1
|
Hoang HD, Said A, Vaidya N, Gilchrist VH, Malone K, Kabilan U, Topshee S, Xiang X, Yang AD, Olagnier D, Mossman K, Beug ST, Jafarnejad SM, Workenhe ST, Graber TE, Alain T. Adaptation of transgene mRNA translation boosts the anticancer efficacy of oncolytic HSV1. J Immunother Cancer 2023; 11:jitc-2022-006408. [PMID: 36958764 PMCID: PMC10040010 DOI: 10.1136/jitc-2022-006408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Transgenes deliver therapeutic payloads to improve oncolytic virus immunotherapy. Transgenes encoded within oncolytic viruses are designed to be highly transcribed, but protein synthesis is often negatively affected by viral infection, compromising the amount of therapeutic protein expressed. Studying the oncolytic herpes simplex virus-1 (HSV1), we found standard transgene mRNAs to be suboptimally translated in infected cells. METHODS Using RNA-Seq reads, we determined the transcription start sites and 5'leaders of HSV1 genes and uncovered the US11 5'leader to confer superior activity in translation reporter assays. We then incorporated this 5'leader into GM-CSF expression cassette in oncolytic HSV1 and compared the translationally adapted oncolytic virus with the conventional, leaderless, virus in vitro and in mice. RESULTS Inclusion of the US11 5'leader in the GM-CSF transgene incorporated into HSV1 boosted translation in vitro and in vivo. Importantly, treatment with US11 5'leader-GM-CSF oncolytic HSV1 showed superior antitumor immune activity and improved survival in a syngeneic mouse model of colorectal cancer as compared with leaderless-GM-CSF HSV1. CONCLUSIONS Our study demonstrates the therapeutic value of identifying and integrating platform-specific cis-acting sequences that confer increased protein synthesis on transgene expression.
Collapse
Affiliation(s)
- Huy-Dung Hoang
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Aida Said
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Nasana Vaidya
- Department Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Victoria H Gilchrist
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Kyle Malone
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Usha Kabilan
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Serena Topshee
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Xiao Xiang
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - An-Dao Yang
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - David Olagnier
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Karen Mossman
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Shawn T Beug
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | | | - Samuel T Workenhe
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Duus KM, Grose C. Multiple regulatory effects of varicella-zoster virus (VZV) gL on trafficking patterns and fusogenic properties of VZV gH. J Virol 1996; 70:8961-71. [PMID: 8971025 PMCID: PMC190993 DOI: 10.1128/jvi.70.12.8961-8971.1996] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Varicella-zoster virus (VZV) is an extremely cell-associated alphaherpesvirus; VZV infection is spread almost exclusively via cell membrane fusion. The envelope glycoprotein H (gH) is highly conserved among the herpesviruses. A virus-encoded chaperone, glycoprotein L (gL), associates with gH, and the gH:gL complex is required for gH maturation and membrane expression. We recently demonstrated that in the VZV system, the gH:gL complex facilitated cell membrane fusion and extensive polykaryon formation in transfected cells (K. M. Duus, C. Hatfield, and C. Grose, Virology 210:429-440, 1995). To further define the functions of the unusual VZV gL chaperone protein, we have performed a series of mutagenesis experiments with both gH and gL and analyzed the mutants by laser scanning confocal microscopy in a transfection-based fusion assay. We established the fact that immature gH exited the endoplasmic reticulum (ER) when coexpressed with either gE or gI and appeared on the cell surface in a patch pattern. A similar effect was observed on the cell surface with gH with a cytoplasmic tail mutagenized to closely resemble the vaccinia virus hemagglutinin cytoplasmic tail. Site-directed mutagenesis of the five gL cysteine residues demonstrated that four of five cysteines participated in the gL chaperone function required for proper maturation of gH. On the other hand, the same gL mutants facilitated transport of immature gH to the cell surface, where patching occurred. Studies of gL processing demonstrated that maturation did not require transport beyond the medial-Golgi; furthermore, gL was not detected in the outer cell membrane, nor was it secreted into the medium. Colocalization studies with 3,3'-dihexyloxa-cabocyanine iodide and N-(e-7-nitrobenz-2-oxa-1,3-diazol-4-yl-aminocaproyl)-D-erythro-sphingosine confirmed that gL was found primarily in the ER and cis/medial-Golgi when expressed alone. When all of these data were considered, they suggested a posttranslational gH:gL regulation model whereby the gL chaperone modulated gH expression via retrograde flow from the Golgi to the ER. In this schema, mature gL returns to the ER, where it escorts immature gH from the ER to the Golgi; thereafter, mature gH is transported from the trans-Golgi to the outer cell membrane, where it acts as a major fusogen.
Collapse
Affiliation(s)
- K M Duus
- Department of Microbiology, University of Iowa College of Medicine, Iowa City, USA
| | | |
Collapse
|
9
|
Guzowski JF, Singh J, Wagner EK. Transcriptional activation of the herpes simplex virus type 1 UL38 promoter conferred by the cis-acting downstream activation sequence is mediated by a cellular transcription factor. J Virol 1994; 68:7774-89. [PMID: 7966567 PMCID: PMC237239 DOI: 10.1128/jvi.68.12.7774-7789.1994] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The herpes simplex virus (HSV) type 1 strict late (gamma) UL38 promoter contains three cis-acting transcriptional elements: a TATA box, a specific initiator element, and the downstream activation sequence (DAS). DAS is located between positions +20 and +33 within the 5' untranslated leader region and strongly influences transcript levels during productive infection. In this communication, we further characterize DAS and investigate its mechanism of action. DAS function has a strict spacing requirement, and DAS contains an essential 6-bp core element. A similarly positioned element from the gamma gC gene (UL44) has partial DAS function within the UL38 promoter context, and the promoter controlling expression of the gamma US11 transcript contains an identically located element with functional and sequence similarity to UL38 DAS. These data suggest that downstream elements are a common feature of many HSV gamma promoters. Results with recombinant viruses containing modifications of the TATA box or initiator element of the UL38 promoter suggest that DAS functions to increase transcription initiation and not the efficiency of transcription elongation. In vitro transcription assays using uninfected HeLa nuclear extracts show that, as in productive infection with recombinant viruses, the deletion of DAS from the UL38 promoter dramatically decreases RNA expression. Finally, electrophoretic mobility shift assays and UV cross-linking experiments show that DAS DNA forms a specific, stable complex with a cellular protein (the DAS-binding factor) of approximately 35 kDa. These data strongly suggest that the interaction of cellular DAS-binding factor with DAS is required for efficient expression of UL38 and other HSV late genes.
Collapse
Affiliation(s)
- J F Guzowski
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717
| | | | | |
Collapse
|