1
|
Zhang XY, Shu T, Wang X, Xu J, Qiu Y, Zhou X. Guaico Culex virus NSP2 has RNA helicase and chaperoning activities. J Gen Virol 2021; 102. [PMID: 33891535 DOI: 10.1099/jgv.0.001589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA-remodelling proteins, including RNA helicases and chaperones, function to remodel structured RNAs and/or RNA-protein interactions and play indispensable roles in viral life cycles. Guaico Culex virus (GCXV) is the first uncovered animal-infected multicomponent virus with segmented positive-sense genomic RNAs. GCXV belongs to the Jingmenvirus group, a diverse clade of segmented viruses that are related to the prototypically unsegmented Flavivirus. However, little is known about the exact functions of the GCXV-encoded proteins. Here, we show that the putative non-structural protein (NSP) 2 on segment 2 of GCXV functions as an RNA helicase that unwinds RNA helix bidirectionally in an adenosine triphosphate (ATP)-dependent manner, and an RNA chaperone that remodels structured RNAs and facilitates RNA strand annealing independently of ATP. Together, our findings are the first demonstration of RNA-remodelling activity encoded by Jingmenvirus and highlight the functional significance of NSP2 in the GCXV life cycle.
Collapse
Affiliation(s)
- Xue-Yi Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Ting Shu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China
| | - Xiaotong Wang
- The University of Chinese Academy of Sciences, Beijing 100049, PR China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China
| | - Jiuyue Xu
- The University of Chinese Academy of Sciences, Beijing 100049, PR China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China
| | - Yang Qiu
- The University of Chinese Academy of Sciences, Beijing 100049, PR China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, PR China.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China.,The University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
2
|
Yerukhimovich MM, Marohnic CC, Frick DN. Role of the Conserved DECH-Box Cysteine in Coupling Hepatitis C Virus Helicase-Catalyzed ATP Hydrolysis to RNA Unwinding. Biochemistry 2018; 57:6247-6255. [PMID: 30281972 DOI: 10.1021/acs.biochem.8b00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DECH-box proteins are a subset of DExH/D-box superfamily 2 helicases possessing a conserved Asp-Glu-Cys-His motif in their ATP binding site. The conserved His helps position the Asp and Glu residues, which coordinate the divalent metal cation that connects the protein to ATP and activate the water molecule needed for ATP hydrolysis, but the role of the Cys is still unclear. This study uses site-directed mutants of the model DECH-box helicase encoded by the hepatitis C virus (HCV) to examine the role of the Cys in helicase action. Proteins lacking a Cys unwound DNA less efficiently than wild-type proteins did. For example, at low protein concentrations, a helicase harboring a Gly instead of the DECH-box Cys unwound DNA more slowly than the wild-type helicase did, but at higher protein concentrations, the two proteins unwound DNA at similar rates. All HCV proteins analyzed had similar affinities for ATP and nucleic acids and hydrolyzed ATP in the presence of RNA at similar rates. However, in the absence of RNA, all proteins lacking a DECH-box cysteine hydrolyzed ATP 10-15 times faster with higher Km values, and lower apparent affinities for metal ions, compared to those observed with wild-type proteins. These differences were observed with proteins isolated from HCV genotypes 2a and 1b, suggesting that this role is conserved. These data suggest the helicase needs Cys292 to bind ATP in a state where ATP is not hydrolyzed until RNA binds.
Collapse
Affiliation(s)
- Mark M Yerukhimovich
- Department of Chemistry & Biochemistry , University of Wisconsin-Milwaukee , Milwaukee , Wisconsin 53211 , United States
| | - Christopher C Marohnic
- Abbott Laboratories , 100 Abbott Park Road , Abbott Park , Illinois 60064 , United States
| | - David N Frick
- Department of Chemistry & Biochemistry , University of Wisconsin-Milwaukee , Milwaukee , Wisconsin 53211 , United States
| |
Collapse
|
3
|
Analysis of genome comparison of two Indian isolates of Cowpea aphid-borne mosaic virus from India. Virus Genes 2015; 51:306-9. [PMID: 26184969 DOI: 10.1007/s11262-015-1227-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
The complete sequence of two Cowpea aphid-borne mosaic virus (CABMV) isolates (RR3 and RR4) from India was determined. Phylogenetic analysis showed that both isolates showed different closeness with other isolates of CABMV. CABMV-RR3 showed maximum identity of 99 % with CABMV-BR1 from Brazil at nucleotide and protein levels, whereas CABMV-RR4 showed identity of 73 and 95 % with CABMV-Z isolate from Zimbabwe at nucleotide and protein levels respectively. Similarity identity matrix revealed 69 % identity at nucleotide level and 91 % at protein level with each other. Recombination breakpoint detection showed that CABMV-MG-Avr from Brazil and CABMV-Z from Zimbabwe act as major parents in our isolates RR3 and RR4, respectively.
Collapse
|
4
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
5
|
Ivanov KI, Eskelin K, Lõhmus A, Mäkinen K. Molecular and cellular mechanisms underlying potyvirus infection. J Gen Virol 2014; 95:1415-1429. [DOI: 10.1099/vir.0.064220-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Potyviruses represent one of the most economically important and widely distributed groups of plant viruses. Despite considerable progress towards understanding the cellular and molecular basis of their pathogenicity, many questions remain about the mechanisms by which potyviruses suppress host defences and create an optimal intracellular environment for viral translation, replication, assembly and spread. The review focuses on the multifunctional roles of potyviral proteins and their interplay with various host factors in different compartments of the infected cell. We place special emphasis on the recently discovered and currently putative mechanisms by which potyviruses subvert the normal functions of different cellular organelles in order to establish an efficient and productive infection.
Collapse
Affiliation(s)
- K. I. Ivanov
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| | - K. Eskelin
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| | - A. Lõhmus
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| | - K. Mäkinen
- Department of Food and Environmental Sciences, PO Box 56, 00014 University of Helsinki, Finland
| |
Collapse
|
6
|
García JA, Glasa M, Cambra M, Candresse T. Plum pox virus and sharka: a model potyvirus and a major disease. MOLECULAR PLANT PATHOLOGY 2014; 15:226-41. [PMID: 24102673 PMCID: PMC6638681 DOI: 10.1111/mpp.12083] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
TAXONOMIC RELATIONSHIPS Plum pox virus (PPV) is a member of the genus Potyvirus in the family Potyviridae. PPV diversity is structured into at least eight monophyletic strains. GEOGRAPHICAL DISTRIBUTION First discovered in Bulgaria, PPV is nowadays present in most of continental Europe (with an endemic status in many central and southern European countries) and has progressively spread to many countries on other continents. GENOMIC STRUCTURE Typical of potyviruses, the PPV genome is a positive-sense single-stranded RNA (ssRNA), with a protein linked to its 5' end and a 3'-terminal poly A tail. It is encapsidated by a single type of capsid protein (CP) in flexuous rod particles and is translated into a large polyprotein which is proteolytically processed in at least 10 final products: P1, HCPro, P3, 6K1, CI, 6K2, VPg, NIapro, NIb and CP. In addition, P3N-PIPO is predicted to be produced by a translational frameshift. PATHOGENICITY FEATURES PPV causes sharka, the most damaging viral disease of stone fruit trees. It also infects wild and ornamental Prunus trees and has a large experimental host range in herbaceous species. PPV spreads over long distances by uncontrolled movement of plant material, and many species of aphid transmit the virus locally in a nonpersistent manner. SOURCES OF RESISTANCE A few natural sources of resistance to PPV have been found so far in Prunus species, which are being used in classical breeding programmes. Different genetic engineering approaches are being used to generate resistance to PPV, and a transgenic plum, 'HoneySweet', transformed with the viral CP gene, has demonstrated high resistance to PPV in field tests in several countries and has obtained regulatory approval in the USA.
Collapse
Affiliation(s)
- Juan Antonio García
- Departmento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
7
|
The nonstructural protein 2C of a Picorna-like virus displays nucleic acid helix destabilizing activity that can be functionally separated from its ATPase activity. J Virol 2013; 87:5205-18. [PMID: 23449794 DOI: 10.1128/jvi.00245-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Picorna-like viruses in the Picornavirales order are a large group of positive-strand RNA viruses that include numerous important pathogens for plants, insects, and humans. In these viruses, nonstructural protein 2C is one of the most conserved proteins and contains ATPase activity and putative RNA helicase activity. Here we expressed 2C protein of Ectropis obliqua picorna-like virus (EoV; genus Iflavirus, family Iflaviridae, order Picornavirales) in a eukaryotic expression system and determined that EoV 2C displays ATP-independent nucleic acid helix destabilizing and strand annealing acceleration activity in a concentration-dependent manner, indicating that this picornaviral 2C is more like an RNA chaperone than like the previously predicted RNA helicase. Our further characterization of EoV 2C revealed that divalent metal ions, such as Mg(2+) and Zn(2+), inhibit 2C-mediated helix destabilization to different extents. Moreover, we determined that EoV 2C also contains ATPase activity like that of other picornaviral 2C proteins and further assessed the functional relevance between its RNA chaperone-like and ATPase activities using mutational analysis as well as their responses to Mg(2+). Our data show that, when one of the two 2C activities was dramatically inhibited or almost abolished, the other activity could remain intact, showing that the RNA chaperone-like and ATPase activities of EoV 2C can be functionally separated. This report reveals that a picorna-like virus 2C protein displays RNA helix destabilizing and strand annealing acceleration activity, which may be critical for picornaviral replication and pathogenesis, and should foster our understanding of picorna-like viruses and viral RNA chaperones.
Collapse
|
8
|
Mathur C, Savithri HS. Novel ATPase activity of the polyprotein intermediate, Viral Protein genome-linked-Nuclear Inclusion-a protease, of Pepper vein banding potyvirus. Biochem Biophys Res Commun 2012; 427:113-8. [DOI: 10.1016/j.bbrc.2012.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
|
9
|
Comparative analysis of the genomes of two isolates of cowpea aphid-borne mosaic virus (CABMV) obtained from different hosts. Arch Virol 2011; 156:1085-91. [PMID: 21409445 DOI: 10.1007/s00705-011-0962-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
Abstract
The complete genomic sequences of two cowpea aphid-borne mosaic virus (CABMV) isolates from Brazil, MG-Avr from passion fruit (which also infects cowpea), and BR1 from peanut (which also infects cowpea, but not passion fruit), were determined. Their nucleotide sequences are 89% identical and display 85% identity to that of CABMV-Z. Both isolates have the typical potyvirus genome features. P3 and VPg are the most conserved proteins, with 99% amino acid sequence identity between the two isolates, and P1 is the most variable, with 50% identity. A significant variation exists at the 5'-end of the genome between the Brazilian isolates and CABMV-Z. However, this variation does not correlate with the biological properties of these three isolates.
Collapse
|
10
|
Jankowsky E, Fairman-Williams ME. An Introduction to RNA Helicases: Superfamilies, Families, and Major Themes. RNA HELICASES 2010. [DOI: 10.1039/9781849732215-00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Eckhard Jankowsky
- Department of Biochemistry & Center for RNA Molecular Biology School of Medicine Case Western Reserve University 10900 Euclid Ave Cleveland OH 44106 USA
| | - Margaret E. Fairman-Williams
- Department of Biochemistry & Center for RNA Molecular Biology School of Medicine Case Western Reserve University 10900 Euclid Ave Cleveland OH 44106 USA
- current address: Department of Biochemistry Brandeis University Waltham MA 44106 USA
| |
Collapse
|
11
|
Huang TS, Wei T, Laliberté JF, Wang A. A host RNA helicase-like protein, AtRH8, interacts with the potyviral genome-linked protein, VPg, associates with the virus accumulation complex, and is essential for infection. PLANT PHYSIOLOGY 2010; 152:255-66. [PMID: 19880609 PMCID: PMC2799361 DOI: 10.1104/pp.109.147983] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 10/27/2009] [Indexed: 05/17/2023]
Abstract
The viral genome-linked protein, VPg, of potyviruses is a multifunctional protein involved in viral genome translation and replication. Previous studies have shown that both eukaryotic translation initiation factor 4E (eIF4E) and eIF4G or their respective isoforms from the eIF4F complex, which modulates the initiation of protein translation, selectively interact with VPg and are required for potyvirus infection. Here, we report the identification of two DEAD-box RNA helicase-like proteins, PpDDXL and AtRH8 from peach (Prunus persica) and Arabidopsis (Arabidopsis thaliana), respectively, both interacting with VPg. We show that AtRH8 is dispensable for plant growth and development but necessary for potyvirus infection. In potyvirus-infected Nicotiana benthamiana leaf tissues, AtRH8 colocalizes with the chloroplast-bound virus accumulation vesicles, suggesting a possible role of AtRH8 in viral genome translation and replication. Deletion analyses of AtRH8 have identified the VPg-binding region. Comparison of this region and the corresponding region of PpDDXL suggests that they are highly conserved and share the same secondary structure. Moreover, overexpression of the VPg-binding region from either AtRH8 or PpDDXL suppresses potyvirus accumulation in infected N. benthamiana leaf tissues. Taken together, these data demonstrate that AtRH8, interacting with VPg, is a host factor required for the potyvirus infection process and that both AtRH8 and PpDDXL may be manipulated for the development of genetic resistance against potyvirus infections.
Collapse
Affiliation(s)
| | | | | | - Aiming Wang
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada (T.-S.H., T.W., A.W.); Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada (T.-S.H., T.W., A.W.); and Institut National de la Recherche Scientifique, Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada (J.-F.L.)
| |
Collapse
|
12
|
Cotton S, Grangeon R, Thivierge K, Mathieu I, Ide C, Wei T, Wang A, Laliberté JF. Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments, and are each derived from a single viral genome. J Virol 2009; 83:10460-71. [PMID: 19656892 PMCID: PMC2753101 DOI: 10.1128/jvi.00819-09] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/01/2009] [Indexed: 12/20/2022] Open
Abstract
Nicotiana benthamiana plants were agroinoculated with an infectious cDNA clone of Turnip mosaic virus (TuMV) that was engineered to express a fluorescent protein (green fluorescent protein [GFP] or mCherry) fused to the viral 6K2 protein known to induce vesicle formation. Cytoplasmic fluorescent discrete protein structures were observed in infected cells, corresponding to the vesicles containing the viral RNA replication complex. The vesicles were motile and aligned with microfilaments. Intracellular movement of the vesicles was inhibited when cells were infiltrated with latrunculin B, an inhibitor of microfilament polymerization. It was also observed that viral accumulation in the presence of this drug was reduced. These data indicate that microfilaments are used for vesicle movement and are necessary for virus production. Biogenesis of the vesicles was further investigated by infecting cells with two recombinant TuMV strains: one expressed 6K2GFP and the other expressed 6K2mCherry. Green- and red-only vesicles were observed within the same cell, suggesting that each vesicle originated from a single viral genome. There were also vesicles that exhibited sectors of green, red, or yellow fluorescence, an indication that fusion among individual vesicles is possible. Protoplasts derived from TuMV-infected N. benthamiana leaves were isolated. Using immunofluorescence staining and confocal microscopy, viral RNA synthesis sites were visualized as punctate structures distributed throughout the cytoplasm. The viral proteins VPg-Pro, RNA-dependent RNA polymerase, and cytoplasmic inclusion protein (helicase) and host translation factors were found to be associated with these structures. A single-genome origin and presence of protein synthetic machinery components suggest that translation of viral RNA is taking place within the vesicle.
Collapse
Affiliation(s)
- Sophie Cotton
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gabrenaite-Verkhovskaya R, Andreev IA, Kalinina NO, Torrance L, Taliansky ME, Mäkinen K. Cylindrical inclusion protein of potato virus A is associated with a subpopulation of particles isolated from infected plants. J Gen Virol 2008; 89:829-838. [PMID: 18272775 DOI: 10.1099/vir.0.83406-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Potato virus A (PVA) particles were purified by centrifugation through a 30 % sucrose cushion and the pellet (P1) was resuspended and sedimented through a 5-40 % sucrose gradient. The gradient separation resulted in two different virus particle populations: a virus fraction (F) that formed a band in the gradient and one that formed a pellet (P2) at the bottom of the gradient. All three preparations contained infectious particles that retained their integrity when visualized by electron microscopy (EM). Western blotting of the P1 particles revealed that the viral RNA helicase, cylindrical inclusion protein (CI), co-purified with virus particles. This result was confirmed with co-immunoprecipitation experiments. CI was detected in P2 particle preparations, whereas F particles were devoid of detectable amounts of CI. ATPase activity was detected in all three preparations with the greatest amount in P2. Results from immunogold-labelling EM experiments suggested that a fraction of the CI present in the preparations was localized to one end of the virion. Atomic force microscopy (AFM) studies showed that P1 and P2 contained intact particles, some of which had a protruding tip structure at one end, whilst F virions were less stable and mostly appeared as beaded structures under the conditions of AFM. The RNA of the particles in F was translated five to ten times more efficiently than RNA from P2 particles when these preparations were subjected to translation in wheat-germ extracts. The results are discussed in the context of a model for CI-mediated functions.
Collapse
Affiliation(s)
| | - Igor A Andreev
- Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Natalia O Kalinina
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Lesley Torrance
- Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Michael E Taliansky
- Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Kristiina Mäkinen
- Department of Applied Chemistry and Microbiology, FIN-00014 University of Helsinki, Finland
| |
Collapse
|
14
|
Dé I, Fata-Hartley C, Sawicki SG, Sawicki DL. Functional analysis of nsP3 phosphoprotein mutants of Sindbis virus. J Virol 2004; 77:13106-16. [PMID: 14645567 PMCID: PMC296081 DOI: 10.1128/jvi.77.24.13106-13116.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphavirus nsP3 phosphoprotein is essential for virus replication and functions initially within polyprotein P123 or P23 components of the short-lived minus-strand replicase, and upon polyprotein cleavage, mature nsP3 likely functions also in plus-strand synthesis. We report the identification of a second nsP3 mutant from among the A complementation group of Sindbis virus (SIN) heat-resistant strain, ts RNA-negative mutants. The ts138 mutant possessed a change of G4303 to C, predicting an Ala68-to-Gly alteration that altered a conserved His-Ala-Val tripeptide in the ancient (pre-eukaryotic), "X" or histone 2A phosphoesterase-like macrodomain that in SIN encompasses nsP3 residues 1 to 161 and whose role is unknown. We undertook comparative analysis of three nsP3 N-terminal region mutants and observed (i) that nsP3 and nsP2 functioned initially as a single unit as deduced from complementation analysis and in agreement with our previous studies, (ii) that the degree of phosphorylation varied among the nsP3 mutants, and (iii) that reduced phosphorylation of nsP3 correlated with reduced minus-strand synthesis. The most striking phenotype was exhibited by ts4 (Ala268 to Val), which after shift to 40 degrees C made significantly underphosphorylated P23/nsP3 and lost selectively the ability to make minus strands. After shift to 40 degrees C, mutant ts7 (Phe312 to Ser) made phosphorylated P23/nsP3 and minus strands but failed to increase plus-strand synthesis. Macrodomain mutant ts138 was intermediate, making at 40 degrees C partially phosphorylated P23/nsP3 and reduced amounts of minus strands. The mutants were able to assemble their nsPs at 40 degrees C into complexes that were membrane associated. Our analyses argue that P23/P123 phosphorylation is affected by macrodomain and Ala268 region sequences and in turn affects the efficient transcription of the alphavirus genome.
Collapse
Affiliation(s)
- Indra Dé
- Department of Microbiology, Medical College of Ohio, Toledo, Ohio 43699, USA
| | | | | | | |
Collapse
|
15
|
Borowski P, Schalinski S, Schmitz H. Nucleotide triphosphatase/helicase of hepatitis C virus as a target for antiviral therapy. Antiviral Res 2002; 55:397-412. [PMID: 12206878 DOI: 10.1016/s0166-3542(02)00096-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The RNA nucleoside triphosphatase (NTPase)/helicases represent a large family of proteins that are detected in almost all biological systems where RNA plays a central role. The enzymes are capable of enzymatically unwinding duplex RNA structures by disrupting the hydrogen bonds that keep the two strands together. The strand separating activity is associated with hydrolysis of nucleoside triphosphate (NTP). Because of this, potential specific inhibitors of NTPase/helicases could act by one or more of the following mechanisms: (i) inhibition of NTPase activity by interference with NTP binding, (ii) inhibition of NTPase activity by an allosteric mechanism and (iii) inhibition of the coupling of NTP hydrolysis at the unwinding reaction. There are also other inhibitory mechanisms conceivable, which may involve a modulation of the interaction of the enzyme with its RNA substrate, for example, (iv) the competitive inhibition of RNA binding and (v) the inhibition of the unwinding by sterical blockade of the translocation of the NTPase/helicase along the polynucleotide chain. NTPase/helicase has also been identified in the viral genome of hepatitis C virus (HCV) which is a member of the Flaviviridae family. It is conceivable that the inhibition of the unwinding activity of the enzyme leads to the inhibition of virus replication and this may represent a novel antiviral strategy. This review updates the current spectrum of inhibitors targeting different mechanisms by which the NTPase and/or helicase activities of the HCV NTPase/helicase are inhibited. Consequently, some of the compounds might be important as antiviral agents against HCV.
Collapse
Affiliation(s)
- Peter Borowski
- Abteilung für Virologie, Bernhard-Nocht-Institut für Tropenmedizin, 20359 Hamburg, Germany.
| | | | | |
Collapse
|
16
|
Ibarra B, Valpuesta JM, Carrascosa JL. Purification and functional characterization of p16, the ATPase of the bacteriophage Phi29 packaging machinery. Nucleic Acids Res 2001; 29:4264-73. [PMID: 11691914 PMCID: PMC60195 DOI: 10.1093/nar/29.21.4264] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacteriophage Phi29 codes for a protein (p16) that is required for viral DNA packaging both in vivo and in vitro. Co-expression of p16 with the chaperonins GroEL and GroES has allowed its purification in a soluble form. Purified p16 shows a weak ATPase activity that is stimulated by either DNA or RNA, irrespective of the presence of any other viral component. The stimulation of ATPase activity of p16, although induced under packaging conditions, is not dependent of the actual DNA packaging and in this respect the Phi29 enzyme is similar to other viral terminases. Protein p16 competes with DNA and RNA in the interaction with the viral prohead, which occurs through the N-terminal region of the connector protein (p10). In fact, p16 interacts in a nucleotide-dependent fashion with the viral Phi29-encoded RNA (pRNA) involved in DNA packaging, and this binding can be competed with DNA. Our results are consistent with a model for DNA translocation in which p16, bound and organized around the connector, acts as a power stroke to pump the DNA into the prohead, using the hydrolysis of ATP as an energy source.
Collapse
Affiliation(s)
- B Ibarra
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CSIC), Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
17
|
Tai CL, Pan WC, Liaw SH, Yang UC, Hwang LH, Chen DS. Structure-based mutational analysis of the hepatitis C virus NS3 helicase. J Virol 2001; 75:8289-97. [PMID: 11483774 PMCID: PMC115073 DOI: 10.1128/jvi.75.17.8289-8297.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The carboxyl terminus of the hepatitis C virus (HCV) nonstructural protein 3 (NS3) possesses ATP-dependent RNA helicase activity. Based on the conserved sequence motifs and the crystal structures of the helicase domain, 17 mutants of the HCV NS3 helicase were generated. The ATP hydrolysis, RNA binding, and RNA unwinding activities of the mutant proteins were examined in vitro to determine the functional role of the mutated residues. The data revealed that Lys-210 in the Walker A motif and Asp-290, Glu-291, and His-293 in the Walker B motif were crucial to ATPase activity and that Thr-322 and Thr-324 in motif III and Arg-461 in motif VI significantly influenced ATPase activity. When the pairing between His-293 and Gln-460, referred to as gatekeepers, was replaced with the Asp-293/His-460 pair, which makes the NS3 helicase more like the DEAD helicase subgroup, ATPase activity was not restored. It thus indicated that the whole microenvironment surrounding the gatekeepers, rather than the residues per se, was important to the enzymatic activities. Arg-461 and Trp-501 are important residues for RNA binding, while Val-432 may only play a coadjutant role. The data demonstrated that RNA helicase activity was possibly abolished by the loss of ATPase activity or by reduced RNA binding activity. Nevertheless, a low threshold level of ATPase activity was found sufficient for helicase activity. Results in this study provide a valuable reference for efforts under way to develop anti-HCV therapeutic drugs targeting NS3.
Collapse
Affiliation(s)
- C L Tai
- Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- S Urcuqui-Inchima
- Institut Jacques Monod, 2 Place Jussieu-Tour 43, 75251 Cedex 05, Paris, France
| | | | | |
Collapse
|
19
|
Fedorkin ON, Solovyev AG, Yelina NE, Zamyatnin AA, Zinovkin RA, Mäkinen K, Schiemann J, Yu Morozov S. Cell-to-cell movement of potato virus X involves distinct functions of the coat protein. J Gen Virol 2001; 82:449-458. [PMID: 11161285 DOI: 10.1099/0022-1317-82-2-449] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complementation of movement-deficient potato virus X (PVX) coat protein (CP) mutants, namely PVX.CP-Xho lacking the 18 C-terminal amino acid residues and PVX.DeltaCP lacking the entire CP gene, was studied by transient co-expression with heterologous proteins. These data demonstrated that the potyvirus CPs and both the major and minor CPs of beet yellows closterovirus could complement cell-to-cell movement of PVX.CP-Xho but not PVX.DeltaCP. These data also indicated that the C-terminally truncated PVX CP lacked a movement function which could be provided in trans by the CPs of other filamentous viruses, whereas another movement determinant specified by some region outside the most C-terminal part of the PVX CP could not be complemented either by potyvirus or closterovirus CPs. Surprisingly, the CP of spherical cocksfoot mottle sobemovirus rescued all of the PVX CP movement functions, complementing the spread of PVX.CP-Xho and, to a lesser extent, PVX.DeltaCP. Both these mutants were also rescued by the tobacco mosaic virus (TMV) movement protein (MP). To shed light on the movement function of PVX CP, attempts were made to complement PVX.CP-Xho by a series of TMV MP mutants. An internal deletion abolished complementation, suggesting that the internal region of TMV MP, which includes a number of overlapping functional domains important for cell-to-cell transport, provides an activity complementing movement determinant(s) specified by the C-terminal region of PVX CP.
Collapse
Affiliation(s)
- O N Fedorkin
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia1
| | - A G Solovyev
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia1
| | - N E Yelina
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia1
| | - A A Zamyatnin
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia1
| | - R A Zinovkin
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia1
| | - K Mäkinen
- Institute of Biotechnology, Program for Plant Molecular Biology, Viikki Biocentre, University of Helsinki, PO Box 56 (Viikinkaari 9), FIN-00014, Helsinki, Finland2
| | - J Schiemann
- Institute for Plant Virology, Microbiology and Biosafety, Federal Biological Research Centre for Agriculture and Forestry, Messeweg 11/12, D-38104 Braunschweig, Germany3
| | - S Yu Morozov
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia1
| |
Collapse
|
20
|
Choi IR, Stenger DC, French R. Multiple interactions among proteins encoded by the mite-transmitted wheat streak mosaic tritimovirus. Virology 2000; 267:185-98. [PMID: 10662614 DOI: 10.1006/viro.1999.0117] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genome organization of the mite-transmitted wheat streak mosaic virus (WSMV) appears to parallel that of members of the Potyviridae with monopartite genomes, but there are substantial amino acid dissimilarities with other potyviral polyproteins. To initiate studies on the functions of WSMV-encoded proteins, a protein interaction map was generated using a yeast two-hybrid system. Because the pathway of proteolytic maturation of the WSMV polyprotein has not been experimentally determined, random libraries of WSMV cDNA were made both in DNA-binding domain and activation domain plasmid vectors and introduced into yeast. Sequence analysis of multiple interacting pairs revealed that interactions largely occurred between domains within two groups of proteins. The first involved interactions among nuclear inclusion protein a, nuclear inclusion protein b, and coat protein (CP), and the second involved helper component-proteinase (HC-Pro) and cylindrical inclusion protein (CI). Further immunoblot and deletion mapping analyses of the interactions suggest that subdomains of CI, HC-Pro, and P1 interact with one another. The two-hybrid assay was then performed using full-length genes of CI, HC-Pro, P1, P3, and CP, but no heterologous interactions were detected. In vitro binding assay using glutathione-S-transferase fusion proteins and in vitro translation products, however, revealed mutual interactions among CI, HC-Pro, P1, and P3. The failure to detect interactions between full-length proteins by the two-hybrid assay might be due to adverse effects of expression of viral proteins in yeast cells. The capacity to participate in multiple homomeric and heteromeric molecular interactions is consistent with the pleiotropic nature of many potyviral gene mutants and suggests mechanisms for regulation of various viral processes via a network of viral protein complexes.
Collapse
Affiliation(s)
- I R Choi
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68583, USA
| | | | | |
Collapse
|
21
|
Abstract
Hepatitis C Virus helicase activity has been mapped to the COOH-terminal 450 residues of the NS3 protein. Due to its complexity and presumed essentiality for viral replication, the helicase is an attractive target for drug discovery. The elucidation of the atomic structure of the HCV NS3 helicase in complex with oligonucleotide and with ADP has helped clarify our understanding of potential sites for inhibitor binding. Molecular details of the mechanism of this enzyme, and in particular, a better understanding of the mechanism by which ATP hydrolysis is coupled to unwinding of double-stranded substrate may facilitate more efficient structure-based drug design.
Collapse
Affiliation(s)
- A D Kwong
- Vertex Pharmaceuticals, Inc., Cambridge, MA 02139, USA
| | | | | |
Collapse
|
22
|
Peremyslov VV, Hagiwara Y, Dolja VV. HSP70 homolog functions in cell-to-cell movement of a plant virus. Proc Natl Acad Sci U S A 1999; 96:14771-6. [PMID: 10611288 PMCID: PMC24723 DOI: 10.1073/pnas.96.26.14771] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/1999] [Indexed: 11/18/2022] Open
Abstract
Plant closteroviruses encode a homolog of the HSP70 (heat shock protein, 70 kDa) family of cellular proteins. To facilitate studies of the function of HSP70 homolog (HSP70h) in viral infection, the beet yellows closterovirus (BYV) was modified to express green fluorescent protein. This tagged virus was competent in cell-to-cell movement, producing multicellular infection foci similar to those formed by the wild-type BYV. Inactivation of the HSP70h gene by replacement of the start codon or by deletion of 493 codons resulted in complete arrest of BYV translocation from cell to cell. Identical movement-deficient phenotypes were observed in BYV variants possessing HSP70h that lacked the computer-predicted ATPase domain or the C-terminal domain, or that harbored point mutations in the putative catalytic site of the ATPase. These results demonstrate that the virus-specific member of the HSP70 family of molecular chaperones functions in intercellular translocation and represents an additional type of a plant viral-movement protein.
Collapse
Affiliation(s)
- V V Peremyslov
- Department of Botany, Oregon State University, Corvallis, OR 97331, USA
| | | | | |
Collapse
|
23
|
Borowski P, Kuehl R, Mueller O, Hwang LH, Schulze Zur Wiesch J, Schmitz H. Biochemical properties of a minimal functional domain with ATP-binding activity of the NTPase/helicase of hepatitis C virus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:715-23. [PMID: 10583365 DOI: 10.1046/j.1432-1327.1999.00854.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RNA-stimulated nucleoside triphosphatase (NTPase) and helicase of hepatitis C virus (HCV) consists of three domains with highly conserved NTP binding motifs located in the first domain. The ATP-binding domain was obtained by limited proteolysis of a greater fragment of the HCV polyprotein, and it was purified to homogenity by column chromatography. The identity of the domain, comprising amino acids 1203 to 1364 of the HCV polyprotein, was confirmed by N- and C-terminal sequencing and by its capability to bind 5'-fluorosulfonylbenzoyladenosine (FSBA). The analyses of the kinetics of ATP binding revealed a single class of binding site with the Kd of 43.6 microM. The binding is saturable and dependent on Mn2+ or Mg2+ ions. Poly(A) and poly(dA) show interesting properties as regulators of the ATP-binding capacity of the domain. Polynucleotides bind to the domain and enhance its affinity for ATP. In addition, ATP enhances the affinity of the domain for the polynucleotides. Different compounds, which are known to interact with nucleotide binding sites of various classes of enzymes, were tested for their ability to inhibit the binding of ATP to the domain. Of the compounds tested, two agents behaved as inhibitors: paclitaxel, which inhibits the ATP binding competitively (IC50 = 22 microM), and trifluoperazine, which inhibits the ATP binding by a noncompetitive mechanism (IC50 = 98 microM). Kinetic experiments with the NTPase/helicase indicate that both compounds inhibit the NTPase activity of the holoenzyme by interacting with its ATP-binding domain.
Collapse
Affiliation(s)
- P Borowski
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Li H, Clum S, You S, Ebner KE, Padmanabhan R. The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. J Virol 1999; 73:3108-16. [PMID: 10074162 PMCID: PMC104072 DOI: 10.1128/jvi.73.4.3108-3116.1999] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/1998] [Accepted: 12/29/1998] [Indexed: 11/20/2022] Open
Abstract
NS3 protein of dengue virus type 2 has a serine protease domain within the N-terminal 180 residues. NS2B is required for NS3 to form an active protease involved in processing of the viral polyprotein precursor. The region carboxy terminal to the protease domain has conserved motifs present in several viral RNA-stimulated nucleoside triphosphatase (NTPase)/RNA helicases. To define the functional domains of protease and NTPase/RNA helicase activities of NS3, full-length and amino-terminal deletion mutants of NS3 were expressed in Escherichia coli and purified. Deletion of 160 N-terminal residues of NS3 (as in NS3del.2) had no detrimental effect on the basal and RNA-stimulated NTPase as well as RNA helicase activities. However, mutagenesis of the conserved P-loop motif of the RNA helicase domain (K199E) resulted in loss of ATPase activity. The RNA-stimulated NTPase activity was significantly affected by deletion of 20 amino acid residues from the N terminus or by substitutions of the cluster of basic residues, 184RKRK-->QNGN, of NS3del.2, although both mutant proteins retained the conserved RNA helicase motifs. Furthermore, the minimal NS3 protease domain, required for cleavage of the 2B-3 site, was precisely defined to be 167 residues, using the in vitro processing of NS2B-NS3 precursors. Our results reveal that the functional domains required for serine protease and RNA-stimulated NTPase activities map within the region between amino acid residues 160 and 180 of NS3 protein and that a novel motif, the cluster of basic residues 184RKRK, plays an important role for the RNA-stimulated NTPase activity.
Collapse
Affiliation(s)
- H Li
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | | | | | |
Collapse
|
25
|
Gomez de Cedrón M, Ehsani N, Mikkola ML, García JA, Kääriäinen L. RNA helicase activity of Semliki Forest virus replicase protein NSP2. FEBS Lett 1999; 448:19-22. [PMID: 10217401 DOI: 10.1016/s0014-5793(99)00321-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Semliki Forest virus replicase protein nsP2 shares sequence homology with several putative NTPases and RNA helicases. NsP2 has RNA-dependent NTPase activity. Here we expressed polyhistidine-tagged nsP2 in Escherichia coli, purified it by metal-affinity chromatography, and used it in RNA helicase assays. RNA helicase CI of plum pox potyvirus was used as a positive control. Unwinding of alpha-32P-labelled partially double-stranded RNA required nsP2, Mg2+ and NTPs. NsP2 with a mutation, K192N, in the NTP-binding sequence GVPGSGK192SA could not unwind dsRNA and had no NTPase activity. This is the first demonstration of RNA helicase activity within the large alphavirus superfamily.
Collapse
Affiliation(s)
- M Gomez de Cedrón
- Centro de Biologia Molecular (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | | | | | | |
Collapse
|
26
|
Teterina NL, Gorbalenya AE, Egger D, Bienz K, Ehrenfeld E. Poliovirus 2C protein determinants of membrane binding and rearrangements in mammalian cells. J Virol 1997; 71:8962-72. [PMID: 9371552 PMCID: PMC230196 DOI: 10.1128/jvi.71.12.8962-8972.1997] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Poliovirus protein 2C is a 329-amino acid-protein that is essential for viral RNA synthesis and may perform multiple functions. In infected cells, it is associated with virus-specific membrane vesicles. Recombinant 2C protein expressed in transfected cells has been shown to associate with and induce rearrangement of the intracellular membrane network. This study was designed to map the determinants of membrane binding and rearrangement in the 2C protein. Computer-assisted analysis of the protein sequence led to a prediction that the protein folds into a structure composed of three domains. Expression plasmids that encode each or combinations of these predicted domains were used to examine the abilities of the partial protein sequences to associate with intracellular membranes and to induce rearrangement of these membranes in HeLa cells. Biochemical fractionation procedures suggested that the N-terminal region of the protein was required for membrane association. Electron microscopic and immunoelectron microscopic observation showed that both the N- and C-terminal regions, but not the central portion, of 2C protein interact with intracellular membranes and induce major changes in their morphology. The central portion, when fused to the N-terminal region, altered the specific membrane architecture induced by the N-terminal region, giving rise to vesicles resembling those observed during poliovirus infection.
Collapse
Affiliation(s)
- N L Teterina
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA.
| | | | | | | | | |
Collapse
|
27
|
Rojas MR, Zerbini FM, Allison RF, Gilbertson RL, Lucas WJ. Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins. Virology 1997; 237:283-95. [PMID: 9356340 DOI: 10.1006/viro.1997.8777] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of bean common mosaic necrosis potyvirus (BCMNV) and lettuce mosaic potyvirus (LMV) proteins was investigated in terms of their capacity to function as viral movement proteins (MPs). Using Escherichia coli-expressed proteins and microinjection techniques, direct evidence was obtained that both the potyviral capsid protein (CP) and helper component- proteinase (HC-Pro) function in this capacity, in that both proteins (a) trafficked from cell to cell, (b) induced an increase in plasmodesmal size exclusion limit, and (c) facilitated cell-to-cell movement of viral RNA. CP and HC-Pro mutants were also produced and used in microinjection experiments. Mutations in the core region of the CP either impaired (single and double amino acid substitution mutants) or abolished (triple amino acid substitution mutant) cell-to-cell movement, as did C-terminal deletion mutants in HC-Pro. The BCMNV P1, CI, NIa, and NIb proteins did not exhibit viral MP properties, but NIa and NIb proteins were found to accumulate within the nuclei of injected cells. These results further establish the multifunctional nature of the potyvirus CP and HC-Pro.
Collapse
Affiliation(s)
- M R Rojas
- Division of Biological Sciences, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
28
|
Rodríguez-Cerezo E, Findlay K, Shaw JG, Lomonossoff GP, Qiu SG, Linstead P, Shanks M, Risco C. The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells. Virology 1997; 236:296-306. [PMID: 9325237 DOI: 10.1006/viro.1997.8736] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The subcellular locations of two potyviral proteins, the coat (CP) and nonstructural cylindrical inclusion (CI) proteins of tobacco vein mottling virus (TVMV), during early stages in the development of systemic infections in plants, have been investigated. Ultrathin sections of newly emerged leaves in infected plants were treated with antibodies specific to these proteins and then with gold-labeled secondary antibodies and examined by electron microscopy. CI was detected near plasmodesmatal connections between mesophyll cells prior to the appearance of CP or any virus-induced features or effects. Further accumulation of CI was evident in the form of conical structures, many of which appeared to penetrate the cell wall and to be connected to cones in neighboring cells. Prior to its appearance in other parts of the cells, the viral CP was detected, often in linear arrays, near the vertices or inside the cones and in plasmodesmata. In situ hybridization analysis of similar tissue sections with a TVMV RNA-specific oligoribonucleotide probe revealed the presence of the viral RNA in plasmodesmata. These results lend support to the notion that the formation of specific structures by potyviral CI proteins is required for and plays a direct role in the intercellular passage of viral genetic material, in the form of virus particles or complexes containing viral CP and RNA, in infected plants.
Collapse
|
29
|
Heusipp G, Harms U, Siddell SG, Ziebuhr J. Identification of an ATPase activity associated with a 71-kilodalton polypeptide encoded in gene 1 of the human coronavirus 229E. J Virol 1997; 71:5631-4. [PMID: 9188639 PMCID: PMC191807 DOI: 10.1128/jvi.71.7.5631-5634.1997] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human coronavirus 229E gene expression involves proteolytic processing of the gene 1-encoded polyproteins pp1a and pp1ab. In this study, we have detected a 71-kDa polypeptide in virus-infected cells that is released from pp1ab by the virus-encoded 3C-like proteinase and that has been predicted to contain both metal-binding and helicase domains. The polypeptide encompasses amino acids Ala-4996 to Gln-5592 of pp1ab and exhibits nucleic acid-stimulated ATPase activity when expressed as a fusion protein with the Escherichia coli maltose-binding protein. These data provide the first identification of a coronavirus open reading frame 1b-encoded enzymatic activity.
Collapse
Affiliation(s)
- G Heusipp
- Institute of Virology, University of Würzburg, Germany
| | | | | | | |
Collapse
|
30
|
Affiliation(s)
- G Kadaré
- Institut Jacques Monod, Paris, France
| | | |
Collapse
|
31
|
Donald RG, Lawrence DM, Jackson AO. The barley stripe mosaic virus 58-kilodalton beta(b) protein is a multifunctional RNA binding protein. J Virol 1997; 71:1538-46. [PMID: 8995680 PMCID: PMC191211 DOI: 10.1128/jvi.71.2.1538-1546.1997] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The barley stripe mosaic virus (BSMV) beta(b) gene product is the major viral nonstructural protein synthesized during early stages of the infection cycle and is required for systemic movement of the virus. To examine the biochemical properties of beta(b), a histidine tag was engineered at the amino terminus and the protein was purified from BSMV-infected barley tissue by metal affinity chromatography. The beta(b) protein bound ATPs in vitro, with a preference for ATP over dATP, and also exhibited ATPase activity. In addition, beta(b) bound RNA without detectable sequence specificity. However, binding was selective, as the beta(b) protein had a strong affinity for both single-stranded (ss) and double-stranded (ds) RNAs but not for tRNA or DNA substrates. Mutational analyses of beta(b) purified from Escherichia coli indicated that the protein has multiple RNA binding sites. These sites appear to contribute differently, because mutants that were altered in their binding affinities for ss and ds RNA substrates were recovered.
Collapse
Affiliation(s)
- R G Donald
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
32
|
Li XH, Valdez P, Olvera RE, Carrington JC. Functions of the tobacco etch virus RNA polymerase (NIb): subcellular transport and protein-protein interaction with VPg/proteinase (NIa). J Virol 1997; 71:1598-607. [PMID: 8995687 PMCID: PMC191218 DOI: 10.1128/jvi.71.2.1598-1607.1997] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The NIb protein of tobacco etch potyvirus (TEV) possesses several functions, including RNA-dependent RNA polymerase and nuclear translocation activities. Using a reporter protein fusion strategy, NIb was shown to contain two independent nuclear localization signals (NLS I and NLS II). NLS I was mapped to a sequence within amino acid residues 1 to 17, and NLS II was identified between residues 292 and 316. Clustered point mutations resulting in substitutions of basic residues within the NLSs were shown previously to disrupt nuclear translocation activity. These mutations also abolished TEV RNA amplification when introduced into the viral genome. The amplification defects caused by each NLS mutation were complemented in trans within transgenic cells expressing functional NIb, although the level of complementation detected for each mutant differed significantly. Combined with previous results (X. H. Li and J. C. Carrington, Proc. Natl. Acad. Sci. USA 92:457-461, 1995), these data suggest that the NLSs overlap with essential regions necessary for NIb trans-active function(s). The fact that NIb functions in trans implies that it must interact with one or more other components of the genome replication apparatus. A yeast two-hybrid system was used to investigate physical interactions between NIb and several other TEV replication proteins, including the multifunctional VPg/proteinase NIa and the RNA helicase CI. A specific interaction was detected between NIa and NIb. Deletion of any of five regions spanning the NIb sequence resulted in NIb variants that were unable to interact with NIa. Clustered point mutations affecting the conserved GDD motif or NLS II within the central region of NIb, but not mutations affecting NLS I near the N terminus, reduced or eliminated the interaction. The C-terminal proteinase (Pro) domain of NIa, but not the N-terminal VPg domain, interacted with NIb. The effects of NIb mutations within NLS I, NLS II, and the GDD motif on the interaction between the Pro domain and NIb were identical to the effects of these mutations on the interaction between full-length NIa and NIb. These data are compatible with a model in which NIb is directed to replication complexes through an interaction with the Pro domain of NIa.
Collapse
Affiliation(s)
- X H Li
- Department of Biology, Texas A&M University, College Station 77843, USA
| | | | | | | |
Collapse
|
33
|
Revers F, Yang SJ, Walter J, Souche S, Lot H, Le Gall O, Candresse T, Dunez J. Comparison of the complete nucleotide sequences of two isolates of lettuce mosaic virus differing in their biological properties. Virus Res 1997; 47:167-77. [PMID: 9085548 DOI: 10.1016/s0168-1702(96)01411-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The complete nucleotide sequences of the genomic RNAs of the 0 and E isolates of lettuce mosaic potyvirus (LMV) have been determined. These two isolates differ by their behavior towards two lettuce resistance genes and by their seed transmission properties. LMV-0 is unable to induce disease in lettuce carrying either one of the mol1 and mol2 recessive resistance genes, whereas LMV-E is able to induce disease in the same plants. The genomes of these two isolates are 10080 nucleotides (nt) in length, excluding the poly(A) tract, and encode polyproteins of 3255 amino acids (aa). The open reading frame is flanked by a 5' non-coding region of 103 nt and a 3' non-coding region of 212 nucleotides. Ten proteins were predicted. The P3 protein, with 377 aa, is the longest potyviral P3 protein characterized to date while the P1 protein, with 437 aa, is among the longest P1 proteins reported. Sequence comparisons between the two isolates demonstrated only limited sequence difference. The overall nucleotide and amino acid sequence identities between LMV-0 and LMV-E are 94 and 97% respectively. The greatest variability occurs in the P1 and in the variable N-terminal region of the coat protein, while the NIa protease domain, the NIb protein, the C-terminus of the helper component protease and the 3' non-coding region are extensively conserved. While this sequence analysis does not allow direct identification of determinants involved in the resistance breaking or in the seed transmissibility properties, these data are a first step towards the characterization of these determinants.
Collapse
Affiliation(s)
- F Revers
- Station de Pathologie Végétale, INRA, Villenave d'Ornon, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tai CL, Chi WK, Chen DS, Hwang LH. The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3). J Virol 1996; 70:8477-84. [PMID: 8970970 PMCID: PMC190938 DOI: 10.1128/jvi.70.12.8477-8484.1996] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To assess the RNA helicase activity of hepatitis C virus (HCV) nonstructural protein 3 (NS3), a polypeptide encompassing amino acids 1175 to 1657, which cover only the putative helicase domain, was expressed in Escherichia coli by a pET expression vector. The protein was purified to near homogeneity and assayed for RNA helicase activity in vitro with double-stranded RNA substrates prepared from a multiple cloning sequence and an HCV 5' nontranslated region (5'-NTR) or 3'-NTR. The enzyme acted successfully on substrates containing both 5' and 3' single-stranded regions (standard) or on substrates containing only the 3' single-stranded regions (3'/3') but failed to act on substrates containing only the 5' single-stranded regions (5'/5') or on substrates lacking the single-stranded regions (blunt). These results thus suggest 3' to 5' directionality for HCV RNA helicase activity. However, a 5'/5' substrate derived from the HCV 5'-NTR was also partially unwound by the enzyme, possibly because of unique properties inherent in the 5' single-stranded regions. Gel mobility shift analyses demonstrated that the HCV NS3 helicase could bind to either 5'- or 3'-tailed substrates but not to substrates lacking a single-stranded region, indicating that the polarity of the RNA strand to which the helicase bound was a more important enzymatic activity determinant. In addition to double-stranded RNA substrates, HCV NS3 helicase activity could displace both RNA and DNA oligonucleotides on a DNA template, suggesting that HCV NS3 too was disposed to DNA helicase activity. This study also demonstrated that RNA helicase activity was dramatically inhibited by the single-stranded polynucleotides. Taken altogether, our results indicate that the HCV NS3 helicase is unique among the RNA helicases characterized so far.
Collapse
Affiliation(s)
- C L Tai
- Graduate Institute of Microbiology, National Taiwan University, Taipei
| | | | | | | |
Collapse
|
35
|
Kalinina NO, Fedorkin ON, Samuilova OV, Maiss E, Korpela T, Atabekov JG. Expression and biochemical analyses of the recombinant potato virus X 25K movement protein. FEBS Lett 1996; 397:75-8. [PMID: 8941717 DOI: 10.1016/s0014-5793(96)01138-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The 25K movement protein (MP) of potato virus X (PVX) is encoded by the 5'-proximal gene of three overlapping MP genes forming a 'triple gene block'. The PVX 25K MP (putative NTPase-helicase) has been synthesized in Escherichia coli as a recombinant containing a six-histidine tag at the amino terminus. The His-tagged 25K protein was purified in a one-column Ni-chelate affinity chromatography procedure. In the absence of any other viral factors, this protein had obvious Mg2+-dependent ATPase activity, which was stimulated slightly (1.7-1.9-fold) by various polynucleotides. Like other viral proteins possessing ATPase-helicase motifs and many plant viral movement proteins, the PVX 25K MP was able to bind nucleic acids in vitro. The RNA binding activity of the 25K MP was pronounced only at very low salt concentrations and was independent of its ATPase activity.
Collapse
Affiliation(s)
- N O Kalinina
- Department of Virology of Moscow State University, Russian Federation
| | | | | | | | | | | |
Collapse
|
36
|
Kadaré G, David C, Haenni AL. ATPase, GTPase, and RNA binding activities associated with the 206-kilodalton protein of turnip yellow mosaic virus. J Virol 1996; 70:8169-74. [PMID: 8892948 PMCID: PMC190897 DOI: 10.1128/jvi.70.11.8169-8174.1996] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The 206-kDa protein of turnip yellow mosaic virus belongs to an expanding group of proteins containing a domain which includes the consensus nucleotide binding site GxxxxGKS/T. A portion of this protein (amino acids [aa] 916 to 1259) was expressed in Escherichia coli and purified by affinity chromatography to near homogeneity. In the absence of any other viral factors, it exhibited ATPase and GTPase activities in vitro. A mutant protein with a single amino acid substitution in the consensus nucleotide binding site (Lys-982 to Ser) exhibited only low levels of both activities, implying that Lys-982 is important for nucleoside triphosphatase activity. The protein also possessed nonspecific RNA binding capacity. Deletion mutants revealed that an N-terminal domain (aa 916 to 1061) and a C-terminal domain (aa 1182 to 1259) participate in RNA binding. The results presented here provide the first experimental evidence that turnip yellow mosaic virus encodes nucleoside triphosphatase and RNA binding activities.
Collapse
Affiliation(s)
- G Kadaré
- Institut Jacques Monod, Paris, France
| | | | | |
Collapse
|
37
|
Preugschat F, Averett DR, Clarke BE, Porter DJ. A steady-state and pre-steady-state kinetic analysis of the NTPase activity associated with the hepatitis C virus NS3 helicase domain. J Biol Chem 1996; 271:24449-57. [PMID: 8798703 DOI: 10.1074/jbc.271.40.24449] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The helicase domain of hepatitis C virus NS3 (genotype 1b) was expressed in Escherichia coli and purified to homogeneity. The purified protein catalyzed the hydrolysis of nucleoside triphosphates (NTP) and the unwinding of duplex RNA in the presence of divalent metal ion. The enzyme was not selective for the NTP substrate. For example, UTP and acyclovir triphosphate were hydrolyzed efficiently by the enzyme. The rate of NTP hydrolysis was stimulated up to 27-fold by oligomeric nucleic acids (NA). Furthermore, NA bound to the enzyme with concomitant quenching of the intrinsic protein fluorescence. The dissociation constants of the enzyme for selected NA in the absence of NTP were between 10 and 35 microM at pH 7.0 and 25 degrees C. The enzyme had maximal affinity for NA with 12 or more nucleotides. A detailed steady-state and pre-steady-state kinetic analysis of ATP hydrolysis was made with (dU)18 as the effector. The kcat values for ATP hydrolysis in the presence and absence of (dU)18 were 80 s-1 and 2.7 s-1, respectively. The association (dissociation) rate constants for the enzyme and (dU)18 in the presence and absence of ATP were 5.7 microM-1 s-1 (3.9 s-1) and 290 microM-1 s-1 (2.27 s-1), respectively. The association (dissociation) rate constants for the enzyme and ATP in the presence and absence of (dU)18 were 0.4 microM-1 s-1 (<0.5 s-1) and 0.9 microM-1 s-1 (<10(-1) s-1), respectively. These data were consistent with a random kinetic mechanism.
Collapse
Affiliation(s)
- F Preugschat
- Division of Biochemistry, Glaxo Wellcome, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
38
|
Aleman ME, Marcos JF, Brugidou C, Beachy RN, Fauquet C. The complete nucleotide sequence of yam mosaic virus (Ivory Coast isolate) genomic RNA. Arch Virol 1996; 141:1259-78. [PMID: 8774686 DOI: 10.1007/bf01718829] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
The complete nucleotidic sequence of the yam mosaic virus (YMV) RNA was determined following the cloning of partial segments of the genome by reverse transcription and polymerase chain reactions (RT-PCR) using degenerate and/or specific oligonucleotide primers. YMV genomic RNA is 9,608 nucleotides in length and contains one open reading frame (ORF) encoding a polyprotein of 3,103 amino acids (aa) with a calculated Mr of 350,915. The 5' leader sequence of YMV RNA preceding the ORF is 134 nucleotides (nt) long while the 3' untranslated region (UTR) is 165 nt excluding the poly(A) tail. A computer algorithm predicted that the 3'UTR forms four stem loop structures which form a cloverleaf-like secondary structure. These structures apparently share some homologies with those observed in the 3'UTR of the potato virus Y-NL1 strain. Seven potential recognition sites for the NIa protease were found: one putative cleavage site for the P1 proteinase and one for the HC proteinase. The organization of the YMV genome is therefore similar to the other members of the genus Potyvirus based upon conserved sequence motifs common amongst members of this group. Despite its similarity with the other potyviruses in these conserved regions, YMV appears to be a distinct potyvirus species based upon a comparison of its sequence with those of other potyviruses.
Collapse
Affiliation(s)
- M E Aleman
- International Laboratory for Tropical Agricultural Biotechnology ILTAB/ORSTOM-TSRI, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
39
|
Fernández A, García JA. The RNA helicase CI from plum pox potyvirus has two regions involved in binding to RNA. FEBS Lett 1996; 388:206-10. [PMID: 8690088 DOI: 10.1016/0014-5793(96)00571-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The plum pox virus (PPV) protein CI is an RNA helicase, whose function in the virus replication is still unknown. Recently, an RNA binding domain was mapped to a region of the CI protein that includes the arginine-rich motif VI typical of RNA helicases of the superfamily SF2. In the present study, a second region involved in RNA binding activity of the CI protein has been identified. Northwestern assays with a series of maltose-binding protein fusions that contain different CI fragments showed that the RNA binding domain is located between residues 75 and 143. This segment contains the two most amino-terminal conserved domains of RNA helicases: I, involved in NTP binding, and Ia, of unknown function. The results can be explained in the context of a close interdependence between the protein regions involved in the NTPase and RNA binding activities that is expected for an RNA helicase.
Collapse
Affiliation(s)
- A Fernández
- Centro Nacional de Biotecnología (CSIC), Campus de la Universidad Autónoma de Madrid, Spain
| | | |
Collapse
|
40
|
Dé I, Sawicki SG, Sawicki DL. Sindbis virus RNA-negative mutants that fail to convert from minus-strand to plus-strand synthesis: role of the nsP2 protein. J Virol 1996; 70:2706-19. [PMID: 8627744 PMCID: PMC190127 DOI: 10.1128/jvi.70.5.2706-2719.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We identified mutations in the gene for nsP2, a nonstructural protein of the alphavirus Sindbis virus, that appear to block the conversion of the initial, short-lived minus-strand replicase complex (RCinitial) into mature, stable forms that are replicase and transcriptase complexes (RCstable), producing 49S genome or 26S mRNA. Base changes at nucleotide (nt) 2166 (G-->A, predicting a change of Glu-163-->Lys), at nt 2502 (G-->A, predicting a change of Val-275-->Ile), and at nt 2926 (C-->U, predicting a change of Leu-416-->Ser) in the nsP2 N domain were responsible for the phenotypes of ts14, ts16, and ts19 members of subgroup 11 (D.L. Sawicki and S.G. Sawicki, Virology 44:20-34, 1985) of the A complementation group of Sindbis virus RNA-negative mutants. Unlike subgroup I mutants, the RCstable formed at 30 degrees C transcribed 26S mRNA normally and did not synthesize minus strands in the absence of protein synthesis after temperature shift. The N-domain substitutions did not inactivate the thiol protease in the C domain of nsP2 and did not stop the proteolytic processing of the polyprotein containing the nonstructural proteins. The distinct phenotypes of subgroup I and 11 A complementation group mutants are evidence that the two domains of nsP2 are essential and functionally distinct. A detailed analysis of ts14 found that its nsPs were synthesized, processed, transported, and assembled at 40 degrees C into complexes with the properties of RCinitial and synthesized minus strands for a short time after shift to 40 degrees C. The block in the pathway to the formation of RCstable occurred after cleavage of the minus-strand replicase P123 or P23 polyprotein into mature nsP1, nsP2, nsP3, and nsP4, indicating that structures resembling RCstable, were formed at 40 degrees C. However, these RCstable or pre-RCstable structures were not capable of recovering activity at 30 degrees C. Therefore, failure to increase the rate of plus-strand synthesis after shift to 40 degrees C appears to result from failure to convert RCinitial to RCstable. We conclude that RCstable is derived from RCinitial by a conversion process and that ts14 is a conversion mutant. From their similar phenotypes, we predict that other nsP2 N-domain mutants are blocked also in the conversion of RCinitial to RCstable. Thus, the N domain of nsP2 plays an essential role in a folding pathway of the nsPs responsible for formation of the initial minus-strand replicase and for its conversion into stable plus-strand RNA-synthesizing enzymes.
Collapse
Affiliation(s)
- I Dé
- Department of Microbiology, Medical College of Ohio, Toledo 43699, USA
| | | | | |
Collapse
|
41
|
Abstract
It is clear from the experimental data that there are some similarities in RNA replication for all eukaryotic positive-stranded RNA viruses—that is, the mechanism of polymerization of the nucleotides is probably similar for all. It is noteworthy that all mechanisms appear to utilize host membranes as a site of replication. Membranes appear to function not only as a way of compartmentalizing virus RNA replication but also appear to have a central role in the organization and functioning of the replication complex, and further studies in this area are needed. Within virus supergroups, similarities are evident between animal and plant viruses—for example, in the nature and arrangements of replication genes and in sequence similarities of functional domains. However, it is also clear that there has been considerable divergence, even within supergroups. For example, the animal alpha-viruses have evolved to encode proteinases which play a central controlling function in the replication cycle, whereas this is not common in the plant alpha-like viruses and even when it occurs, as in the tymoviruses, the strategies that have evolved appear to be significantly different. Some of the divergence could be host-dependent and the increasing interest in the role of host proteins in replication should be fruitful in revealing how different systems have evolved. Finally, there are virus supergroups that appear to have no close relatives between animals and plants, such as the animal coronavirus-like supergroup and the plant carmo-like supergroup.
Collapse
Affiliation(s)
- K W Buck
- Department of Biology, Imperial College of Science, Technology and Medicine, London, England
| |
Collapse
|
42
|
Abstract
Viruses have developed successful strategies for propagation at the expense of their host cells. Efficient gene expression, genome multiplication, and invasion of the host are enabled by virus-encoded genetic elements, many of which are well characterized. Sequences derived from plant DNA and RNA viruses can be used to control expression of other genes in vivo. The main groups of plant virus genetic elements useful in genetic engineering are reviewed, including the signals for DNA-dependent and RNA-dependent RNA synthesis, sequences on the virus mRNAs that enable translational control, and sequences that control processing and intracellular sorting of virus proteins. Use of plant viruses as extrachromosomal expression vectors is also discussed, along with the issue of their stability.
Collapse
Affiliation(s)
- A R Mushegian
- Department of Plant Pathology, University of Kentucky, Lexington 40546-0091, USA
| | | |
Collapse
|
43
|
Fernández A, Laín S, García JA. RNA helicase activity of the plum pox potyvirus CI protein expressed in Escherichia coli. Mapping of an RNA binding domain. Nucleic Acids Res 1995; 23:1327-32. [PMID: 7538661 PMCID: PMC306857 DOI: 10.1093/nar/23.8.1327] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The plum pox potyvirus (PPV) cylindrical inclusion (CI) protein fused to the maltose binding protein (MBP) has been synthesized in Escherichia coli and purified by affinity chromatography in amylose resin. In the absence of any other viral factors, the fusion product had NTPase, RNA binding and RNA helicase activities. These in vitro activities were not affected by removal of the last 103 amino acids of the CI protein. However, other deletions in the C-terminal part of the protein, although leaving intact all the region conserved in RNA helicases, drastically impaired the ability to unwind dsRNA and to hydrolyze NTPs. A mutant protein lacking the last 225 residues retained the competence to interact with RNA. Further deletions mapped boundaries of the RNA binding domain within residues 350 and 402 of the PPV CI protein. This region includes the arginine-rich motif VI, the most carboxy terminal conserved domain of RNA helicases of the superfamily SF2. These results indicate that NTP hydrolysis is not an essential component for RNA binding of the PPV CI protein.
Collapse
Affiliation(s)
- A Fernández
- Centro Nacional de Biotecnología (CSIC), Campus de la Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
44
|
Abstract
The pestivirus bovine viral diarrhea virus (BVDV) p80 protein (referred to here as the NS3 protein) contains amino acid sequence motifs predictive of three enzymatic activities: serine proteinase, nucleoside triphosphatase, and RNA helicase. We have previously demonstrated that the former two enzymatic activities are associated with this protein. Here, we show that a purified recombinant BVDV NS3 protein derived from baculovirus-infected insect cells possesses RNA helicase activity. BVDV NS3 RNA helicase activity was specifically inhibited by monoclonal antibodies to the p80 protein. The activity was dependent on the presence of nucleoside triphosphate and divalent cation, with a preference for ATP and Mn2+. Hydrolysis of the nucleoside triphosphate was necessary for strand displacement. The helicase activity required substrates with an un-base-paired region on the template strand 3' of the duplex region. As few as three un-base-paired nucleotides were sufficient for efficient oligonucleotide displacement. However, the enzyme did not act on substrates having a single-stranded region only to the 5' end of the duplex or on substrates lacking single-stranded regions altogether (blunt-ended duplex substrates), suggesting that the directionality of the BVDV RNA helicase was 3' to 5' with respect to the template strand. The BVDV helicase activity was able to displace both RNA and DNA oligonucleotides from RNA template strands but was unable to release oligonucleotides from DNA templates. The possible role of this activity in pestivirus replication is discussed.
Collapse
Affiliation(s)
- P Warrener
- PathoGenesis Corporation, Seattle, Washington 98119
| | | |
Collapse
|
45
|
Chen S, Das P, Abdel Ghaffar MH, Hari V. Electron microscopic localization of ATPase activity in tobacco cells infected by tobacco etch potyvirus and tobacco mosaic virus. Arch Virol 1995; 140:173-8. [PMID: 7646342 DOI: 10.1007/bf01309732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thin sections of leaves of plants infected by tobacco etch potyvirus (TEV) or tobacco mosaic virus (TMV) were examined for the presence of ATPase activity by electron microscopy. ATPase activity was found as expected in mitochondria, chloroplasts and plasmalemma of both uninfected as well as cells infected by either TEV or TMV. In the TEV-infected cells, ATPase activity was localized to virus-induced vesicles, endoplasmic reticulum and in some cells, to ribosomes attached to the ER. In TMV-infected cells, ATPase activity was found in vesicles as well as in tubular membranes closely associated with the X-bodies.
Collapse
Affiliation(s)
- S Chen
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | | | | | | |
Collapse
|
46
|
Chen S, Das P, Hari V. In situ localization of ATPase activity in cells of plants infected by maize dwarf mosaic potyvirus. Arch Virol 1994; 134:433-9. [PMID: 8129627 DOI: 10.1007/bf01310581] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cells of healthy maize plants as well as those infected by maize dwarf mosaic potyvirus were examined by electron microscopy for the location of ATPase activity. In healthy and virus infected plants, ATPase activity was found in plasma membranes, chloroplast thylakoid membranes, nuclear membranes and in mitochondria. In virus-infected cells, ATPase activity was also observed in cytoplasmic vesicles which were found in close proximity to the virus-specific cytoplasmic inclusion bodies (CI), at the ends of the arms of the CI and in plasmodesmata.
Collapse
Affiliation(s)
- S Chen
- Department of Biological Sciences, Wayne State University, Detroit, Michigan
| | | | | |
Collapse
|
47
|
Rikkonen M, Peränen J, Kääriäinen L. ATPase and GTPase activities associated with Semliki Forest virus nonstructural protein nsP2. J Virol 1994; 68:5804-10. [PMID: 8057461 PMCID: PMC236984 DOI: 10.1128/jvi.68.9.5804-5810.1994] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The replication of Semliki Forest virus requires four nonstructural proteins (nsP1 to nsP4), all derived from the same polyprotein. One of these, nsP2, is a multifunctional protein needed in RNA replication and in the processing of the nonstructural polyprotein. On the basis of amino acid sequence homologies, nsP2 was predicted to possess nucleoside triphosphatase and RNA helicase activities. Here, we report the engineered expression in Escherichia coli of nsP2 and of an amino-terminal fragment of it by use of the highly efficient T7 expression system. Both polypeptides were produced as fusion proteins with a histidine tag at the amino terminus and purified by immobilized-metal affinity chromatography. The two recombinant proteins exhibited ATPase and GTPase activities, which were further stimulated by the presence of single-stranded RNA. The activities were not found in similarly prepared fractions from uninduced control cells or cells expressing an unrelated polypeptide. Radiolabeled ribonucleoside triphosphates could be cross-linked to both the full-length and the carboxy-terminally truncated nsP2 protein, and both polypeptides had RNA-binding capacity. We also expressed and purified an nsP2 variant which had a single amino acid substitution in the nucleotide-binding motif (Lys-192-->Asn). No nucleoside triphosphatase activity was associated with this mutant protein.
Collapse
Affiliation(s)
- M Rikkonen
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | |
Collapse
|
48
|
Restrepo-Hartwig MA, Carrington JC. The tobacco etch potyvirus 6-kilodalton protein is membrane associated and involved in viral replication. J Virol 1994; 68:2388-97. [PMID: 8139025 PMCID: PMC236716 DOI: 10.1128/jvi.68.4.2388-2397.1994] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The tobacco etch potyvirus (TEV) genome encodes a polyprotein that is processed by three virus-encoded proteinases. Although replication of TEV likely occurs in the cytoplasm, two replication-associated proteins, VPg-proteinase (nuclear inclusion protein a) (NIa) and RNA-dependent RNA polymerase (nuclear inclusion protein b) (NIb), accumulate in the nucleus of infected cells. The 6-kDa protein is located adjacent to the N terminus of NIa in the TEV polyprotein, and, in the context of a 6-kDa protein/NIa (6/NIa) polyprotein, impedes nuclear translocation of NIa (M. A. Restrepo-Hartwig and J. C. Carrington, J. Virol. 66:5662-5666, 1992). The 6-kDa protein and three polyproteins containing the 6-kDa protein were identified by affinity chromatography of extracts from infected plants. Two of the polyproteins contained NIa or the N-terminal VPg domain of NIa linked to the 6-kDa protein. To investigate the role of the 6-kDa protein in vivo, insertion and substitution mutagenesis was targeted to sequences coding for the 6-kDa protein and its N- and C-terminal cleavage sites. These mutations were introduced into a TEV genome engineered to express the reporter protein beta-glucuronidase (GUS), allowing quantitation of virus amplification by a fluorometric assay. Three-amino-acid insertions at each of three positions in the 6-kDa protein resulted in viruses that were nonviable in tobacco protoplasts. Disruption of the N-terminal cleavage site resulted in a virus that was approximately 10% as active as the parent, while disruption of the C-terminal processing site eliminated virus viability. The subcellular localization properties of the 6-kDa protein were investigated by fractionation and immunolocalization of 6-kDa protein/GUS (6/GUS) fusion proteins in transgenic plants. Nonfused GUS was associated with the cytosolic fraction (30,000 x g centrifugation supernatant), while 6/GUS and GUS/6 fusion proteins sedimented with the crude membrane fraction (30,000 x g centrifugation pellet). The GUS/6 fusion protein was localized to apparent membranous proliferations associated with the periphery of the nucleus. These data suggest that the 6-kDa protein is membrane associated and is necessary for virus replication.
Collapse
|
49
|
Rikkonen M, Peränen J, Kääriäinen L. Nuclear targeting of Semliki Forest virus nsP2. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1994; 9:369-77. [PMID: 8032268 DOI: 10.1007/978-3-7091-9326-6_37] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Semliki Forest virus-specific nonstructural protein nsP2 is transported into the nuclei of both infected and transfected BHK cells. The pentapeptide sequence P 648R RRV is an essential part of the nuclear localization signal (NLS) of nsP2, the middle arginine being the most critical residue for nuclear targeting. Host DNA and RNA syntheses are rapidly inhibited in virus-infected cells, and nsP2 could be involved in these processes. It has been postulated that the inhibition of cellular replication could be due to viral NTPase activity. We have expressed and purified nsP2 in E. coli using the highly efficient T7 based expression system. Purified nsP2 was shown to have ATPase and GTPase activities, and these specific activities were increased in the presence of single-stranded RNA, a typical feature of RNA helicases. The role of nsP2 in the nucleus was studied by creating a mutant virus SFV-RDR, which contained an altered NLS (PRDRV). The mutation affected neither the processing nor the stability of nsP2, but it did render nsP2 completely cytoplasmic. SFV-RDR was shown to be fully infectious, and no difference could be seen in the expression of viral proteins. In addition, the inhibition of host DNA synthesis was almost equally efficient in both wild-type and mutant-infected cells. The pathogenic properties of the mutant will be further studied.
Collapse
Affiliation(s)
- M Rikkonen
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | |
Collapse
|
50
|
Suzich JA, Tamura JK, Palmer-Hill F, Warrener P, Grakoui A, Rice CM, Feinstone SM, Collett MS. Hepatitis C virus NS3 protein polynucleotide-stimulated nucleoside triphosphatase and comparison with the related pestivirus and flavivirus enzymes. J Virol 1993; 67:6152-8. [PMID: 8396675 PMCID: PMC238037 DOI: 10.1128/jvi.67.10.6152-6158.1993] [Citation(s) in RCA: 251] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Sequence motifs within the nonstructural protein NS3 of members of the Flaviviridae family suggest that this protein possesses nucleoside triphosphatase (NTPase) and RNA helicase activity. The RNA-stimulated NTPase activity of this protein from prototypic members of the Pestivirus and Flavivirus genera has recently been established and enzymologically characterized. Here, we experimentally demonstrate that the NS3 protein from a member of the third genus of Flaviviridae, human hepatitis C virus (HCV), also possesses a polynucleotide-stimulated NTPase activity. Characterization of the purified HCV NTPase activity showed that it exhibited reaction condition optima with respect to pH, MgCl2, and salt identical to those of the representative pestivirus and flavivirus enzymes. However, each NTPase also possessed several unique properties when compared with one another. Notably, the profile of polynucleotide stimulation of the NTPase activity was distinct for the three enzymes. The HCV NTPase was the only one whose activity was significantly enhanced by a deoxyribopolynucleotide. Additional distinguishing features among the three enzymes relating to the kinetic properties of their NTPase activities are discussed. These studies provide a foundation for investigation of the putative RNA helicase activity of these proteins and for further study of the role of the NS3 proteins of members of the Flaviviridae in the replication cycle of these viruses.
Collapse
Affiliation(s)
- J A Suzich
- MedImmune, Inc., Gaithersburg, Maryland 20878
| | | | | | | | | | | | | | | |
Collapse
|