Biologia Molecolare P. Angeletti, Pomezia, Italy
| | | | | | | |
Collapse
|
12
|
Tyler JK, Everett RD. The DNA binding domains of the varicella-zoster virus gene 62 and herpes simplex virus type 1 ICP4 transactivator proteins heterodimerize and bind to DNA. Nucleic Acids Res 1994; 22:711-21. [PMID: 8139909 PMCID: PMC307873 DOI: 10.1093/nar/22.5.711] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The product of varicella-zoster virus gene 62 (VZV 140k) is the functional counterpart of the major transcriptional regulatory protein of herpes simplex virus type 1 (HSV-1), ICP4. We have found that the purified bacterially expressed DNA binding domain of VZV 140k (residues 417-647) is a stable dimer in solution. As demonstrated by the appearance of a novel protein--DNA complex of intermediate mobility in gel retardation assays, following in vitro co-translation of a pair of differently sized VZV 140k DNA binding domain peptides, the 140k DNA binding domain peptide binds to DNA as a dimer. In addition, the DNA binding domain peptide of HSV-1 ICP4 readily heterodimerizes with the VZV 140k peptide on co-translation, indicating that HSV-1 ICP4 and VZV 140k possess very similar dimerization interfaces. It appears that only one fully wild type subunit of the dimer is sufficient to mediate sequence specific DNA recognition in certain circumstances. Co-immunoprecipitation analysis of mutant DNA binding domain peptides, co-translated with an epitope-tagged ICP4 DNA binding domain, shows that the sequence requirements for dimerization are lower than those necessary for DNA binding.
Collapse
|
13
|
Morrison LA, Knipe DM. Immunization with replication-defective mutants of herpes simplex virus type 1: sites of immune intervention in pathogenesis of challenge virus infection. J Virol 1994; 68:689-96. [PMID: 8289372 PMCID: PMC236504 DOI: 10.1128/jvi.68.2.689-696.1994] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Replication-defective mutants of herpes simplex virus type 1 (HSV-1) were used as a new means to immunize mice against HSV-1-mediated ocular infection and disease. The effects of the induced immune responses on pathogenesis of acute and latent infection by challenge virus were investigated after corneal inoculation of immunized mice with virulent HSV-1. A single subcutaneous injection of replication-defective mutant virus protected mice against development of encephalitis and keratitis. Replication of the challenge virus at the initial site of infection was lower in mice immunized with attenuated, wild-type parental virus (KOS1.1) or replication-defective mutant virus than in mice immunized with uninfected cell extract or UV-inactivated wild-type virus. Significantly, latent infection in the trigeminal ganglia was reduced in mice given one immunization with replication-defective mutant virus and was completely prevented by two immunizations. Acute replication in the trigeminal ganglia was also prevented in mice immunized twice with wild-type or mutant virus. The level of protection against infection and disease generated by immunization with replication-defective mutant viruses was comparable to that of infectious wild-type virus in all cases. In addition, T-cell proliferative and neutralizing antibody responses following immunization and corneal challenge were of similar strength in mice immunized with replication-defective mutant viruses or with wild-type virus. Thus, protein expression by forms of HSV-1 capable of only partially completing the replication cycle can induce an immune response in mice that efficiently decreases primary replication of virulent challenge virus, interferes with acute and latent infection of the nervous system, and inhibits the development of both keratitis and systemic neurologic disease.
Collapse
Affiliation(s)
- L A Morrison
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
14
|
Sivropoulou A, Arsenakis M. Mapping of the functional domains of the alpha 4 protein of herpes simplex virus 1. Arch Virol 1993; 129:317-25. [PMID: 8385920 DOI: 10.1007/bf01316907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Truncated alpha 4 genes were introduced into BHK tk- cells along with the neomycin phosphotransferase gene, that confers resistance to the eukaryotic antibiotic G418, driven by the HSV-1 beta tk promoter (beta tk- neor). Stably transformed cell lines were obtained and studied for the ability of the resident truncated alpha 4 genes to regulate the expression of the beta tk- neor, and for the ability of the truncated alpha 4 polypeptides to localize to the nuclei of transformed cells. The results indicated that the domain(s) for beta gene induction and for nuclear localization of the alpha 4 protein are located within the N-terminal 288 amino acids of the protein.
Collapse
Affiliation(s)
- A Sivropoulou
- Department of Biology, Aristotelian University, Thessaloniki, Greece
| | | |
Collapse
|
15
|
Abstract
A mutant allele (X25) of an essential regulatory protein, ICP4, encoded by herpes simplex virus (HSV) has been shown to have a transdominant, negative effect on the activity of the wild-type protein, resulting in the inhibition of virus growth in vitro. The X25 protein appears to exert its transdominant effect by sequestering functional ICP4 monomers into nonfunctional, heterodimeric complexes (A. Shepard, P. Tolentino, and N. A. DeLuca, 1990, J. Virol. 64, 3916-3926). In order to assess the antiviral potential of X25 in vivo, four transgenic mouse lines were generated bearing 1 to 10 copies of a DNA fragment encoding the mutant allele. Monolayers of embryonic cells prepared from each of the lines expressed the transgenic X25 protein. When challenged via the eye, every line exhibited at least some enhanced resistance to HSV infection. In the best line, transgenic animals exhibited a statistically significant (> 95% confidence) 5- to 13-fold lower eye swab titer relative to their nontransgenic littermates at Day 1 postinfection. A similar reduction in titer was observed in the trigeminal ganglia at Day 3 postinfection. These results indicate that the X25 protein is able to exert a significant antiviral effect in vivo.
Collapse
Affiliation(s)
- C A Smith
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
16
|
Everett RD, DiDonato J, Elliott M, Muller M. Herpes simplex virus type 1 polypeptide ICP4 bends DNA. Nucleic Acids Res 1992; 20:1229-33. [PMID: 1313964 PMCID: PMC312163 DOI: 10.1093/nar/20.6.1229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
ICP4, the major regulatory polypeptide of herpes simplex virus type 1, is expressed at the earliest stages of virus infection and is required for the activation of transcription from the majority of viral promoters. It is a DNA binding protein which specifically recognises bipartite sites related to the sequence ATCGTnnnnnCGG. In this report we show that both partially purified ICP4, and its isolated DNA binding domain, bend DNA at occupied binding sites. The apparent angles of bend at two different binding sites were very similar and in both cases the centre of the bend was very close to the binding site sequence.
Collapse
|
17
|
Everett RD, Elliott M, Hope G, Orr A. Purification of the DNA binding domain of herpes simplex virus type 1 immediate-early protein Vmw175 as a homodimer and extensive mutagenesis of its DNA recognition site. Nucleic Acids Res 1991; 19:4901-8. [PMID: 1656382 PMCID: PMC328787 DOI: 10.1093/nar/19.18.4901] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) Immediate-Early (IE) polypeptide Vmw175 is essential for the activation of transcription from viral early and late promoters. Vmw175 also reduces the activity of its own (IE-3) promoter in transfection assays. Both transactivation and repression mediated by Vmw175 require the integrity of a conserved domain of the polypeptide which has been shown to bind to specific DNA sequences. We have investigated the DNA sequence requirements for Vmw175 binding using a randomly mutated target. The results indicate that the binding site covers a region of 13 nucleotides divided into proximal and distal parts which are consistent with the consensus ATCGTNNNNNYSG. We have also expressed several different constructs encompassing the DNA binding domain of Vmw175 in bacteria, and obtained preparations of greater than 90% purity. The DNA binding domain is a dimer in solution, and binds DNA with a specificity similar to that of the intact protein, although the smallest DNA binding competent protein has a slightly reduced specificity.
Collapse
Affiliation(s)
- R D Everett
- Medical Research Council Virology Unit, Glasgow, UK
| | | | | | | |
Collapse
|
18
|
Shepard AA, DeLuca NA. A second-site revertant of a defective herpes simplex virus ICP4 protein with restored regulatory activities and impaired DNA-binding properties. J Virol 1991; 65:787-95. [PMID: 1846199 PMCID: PMC239818 DOI: 10.1128/jvi.65.2.787-795.1991] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A mutant of herpes simplex virus type 1, vi12, encodes a DNA-binding- and transactivation-deficient ICP4 polypeptide. Because of the mutation, the vi12 virus does not grow on Vero cells but must be propagated on cells that express complementing levels of wild-type ICP4 (E5 cells). A pseudorevertant of vi12, designated pri12, was isolated on the basis of the restored ability to replicate on Vero cells. In addition to the original i12 insertion mutation at amino acid 320, the ICP4 molecule expressed from pri12 possesses an alanine to valine substitution at amino acid 342 within the ICP4 gene. The infectivity of pri12 on Vero cells as measured by burst size is elevated by 5 orders of magnitude relative to that observed for vi12, reflecting the restored ability of the mutant ICP4 molecule possessing the alanine to valine substitution to activate transcription and thus support viral replication. Despite the restored regulatory activities of the pri12 ICP4 molecule, the ability of the pseudorevertant ICP4 molecule to form a high-affinity, specific interaction with the consensus binding site was still impaired relative to that of wild-type ICP4. This observation suggests that the in vitro-measured DNA-binding properties of ICP4 may not reflect the functional interactions occurring in vivo that mediate transcriptional activation.
Collapse
Affiliation(s)
- A A Shepard
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
19
|
Shepard AA, DeLuca NA. Activities of heterodimers composed of DNA-binding- and transactivation-deficient subunits of the herpes simplex virus regulatory protein ICP4. J Virol 1991; 65:299-307. [PMID: 1845890 PMCID: PMC240517 DOI: 10.1128/jvi.65.1.299-307.1991] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Two mutant strains (vi12 and vi13) of herpes simplex virus that contain insertion mutations in the sequences that encode the DNA-binding domain of viral regulatory protein ICP4 were generated. Both mutations disrupted specific DNA binding and resulted in transcriptionally inactive molecules; however, the ability of the mutant proteins to form dimers was retained. The mutant proteins formed heterodimers with an ICP4 deletion mutant (X25) that is nonfunctional but retains the ability to bind to consensus sites. Significantly elevated levels of early (E or beta) and "leaky late" (beta gamma or gamma 1) gene expression were observed upon coexpression of the insertion mutant and X25 ICP4 polypeptides. While the heterodimers composed of the vi13 and X25 peptides possessed DNA-binding activity, those composed of vi12 and X25 did not, indicating that DNA binding by the heterodimers may not be required for restored activity. Despite significant levels of early gene expression and viral DNA synthesis in vi12-infected X25 cells, true late (gamma 2) mRNA was not synthesized. This indicates that the structural requirements for ICP4 induction of different classes of viral genes may be different.
Collapse
Affiliation(s)
- A A Shepard
- Dana-Farber Cancer Institute, Harvard Medical School, Boston Massachusetts 02115
| | | |
Collapse
|
20
|
Shepard AA, Tolentino P, DeLuca NA. trans-dominant inhibition of herpes simplex virus transcriptional regulatory protein ICP4 by heterodimer formation. J Virol 1990; 64:3916-26. [PMID: 2164603 PMCID: PMC249687 DOI: 10.1128/jvi.64.8.3916-3926.1990] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Herpes simplex virus encodes a 175-kilodalton immediate-early transactivating protein referred to as ICP4. A mutant ICP4 molecule expressed from a stable transformed cell line lacks the sequences required for transactivation yet retains the ability to specifically associate with DNA and to form homodimers. Expression of the mutant ICP4 peptide from this cell line, designated X25, resulted in the inhibition of herpes simplex virus growth. Wild-type ICP4 homodimers were depleted in X25-infected cells by the formation of heterodimers containing the wild-type ICP4 molecule and the mutant peptide. While the ICP4 heterodimer retained DNA-binding activity, immunological studies suggest that the wild-type subunit of the heterodimer is conformationally altered in a region that serves as the antigenic epitope. Physical studies that determined the composition of the heterodimer and its native size and approximate shape support this observation. The structural change is in a region of ICP4 genetically implicated as important for transactivation and may result in an alteration in an interaction between ICP4 and a target protein essential to promote transcriptional activation. Sequestering wild-type monomers of a viral regulatory protein into heterodimers which are less proficient in transactivation may explain the dominant inhibitory activity of the X25 cells, resulting in attenuation of viral growth.
Collapse
Affiliation(s)
- A A Shepard
- Laboratory of Tumor Virus Genetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | |
Collapse
|
21
|
Wu CL, Wilcox KW. Codons 262 to 490 from the herpes simplex virus ICP4 gene are sufficient to encode a sequence-specific DNA binding protein. Nucleic Acids Res 1990; 18:531-8. [PMID: 2155403 PMCID: PMC333458 DOI: 10.1093/nar/18.3.531] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The HSV-1 immediate early (IE) protein ICP4 (alpha 4, IE175, Vmw175) is an oligomeric molecule which activates transcription of viral early genes, represses transcription of viral IE genes, and binds to specific sequences in certain viral promoters. The extent to which these functions are interrelated has not been fully established. We have expressed truncated portions of the ICP4 gene in E. coli as trpE fusion proteins. DNA-binding studies with these hybrid proteins revealed that ICP4 residues 262 to 490 are sufficient for sequence-specific DNA-binding. DNA-binding was not detected with polypeptides extending from residue 262 to 464 or from residue 306 to 490. Multiple bands of protein-DNA complexes observed in gel mobility shift assays indicate that residues 262 to 490 may also contribute to the oligomerization of ICP4.
Collapse
Affiliation(s)
- C L Wu
- Department of Microbiology, Medical College of Wisconsin, Milwaukee 53226
| | | |
Collapse
|
22
|
Hooda-Dhingra U, Patel DD, Pickup DJ, Condit RC. Fine structure mapping and phenotypic analysis of five temperature-sensitive mutations in the second largest subunit of vaccinia virus DNA-dependent RNA polymerase. Virology 1990; 174:60-9. [PMID: 2294648 DOI: 10.1016/0042-6822(90)90054-u] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have used plasmid clones spanning the region encoding the 132-kDa subunit of the cowpox virus RNA polymerase (CPV rpo 132) to marker rescue each of five vaccinia virus (VV) temperature sensitive (ts) mutants, ts 27, ts 29, ts 32, ts 47, and ts 62, which together constitute a single complementation group. The experiments fine-map the vaccinia mutations to a 1.3-kb region containing the 3' end of the CPV rpo 132 gene. Phenotypic characterization shows that all five mutants are affected to varying extents in their ability to synthesize late viral proteins at the nonpermissive temperature, similar to other ts mutants with lesions in the 22- and the 147-kDa subunits of the VV RNA polymerase. Two mutants, ts 27 and ts 32, exhibit a delay in the synthesis of late viral proteins at both the permissive and the nonpermissive temperatures. We conclude that the five VV mutants affect the 132-kDa subunit of the VV RNA polymerase. Additional genetic experiments demonstrate intragenic complementation between ts 62 and three other members of this complementation group, ts 27, ts 29, and ts 32.
Collapse
Affiliation(s)
- U Hooda-Dhingra
- Department of Biochemistry, State University of New York, Buffalo 14214
| | | | | | | |
Collapse
|
23
|
Cai WZ, Schaffer PA. Herpes simplex virus type 1 ICP0 plays a critical role in the de novo synthesis of infectious virus following transfection of viral DNA. J Virol 1989; 63:4579-89. [PMID: 2552142 PMCID: PMC251091 DOI: 10.1128/jvi.63.11.4579-4589.1989] [Citation(s) in RCA: 199] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As a first step in identifying the functions and intramolecular functional domains of herpes simplex virus type 1 infected cell protein 0 (ICP0) in productive infection and latency, a series of mutant plasmids specifying varying amounts of the ICP0 primary amino acid sequence were constructed. In transient expression assays with mutant and wild-type plasmids, the N-terminal half of the ICP0 molecule was found to be sufficient to transactivate a variety of viral promoters. Although promoters representing the immediate-early, early, and late kinetic classes were transactivated by wild-type ICP0, individual promoters responded to mutant forms of ICP0 in a manner consistent with the possibility that ICP0 transactivates different promoters by different mechanisms. Unlike infection with virus particles, which contain the 65-kilodalton transcriptional transactiovator, the initiation of viral replication after transfection of cells with purified viral DNA requires de novo protein synthesis. In order to assess the role of ICP0 in the de novo synthesis of infectious virus, Vero cells were transfected with purified DNA of wild-type virus or an ICP0 null mutant and the production of infectious virus was monitored. In cells transfected with mutant DNA, virus production was delayed by 2 days and the level of virus was reduced by several orders of magnitude relative to Vero cells transfected with wild-type viral DNA, suggesting an important role for ICP0 in the de novo synthesis of infectious particles. In cotransfection experiments with infectious DNA of the ICP0 null mutant and a plasmid specifying wild-type ICP0 titers of infectious virus were significantly enhanced relative to transfection with mutant DNA alone, confirming the role of ICP0 in de novo synthesis. These findings are consistent with the proposed role of ICP0 in reactivation of herpes simplex virus from latency (D. A. Leib, D. M. Coen, C. L. Bogard, K. A. Hicks, D. R. Yager, D. M. Knipe, K. L. Tyler, and P. A. Schaffer, J. Virol. 63:759-768, 1989), a process also thought to require de novo protein synthesis. The complementing activities of ICP0 mutant plasmids for ICP0 null mutant DNA in cotransfection assays correlated well with their transactivating activities for viral promoters in transient assays, indicating that the transactivating function of ICP0 is a critical factor in the de novo synthesis of infectious particles.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- W Z Cai
- Laboratory of Tumor Virus Genetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | |
Collapse
|
24
|
Shepard AA, Imbalzano AN, DeLuca NA. Separation of primary structural components conferring autoregulation, transactivation, and DNA-binding properties to the herpes simplex virus transcriptional regulatory protein ICP4. J Virol 1989; 63:3714-28. [PMID: 2760981 PMCID: PMC250963 DOI: 10.1128/jvi.63.9.3714-3728.1989] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A truncated ICP4 peptide which contains the amino-terminal 774 amino acids of the 1,298-amino-acid polypeptide is proficient for DNA binding, autoregulation, and transactivation of some viral genes (N. A. DeLuca and P. A. Schaffer, J. Virol. 62:732-743, 1988) and hence exhibits many of the properties characteristic of intact ICP4. To define the primary sequence important for the activities inherent in the amino-terminal half of the ICP4 molecule, insertional and deletion mutagenesis of the sequences encoding these residues were conducted. The DNA-binding activity of the molecule as assayed by the association with a consensus binding site was sensitive to insertional mutagenesis in two closely linked regions of the molecule. One region between amino acids 445 and 487 is critical for DNA binding and may contain a helix-turn-helix motif. The second region between amino acids 263 and 338 reduces the binding activity to a consensus binding site. When analyzed in the viral background, the DNA-binding activity of a peptide containing an insertion at amino acid 338 to a consensus binding site was reduced while the association with an alternative sequence was eliminated, suggesting a possible mechanism by which ICP4 may recognize a broader range of sequence elements. Mutations which eliminated DNA binding also eliminated or reduced both transactivation and autoregulation, supporting the requirement for DNA binding for these activities. Peptides that retained the deduced DNA-binding domain but lacked amino acids 143 through 210 retained the ability to associate with the consensus site and autoregulatory activity but were deficient for transactivation, demonstrating that the structural requirements for transactivation are greater than those required for autoregulation.
Collapse
Affiliation(s)
- A A Shepard
- Laboratory of Tumor Virus Genetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | |
Collapse
|