1
|
Le Sage V, Banfield BW. Dysregulation of autophagy in murine fibroblasts resistant to HSV-1 infection. PLoS One 2012; 7:e42636. [PMID: 22900036 PMCID: PMC3416809 DOI: 10.1371/journal.pone.0042636] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/10/2012] [Indexed: 12/15/2022] Open
Abstract
The mouse L cell mutant, gro29, was selected for its ability to survive infection by herpes simplex virus type 1 (HSV-1). gro29 cells are fully susceptible to HSV-1 infection, however, they produce 2000-fold less infectious virus than parental L cells despite their capacity to synthesize late viral gene products and assemble virions. Because productive HSV-1 infection is presumed to result in the death of the host cell, we questioned how gro29 cells might survive infection. Using time-lapse video microscopy, we demonstrated that a fraction of infected gro29 cells survived infection and divided. Electron microscopy of infected gro29 cells, revealed large membranous vesicles that contained virions as well as cytoplasmic constituents. These structures were reminiscent of autophagosomes. Autophagy is an ancient cellular process that, under nutrient deprivation conditions, results in the degradation and catabolism of cytoplasmic components and organelles. We hypothesized that enhanced autophagy, and resultant degradation of virions, might explain the ability of gro29 to survive HSV-1 infection. Here we demonstrate that gro29 cells have enhanced basal autophagy as compared to parental L cells. Moreover, treatment of gro29 cells with 3-methyladenine, an inhibitor of autophagy, failed to prevent the formation of autophagosome-like organelles in gro29 cells indicating that autophagy was dysregulated in these cells. Additionally, we observed robust co-localization of the virion structural component, VP26, with the autophagosomal marker, GFP-LC3, in infected gro29 cells that was not seen in infected parental L cells. Collectively, these data support a model whereby gro29 cells prevent the release of infectious virus by directing intracellular virions to an autophagosome-like compartment. Importantly, induction of autophagy in parental L cells did not prevent HSV-1 production, indicating that the relationship between autophagy, virus replication, and survival of HSV-1 infection by gro29 cells is complex.
Collapse
Affiliation(s)
- Valerie Le Sage
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Bruce W. Banfield
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
2
|
Govero J, Hall S, Heineman TC. Intracellular localization of varicella-zoster virus ORF39 protein and its functional relationship to glycoprotein K. Virology 2006; 358:291-302. [PMID: 17027059 DOI: 10.1016/j.virol.2006.08.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 05/17/2006] [Accepted: 08/15/2006] [Indexed: 11/30/2022]
Abstract
Varicella-zoster virus (VZV) encodes two multiply inserted membrane proteins, open reading frame (ORF) 39 protein (ORF39p) and glycoprotein K (gK). The HSV-1 homologs of these proteins are believed to act in conjunction with each other during viral egress and cell-cell fusion, and they directly influence each other's intracellular trafficking. However, ORF39p and VZV gK have received very limited study largely due to difficulties in producing antibodies to these highly hydrophobic proteins. To overcome this obstacle, we introduced epitope tags into both ORF39p and gK and examined their intracellular distributions in transfected and infected cells. Our data demonstrate that both ORF39p and gK accumulate predominately in the ER of cultured cells when expressed in the absence of other VZV proteins or when coexpressed in isolation from other VZV proteins. Therefore, the transport of VZV ORF39p and gK does not exhibit the functional interdependence seen in their HSV-1 homologs. However, during infection, the primary distributions of ORF39p and gK shift from the ER to the Golgi, and they are also found in the plasma membrane indicating that their intracellular trafficking during infection depends on other VZV-encoded proteins. During infection, ORF39p and gK tightly colocalize with VZV envelope glycoproteins B, E and H; however, the coexpression of ORF39p or gK with other individual viral glycoproteins is insufficient to alter the transport of either ORF39p or gK.
Collapse
Affiliation(s)
- Jennifer Govero
- Division of Infectious Diseases and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63110-0250, USA
| | | | | |
Collapse
|
3
|
Lyman MG, Randall JA, Calton CM, Banfield BW. Localization of ERK/MAP kinase is regulated by the alphaherpesvirus tegument protein Us2. J Virol 2006; 80:7159-68. [PMID: 16809321 PMCID: PMC1489020 DOI: 10.1128/jvi.00592-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many different viruses activate the extracellular signal-regulated kinase (ERK)/mitogen-activated protein (MAP) kinase signaling pathway during infection and require ERK activation for the efficient execution of their replication programs. Despite these findings, no virus-encoded proteins have been identified that directly modulate ERK activities. In an effort to determine the function of a conserved alphaherpesvirus structural protein called Us2, we screened a yeast two-hybrid library derived from NIH 3T3 cells and identified ERK as a Us2-interacting protein. Our studies indicate that Us2 binds to ERK in virus-infected cells, mediates the incorporation of ERK into the virion, and inhibits the activation of ERK nuclear substrates. The association of Us2 with ERK leads to the sequestration of ERK at the plasma membrane and to a perinuclear vesicular compartment, thereby keeping ERK out of the nucleus. Us2 can bind to activated ERK, and the data suggest that Us2 does not inhibit ERK enzymatic activity. The treatment of cells with U0126, a specific inhibitor of ERK activation, resulted in a substantial delay in the release of virus from infected cells that was more pronounced with a virus deleted for Us2 than with parental and repaired strains, suggesting that both ERK and Us2 activities are required for efficient virus replication. This study highlights an additional complexity to the activation of ERK by viruses, namely, that localization of active ERK can be altered by virus-encoded proteins.
Collapse
Affiliation(s)
- Mathew G Lyman
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center, Mail Stop 8333, P.O. Box 6511, Aurora, 80045, USA
| | | | | | | |
Collapse
|
4
|
Jensen HL. Herpes simplex virus type 1 morphogenesis and virus-cell interactions: significance of cytoskeleton and methodological aspects. APMIS 2006:7-55. [PMID: 16930175 DOI: 10.1111/j.1600-0463.2006.apm_v114_s119.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Frampton AR, Goins WF, Nakano K, Burton EA, Glorioso JC. HSV trafficking and development of gene therapy vectors with applications in the nervous system. Gene Ther 2005; 12:891-901. [PMID: 15908995 DOI: 10.1038/sj.gt.3302545] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic double-stranded DNA virus that causes cold sores, keratitis, and rarely encephalitis in humans. Nonpathogenic HSV-1 gene transfer vectors have been generated by elimination of viral functions necessary for replication. The life cycle of the native virus includes replication in epithelial cells at the site of initial inoculation followed by retrograde axonal transport to the nuclei of sensory neurons innervating the area of cutaneous primary infection. In this review, we summarize the current understanding of the molecular basis for HSV cell entry, nuclear transport of the genome, virion egress following replication, and retrograde and anterograde axonal transport in neurons. We discuss how each of these properties has been exploited or modified to allow the generation of gene transfer vectors with particular utility for neurological applications. Recent advances in engineering virus entry have provided proof of principle that vector targeting is possible. Furthermore, significant and potentially therapeutic modifications to the pathological responses to various noxious insults have been demonstrated in models of peripheral nerve disease. These applications exploit the natural axonal transport mechanism of HSV, allowing transgene expression in the cell nucleus within the inaccessible trigeminal ganglion or dorsal root ganglion, following the noninvasive procedure of subcutaneous vector inoculation. These findings demonstrate the importance of understanding basic virology in the design of vector systems and the powerful approach of exploiting favorable properties of the parent virus in the generation of gene transfer vectors.
Collapse
Affiliation(s)
- A R Frampton
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
6
|
Jensen HL, Norrild B. The morphogenesis of herpes simplex virus type 1 in infected parental mouse L fibroblasts and mutant gro29 cells. APMIS 2003; 111:1037-52. [PMID: 14629270 DOI: 10.1111/j.1600-0463.2003.apm1111106.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutants of cell lines and viruses are important biological tools. The pathway of herpesvirus particle maturation and egress are contentious issues. The mutant gro29 line of mouse L cells is defective for egress of herpes simplex virus type 1 (HSV-1) virions, and a candidate for studies of virus-cell interactions. The properties of uninfected and HSV-1-infected L fibroblasts and gro29 cells investigated by protein assay, immunoblot, titration assay, immunofluorescence light microscopy and immunogold cryosection electron microscopy are reported. The ultrastructure of both HSV-1-infected L and gro29 cells confirmed primary envelopment of virions at the nuclear membranes followed by maturing multiple de-envelopments and re-envelopments in the endoplasmic reticulum and in the Golgi complex. The gro29 cells presented changed cytoskeleton, abolished egress of virions, and were defective in the trafficking of glycoproteins, giving rise to accumulation of viral particles and glycoproteins in the endoplasmic reticulum and the Golgi complex. The results suggest that gro29 cells harbour a causal underlying defect of the cytoskeleton in addition to the HSV-1-induced cytoskeletal changes.
Collapse
Affiliation(s)
- Helle Lone Jensen
- Institute of Molecular Pathology, University of Copenhagen, Denmark.
| | | |
Collapse
|
7
|
Heineman TC, Hall SL. Role of the varicella-zoster virus gB cytoplasmic domain in gB transport and viral egress. J Virol 2002; 76:591-9. [PMID: 11752150 PMCID: PMC136849 DOI: 10.1128/jvi.76.2.591-599.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the function of the varicella-zoster virus (VZV) gB cytoplasmic domain during viral infection, we produced a VZV recombinant virus that expresses a truncated form of gB lacking the C-terminal 36 amino acids of its cytoplasmic domain (VZV gB-36). VZV gB-36 replicates in noncomplementing cells and grows at a rate similar to that of native VZV. However, cells infected with VZVgB-36 form extensive syncytia compared to the relatively small syncytia formed during native VZV infection. In addition, electron microscopy shows that very little virus is present on the surfaces of cells infected with VZV gB-36, while cells infected with native VZV exhibit abundant virions on the cell surface. The C-terminal 36 amino acids of the gB cytoplasmic domain have been shown in transfection-based experiments to contain both an endoplasmic reticulum-to-Golgi transport signal (the C-terminal 17 amino acids) and a consensus YXXphi (where Y is tyrosine, X is any amino acid, and phi is any bulky hydrophobic amino acid) signal sequence (YSRV) that mediates the internalization of gB from the plasma membrane. As predicted based on these data, gB-36 expressed during the infection of cultured cells is transported inefficiently to the Golgi. Despite lacking the YSRV signal sequence, gB-36 is internalized from the plasma membrane; however, in contrast to native gB, it fails to localize to the Golgi. Therefore, the C-terminal 36 amino acids of the VZV gB cytoplasmic domain are required for normal viral egress and for both the pre- and post-Golgi transport of gB.
Collapse
Affiliation(s)
- Thomas C Heineman
- Division of Infectious Diseases and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63110-0250, USA.
| | | |
Collapse
|
8
|
Harley CA, Dasgupta A, Wilson DW. Characterization of herpes simplex virus-containing organelles by subcellular fractionation: role for organelle acidification in assembly of infectious particles. J Virol 2001; 75:1236-51. [PMID: 11152497 PMCID: PMC114030 DOI: 10.1128/jvi.75.3.1236-1251.2001] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cytoplasmic compartments occupied by exocytosing herpes simplex virus (HSV) are poorly defined. It is unclear which organelles contain the majority of trafficking virions and which are occupied by virions on a productive rather than defective assembly pathway. These problems are compounded by the fact that HSV-infected cells produce virus continuously over many hours. All stages in viral assembly and export therefore coexist, making it impossible to determine the sequence of events and their kinetics. To address these problems, we have established assays to monitor the presence of capsids and enveloped virions in cell extracts and prepared HSV-containing organelles from normally infected cells and from cells undergoing a single synchronized wave of viral egress. We find that, in both cases, HSV particles exit the nucleus and accumulate in organelles which cofractionate with the trans-Golgi network (TGN) and endosomes. In addition to carrying enveloped infectious virions in their lumen, HSV-bearing organelles also displayed nonenveloped capsids attached to their cytoplasmic surface. Neutralization of organellar pH by chloroquine or bafilomycin A resulted in the accumulation of noninfectious enveloped particles. We conclude that the organelles of the TGN/endocytic network play a key role in the assembly and trafficking of infectious HSV.
Collapse
Affiliation(s)
- C A Harley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
9
|
Heineman TC, Krudwig N, Hall SL. Cytoplasmic domain signal sequences that mediate transport of varicella-zoster virus gB from the endoplasmic reticulum to the Golgi. J Virol 2000; 74:9421-30. [PMID: 11000211 PMCID: PMC112371 DOI: 10.1128/jvi.74.20.9421-9430.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Normal herpesvirus assembly and egress depend on the correct intracellular localization of viral glycoproteins. While several post-Golgi transport motifs have been characterized within the cytoplasmic domains of various viral glycoproteins, few specific endoplasmic reticulum (ER)-to-Golgi transport signals have been described. We report the identification of two regions within the 125-amino-acid cytoplasmic domain of Varicella-Zoster virus gB that are required for its ER-to-Golgi transport. Native gB or gB containing deletions and specific point mutations in its cytoplasmic domain was expressed in mammalian cells. ER-to-Golgi transport of gB was assessed by indirect immunofluorescence and by the acquisition of Golgi-dependent posttranslational modifications. These studies revealed that the ER-to-Golgi transport of gB requires a nine-amino-acid region (YMTLVSAAE) within its cytoplasmic domain. Mutations of individual amino acids within this region markedly impaired the transport of gB from the ER to the Golgi, indicating that this domain functions by a sequence-dependent mechanism. Deletion of the C-terminal 17 amino acids of the gB cytoplasmic domain was also shown to impair the transport of gB from the ER to the Golgi. However, internal mutations within this region did not disrupt the transport of gB, indicating that its function during gB transport is not sequence dependent. Native gB is also transported to the nuclear membrane of transfected cells. gB lacking as many as 67 amino acids from the C terminus of its cytoplasmic domain continued to be transported to the nuclear membrane at apparently normal levels, indicating that the cytoplasmic domain of gB is not required for nuclear membrane localization.
Collapse
Affiliation(s)
- T C Heineman
- Division of Infectious Diseases and Immunology, St. Louis University School of Medicine, St. Louis, Missouri 63110-0250, USA.
| | | | | |
Collapse
|
10
|
Anderson DB, Laquerre S, Ghosh K, Ghosh HP, Goins WF, Cohen JB, Glorioso JC. Pseudotyping of glycoprotein D-deficient herpes simplex virus type 1 with vesicular stomatitis virus glycoprotein G enables mutant virus attachment and entry. J Virol 2000; 74:2481-7. [PMID: 10666285 PMCID: PMC111736 DOI: 10.1128/jvi.74.5.2481-2487.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/1999] [Accepted: 11/24/1999] [Indexed: 11/20/2022] Open
Abstract
The use of herpes simplex virus (HSV) vectors for in vivo gene therapy will require the targeting of vector infection to specific cell types in certain in vivo applications. Because HSV glycoprotein D (gD) imparts a broad host range for viral infection through recognition of ubiquitous host cell receptors, vector targeting will require the manipulation of gD to provide new cell recognition specificities in a manner designed to preserve gD's essential role in virus entry. In this study, we have determined whether an entry-incompetent HSV mutant with deletions of all Us glycoproteins, including gD, can be complemented by a foreign attachment/entry protein with a different receptor-binding specificity, the vesicular stomatitis virus glycoprotein G (VSV-G). The results showed that transiently expressed VSV-G was incorporated into gD-deficient HSV envelopes and that the resulting pseudotyped virus formed plaques on gD-expressing VD60 cells, albeit at a 50-fold-reduced level compared to that of wild-type gD. This reduction may be related to differences in the entry pathways used by VSV and HSV or to the observed lower rate of incorporation of VSV-G into virus envelopes than that of gD. The rate of VSV-G incorporation was greatly improved by using recombinant molecules in which the transmembrane domain of HSV glycoprotein B or D was substituted for that of VSV-G, but these recombinant molecules failed to promote virus entry. These results show that foreign glycoproteins can be incorporated into the HSV envelope during replication and that gD can be dispensed with on the condition that a suitable attachment/entry function is provided.
Collapse
Affiliation(s)
- D B Anderson
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Genome and pre-genome replication in all animal DNA viruses except poxviruses occurs in the cell nucleus (Table 1). In order to reproduce, an infecting virion enters the cell and traverses through the cytoplasm toward the nucleus. Using the cell's own nuclear import machinery, the viral genome then enters the nucleus through the nuclear pore complex. Targeting of the infecting virion or viral genome to the multiplication site is therefore an essential process in productive viral infection as well as in latent infection and transformation. Yet little is known about how infecting genomes of animal DNA viruses reach the nucleus in order to reproduce. Moreover, this nuclear locus for viral multiplication is remarkable in that the sizes and composition of the infectious particles vary enormously. In this article, we discuss virion structure, life cycle to reproduce infectious particles, viral protein's nuclear import signal, and viral genome nuclear targeting.
Collapse
Affiliation(s)
- H Kasamatsu
- Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California at Los Angeles 90095, USA
| | | |
Collapse
|
12
|
Enquist LW, Husak PJ, Banfield BW, Smith GA. Infection and spread of alphaherpesviruses in the nervous system. Adv Virus Res 1999; 51:237-347. [PMID: 9891589 DOI: 10.1016/s0065-3527(08)60787-3] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- L W Enquist
- Department of Molecular Biology, Princeton University, NJ 08544, USA.
| | | | | | | |
Collapse
|
13
|
Tran MT, Dean DA, Lausch RN, Oakes JE. Membranes of herpes simplex virus type-1-infected human corneal epithelial cells are not permeabilized to macromolecules and therefore do not release IL-1alpha. Virology 1998; 244:74-8. [PMID: 9581780 DOI: 10.1006/viro.1998.9084] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nanogram amounts of the proinflammatory cytokine interleukin-1alpha (IL-1alpha) were detected in uninfected cultures of human corneal epithelial cells (HCEC). Although HSV-1 replicated >10(4)-fold in these cells and caused extensive cytopathic effects, virus infection was not accompanied by significant extracellular release of IL-1alpha. Additional studies showed that release of radiolabeled cytosolic proteins from virus-infected HCEC was no greater than that released by mock-infected cells. These findings indicate that HSV-1 infection of HCEC does not result in IL-1alpha release because newly formed virus progeny can escape infected cells without disrupting cell membranes.
Collapse
Affiliation(s)
- M T Tran
- Department of Microbiology/Immunology, College of Medicine, University of South Alabama, Mobile 36688, USA
| | | | | | | |
Collapse
|
14
|
Jayachandra S, Baghian A, Kousoulas KG. Herpes simplex virus type 1 glycoprotein K is not essential for infectious virus production in actively replicating cells but is required for efficient envelopment and translocation of infectious virions from the cytoplasm to the extracellular space. J Virol 1997; 71:5012-24. [PMID: 9188566 PMCID: PMC191734 DOI: 10.1128/jvi.71.7.5012-5024.1997] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We characterized the glycoprotein K (gK)-null herpes simplex virus type 1 [HSV-1] (KOS) delta gK and compared it to the gK-null virus HSV-1 F-gKbeta (L. Hutchinson et al., J. Virol. 69:5401-5413, 1995). delta gK and F-gKbeta mutant viruses produced small plaques on Vero cell monolayers at 48 h postinfection. F-gKbeta caused extensive fusion of 143TK cells that was sensitive to melittin, a specific inhibitor of gK-induced cell fusion, while delta gK virus did not fuse 143TK cells. A recombinant plasmid containing the truncated gK gene specified by F-gKbeta failed to rescue the ICP27-null virus KOS (d27-1), while a plasmid with the delta gK deletion rescued the d27-1 virus efficiently. delta gK virus yield was approximately 100,000-fold lower in stationary cells than in actively replicating Vero cells. The plaquing efficiencies of delta gK and F-gKbeta virus stocks on VK302 cells were similar, while the plaquing efficiency of F-gKbeta virus stocks on Vero cells was reduced nearly 10,000-fold in comparison to that of delta gK virus. Mutant delta gK and F-gKbeta infectious virions accumulated within Vero and HEp-2 cells but failed to translocate to extracellular spaces. delta gK capsids accumulated in the nuclei of Vero but not HEp-2 cells. Enveloped delta gK virions were visualized in the cytoplasms of both Vero and HEp-2 cells, and viral capsids were found in the cytoplasm of HEp-2 cells within vesicles. Glycoproteins B, C, D, and H were expressed on the surface of delta gK-infected Vero cells in amounts similar to those for KOS-infected Vero cells. These results indicate that gK is involved in nucleocapsid envelopment, and more importantly in the translocation of infectious virions from the cytoplasm to the extracellular spaces, and that actively replicating cells can partially compensate for the envelopment but not for the cellular egress deficiency of the delta gK virus. Comparison of delta gK and F-gKbeta viruses suggests that the inefficient viral replication and plaquing efficiency of F-gKbeta virus in Vero cells and its syncytial phenotype in 143TK- cells are most likely due to expression of a truncated gK.
Collapse
Affiliation(s)
- S Jayachandra
- Department of Veterinary Microbiology and Parasitology, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803, USA
| | | | | |
Collapse
|
15
|
Aoki K, Oh-hira M, Hoshino M, Kawakita M. Isolation and characterization of a novel mutant mouse cell line resistant to Newcastle disease virus: constitutive interferon production and enhanced interferon sensitivity. Arch Virol 1994; 139:337-50. [PMID: 7832640 DOI: 10.1007/bf01310796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In our attempt to isolate mutant cell lines resistant to Newcastle disease virus (NDV) we developed an improved procedure for enrichment of NDV-resistant cells from mouse FM3A cells and isolated a novel NDV-resistant mutant cell line, Had-2, with characteristics different from Had-1, a previously reported NDV-receptor-deficient mutant strain. Had-2 cells adsorbed NDV normally but the accumulation of viral mRNAs and proteins was inhibited. Had-2 cells had to be grown at higher cell densities in order to be NDV-resistant, and it was revealed that they did not exhibit NDV-resistance when grown at lower cell densities. A conditioned medium prepared from a culture of Had-2 cells grown at high cell density was able to make a low-density culture NDV-resistant. The activity of the conditioned medium to induce NDV-resistance was completely neutralized by addition of both anti interferon (IFN)-alpha and anti IFN-beta antibodies, indicating that Had-2 cells were constitutively releasing IFNs, though their levels were rather low. Had-2 cells were also characterized by an increased sensitivity to IFNs as compared with the parental FM3A cells, since the conditioned medium containing IFNs did not render FM3A cells resistant to NDV.
Collapse
Affiliation(s)
- K Aoki
- Department of Physiological Chemistry, Tokyo Metropolitan Institute of Medical Science, Japan
| | | | | | | |
Collapse
|
16
|
Gruenheid S, Gatzke L, Meadows H, Tufaro F. Herpes simplex virus infection and propagation in a mouse L cell mutant lacking heparan sulfate proteoglycans. J Virol 1993; 67:93-100. [PMID: 8380101 PMCID: PMC237341 DOI: 10.1128/jvi.67.1.93-100.1993] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have isolated a variant line of mouse L cells, termed gro2C, which is partially resistant to infection by herpes simplex virus type 1 (HSV-1). Characterization of the genetic defect in gro2C cells revealed that this cell line harbors a specific defect in the heparan sulfate synthesis pathway. Specifically, anion-exchange high-performance liquid chromatography of metabolically radiolabeled glycosaminoglycans indicated that chondroitin sulfate moieties were synthesized normally in the mutant cells, whereas heparin-like chains were absent. Because of these properties, we have used these cells to investigate the role of heparan sulfate proteoglycans in the HSV-1 life cycle. In this report, we demonstrate that the partial block to HSV-1 infection in gro2C cells occurs in the virus entry pathway. Virus adsorption assays using radiolabeled HSV-1 (KOS) revealed that the gro2C cell surface is a relatively poor target for HSV-1 in that virus attachment was 85% lower in the mutant cells than in the parental L cell controls. A portion of the 15% residual virus adsorption was functional, however, insofar as gro2C cells were susceptible to HSV-1 infection in plaque assays and in single-step growth experiments. Moreover, although the number of HSV-1 plaques that formed in gro2C monolayers was reduced by 85%, the plaque morphology was normal, and the virus released from the mutant cells was infectious. Taken together, these results provide strong genetic evidence that heparan sulfate proteoglycans enhance the efficiency of HSV attachment to the cell surface but are otherwise not essential at any stage of the lytic cycle in culture. Moreover, in the absence of heparan sulfate, other cell surface molecules appear to confer susceptibility to HSV, leading to a productive viral infection.
Collapse
Affiliation(s)
- S Gruenheid
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
17
|
Whealy ME, Robbins AK, Tufaro F, Enquist LW. A cellular function is required for pseudorabies virus envelope glycoprotein processing and virus egress. J Virol 1992; 66:3803-10. [PMID: 1316483 PMCID: PMC241166 DOI: 10.1128/jvi.66.6.3803-3810.1992] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The mouse L-cell mutant gro29 is defective for egress of herpes simplex virus type 1 (HSV-1) virions and is significantly reduced in HSV-1 glycoprotein export (B. W. Banfield and F. Tufaro, J. Virol. 64:5716-5729, 1990). In this report, we demonstrate that pseudorabies virus (PRV), a distantly related alphaherpesvirus, shows a distinctive set of defects after infection of gro29 cells. Specifically, we identify defects in the rate and extent of viral glycoprotein export, infectious particle formation, plaque formation, and virus egress. The initial rate of viral glycoprotein synthesis was unaffected in gro29 cells, but the extent of export from the endoplasmic reticulum to the Golgi apparatus was impaired and export through the Golgi apparatus became essentially blocked late in infection. Moreover, by using a secreted variant of a viral membrane protein, we found that export from the Golgi apparatus out of the cell was also defective in gro29 cells. PRV does not form plaques on gro29 monolayers. A low level of infectious virus is formed and released early after infection, but further virus egress is blocked. Taken together, these observations suggest that the gro29 phenotype involves either multiple proteins or a single protein used at multiple steps in viral glycoprotein export and virus egress from cells. Moreover, this host cell protein is required by both HSV and PRV for efficient propagation in infected cells.
Collapse
Affiliation(s)
- M E Whealy
- Du Pont Merck Pharmaceutical Company, Viral Diseases Research, Wilmington, Delaware 19880-0328
| | | | | | | |
Collapse
|
18
|
Cheung P, Banfield BW, Tufaro F. Brefeldin A arrests the maturation and egress of herpes simplex virus particles during infection. J Virol 1991; 65:1893-904. [PMID: 1848309 PMCID: PMC240005 DOI: 10.1128/jvi.65.4.1893-1904.1991] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Herpes simplex virus (HSV) requires the host cell secretory apparatus for transport and processing of membrane glycoproteins during the course of virus assembly. Brefeldin A (BFA) has been reported to induce retrograde movement of molecules from the Golgi to the endoplasmic reticulum and to cause disassembly of the Golgi complex. We examined the effects of BFA on propagation of HSV type 1. Release of virions into the extracellular medium was blocked by as little as 0.3 microgram of BFA per ml when present from 2 h postinfection. Characterization of infected cells revealed that BFA inhibited infectious viral particle formation without affecting nucleocapsid formation. Electron microscopic analyses of BFA-treated and untreated cells (as in control cells) demonstrated that viral particles were enveloped at the inner nuclear membrane in BFA-treated cells and accumulated aberrantly in this region. Most of the progeny virus particles observed in the cytoplasm of control cells, but not that of BFA-treated cells, were enveloped and contained within membrane vesicles, whereas many unenveloped nucleocapsids were detected in the cytoplasm of BFA-treated cells. This suggests that BFA prevents the transport of enveloped particles from the perinuclear space to the cytoplasmic vesicles. These findings indicate that BFA-induced retrograde movement of molecules from the Golgi complex to the endoplasmic reticulum early in infection arrests the ability of host cells to support maturation and egress of enveloped viral particles. Furthermore, we demonstrate that the effects of BFA on HSV propagation are not fully reversible, indicating that maturation and egress of HSV type 1 particles relies on a series of events which cannot be easily reconstituted after the block to secretion is relieved.
Collapse
Affiliation(s)
- P Cheung
- Department of Microbiology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|