1
|
Das PK, Kielian M. Rubella virus assembly requirements and evolutionary relationships with novel rubiviruses. mBio 2024; 15:e0196524. [PMID: 39207105 PMCID: PMC11481484 DOI: 10.1128/mbio.01965-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Rubella virus (RuV) is an enveloped virus that usually causes mild disease in children, but can produce miscarriage or severe congenital birth defects. While in nature RuV only infects humans, the discovery of the related Ruhugu (RuhV) and Rustrela (RusV) viruses highlights the spillover potential of mammalian rubiviruses to humans. RuV buds into the Golgi, but its assembly and exit are not well understood. We identified a potential late domain motif 278PPAY281 at the C-terminus of the RuV E2 envelope protein. Such late domain motifs can promote virus budding by recruiting the cellular ESCRT machinery. An E2 Y281A mutation reduced infectious virus production by >3 logs and inhibited virus particle production. However, RuV was insensitive to inhibition by dominant-negative VPS4, and thus appeared ESCRT-independent. The E2 Y281A mutation did not significantly inhibit the production of the viral structural proteins capsid (Cp), E2, and E1, or dimerization, glycosylation, Golgi transport, and colocalization of E2 and E1. However, E2 Y281A significantly reduced glycoprotein-Cp colocalization and interaction, and inhibited Cp localization to the Golgi. Revertants of the E2 Y281A mutant contained an E2 281V substitution or the second site mutations [E2 N277I + Cp D215A]. These mutations promoted virus growth, particle production, E2/Cp colocalization and Cp-Golgi localization. Both the E2 substitutions 281V and 277I were found at the corresponding positions in the RuhV E2 protein. Taken together, our data identify a key interaction of the RuV E2 endodomain with the Cp during RuV biogenesis, and support the close evolutionary relationship between human and animal rubiviruses. IMPORTANCE Rubella virus (RuV) is an enveloped virus that only infects humans, where transplacental infection can cause miscarriage or congenital birth defects. We identified a potential late domain, 278PPAY281, at the C terminus of the E2 envelope protein. However, rather than this domain recruiting the cellular ESCRT machinery as predicted, our data indicate that E2 Y281 promotes a critical interaction of the E2 endodomain with the capsid protein, leading to capsid's localization to the Golgi where virus budding occurs. Revertant analysis demonstrated that two substitutions on the E2 protein could partially rescue virus growth and Cp-Golgi localization. Both residues were found at the corresponding positions in Ruhugu virus E2, supporting the close evolutionary relationship between RuV and Ruhugu virus, a recently discovered rubivirus from bats.
Collapse
Affiliation(s)
- Pratyush Kumar Das
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
2
|
Das PK, Gonzalez PA, Jangra RK, Yin P, Kielian M. A single-point mutation in the rubella virus E1 glycoprotein promotes rescue of recombinant vesicular stomatitis virus. mBio 2024; 15:e0237323. [PMID: 38334805 PMCID: PMC10936182 DOI: 10.1128/mbio.02373-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Rubella virus (RuV) is an enveloped plus-sense RNA virus and a member of the Rubivirus genus. RuV infection in pregnant women can lead to miscarriage or an array of severe birth defects known as congenital rubella syndrome. Novel rubiviruses were recently discovered in various mammals, highlighting the spillover potential of other rubiviruses to humans. Many features of the rubivirus infection cycle remain unexplored. To promote the study of rubivirus biology, here, we generated replication-competent recombinant VSV-RuV (rVSV-RuV) encoding the RuV transmembrane glycoproteins E2 and E1. Sequencing of rVSV-RuV showed that the RuV glycoproteins acquired a single-point mutation W448R in the E1 transmembrane domain. The E1 W448R mutation did not detectably alter the intracellular expression, processing, glycosylation, colocalization, or dimerization of the E2 and E1 glycoproteins. Nonetheless, the mutation enhanced the incorporation of RuV E2/E1 into VSV particles, which bud from the plasma membrane rather than the RuV budding site in the Golgi. Neutralization by E1 antibodies, calcium dependence, and cell tropism were comparable between WT-RuV and either rVSV-RuV or RuV containing the E1 W448R mutation. However, the E1 W448R mutation strongly shifted the threshold for the acid pH-triggered virus fusion reaction, from pH 6.2 for the WT RuV to pH 5.5 for the mutant. These results suggest that the increased resistance of the mutant RuV E1 to acidic pH promotes the ability of viral envelope proteins to generate infectious rVSV and provide insights into the regulation of RuV fusion during virus entry and exit.IMPORTANCERubella virus (RuV) infection in pregnant women can cause miscarriage or severe fetal birth defects. While a highly effective vaccine has been developed, RuV cases are still a significant problem in areas with inadequate vaccine coverage. In addition, related viruses have recently been discovered in mammals, such as bats and mice, leading to concerns about potential virus spillover to humans. To facilitate studies of RuV biology, here, we generated and characterized a replication-competent vesicular stomatitis virus encoding the RuV glycoproteins (rVSV-RuV). Sequence analysis of rVSV-RuV identified a single-point mutation in the transmembrane region of the E1 glycoprotein. While the overall properties of rVSV-RuV are similar to those of WT-RuV, the mutation caused a marked shift in the pH dependence of virus membrane fusion. Together, our studies of rVSV-RuV and the identified W448R mutation expand our understanding of rubivirus biology and provide new tools for its study.
Collapse
Affiliation(s)
- Pratyush Kumar Das
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Rohit K. Jangra
- Department of Microbiology and Immunology, Louisiana State University Health Science Center-Shreveport, Shreveport, Louisiana, USA
| | - Peiqi Yin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
3
|
Abstract
Rustrela virus (RusV; species Rubivirus strelense) is a recently discovered relative of rubella virus (RuV) that has been detected in cases of encephalitis in diverse mammals. Here, we diagnosed two additional cases of fatal RusV-associated meningoencephalitis in a South American coati (Nasua nasua) and a Eurasian or European otter (Lutra lutra) that were detected in a zoological garden with history of prior RusV infections. Both animals showed abnormal movement or unusual behavior and their brains tested positive for RusV using specific reverse transcription quantitative PCR (RT-qPCR) and RNA in situ hybridization. As previous sequencing of the RusV genome proved to be very challenging, we employed a sophisticated target-specific capture enrichment with specifically designed RNA baits to generate complete RusV genome sequences from both detected encephalitic animals and apparently healthy wild yellow-necked field mice (Apodemus flavicollis). Furthermore, the technique was used to revise three previously published RusV genomes from two encephalitic animals and a wild yellow-necked field mouse. When comparing the newly generated RusV sequences to the previously published RusV genomes, we identified a previously undetected stretch of 309 nucleotides predicted to represent the intergenic region and the sequence encoding the N terminus of the capsid protein. This indicated that the original RusV sequence was likely incomplete due to misassembly of the genome at a region with an exceptionally high G+C content of >80 mol%. The new sequence data indicate that RusV has an overall genome length of 9,631 nucleotides with the longest intergenic region (290 nucleotides) and capsid protein-encoding sequence (331 codons) within the genus Rubivirus. IMPORTANCE The detection of rustrela virus (RusV)-associated encephalitis in two carnivoran mammal species further extends the knowledge on susceptible species. Furthermore, we provide clinical and pathological data for the two new RusV cases, which were until now limited to the initial description of this fatal encephalitis. Using a sophisticated enrichment method prior to sequencing of the viral genome, we markedly improved the virus-to-background sequence ratio compared to that of standard procedures. Consequently, we were able to resolve and update the intergenic region and the coding region for the N terminus of the capsid protein of the initial RusV genome sequence. The updated putative capsid protein now resembles those of rubella and ruhugu virus in size and harbors a predicted RNA-binding domain that had not been identified in the initial RusV genome version. The newly determined complete RusV genomes strongly improve our knowledge of the genome structure of this novel rubivirus.
Collapse
|
4
|
Abstract
Rubella virus (RUBV), a rubivirus, is an airborne human pathogen that generally causes mild measles-like symptoms in children or adults. However, RUBV infection of pregnant women can result in miscarriage or congenital rubella syndrome (CRS), a collection of long-term birth defects including incomplete organ development and mental retardation. Worldwide vaccination campaigns have significantly reduced the number of RUBV infections, but RUBV continues to be a problem in countries with low vaccination coverage. Further, the recent discovery of pathogenic rubiviruses in other mammals emphasizes the spillover potential of rubella-related viruses to humans. In the last decade, our understanding of RUBV has been significantly increased by virological, biochemical, and structural studies, providing a platform to begin understanding the life cycle of RUBV at the molecular level. This review concentrates on recent work on RUBV, focusing on the virion, its structural components, and its entry, fusion, and assembly mechanisms. Important features of RUBV are compared with those of viruses from other families. We also use comparative genomics, manual curation, and protein homology modeling to highlight distinct features of RUBV that are evolutionarily conserved in the non-human rubiviruses. Since rubella-like viruses may potentially have higher pathogenicity and transmissibility to humans, we also propose a framework for utilizing RUBV as a model to study its more pathogenic cousins.
Collapse
|
5
|
Mangala Prasad V, Klose T, Rossmann MG. Assembly, maturation and three-dimensional helical structure of the teratogenic rubella virus. PLoS Pathog 2017; 13:e1006377. [PMID: 28575072 PMCID: PMC5470745 DOI: 10.1371/journal.ppat.1006377] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/14/2017] [Accepted: 04/25/2017] [Indexed: 01/24/2023] Open
Abstract
Viral infections during pregnancy are a significant cause of infant morbidity and mortality. Of these, rubella virus infection is a well-substantiated example that leads to miscarriages or severe fetal defects. However, structural information about the rubella virus has been lacking due to the pleomorphic nature of the virions. Here we report a helical structure of rubella virions using cryo-electron tomography. Sub-tomogram averaging of the surface spikes established the relative positions of the viral glycoproteins, which differed from the earlier icosahedral models of the virus. Tomographic analyses of in vitro assembled nucleocapsids and virions provide a template for viral assembly. Comparisons of immature and mature virions show large rearrangements in the glycoproteins that may be essential for forming the infectious virions. These results present the first known example of a helical membrane-enveloped virus, while also providing a structural basis for its assembly and maturation pathway. Rubella virus (RV) causes serious fetal defects when contracted during pregnancy. Despite its medical importance, due to the irregular shapes and different sizes of the virions, the RV structure has remained unknown. Using cryo-electron tomography, we have determined the RV structure, which shows a unique, helical outer surface. Subsequent local averaging of the RV surface spikes has established the conformations of its immunogenic glycoproteins. In vitro assembly studies on the virus capsid protein have provided insights into the interactions necessary for virus assembly. Comparisons between mature and immature RV show large conformational changes in the virion structure that are essential for virus maturation. These results help to gain a structural understanding of RV pathogenicity, which may also be relevant to other teratogenic viruses.
Collapse
Affiliation(s)
- Vidya Mangala Prasad
- Department of Biological Sciences, 240 S. Martin Jischke Drive, Purdue University, West Lafayette, IN, United States of America
| | - Thomas Klose
- Department of Biological Sciences, 240 S. Martin Jischke Drive, Purdue University, West Lafayette, IN, United States of America
| | - Michael G. Rossmann
- Department of Biological Sciences, 240 S. Martin Jischke Drive, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| |
Collapse
|
6
|
Petrova EK, Dmitrieva AA, Trifonova EA, Nikitin NA, Karpova OV. The key role of rubella virus glycoproteins in the formation of immune response, and perspectives on their use in the development of new recombinant vaccines. Vaccine 2016; 34:1006-11. [PMID: 26776468 DOI: 10.1016/j.vaccine.2016.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/29/2015] [Accepted: 01/05/2016] [Indexed: 12/23/2022]
Abstract
Rubella is a highly contagious viral disease which is mostly threatens to women of reproductive age. Existent live attenuated vaccines are effective enough, but have some drawbacks and are unusable for a certain group of people, including pregnant women and people with AIDS and other immunodeficiency. Thereby the development of alternative non-replicating, recombinant vaccines undoubtedly is needed. This review discusses the protein E1 and E2 role in formation of immune response and perspectives in development of new generation recombinant vaccines using them.
Collapse
Affiliation(s)
- Ekaterina K Petrova
- Faculty of Biology, Department of Virology, Lomonosov Moscow State University, 1/12 Leninskie Gory, Moscow 119234, Russia.
| | - Anastasia A Dmitrieva
- Faculty of Biology, Department of Virology, Lomonosov Moscow State University, 1/12 Leninskie Gory, Moscow 119234, Russia
| | - Ekaterina A Trifonova
- Faculty of Biology, Department of Virology, Lomonosov Moscow State University, 1/12 Leninskie Gory, Moscow 119234, Russia
| | - Nikolai A Nikitin
- Faculty of Biology, Department of Virology, Lomonosov Moscow State University, 1/12 Leninskie Gory, Moscow 119234, Russia
| | - Olga V Karpova
- Faculty of Biology, Department of Virology, Lomonosov Moscow State University, 1/12 Leninskie Gory, Moscow 119234, Russia
| |
Collapse
|
7
|
Short self-interacting N-terminal region of rubella virus capsid protein is essential for cooperative actions of capsid and nonstructural p150 proteins. J Virol 2014; 88:11187-98. [PMID: 25056903 DOI: 10.1128/jvi.01758-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Nucleocapsid formation is a primary function of the rubella virus capsid protein, which also promotes viral RNA synthesis via an unknown mechanism. The present study demonstrates that in infected cells, the capsid protein is associated with the nonstructural p150 protein via the short self-interacting N-terminal region of the capsid protein. Mutational analyses indicated that hydrophobic amino acids in this N-terminal region are essential for its N-terminal self-interaction, which is critical for the capsid-p150 association. An analysis based on a subgenomic replicon system demonstrated that the self-interacting N-terminal region of the capsid protein plays a key role in promoting viral gene expression. Analyses using a virus-like particle (VLP) system also showed that the self-interacting N-terminal region of the capsid protein is not essential for VLP production but is critical for VLP infectivity. These results demonstrate that the close cooperative actions of the capsid protein and p150 require the short self-interacting N-terminal region of the capsid protein during the life cycle of the rubella virus. IMPORTANCE The capsid protein of rubella virus promotes viral RNA replication via an unknown mechanism. This protein interacts with the nonstructural protein p150, but the importance of this interaction is unclear. In this study, we demonstrate that the short N-terminal region of the capsid protein forms a homo-oligomer that is critical for the capsid-p150 interaction. These interactions are required for the viral-gene-expression-promoting activity of the capsid protein, allowing efficient viral growth. These findings provide information about the mechanisms underlying the regulation of rubella virus RNA replication via the cooperative actions of the capsid protein and p150.
Collapse
|
8
|
Willows S, Ilkow CS, Hobman TC. Phosphorylation and membrane association of the Rubella virus capsid protein is important for its anti-apoptotic function. Cell Microbiol 2014; 16:1201-10. [PMID: 24456140 PMCID: PMC7162283 DOI: 10.1111/cmi.12272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/02/2014] [Accepted: 01/20/2014] [Indexed: 12/17/2022]
Abstract
Rubella virus (RV), a member of Togaviridae, is an important human pathogen that can cause severe defects in the developing fetus. Compared to other togaviruses, RV replicates very slowly suggesting that it must employ effective mechanisms to delay the innate immune response. A recent study by our laboratory revealed that the capsid protein of RV is a potent inhibitor of apoptosis. A primary mechanism by which RV capsid interferes with programmed cell death appears to be through interaction with the pro‐apoptotic Bcl‐2 family member Bax. In the present study, we report that the capsid protein also blocks IRF3‐dependent apoptosis induced by the double‐strand RNA mimic polyinosinic‐polycytidylic acid. In addition, analyses of cis‐acting elements revealed that phosphorylation and membrane association are important for its anti‐apoptotic function. Finally, the observation that hypo‐phosphorylated capsid binds Bax just as well as wild‐type capsid protein suggests that interaction with this pro‐apoptotic host protein in and of itself is not sufficient to block programmed cell death. This provides additional evidence that this viral protein inhibits apoptosis through multiple mechanisms.
Collapse
Affiliation(s)
- Steven Willows
- Department of Cell Biology, University of Alberta, 5-14 Medical Sciences Building, Edmonton, Canada, T6G 2H7
| | | | | |
Collapse
|
9
|
[The life cycle of Rubella Virus]. Uirusu 2014; 64:137-46. [PMID: 26437836 DOI: 10.2222/jsv.64.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Rubella virus (RV), an infectious agent of rubella, is the sole member of the genus Rubivirus in the family of Togaviridae. RV has a positive-stranded sense RNA as a genome. A natural host of RV is limited to human, and rubella is considered to be a childhood disease in general. When woman is infected with RV during early pregnancy, her fetus may develop severe birth defects known as congenital rubella syndrome. In this review, the RV life cycle from the virus entry to budding is illustrated in comparison with those of member viruses of the genus alphavirus in the same family. The multiple functions of the RV capsid protein are also introduced.
Collapse
|
10
|
Rubella virus capsid protein structure and its role in virus assembly and infection. Proc Natl Acad Sci U S A 2013; 110:20105-10. [PMID: 24282305 DOI: 10.1073/pnas.1316681110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rubella virus (RV) is a leading cause of birth defects due to infectious agents. When contracted during pregnancy, RV infection leads to severe damage in fetuses. Despite its medical importance, compared with the related alphaviruses, very little is known about the structure of RV. The RV capsid protein is an essential structural component of virions as well as a key factor in virus-host interactions. Here we describe three crystal structures of the structural domain of the RV capsid protein. The polypeptide fold of the RV capsid protomer has not been observed previously. Combining the atomic structure of the RV capsid protein with the cryoelectron tomograms of RV particles established a low-resolution structure of the virion. Mutational studies based on this structure confirmed the role of amino acid residues in the capsid that function in the assembly of infectious virions.
Collapse
|
11
|
Abstract
Rubella virus is the only member of the Rubivirus genus within the Togaviridae family and is the causative agent of the childhood disease known as rubella or German measles. Here, we report the use of cryo-electron tomography to examine the three-dimensional structure of rubella virions and compare their structure to that of Ross River virus, a togavirus belonging the genus Alphavirus. The ectodomains of the rubella virus glycoproteins, E1 and E2, are shown to be organized into extended rows of density, separated by 9 nm on the viral surface. We also show that the rubella virus nucleocapsid structure often forms a roughly spherical shell which lacks high density at its center. While many rubella virions are approximately spherical and have dimensions similar to that of the icosahedral Ross River virus, the present results indicate that rubella exhibits a large degree of pleomorphy. In addition, we used rotation function calculations and other analyses to show that approximately spherical rubella virions lack the icosahedral organization which characterizes Ross River and other alphaviruses. The present results indicate that the assembly mechanism of rubella virus, which has previously been shown to differ from that of the alphavirus assembly pathway, leads to an organization of the rubella virus structural proteins that is different from that of alphaviruses.
Collapse
|
12
|
Ilkow CS, Goping IS, Hobman TC. The Rubella virus capsid is an anti-apoptotic protein that attenuates the pore-forming ability of Bax. PLoS Pathog 2011; 7:e1001291. [PMID: 21379337 PMCID: PMC3040668 DOI: 10.1371/journal.ppat.1001291] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 01/12/2011] [Indexed: 11/18/2022] Open
Abstract
Apoptosis is an important mechanism by which virus-infected cells are eliminated from the host. Accordingly, many viruses have evolved strategies to prevent or delay apoptosis in order to provide a window of opportunity in which virus replication, assembly and egress can take place. Interfering with apoptosis may also be important for establishment and/or maintenance of persistent infections. Whereas large DNA viruses have the luxury of encoding accessory proteins whose primary function is to undermine programmed cell death pathways, it is generally thought that most RNA viruses do not encode these types of proteins. Here we report that the multifunctional capsid protein of Rubella virus is a potent inhibitor of apoptosis. The main mechanism of action was specific for Bax as capsid bound Bax and prevented Bax-induced apoptosis but did not bind Bak nor inhibit Bak-induced apoptosis. Intriguingly, interaction with capsid protein resulted in activation of Bax in the absence of apoptotic stimuli, however, release of cytochrome c from mitochondria and concomitant activation of caspase 3 did not occur. Accordingly, we propose that binding of capsid to Bax induces the formation of hetero-oligomers that are incompetent for pore formation. Importantly, data from reverse genetic studies are consistent with a scenario in which the anti-apoptotic activity of capsid protein is important for virus replication. If so, this would be among the first demonstrations showing that blocking apoptosis is important for replication of an RNA virus. Finally, it is tempting to speculate that other slowly replicating RNA viruses employ similar mechanisms to avoid killing infected cells. Among the variety of defense systems employed by mammalian cells to combat virus infection, apoptosis or programmed cell death is the most drastic response. Some large DNA viruses encode proteins whose sole function is to block apoptosis. Conversely, very little is known about whether RNA viruses encode analogous proteins. In many cases, RNA viruses are able to replicate before cell death occurs, which may be one reason why so little thought has been given to this topic. However, a number of RNA viruses, some of which are important human pathogens, have slow replication cycles and it stands to reason that they must block apoptosis during this time period. Here we show that the multifunctional capsid protein of Rubella virus is a potent inhibitor of apoptosis. Data from reverse genetic experiments suggest that the anti-apoptotic function of a virus-encoded protein is important for replication of an RNA virus. We anticipate that other slowly replicating RNA viruses may employ similar mechanisms and, as such, these studies have implications for development of novel anti-virals and vaccines.
Collapse
Affiliation(s)
- Carolina S. Ilkow
- Department of Cell Biology, University of Alberta, Edmonton, Canada
- School of Molecular and Systems Medicine, University of Alberta, Edmonton, Canada
| | - Ing Swie Goping
- School of Molecular and Systems Medicine, University of Alberta, Edmonton, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Canada
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Tom C. Hobman
- Department of Cell Biology, University of Alberta, Edmonton, Canada
- School of Molecular and Systems Medicine, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
13
|
Ilkow CS, Willows SD, Hobman TC. Rubella virus capsid protein: a small protein with big functions. Future Microbiol 2010; 5:571-84. [PMID: 20353299 DOI: 10.2217/fmb.10.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Virus replication occurs in the midst of a life or death struggle between the virus and the infected host cell. To limit virus replication, host cells can activate a number of antiviral pathways, the most drastic of which is programmed cell death. Whereas large DNA viruses have the luxury of encoding accessory proteins whose main function is to interfere with host cell defences, the genomes of RNA viruses are not large enough to encode proteins of this type. Recent studies have revealed that proteins encoded by RNA viruses often play multiple roles in the battles between viruses and host cells. In this article, we discuss the many functions of the rubella virus capsid protein. This protein has well-defined roles in virus assembly, but recent research suggests that it also functions to modulate virus replication and block host cell defences.
Collapse
Affiliation(s)
- Carolina S Ilkow
- Department of Cell Biology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| | | | | |
Collapse
|
14
|
Rubella virus capsid protein interacts with poly(a)-binding protein and inhibits translation. J Virol 2008; 82:4284-94. [PMID: 18305028 DOI: 10.1128/jvi.02732-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During virus assembly, the capsid proteins of RNA viruses bind to genomic RNA to form nucleocapsids. However, it is now evident that capsid proteins have additional functions that are unrelated to nucleocapsid formation. Specifically, their interactions with cellular proteins may influence signaling pathways or other events that affect virus replication. Here we report that the rubella virus (RV) capsid protein binds to poly(A)-binding protein (PABP), a host cell protein that enhances translational efficiency by circularizing mRNAs. Infection of cells with RV resulted in marked increases in the levels of PABP, much of which colocalized with capsid in the cytoplasm. Mapping studies revealed that capsid binds to the C-terminal half of PABP, which interestingly is the region that interacts with other translation regulators, including PABP-interacting protein 1 (Paip1) and Paip2. The addition of capsid to in vitro translation reaction mixtures inhibited protein synthesis in a dose-dependent manner; however, the capsid block was alleviated by excess PABP, indicating that inhibition of translation occurs through a stoichiometric mechanism. To our knowledge, this is the first report of a viral protein that inhibits protein translation by sequestration of PABP. We hypothesize that capsid-dependent inhibition of translation may facilitate the switch from viral translation to packaging RNA into nucleocapsids.
Collapse
|
15
|
Callagy SJ, Kelly BJ, Fleeton MN, Sheahan BJ, Galbraith SE, Atkins GJ. Semliki Forest virus vectors expressing the H and HN genes of measles and mumps viruses reduce immunity induced by the envelope protein genes of rubella virus. Vaccine 2007; 25:7481-90. [PMID: 17905485 DOI: 10.1016/j.vaccine.2007.08.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 08/24/2007] [Accepted: 08/27/2007] [Indexed: 11/28/2022]
Abstract
A Semliki Forest virus (SFV) recombinant particle vaccine vector was constructed expressing the viral E1 and E2 envelope proteins of the RA27/3 vaccine strain of rubella virus. This vector induced high titres of antibody after intramuscular administration to Balb/C mice, both following initial vaccination and a boost 4 weeks later. This occurred for antibody as measured by ELISA and as measured by a latex agglutination test. However, co-administration of similar particles expressing the measles virus H protein and the mumps virus HN protein with the rubella protein expressing vector resulted in reduction of the anti-rubella immune response.
Collapse
Affiliation(s)
- Sara J Callagy
- Virus Group, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
16
|
Law LJ, Ilkow CS, Tzeng WP, Rawluk M, Stuart DT, Frey TK, Hobman TC. Analyses of phosphorylation events in the rubella virus capsid protein: role in early replication events. J Virol 2006; 80:6917-25. [PMID: 16809297 PMCID: PMC1489039 DOI: 10.1128/jvi.01152-05] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rubella virus capsid protein is phosphorylated prior to virus assembly. Our previous data are consistent with a model in which dynamic phosphorylation of the capsid regulates its RNA binding activity and, in turn, nucleocapsid assembly. In the present study, the process of capsid phosphorylation was examined in further detail. We show that phosphorylation of serine 46 in the RNA binding region of the capsid is required to trigger phosphorylation of additional amino acid residues that include threonine 47. This residue likely plays a direct role in regulating the binding of genomic RNA to the capsid. We also provide evidence which suggests that the capsid is dephosphorylated prior to or during virus budding. Finally, whereas the phosphorylation state of the capsid does not directly influence the rate of synthesis of viral RNA and proteins or the assembly and secretion of virions, the presence of phosphate on the capsid is critical for early events in virus replication, most likely the uncoating of virions and/or disassembly of nucleocapsids.
Collapse
Affiliation(s)
- LokMan J Law
- Department of Cell Biology, 5-14 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Sjöberg M, Garoff H. Interactions between the transmembrane segments of the alphavirus E1 and E2 proteins play a role in virus budding and fusion. J Virol 2003; 77:3441-50. [PMID: 12610119 PMCID: PMC149539 DOI: 10.1128/jvi.77.6.3441-3450.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The alphavirus envelope is built by heterodimers of the membrane proteins E1 and E2. The complex is formed as a p62E1 precursor in the endoplasmic reticulum. During transit to the plasma membrane (PM), it is cleaved into mature E1-E2 heterodimers, which are oligomerized into trimeric complexes, so-called spikes that bind both to each other and, at the PM, also to nucleocapsid (NC) structures under the membrane. These interactions drive the budding of new virus particles from the cell surface. The virus enters new cells by a low-pH-induced membrane fusion event where both inter- and intraheterodimer interactions are reorganized to establish a fusion-active membrane protein complex. There are no intact heterodimers left after fusion activation; instead, an E1 homotrimer remains in the cellular (or viral) membrane. We analyzed whether these transitions depend on interactions in the transmembrane (TM) region of the heterodimer. We observed a pattern of conserved glycines in the TM region of E1 and made two mutants where either the glycines only (SFV/E1(4L)) or the whole segment around the glycines (SFV/E1(11L)) was replaced by leucines. We found that both mutations decreased the stability of the heterodimer and increased the formation of the E1 homotrimer at a suboptimal fusion pH, while the fusion activity was decreased. This suggested that TM interactions play a role in virus assembly and entry and that anomalous or uncoordinated protein reorganizations take place in the mutants. In addition, the SFV/E1(11L) mutant was completely deficient in budding, which may reflect an inability to form multivalent NC interactions at the PM.
Collapse
Affiliation(s)
- Mathilda Sjöberg
- Department of Biosciences at Novum, Karolinska Institute, S-141 57 Huddinge, Sweden.
| | | |
Collapse
|
18
|
Law LMJ, Everitt JC, Beatch MD, Holmes CFB, Hobman TC. Phosphorylation of rubella virus capsid regulates its RNA binding activity and virus replication. J Virol 2003; 77:1764-71. [PMID: 12525610 PMCID: PMC140988 DOI: 10.1128/jvi.77.3.1764-1771.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rubella virus is an enveloped positive-strand RNA virus of the family TOGAVIRIDAE: Virions are composed of three structural proteins: a capsid and two membrane-spanning glycoproteins, E2 and E1. During virus assembly, the capsid interacts with genomic RNA to form nucleocapsids. In the present study, we have investigated the role of capsid phosphorylation in virus replication. We have identified a single serine residue within the RNA binding region that is required for normal phosphorylation of this protein. The importance of capsid phosphorylation in virus replication was demonstrated by the fact that recombinant viruses encoding hypophosphorylated capsids replicated at much lower titers and were less cytopathic than wild-type virus. Nonphosphorylated mutant capsid proteins exhibited higher affinities for viral RNA than wild-type phosphorylated capsids. Capsid protein isolated from wild-type strain virions bound viral RNA more efficiently than cell-associated capsid. However, the RNA-binding activity of cell-associated capsids increased dramatically after treatment with phosphatase, suggesting that the capsid is dephosphorylated during virus assembly. In vitro assays indicate that the capsid may be a substrate for protein phosphatase 1A. As capsid is heavily phosphorylated under conditions where virus assembly does not occur, we propose that phosphorylation serves to negatively regulate binding of viral genomic RNA. This may delay the initiation of nucleocapsid assembly until sufficient amounts of virus glycoproteins accumulate at the budding site and/or prevent nonspecific binding to cellular RNA when levels of genomic RNA are low. It follows that at a late stage in replication, the capsid may undergo dephosphorylation before nucleocapsid assembly occurs.
Collapse
Affiliation(s)
- Lok Man J Law
- Departments of Cell Biology. Biochemistry. Signal Transduction Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
19
|
Shi X, Elliott RM. Golgi localization of Hantaan virus glycoproteins requires coexpression of G1 and G2. Virology 2002; 300:31-8. [PMID: 12202203 DOI: 10.1006/viro.2002.1414] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The membrane glycoproteins G1 and G2 of Hantaan virus (HTNV; family Bunyaviridae) are encoded on the M RNA genome segment as a precursor polypeptide that is cotranslationally cleaved by host proteases. G1 and G2 accumulate in the Golgi complex in cells following either virus infection or transfection with M segment cDNA. However, there are conflicting reports in the literature concerning the Golgi targeting of separately expressed G1. To resolve these differences, a series of M segment and G1 coding region cDNA mutants was constructed containing either C-terminal or internal deletions. The intracellular localization of proteins expressed from these constructs was investigated by using confocal microscopy and double-staining immunofluorescence with G1 and G2 specific monoclonal antibodies and antisera specific for markers of the Golgi complex (GM130 and mannosidase II) and of the ER (calnexin). When expressed individually, G1 and G2 were retained in the ER, whereas when coexpressed from separate plasmids, both proteins localized to the Golgi. A construct expressing the whole G1 coding region and the complete signal sequence of G2 (amino acids 1-648 of the precursor) was found to be the minimal G1 protein competent to rescue G2 to the Golgi. This suggests that the G1 cytoplasmic tail including the downstream G2 signal peptide plays an important role in Golgi localization of HTNV glycoproteins. None of the constructs with internal deletions in the cDNA expressed proteins that localized to the Golgi. Our results indicate that the Golgi retention signal of HTNV glycoproteins may depend on the conformation of oligomerized G1 and G2 complex rather than a precise primary amino acid sequence.
Collapse
Affiliation(s)
- Xiaohong Shi
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G11 5JR, Scotland, United Kingdom
| | | |
Collapse
|
20
|
Law LM, Duncan R, Esmaili A, Nakhasi HL, Hobman TC. Rubella virus E2 signal peptide is required for perinuclear localization of capsid protein and virus assembly. J Virol 2001; 75:1978-83. [PMID: 11160697 PMCID: PMC115144 DOI: 10.1128/jvi.75.4.1978-1983.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The rubella virus (RV) structural proteins capsid, E2, and E1 are synthesized as a polyprotein precursor. The signal peptide that initiates translocation of E2 into the lumen of the endoplasmic reticulum remains attached to the carboxy terminus of the capsid protein after cleavage by signal peptidase. Among togaviruses, this feature is unique to RV. The E2 signal peptide has previously been shown to function as a membrane anchor for the capsid protein. In the present study, we demonstrate that this domain is required for RV glycoprotein-dependent localization of the capsid protein to the juxtanuclear region and subsequent virus assembly at the Golgi complex.
Collapse
Affiliation(s)
- L M Law
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
21
|
Abstract
Rubella virus (RV) is the causative agent of the disease known more popularly as German measles. Rubella is predominantly a childhood disease and is endemic throughout the world. Natural infections of rubella occur only in humans and are generally mild. Complications of rubella infection, most commonly polyarthralgia in adult women, do exist; occasionally more serious sequelae occur. However, the primary public health concern of RV infection is its teratogenicity. RV infection of women during the first trimester of pregnancy can induce a spectrum of congenital defects in the newborn, known as congenital rubella syndrome (CRS). The development of vaccines and implementation of vaccination strategies have substantially reduced the incidence of disease and in turn of CRS in developed countries. The pathway whereby RV infection leads to teratogenesis has not been elucidated, but the cytopathology in infected fetal tissues suggests necrosis and/or apoptosis as well as inhibition of cell division of critical precursor cells involved in organogenesis. In cell culture, a number of unusual features of RV replication have been observed, including mitochondrial abnormalities, and disruption of the cytoskeleton; these manifestations are most probably linked and play some role in RV teratogenesis. Further understanding of the mechanism of RV teratogenesis will be brought about by the investigation of RV replication and virus-host interactions.
Collapse
|
22
|
Forsell K, Xing L, Kozlovska T, Cheng RH, Garoff H. Membrane proteins organize a symmetrical virus. EMBO J 2000; 19:5081-91. [PMID: 11013211 PMCID: PMC302099 DOI: 10.1093/emboj/19.19.5081] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2000] [Revised: 08/03/2000] [Accepted: 08/10/2000] [Indexed: 01/13/2023] Open
Abstract
Alphaviruses are enveloped icosahedral viruses that mature by budding at the plasma membrane. According to a prevailing model maturation is driven by binding of membrane protein spikes to a preformed nucleocapsid (NC). The T = 4 geometry of the membrane is thought to be imposed by the NC through one-to-one interactions between spike protomers and capsid proteins (CPs). This model is challenged here by a Semliki Forest virus capsid gene mutant. Its CPs cannot assemble into NCs, or its intermediate structures, due to defective CP-CP interactions. Nevertheless, it can use its horizontal spike-spike interactions on membrane surface and vertical spike-CP interactions to make a particle with correct geometry and protein stoichiometry. Thus, our results highlight the direct role of membrane proteins in organizing the icosahedral conformation of alphaviruses.
Collapse
Affiliation(s)
- K Forsell
- Karolinska Institute, Department of Biosciences at Novum, S-141 57 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
23
|
Abstract
Rubella virus (RV) is the causative agent of the disease known more popularly as German measles. Rubella is predominantly a childhood disease and is endemic throughout the world. Natural infections of rubella occur only in humans and are generally mild. Complications of rubella infection, most commonly polyarthralgia in adult women, do exist; occasionally more serious sequelae occur. However, the primary public health concern of RV infection is its teratogenicity. RV infection of women during the first trimester of pregnancy can induce a spectrum of congenital defects in the newborn, known as congenital rubella syndrome (CRS). The development of vaccines and implementation of vaccination strategies have substantially reduced the incidence of disease and in turn of CRS in developed countries. The pathway whereby RV infection leads to teratogenesis has not been elucidated, but the cytopathology in infected fetal tissues suggests necrosis and/or apoptosis as well as inhibition of cell division of critical precursor cells involved in organogenesis. In cell culture, a number of unusual features of RV replication have been observed, including mitochondrial abnormalities, and disruption of the cytoskeleton; these manifestations are most probably linked and play some role in RV teratogenesis. Further understanding of the mechanism of RV teratogenesis will be brought about by the investigation of RV replication and virus-host interactions.
Collapse
Affiliation(s)
- J Y Lee
- Research and Molecular Development Division, Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria 3051, Australia.
| | | |
Collapse
|
24
|
Duncan R, Esmaili A, Law LM, Bertholet S, Hough C, Hobman TC, Nakhasi HL. Rubella virus capsid protein induces apoptosis in transfected RK13 cells. Virology 2000; 275:20-9. [PMID: 11017784 DOI: 10.1006/viro.2000.0467] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rubella virus is an enveloped positive-strand RNA virus that can cause mild to severe birth defects or death in an infected fetus. RV induction of programmed cell death, demonstrated in cell culture, has been implicated in the pathogenesis. The timing of apoptosis, 48 h p.i., suggested that accumulation of RV structural proteins might induce cell death in infected cells. Expression of RV structural proteins, capsid, envelope glycoproteins E1 and E2, in transiently transfected RK13 cells was as potent an inducer of cell death as RV infection. Immunofluorescence microscopy revealed that RV structural protein transfected cells exhibited the condensed nuclei typical of apoptotic cell death. Transfection with the capsid protein construct, but not E2 and E1, resulted in as much cell death as joint expression of all three RV structural proteins. Capsid required a membrane-anchoring domain to induce cell death, but a heterologous polypeptide fused to the capsid membrane anchor did not cause apoptosis. Deletion mutants demonstrated that the apoptosis-inducing activity resides in the N-terminal 170 amino acids of capsid. Though apoptosis-inducing capsid constructs appear to have an ER sub-cellular localization, disruption of the ER calcium storage capacity does not correlate with cell death. Mechanisms consistent with these results are discussed.
Collapse
Affiliation(s)
- R Duncan
- Laboratory of Parasitic Biology and Biochemistry, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Beatch MD, Hobman TC. Rubella virus capsid associates with host cell protein p32 and localizes to mitochondria. J Virol 2000; 74:5569-76. [PMID: 10823864 PMCID: PMC112044 DOI: 10.1128/jvi.74.12.5569-5576.2000] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Togavirus nucleocapsids have a characteristic icosahedral structure and are composed of multiple copies of a capsid protein complexed with genomic RNA. The assembly of rubella virus nucleocapsids is unique among togaviruses in that the process occurs late in virus assembly and in association with intracellular membranes. The goal of this study was to identify host cell proteins which may be involved in regulating rubella virus nucleocapsid assembly through their interactions with the capsid protein. Capsid was used as bait to screen a CV1 cDNA library using the yeast two-hybrid system. One protein that interacted strongly with capsid was p32, a cellular protein which is known to interact with other viral proteins. The interaction between capsid and p32 was confirmed using a number of different in vitro and in vivo methods, and the site of interaction between these two proteins was shown to be at the mitochondria. Interestingly, overexpression of the rubella virus structural proteins resulted in clustering of the mitochondria in the perinuclear region. The p32-binding site in capsid is a potentially phosphorylated region that overlaps the viral RNA-binding domain of capsid. Our results are consistent with the possibility that the interaction of p32 with capsid plays a role in the regulation of nucleocapsid assembly and/or virus-host interactions.
Collapse
Affiliation(s)
- M D Beatch
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
26
|
Orellana A, Mottershead D, van der Linden I, Keinänen K, Oker-Blom C. Mimicking rubella virus particles by using recombinant envelope glycoproteins and liposomes. J Biotechnol 1999; 75:209-19. [PMID: 10553659 DOI: 10.1016/s0168-1656(99)00162-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The envelope glycoproteins E1 and E2 of rubella virus (RV) were engineered to display the FLAG epitope tag and a polyhistidine tag, at their amino and carboxy termini, respectively. These modified envelope proteins were produced in Sf9 insect cells utilizing baculovirus expression vectors, the E1 and E2 vectors giving rise to protein products of about 58 and 42 kDa, respectively. The recombinant proteins were purified by immobilized metal-ion affinity chromatography and reconstituted into liposomes via their hydrophobic transmembrane anchors. The liposomes were prepared by detergent dialysis in the presence of europium-DTPA chelate, enabling the subsequent measurement of the binding of the resultant proteoliposomes to the antibodies by time resolved fluorescence. RV mimicking proteoliposomes were recognized by antibodies specific for the E1 and E2 proteins, as well as the FLAG epitope tag. This type of virosome may prove useful for studies on the basic biological events of an RV infection or as diagnostic reagents.
Collapse
Affiliation(s)
- A Orellana
- VTT Biotechnology and Food Research, Finland
| | | | | | | | | |
Collapse
|
27
|
Cikaluk DE, Tahbaz N, Hendricks LC, DiMattia GE, Hansen D, Pilgrim D, Hobman TC. GERp95, a membrane-associated protein that belongs to a family of proteins involved in stem cell differentiation. Mol Biol Cell 1999; 10:3357-72. [PMID: 10512872 PMCID: PMC25603 DOI: 10.1091/mbc.10.10.3357] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A panel of mAbs was elicited against intracellular membrane fractions from rat pancreas. One of the antibodies reacted with a 95-kDa protein that localizes primarily to the Golgi complex or the endoplasmic reticulum (ER), depending on cell type. The corresponding cDNA was cloned and sequenced and found to encode a protein of 97.6 kDa that we call GERp95 (Golgi ER protein 95 kDa). The protein copurifies with intracellular membranes but does not contain hydrophobic regions that could function as signal peptides or transmembrane domains. Biochemical analysis suggests that GERp95 is a cytoplasmically exposed peripheral membrane protein that exists in a protease-resistant complex. GERp95 belongs to a family of highly conserved proteins in metazoans and Schizosaccharomyces pombe. It has recently been determined that plant and Drosophila homologues of GERp95 are important for controlling the differentiation of stem cells (Bohmert et al., 1998; Cox et al., 1998; Moussian et al., 1998). In Caenorhabditis elegans, there are at least 20 members of this protein family. To this end, we have used RNA interference to show that the GERp95 orthologue in C. elegans is important for maturation of germ-line stem cells in the gonad. GERp95 and related proteins are an emerging new family of proteins that have important roles in metazoan development. The present study suggests that these proteins may exert their effects on cell differentiation from the level of intracellular membranes.
Collapse
Affiliation(s)
- D E Cikaluk
- Department of Cell Biology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Garbutt M, Law LM, Chan H, Hobman TC. Role of rubella virus glycoprotein domains in assembly of virus-like particles. J Virol 1999; 73:3524-33. [PMID: 10196241 PMCID: PMC104124 DOI: 10.1128/jvi.73.5.3524-3533.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rubella virus is a small enveloped positive-strand RNA virus that assembles on intracellular membranes in a variety of cell types. The virus structural proteins contain all of the information necessary to mediate the assembly of virus-like particles in the Golgi complex. We have recently identified intracellular retention signals within the two viral envelope glycoproteins. E2 contains a Golgi retention signal in its transmembrane domain, whereas a signal for retention in the endoplasmic reticulum has been localized to the transmembrane and cytoplasmic domains of E1 (T. C. Hobman, L. Woodward, and M. G. Farquhar, Mol. Biol. Cell 6:7-20, 1995; T. C. Hobman, H. F. Lemon, and K. Jewell, J. Virol. 71:7670-7680, 1997). In the present study, we have analyzed the role of these retention signals in the assembly of rubella virus-like particles. Deletion or replacement of these domains with analogous regions from other type I membrane glycoproteins resulted in failure of rubella virus-like particles to be secreted from transfected cells. The E1 transmembrane and cytoplasmic domains were not required for targeting of the structural proteins to the Golgi complex and, surprisingly, assembly and budding of virus particles into the lumen of this organelle; however, the resultant particles were not secreted. In contrast, replacement or alteration of the E2 transmembrane or cytoplasmic domain, respectively, abrogated the targeting of the structural proteins to the budding site, and consequently, no virion formation was observed. These results indicate that the transmembrane and cytoplasmic domains of E2 and E1 are required for early and late steps respectively in the viral assembly pathway and that rubella virus morphogenesis is very different from that of the structurally similar alphaviruses.
Collapse
Affiliation(s)
- M Garbutt
- Department of Cell Biology and Anatomy, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
29
|
Pekosz A, Lamb RA. Influenza C virus CM2 integral membrane glycoprotein is produced from a polypeptide precursor by cleavage of an internal signal sequence. Proc Natl Acad Sci U S A 1998; 95:13233-8. [PMID: 9789071 PMCID: PMC23766 DOI: 10.1073/pnas.95.22.13233] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/1998] [Indexed: 11/18/2022] Open
Abstract
The influenza C virus CM2 protein is a small glycosylated integral membrane protein (115 residues) that spans the membrane once and contains a cleavable signal sequence at its N terminus. The coding region for CM2 (CM2 ORF) is located at the C terminus of the 342-amino acid (aa) ORF of a colinear mRNA transcript derived from influenza C virus RNA segment 6. Splicing of the colinear transcript introduces a translational stop codon into the ORF and the spliced mRNA encodes the viral matrix protein (CM1) (242 aa). The mechanism of CM2 translation was investigated by using in vitro and in vivo translation of RNA transcripts. It was found that the colinear mRNA derived from influenza C virus RNA segment 6 serves as the mRNA for CM2. Furthermore, CM2 translation does not depend on any of the three in-frame methionine residues located at the beginning of CM2 ORF. Rather, CM2 is a proteolytic cleavage product of the p42 protein product encoded by the colinear mRNA: a cleavage event that involves the recognition and cleavage of an internal signal peptide presumably by signal peptidase resident in the endoplasmic reticulum. Alteration of the predicted signal peptidase cleavage site by mutagenesis blocked generation of CM2. The other polypeptide species resulting from the cleavage of p42, designated p31, contains the CM1 coding region and an additional C-terminal 17 aa (formerly the CM2 signal peptide). Protein p31, in comparison to CM1, displays characteristics of an integral membrane protein.
Collapse
Affiliation(s)
- A Pekosz
- Howard Hughes Medical Institute, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA
| | | |
Collapse
|
30
|
Schmidt M, Tuominen N, Johansson T, Weiss SA, Keinänen K, Oker-Blom C. Baculovirus-mediated large-scale expression and purification of a polyhistidine-tagged rubella virus capsid protein. Protein Expr Purif 1998; 12:323-30. [PMID: 9535699 DOI: 10.1006/prep.1997.0851] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The capsid protein of rubella virus was produced in baculovirus-infected Spodoptera frugiperda insect cells, with a polyhistidine affinity tag at the carboxy terminus. The RV capsid recombinant protein was produced in a 10-liter bioreactor and purified, under nondenaturing conditions, using immobilized metal-ion affinity chromatography. Immunoblot analyses indicated that the purified recombinant protein was intact and migrated with the expected molecular weight. The final yield was 5 mg of purified protein per liter of cell culture. Surface plasmon resonance was used to investigate the antigenic potential of the histidine tagged capsid protein in an antigen-antibody interaction study. A specific interaction between the two proteins was shown. Our results suggest that this strategy should be useful in interaction studies of other virus-specific proteins and antibodies.
Collapse
Affiliation(s)
- M Schmidt
- VTT Biotechnology and Food Research, Espoo, FIN-02044 VTT, Finland
| | | | | | | | | | | |
Collapse
|
31
|
Mottershead D, van der Linden I, von Bonsdorff CH, Keinänen K, Oker-Blom C. Baculoviral display of the green fluorescent protein and rubella virus envelope proteins. Biochem Biophys Res Commun 1997; 238:717-22. [PMID: 9325155 DOI: 10.1006/bbrc.1997.7372] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ability to display heterologous proteins and peptides on the surface of different types of bacteriophage has proven extremely useful in protein structure/function studies. To display such proteins in a eucaryotic environment, we have produced a vector allowing for fusion of proteins to the amino-terminus of the Autographa californica nuclear polyhedrosis virus (AcNPV) major envelope glycoprotein, gp64. Such fusion proteins incorporate into the baculoviral virion and display the FLAG epitope tag. We have further produced recombinant baculoviruses displaying the green fluorescent protein (GFP) and the rubella virus envelope proteins, E1 and E2. The incorporation of the GFPgp64, E1gp64, and E2gp64 fusion proteins into the baculovirus particle was demonstrated by western blot analysis of purified budded virus. This is the first report of the display of the GFP protein or the individual rubella virus spike proteins on the surface of an enveloped virus. Such a eucaryotic viral display system may be useful for the display of proteins dependent on glycosylation for activity and for targeting of recombinant baculoviruses to novel host cell types as a gene transfer vehicle.
Collapse
|
32
|
Abstract
According to the present model for assembly of alphaviruses, e.g. Semliki Forest virus (SFV), the viral genome is first encapsidated into a nucleocapsid (NC) in cytoplasm and this is then used for budding at plasma membrane (PM). The preformed NC is thought to act as a template on which the viral envelope can be organized. In the present work we have characterized two SFV deletion mutants which did not assemble NCs in the cytoplasm but which instead appeared to form NCs at the PM simultaneously with virus budding. The deletions were introduced in a conserved 14 residue long linker peptide that joins the amino-terminal RNA-binding domain with the carboxy-terminal serine-protease domain of the capsid protein. Despite the deletions and the change in morphogenesis, wild-type (wt)-like particles were produced with almost wt efficiency. It is suggested that the NC assembly defect of the mutants is rescued through spike-capsid interactions at PM. The results show that the preassembly of NCs in the cytoplasm is not a prerequisite for alphavirus budding. The apparent similarities of the morphogenesis pathways of wt and mutant SFV with those of type D and type C retroviruses are discussed.
Collapse
Affiliation(s)
- K Forsell
- Department of Bioscience at Novum, Huddinge, Sweden
| | | | | |
Collapse
|
33
|
Andersson AM, Melin L, Persson R, Raschperger E, Wikström L, Pettersson RF. Processing and membrane topology of the spike proteins G1 and G2 of Uukuniemi virus. J Virol 1997; 71:218-25. [PMID: 8985341 PMCID: PMC191042 DOI: 10.1128/jvi.71.1.218-225.1997] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The membrane glycoproteins G1 and G2 of the members of the Bunyaviridae family are synthesized as a precursor from a single open reading frame. Here, we have analyzed the processing and membrane insertion of G1 and G2 of a member of the Phlebovirus genus, Uukuniemi virus. By expressing C-terminally truncated forms of the p10 precursor containing the whole of G1 and decreasing portions of G2, we found that processing in BHK21 cells occurred with an efficiency of about 50% if G1 was followed by 50 residues of G2, while complete processing occurred if 98, 150, or 200 residues of G2 were present. Surprisingly, processing of all truncated G2 forms was less efficient in HeLa cells. Proteinase K treatment of microsomes isolated from infected cells indicated that the C terminus of G1 is exposed on the cytoplasmic face. Using G1 tail peptide antisera, the tail was likewise found by immunofluorescence to be exposed on the cytoplasmic face in streptolysin O-permeabilized cells. By introducing stop codons at various positions of the G1 tail and at the natural cleavage site between G1 and G2 and expressing these mutants in BHK cells, we found that no further processing of the G1 C terminus occurred following cleavage of G2 by the signal peptidase. This was also supported by the finding that an antiserum raised against a peptide corresponding to the region immediately upstream from the G2 signal sequence reacted in immunoblotting with G1 from virions. Finally, we show that both G1 and G2 are palmitylated. Taken together, these results show that processing of p10 of Uukuniemi virus occurs cotranslationally at only one site, i.e., downstream of the internal G2 signal sequence. G1 and G2 are inserted as type I proteins into the lipid bilayer, leaving the G1 tail exposed on the cytoplasmic face of the membrane. Since the G2 tail is only 5 residues long, the G1 tail is likely to be responsible for the interaction with the nucleoproteins during the budding process, in addition to harboring a Golgi localization signal.
Collapse
Affiliation(s)
- A M Andersson
- Ludwig Institute for Cancer Research, Stockholm Branch, Sweden
| | | | | | | | | | | |
Collapse
|
34
|
Liu Z, Yang D, Qiu Z, Lim KT, Chong P, Gillam S. Identification of domains in rubella virus genomic RNA and capsid protein necessary for specific interaction. J Virol 1996; 70:2184-90. [PMID: 8642641 PMCID: PMC190057 DOI: 10.1128/jvi.70.4.2184-2190.1996] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In rubella virus-infected cells, genomic 40S and subgenomic 24S RNAs are present in the cytoplasm of infected cells. However, encapsidation by rubella virus capsid protein is specific for 40S genomic RNA. As a first step toward understanding the assembly of rubella virus nucleocapsid at the molecular level, the interaction between capsid protein and genomic RNA was studied by Northwestern (RNA-protein) blot analysis. RNA probes prepared by in vitro transcription were used to localize the RNA sequence that participates in binding to the capsid protein. We have identified a 29-nucleotide RNA sequence (nucleotides 347 to 375) that is essential for the binding. By using overlapping synthetic peptides of capsid protein, a peptide domain (residues 28 to 56) that displays specific RNA-binding activity of capsid protein has been located. This result suggests that the specific recognition of viral RNA during rubella virus assembly involves, at least in part, the nucleocapsid protein.
Collapse
Affiliation(s)
- Z Liu
- Department of Pathology and Laboratory Medicine, University of British Columbia Research Centre, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Gros C, Wengler G. Large scale purification of rubella virus and the isolation of native viral core protein. Arch Virol 1995; 140:757-64. [PMID: 7794116 DOI: 10.1007/bf01309963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A number of structural analyses of viruses are dependent on the availability of purified virus and of pure viral components in milligram amounts. In order to allow such analyses of the Rubella togavirus we have identified a virus-cell-system which produces large amounts of Rubella virus in tissue culture and we have developed a rapid and efficient procedure of Rubella virus purification which involves adsorption and elution of virus to fixed erythrocytes. Furthermore, we describe a procedure which allows the extraction of native core protein from viral cores and its chromatographic purification.
Collapse
Affiliation(s)
- C Gros
- Institut für Virologie, Justus-Liebig-Universität Giessen, Federal Republic of Germany
| | | |
Collapse
|
36
|
Forsell K, Suomalainen M, Garoff H. Structure-function relation of the NH2-terminal domain of the Semliki Forest virus capsid protein. J Virol 1995; 69:1556-63. [PMID: 7853489 PMCID: PMC188749 DOI: 10.1128/jvi.69.3.1556-1563.1995] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The capsid (C) protein of alphaviruses consists of two protein domains: a serine protease at the COOH terminus and an NH2-terminal domain which is thought to interact with RNA in the virus nucleocapsid (NC). The latter domain is very rich in positively charged amino acid residues. In this work, we have introduced large deletions into the corresponding region of a full-length cDNA clone of Semliki Forest virus, expressed the transcribed RNA in BHK-21 cells, and monitored the autoprotease activity of C, the formation of intracellular NCs, and the release of infectious virus. Our results show that if the gene region encoding the whole NH2-terminal domain is removed, the expressed C protein fragment cannot assemble into NCs and virus particles but it is still able to function as an autoprotease. Thus, these results underline the general importance of the NH2-terminal domain in the virus assembly process and furthermore show that the serine protease domain can function independently of the NH2 terminus. Surprisingly, analysis of additional C protein deletion variants showed that not all of the NH2-terminal domain is required for virus assembly, but large deletions involving up to one-third of its positively charged residues are still compatible with NC and virus formation. The fact that so much flexibility is allowed in the structure of the NH2-terminal domain of C suggests that most of this region is involved in nonspecific interactions with the encapsidated RNA, probably through its positively charged amino acid residues.
Collapse
Affiliation(s)
- K Forsell
- Center for Biotechnology, Karolinska Institute, Huddinge, Sweden
| | | | | |
Collapse
|
37
|
Oker-Blom C, Blomster M, Osterblad M, Schmidt M, Akerman K, Lindqvist C. Synthesis and processing of the rubella virus p110 polyprotein precursor in baculovirus-infected Spodoptera frugiperda cells. Virus Res 1995; 35:71-9. [PMID: 7754676 DOI: 10.1016/0168-1702(94)00079-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to study the processing of rubella virus (RV) structural proteins (capsid protein, of 33 kDa; E2 of 42-47 kDa; and E1 of 58 kDa) in Spodoptera frugiperda (fall armyworm) cells, a 24S cDNA encoding the polyprotein precursor, p110, was inserted under the transcriptional regulation of the polyhedrin gene promoter of the Autographa californica nuclear polyhedrosis virus (AcNPV) and expressed during viral infection. By immunoblot analysis using antibodies directed against whole RV and the individual structural proteins, evidence is presented that polypeptides similar to those synthesized in RV-infected B-Vero cells are expressed in this lepidopteran insect cell line infected with the recombinant baculovirus, VL1392-RV24S. The identity of the recombinant proteins was further confirmed using human convalescent sera. By expressing the recombinant proteins in the presence and absence of tunicamycin, we have further demonstrated that the 24S transcription-translation unit of RV, is expressed and proteolytically cleaved similarly, if not identically, in Sf9 cells as compared to B-Vero cells.
Collapse
Affiliation(s)
- C Oker-Blom
- Abo Akademi University, Department of Biochemistry and Pharmacy, Turku, Finland
| | | | | | | | | | | |
Collapse
|
38
|
Sjöberg EM, Suomalainen M, Garoff H. A significantly improved Semliki Forest virus expression system based on translation enhancer segments from the viral capsid gene. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1994; 12:1127-31. [PMID: 7765556 DOI: 10.1038/nbt1194-1127] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We recently described a system for heterologous gene expression in a variety of mammalian cell types that is based on an efficiently replicating Semliki Forest virus (SFV) variant in which an RNA encoding a foreign protein replaces the RNA that normally encodes the viruses' structural polyprotein. Although expression levels are sufficiently high for many purposes, in general they are only 10% of the level of the polyprotein in a wild type SFV infection. Here we show that the first 102 bases of the viral capsid gene function as a translational enhancer, and that SFV vectors incorporating this RNA increase heterologous protein synthesis to the level of wild type polyprotein.
Collapse
Affiliation(s)
- E M Sjöberg
- Center for Biotechnology, Novum, Huddinge, Sweden
| | | | | |
Collapse
|
39
|
Lindqvist C, Schmidt M, Heinola J, Jaatinen R, Osterblad M, Salmi A, Keränen S, Akerman K, Oker-Blom C. Immunoaffinity purification of baculovirus-expressed rubella virus E1 for diagnostic purposes. J Clin Microbiol 1994; 32:2192-6. [PMID: 7814545 PMCID: PMC263965 DOI: 10.1128/jcm.32.9.2192-2196.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Three monoclonal antibodies, termed 4E10, 1E11:10, and 2D9:1, were generated against rubella virus. Immunoblot analysis with purified authentic rubella virus or recombinant baculovirus-expressed rubella virus structural proteins E1, E2, and C demonstrated that they were directed against the E1 envelope glycoprotein of the rubella virus particle. By using the yeast Ty virus-like particle system, it was possible to map the binding site of 1E11:10 within amino acids 236 to 286 of the E1 protein and the binding sites of 2D9:1 and 4E10 outside this region. Immunoaffinity purification with these monoclonal antibodies made it evident that they are useful for obtaining large quantities of pure baculovirus-expressed rubella virus envelope protein E1. The diagnostic potential of this immunoaffinity-purified recombinant rubella virus E1 protein compared with that of authentic rubella virus is demonstrated.
Collapse
Affiliation(s)
- C Lindqvist
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Suomalainen M, Garoff H. Incorporation of homologous and heterologous proteins into the envelope of Moloney murine leukemia virus. J Virol 1994; 68:4879-89. [PMID: 8035486 PMCID: PMC236428 DOI: 10.1128/jvi.68.8.4879-4889.1994] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The efficiencies with which homologous and heterologous proteins are incorporated into the envelope of Moloney murine leukemia virus (M-MuLV) have been analyzed by utilizing a heterologous, Semliki Forest virus-driven M-MuLV assembly system and quantitative pulse-chase assays. Homologous M-MuLV spike protein was found to be efficiently incorporated into extracellular virus particles when expressed at a relatively low density at the plasma membrane. In contrast, efficient incorporation of heterologous proteins (the spike complex of Semliki Forest virus and a cytoplasmically truncated mutant of the human transferrin receptor) was observed only when these proteins were expressed at high densities at the cell surface. These results imply that homologous and heterologous proteins are incorporated into the M-MuLV envelope via two distinct pathways.
Collapse
Affiliation(s)
- M Suomalainen
- Department of Molecular Biology, Karolinska Institute, Novum, Huddinge, Sweden
| | | |
Collapse
|
41
|
Cusi MG, Bianchi S, Cioè L, Valensin PE. Expression of recombinant E2 and C proteins of rubella virus in insect cells. Arch Virol 1994; 137:35-41. [PMID: 7979996 DOI: 10.1007/bf01311171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have constructed a recombinant baculovirus expressing the rubella virus E2 (42-45 KDa) and C (34 KDa) proteins. Sf9 cells infected with recombinant virus were able to synthesize and process the two proteins coded by a unique precursor gene. By immunoblot and immunoprecipitation analysis with polyclonal and monoclonal antibodies, a precursor polyprotein (66 KDa) and two other proteins migrating with an apparent molecular weight of 42 KDa and 36 KDa were recognized as E2 glycoprotein and C protein, respectively. The recombinant E2 protein appeared to be glycosylated since it was susceptible to tunicamycin. The results indicate that the RV polyprotein coding for E2 and C is expressed and proteolytically cleaved in insect cells. This baculovirus expression system provides a useful alternative approach for the production of rubella virus antigens and should allow the purification of large quantities of the RV proteins for further biochemical and immunological studies.
Collapse
Affiliation(s)
- M G Cusi
- Department of Molecular Biology, University of Siena, Italy
| | | | | | | |
Collapse
|
42
|
Abstract
This chapter summarizes the present medical significance of rubella virus. Rubella virus infection is systemic in nature and the accompanying symptoms are generally benign, the most pronounced being a mild rash of short duration. The most common complication of rubella virus infection is transient joint involvement such as polyarthralgia and arthritis. The primary health impact of rubella virus is that it is a teratogenic agent. The vaccination strategy is aimed at elimination of rubella and includes both universal vaccination of infants at 15 months of age with the trivalent measles, mumps, rubella (MMR) vaccine and specific targeting with the rubella vaccine of seronegative women planning pregnancy and seronegative adults who could come in contact with women of childbearing age, although it is recommended that any individual over the age of 12 months without evidence of natural infection or vaccination be vaccinated. Medically, the current challenge posed by rubella virus is to achieve complete vaccination coverage to prevent resurgences.
Collapse
Affiliation(s)
- T K Frey
- Department of Biology, Georgia State University, Atlanta 30303
| |
Collapse
|
43
|
Abstract
Certain enveloped viruses are known to assemble on membranes of the Golgi complex. Intracellular budding is facilitated by targeting of the viral glycoproteins to this organelle. It is likely that these viral glycoproteins are retained in the Golgi by the same means as are endogenous Golgi proteins. Consequently, the study of Golgi-specific viral proteins has provided important clues to the nature of Golgi retention signals.
Collapse
Affiliation(s)
- T C Hobman
- Division of Cellular and Molecular Medicine, University of California, San Diego, La Jolla 92093-0651
| |
Collapse
|
44
|
Suomalainen M, Liljeström P, Garoff H. Spike protein-nucleocapsid interactions drive the budding of alphaviruses. J Virol 1992; 66:4737-47. [PMID: 1629953 PMCID: PMC241300 DOI: 10.1128/jvi.66.8.4737-4747.1992] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Semliki Forest virus (SFV) particles are released from infected cells by budding of nucleocapsids through plasma membrane regions that are modified by virus spike proteins. The budding process was studied with recombinant SFV genomes which lacked the nucleocapsid protein gene or, alternatively, the spike genes. No subviral particles were released from cells which expressed only the nucleocapsid protein or the spike proteins. Virus release was found to be strictly dependent on the coexpression of the nucleocapsid and the spike proteins. These results provide direct proof for the hypothesis that the alphavirus budding is driven by nucleocapsid-spike interactions. The importance of the viral 42S RNA for virus assembly and budding was investigated by using the heterologous vaccinia virus-T7 expression system for the synthesis of the SFV structural proteins. The results demonstrate that the viral genome is not absolutely required for formation of budding competent nucleocapsids, since small amounts of viruslike particles were assembled in the absence of 42S RNA.
Collapse
Affiliation(s)
- M Suomalainen
- Department of Molecular Biology, Karolinska Institute, Huddinge, Sweden
| | | | | |
Collapse
|
45
|
Abstract
Vaux et al. (D. J. T. Vaux, A. Helenius, and I. Mellman, Nature (London) 336:36-42, 1988) recently reported the production of network antibodies that were suggested to have reconstructed a specific interaction between the nucleocapsid of Semliki Forest virus and the cytoplasmic tail of the viral E2 spike protein. The F13 anti-idiotype antibody, which was raised against anti-E2 tail antibodies, was claimed to recognize the virus nucleocapsid. In this report, we have used recombinant SFV viruses to demonstrate that the F13 antibody is not nucleocapsid specific but instead most likely recognizes some component of the viral replication machinery.
Collapse
Affiliation(s)
- M Suomalainen
- Department of Molecular Biology, Karolinska Institute, Huddinge, Sweden
| | | |
Collapse
|
46
|
Abstract
Rubella virus contains, in addition to its RNA genome, a nucleocapsid protein (C) and two membrane proteins (E2 and E1). We have studied the association of these proteins during viral assembly and when expressed from cDNA constructs. The C protein was found to dimerize very shortly after synthesis; this dimer became disulfide-linked in the virion. Formation of the dimer was independent of the presence of other RV proteins. The membrane glycoproteins formed an E2E1 heterodimer, a minor fraction of which was also found to be disulfide-linked in the virion. This heterodimer also formed when the two proteins were coexpressed from cloned cDNA. Formation of the heterodimer preceded the transport of E2 to the Golgi, as judged by modification of the protein by Golgi-located enzymes. In the absence of E2, the E1 protein was slowly converted to high molecular weight aggregates.
Collapse
Affiliation(s)
- M D Baron
- Department of Molecular Biology, Karolinska Institute Centre for Biotechnology, Huddinge, Sweden
| | | |
Collapse
|
47
|
Wolinsky JS, McCarthy M, Allen-Cannady O, Moore WT, Jin R, Cao SN, Lovett A, Simmons D. Monoclonal antibody-defined epitope map of expressed rubella virus protein domains. J Virol 1991; 65:3986-94. [PMID: 1712855 PMCID: PMC248828 DOI: 10.1128/jvi.65.8.3986-3994.1991] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An expanded library of murine monoclonal antibodies (MAbs) was generated by infecting BALB/C mice with the Therien strain of rubella virus (RV) and selecting secreting hybrids by enzyme-linked immunosorbent assay (ELISA) using purified virion targets. A panel of plasmids containing specified RV cDNA fragments was also constructed by using a variety of strategies with pGE374- and pGE374-derived expression vectors. Hybrid RecA-RV-beta-galactosidase (LacZ)- or RecA-RV-truncated LacZ-containing proteins collectively representing the entire open reading frame of the structural proteins of RV were overexpressed in Escherichia coli. Bacterial lysates were then probed by ELISA with selected MAbs and by immunoblot following separation by electrophoresis under denaturing conditions. With this approach, MAbs that appeared to react with linear determinants defined epitopes localized within the following domains: MAbs C-1, C-2, and C-8 bind epitopes within the predicted amino-terminal 21 amino acids of the capsid region C9 to C29; MAb C-9 binds to a domain bounded by C64 and C97; MAbs E2-1 through E2-6 bind to the E2 glycoprotein backbone region from E2(1) to E2(115); MAbs E1-18 and E1-20 bind to the E1 glycoprotein region from E1(202) to E1(283). MAb E1-18 neutralizes RV infectivity; MAb E1-20 neutralizes infectivity and modestly inhibits hemagglutination. Analyses with selected synthetic peptides have confirmed several of the molecular domains deduced with the expressed proteins. These plasmid constructions and peptides have proven useful in beginning to unravel the molecular organization of several antigenic sites of this human pathogen.
Collapse
Affiliation(s)
- J S Wolinsky
- Department of Neurology, University of Texas Health Science Center, Houston 77225
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Sanchez A, Frey TK. Vaccinia-vectored expression of the rubella virus structural proteins and characterization of the E1 and E2 glycosidic linkages. Virology 1991; 183:636-46. [PMID: 1853566 DOI: 10.1016/0042-6822(91)90993-l] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The maturation of rubella virus (RV) glycoprotein E2 from the single intracellular species (E2i; MW = 40 kDa) to the heterodisperse virion species (E2v; MW = 42 to 47 kDa), was studied by pulse-chase radiolabeling in Vero cells infected with RV or with recombinant vaccinia viruses (VVs) which express the entire RV structural protein open reading frame (VV-CE2E1) or glycoprotein E2 independently (VV-E2). The RV proteins expressed by the recombinant VVs comigrated with authentic RV intracellular proteins. In pulse-chase experiments, performed in both RV- and VV-CE2E1-infected cells, the amount of pulse-labeled E2i was substantially reduced during a 3- to 4-hr chase; during the same chase the amount of pulse-labeled E1 and C did not change. The concomitant appearance of the E2v forms was not observed. In contrast, in VV-E2-infected cells, no reduction in the amount of E2i occurred after as long as a 10-hr chase. Western blots using anti-E2 monoclonal antibodies showed that E2i was the predominant E2 species in cells infected with RV, VV-CE2E1, and VV-E2. However, minor amounts of three discrete species which comigrated within the extent of the E2v smear were also detected in cells infected with all three viruses, indicating that some degree of intracellular processing to E2v did occur. The disappearance of E2i during pulse-chase radiolabeling without the concomitant appearance of detectable E2v and the predominance of this labile form under steady-state conditions as revealed by Western blot analysis suggested that E2i was selectively turned over in both RV- and VV-CE2E1-infected cells. Such turnover was not apparent in VV-E2-infected cells, indicating that association with C and E1 was necessary for turnover to occur. Endoglycosidase digestion experiments and glycan differentiation assays revealed that E2v contained O-linked glycans. The presence of O-glycans on E2v accounted for part of the difference in size between E2v and E2i. Both virion E1 and E2 were found to contain high-mannose, hybrid-type, and complex-type N-glycans. Heterogeneity existed in the extent of processing of these glycans among individual E1 and E2 molecules.
Collapse
Affiliation(s)
- A Sanchez
- Department of Biology, Georgia State University, Atlanta 30302-4010
| | | |
Collapse
|
49
|
McDonald H, Hobman TC, Gillam S. The influence of capsid protein cleavage on the processing of E2 and E1 glycoproteins of rubella virus. Virology 1991; 183:52-60. [PMID: 2053296 DOI: 10.1016/0042-6822(91)90117-t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The structural polyprotein of rubella virus is cotranslationally processed by host cell signal peptidase. Oligonucleotide-directed mutagenesis was used to alter the cleavage site between capsid and E2 proteins and to examine the importance of this cleavage for the transport and processing of E2 and E1 glycoproteins. The in vitro and in vivo expression of the cleavage site mutant revealed that the E2 polypeptide can cross the endoplasmic reticulum membrane without the cleavage of its signal peptide, while the transport of E2 beyond the endoplasmic reticulum requires the cleavage of E2 from capsid. We have shown that capsid protein does not appear to undergo further proteolytic processing after it is cleaved from E2 by signal peptidase. Some of the requirements for the cleavage by signal peptidase between capsid and E2 were examined by the in vitro analysis of wild-type and mutant cDNAs.
Collapse
Affiliation(s)
- H McDonald
- Department of Pathology, University of British Columbia Research Centre, Vancouver, Canada
| | | | | |
Collapse
|