1
|
Abstract
My laboratory investigations have been driven by an abiding interest in understanding the consequences of genetic rearrangement in evolution and disease, and in using viruses to elucidate fundamental mechanisms in biology. Starting with bacteriophages and moving to the retroviruses, my use of the tools of genetics, molecular biology, biochemistry, and biophysics has spanned more than half a century-from the time when DNA structure was just discovered to the present day of big data and epigenetics. Both riding and contributing to the successive waves of technology, my laboratory has elucidated fundamental mechanisms in DNA replication, repair, and recombination. We have made substantial contributions in the area of retroviral oncogenesis, delineated mechanisms that control retroviral gene expression, and elucidated critical details of the structure and function of the retroviral enzymes-reverse transcriptase, protease, and integrase-and have had the satisfaction of knowing that the fundamental knowledge gained from these studies contributed important groundwork for the eventual development of antiviral drugs to treat AIDS. While pursuing laboratory research as a principal investigator, I have also been a science administrator-moving from laboratory head to department chair and, finally, to institute director. In addition, I have undertaken a number of community service, science-related "extracurricular" activities during this time. Filling all of these roles, while being a wife and mother, has required family love and support, creative management, and, above all, personal flexibility-with not too much long-term planning. I hope that this description of my journey, with various roles, obstacles, and successes, will be both interesting and informative, especially to young female scientists.
Collapse
Affiliation(s)
- Anna Marie Ann Skalka
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111;
| |
Collapse
|
2
|
Chatterjee A, Mridula P, Mishra RK, Mittal R, Hosur RV. Folding Regulates Autoprocessing of HIV-1 Protease Precursor. J Biol Chem 2005; 280:11369-78. [PMID: 15632156 DOI: 10.1074/jbc.m412603200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autoprocessing of HIV-1 protease (PR) precursors is a crucial step in the generation of the mature protease. Very little is known regarding the molecular mechanism and regulation of this important process in the viral life cycle. In this context we report here the first and complete residue level investigations on the structural and folding characteristics of the 17-kDa precursor TFR-PR-C(nn) (161 residues) of HIV-1 protease. The precursor shows autoprocessing activity indicating that the solution has a certain population of the folded active dimer. Removal of the 5-residue extension, C(nn) at the C-terminal of PR enhanced the activity to some extent. However, NMR structural characterization of the precursor containing a mutation, D25N in the PR at pH 5.2 and 32 degrees C under different conditions of partial and complete denaturation by urea, indicate that the precursor has a high tendency to be unfolded. The major population in the ensemble displays some weak folding propensities in both the TFR and the PR regions, and many of these in the PR region are the non-native type. As both D25N mutant and wild-type PR are known to fold efficiently to the same native dimeric form, we infer that TFR cleavage enables removal of the non-native type of preferences in the PR domain to cause constructive folding of the protein. These results indicate that intrinsic structural and folding preferences in the precursor would have important regulatory roles in the autoprocessing reaction and generation of the mature enzyme.
Collapse
Affiliation(s)
- Amarnath Chatterjee
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | | | | | | | | |
Collapse
|
3
|
Pettit SC, Everitt LE, Choudhury S, Dunn BM, Kaplan AH. Initial cleavage of the human immunodeficiency virus type 1 GagPol precursor by its activated protease occurs by an intramolecular mechanism. J Virol 2004; 78:8477-85. [PMID: 15280456 PMCID: PMC479095 DOI: 10.1128/jvi.78.16.8477-8485.2004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Processing of the GagPol polyprotein precursor of human immunodeficiency virus type 1 (HIV-1) is a critical step in viral assembly and replication. The HIV-1 protease (PR) is translated as part of GagPol and is both necessary and sufficient for precursor processing. The PR is active only as a dimer; enzyme activation is initiated when the PR domains in two GagPol precursors dimerize. The precise mechanism by which the PR becomes activated and the subsequent initial steps in precursor processing are not well understood. However, it is clear that processing is initiated by the PR domain that is embedded within the precursor itself. We have examined the earliest events in precursor processing using an in vitro assay in which full-length GagPol is cleaved by its embedded PR. We demonstrate that the embedded, immature PR is as much as 10,000-fold less sensitive to inhibition by an active-site PR inhibitor than is the mature, free enzyme. Further, we find that different concentrations of the active-site inhibitor are required to inhibit the processing of different cleavage sites within GagPol. Finally, our results indicate that the first cleavages carried out by the activated PR within GagPol are intramolecular. Overall, our data support a model of virus assembly in which the first cleavages occur in GagPol upstream of the PR. These intramolecular cleavages produce an extended form of PR that completes the final processing steps accompanying the final stages of particle assembly by an intermolecular mechanism.
Collapse
Affiliation(s)
- Steven C Pettit
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | | | | | | | | |
Collapse
|
4
|
Campbell S, Oshima M, Mirro J, Nagashima K, Rein A. Reversal by dithiothreitol treatment of the block in murine leukemia virus maturation induced by disulfide cross-linking. J Virol 2002; 76:10050-5. [PMID: 12208984 PMCID: PMC136531 DOI: 10.1128/jvi.76.19.10050-10055.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that if murine leukemia virus particles are produced in the presence of the mild oxidizing agent disulfide-substituted benzamide-2, they fail to undergo the normal process of virus maturation. We now show that treatment of these immature particles with a reducing agent (dithiothreitol) induces their maturation in vitro, as evidenced by proteolytic cleavage of Gag, Gag-Pol, and Env proteins and by their morphology. The identification of partial cleavage products in these particles suggests the sequence with which the cleavages occur under these conditions. This may be a useful experimental system for further analysis of retroviral maturation under controlled conditions in vitro.
Collapse
Affiliation(s)
- Stephen Campbell
- HIV Drug Resistance Program, SAIC Frederick, National Cancer Institute-Frederick, Natipnal Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | |
Collapse
|
5
|
Blumenzweig I, Baraz L, Friedler A, Danielson UH, Gilon C, Steinitz M, Kotler M. HIV-1 Vif-derived peptide inhibits drug-resistant HIV proteases. Biochem Biophys Res Commun 2002; 292:832-40. [PMID: 11944889 DOI: 10.1006/bbrc.2002.6732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vif, one of the six accessory genes expressed by HIV-1, is essential for the productive infection of natural target cells. Previously we suggested that Vif acts as a regulator of the viral protease (PR): It prevents the autoprocessing of Gag and Gag-Pol precursors until virus assembly, and it may control the PR activity in the preintegration complex at the early stage of infection. It was demonstrated before that Vif, and specifically the 98 amino acid stretch residing at the N'-terminal part of Vif (N'-Vif), inhibits both the autoprocessing of truncated Gag-Pol polyproteins in bacterial cells and the hydrolysis of synthetic peptides by PR in cell-free systems. Linear synthetic peptides derived from N'-Vif specifically inhibit and bind HIV-1 PR in vitro, and arrest virus production in tissue culture. Peptide mapping of N'-Vif revealed that Vif88-98 is the most potent PR inhibitor. Here we report that this peptide inhibits both HIV-1 and HIV-2, but not ASLV proteases in vitro. Vif88-98 retains its inhibitory effect against drug-resistant HIV-1 PR variants, isolated from patients undergoing long-term treatment with anti-PR drugs. Variants of HIV protease bearing the mutation G48V are resistant to inhibition by this Vif-derived peptide, as shown by in vitro assays. In agreement with the in vitro experiments, Vif88-98 has no effect on the production of infectious particles in cells infected with a G48V mutated virus.
Collapse
Affiliation(s)
- Immanuel Blumenzweig
- Department of Pathology, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
6
|
Schatz GW, Reinking J, Zippin J, Nicholson LK, Vogt VM. Importance of the N terminus of rous sarcoma virus protease for structure and enzymatic function. J Virol 2001; 75:4761-70. [PMID: 11312348 PMCID: PMC114231 DOI: 10.1128/jvi.75.10.4761-4770.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
All retrovirus proteases (PRs) are homodimers, and dimerization is essential for enzymatic function. The dimer is held together largely by a short four-stranded antiparallel beta sheet composed of the four or five N-terminal amino acid residues and a similar stretch of residues from the C terminus. We have found that the enzymatic and structural properties of Rous sarcoma virus (RSV) PR are exquisitely sensitive to mutations at the N terminus. Deletion of one or three residues, addition of one residue, or substitution of alanine for the N-terminal leucine reduced enzymatic activity on peptide and protein substrates 100- to 1,000-fold. The purified mutant proteins remained monomeric up to a concentration of about 2 mg/ml, as determined by dynamic light scattering. At higher concentrations, dimerization was observed, but the dimer lacked or was deficient in enzymatic activity and thus was inferred to be structurally distinct from a wild-type dimer. The mutant protein lacking three N-terminal residues (DeltaLAM), a form of PR occurring naturally in virions, was examined by nuclear magnetic resonance spectroscopy and found to be folded at concentrations where it was monomeric. This result stands in contrast to the report that a similarly engineered monomeric PR of human immunodeficiency virus type 1 is unstructured. Heteronuclear single quantum coherence spectra of the mutant at concentrations where either monomers or dimers prevail were nearly identical. However, these spectra differed from that of the dimeric wild-type RSV PR. These results imply that the chemical environment of many of the amide protons differed and thus that the three-dimensional structure of the DeltaLAM PR mutant is different from that of the wild-type PR. The structure of this mutant protein may serve as a model for the structure of the PR domain of the Gag polyprotein and may thus give clues to the initiation of proteolytic maturation in retroviruses.
Collapse
Affiliation(s)
- G W Schatz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
7
|
Merkulov GV, Lawler JF, Eby Y, Boeke JD. Ty1 proteolytic cleavage sites are required for transposition: all sites are not created equal. J Virol 2001; 75:638-44. [PMID: 11134277 PMCID: PMC113960 DOI: 10.1128/jvi.75.2.638-644.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The retroviral protease is a key enzyme in a viral multienzyme complex that initiates an ordered sequence of events leading to virus assembly and propagation. Viral peptides are initially synthesized as polyprotein precursors; these precursors undergo a number of proteolytic cleavages executed by the protease in a specific and presumably ordered manner. To determine the role of individual protease cleavage sites in Ty1, a retrotransposon from Saccharomyces cerevisiae, the cleavage sites were systematically mutagenized. Altering the cleavage sites of the yeast Ty1 retrotransposon produces mutants with distinct retrotransposition phenotypes. Blocking the Gag/PR site also blocks cleavage at the other two cleavage sites, PR/IN and IN/RT. In contrast, mutational block of the PR/IN or IN/RT sites does not prevent cleavage at the other two sites. Retrotransposons with mutations in each of these sites have transposition defects. Mutations in the PR/IN and IN/RT sites, but not in the Gag/PR site, can be complemented in trans by endogenous Ty1 copies. Hence, the digestion of the Gag/PR site and release of the protease N terminus is a prerequisite for processing at the remaining sites; cleavage of PR/IN is not required for the cleavage of IN/RT, and vice versa. Of the three cleavage sites in the Gag-Pol precursor, the Gag/PR site is processed first. Thus, Ty1 Gag-Pol processing proceeds by an ordered pathway.
Collapse
Affiliation(s)
- G V Merkulov
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
8
|
Zábranský A, Andreánsky M, Hrusková-Heidingsfeldová O, Havlícek V, Hunter E, Ruml T, Pichová I. Three active forms of aspartic proteinase from Mason-Pfizer monkey virus. Virology 1998; 245:250-6. [PMID: 9636364 DOI: 10.1006/viro.1998.9173] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mason-Pfizer monkey virus (M-PMV) proteinase, released by the autocatalytic cleavage of Gag-Pro and Gag-Pro-Pol polypeptide precursors, catalyzes the processing of viral precursors to yield the structural proteins and enzymes of the virion. In retroviruses, usually only one proteolytically active form of proteinase exists. Here, we describe an unusual feature of M-PMV, the existence of three active forms of a retroviral proteinase with molecular masses of 17, 13, and 12 kDa as determined by mass spectroscopy. These forms arise in vitro by self-processing of a 26-kDa proteinase precursor. We have developed a process for isolation of each truncated product and demonstrate that all three forms display proteolytic activity. Amino acid analyses, as well as the determination of N- and C-terminal sequences, revealed that the N-termini of all three forms are identical, confirming that in vitro autoprocessing of the 17-kDa form occurs at the C-terminus to yield the truncated forms. The 17-kDa form and the newly described 13-kDa form of proteinase were identified in virions collected from the rhesus monkey CMMT cell line chronically infected with M-PMV, confirming that multiple forms exist in vivo.
Collapse
Affiliation(s)
- A Zábranský
- Department of Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
9
|
Xiang Y, Ridky TW, Krishna NK, Leis J. Altered Rous sarcoma virus Gag polyprotein processing and its effects on particle formation. J Virol 1997; 71:2083-91. [PMID: 9032340 PMCID: PMC191297 DOI: 10.1128/jvi.71.3.2083-2091.1997] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Proteolytic processing of the Rous sarcoma virus (RSV) Gag precursor was altered in vivo through the introduction of amino acid substitutions into either the polyprotein cleavage junctions or the PR coding sequence. Single amino acid substitutions (V(P2)S and P(P4)G), which are predicted from in vitro peptide substrate cleavage data to decrease the rate of release of PR from the Gag polyprotein, were placed in the NC portion of the NC-PR junction. These substitutions do not affect the efficiency of release of virus-like particles from COS cells even though recovered particles contain significant amounts of uncleaved Pr76gag in addition to mature viral proteins. Single amino acid substitutions (A(P3)F and S(P1)Y), which increase the rate of PR release from Gag, also do not affect budding of virus-like particles from cells. Substitution of the inefficiently cleaved MA-p2 junction sequence in Gag by eight amino acids from the rapidly cleaved NC-PR sequence resulted in a significant increase in cleavage at the new MA-p2 junction, but again without an effect on budding. However, decreased budding was observed when the A(P3)F or S(P1)Y substitution was included in the NC-PR junction sequence between the MA and p2 proteins. A budding defect was also caused by substitution into Gag of a PR subunit containing three amino acid substitutions (R105P, G106V, and S107N) in the substrate binding pocket that increase the catalytic activity of PR. The defect appears to be the result of premature proteolytic processing that could be rescued by inactivating PR through substitution of a serine for the catalytic aspartic acid residue. This budding defect was also rescued by single amino acid substitutions in the NC-PR cleavage site which decrease the rate of release of PR from Gag. A similar budding defect was caused by replacing the Gag PR with two PR subunits covalently linked by four glycine residues. In contrast to the defect caused by the triply substituted PR, the budding defect observed with the linked PR dimer could not be rescued by NC-PR cleavage site mutations, suggesting that PR dimerization is a limiting step in the maturation process. Overall, these results are consistent with a model in which viral protein maturation occurs after PR subunits are released from the Gag polyprotein.
Collapse
Affiliation(s)
- Y Xiang
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
10
|
Schatz G, Pichova I, Vogt VM. Analysis of cleavage site mutations between the NC and PR Gag domains of Rous sarcoma virus. J Virol 1997; 71:444-50. [PMID: 8985369 PMCID: PMC191070 DOI: 10.1128/jvi.71.1.444-450.1997] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In retroviruses, the viral protease (PR) is released as a mature protein by cleavage of Gag, Gag-Pro, or Gag-Pro-Pol precursor polypeptides. In avian sarcoma and leukemia viruses (ASLV), PR forms the C-terminal domain of Gag. Based on the properties of a mutation (cs22) in the cleavage site between the upstream NC domain and the PR domain, the proteolytic liberation of PR previously was inferred to be essential for processing of Gag and Pol proteins. To study this process in more detail, we have analyzed the effects that several mutations at the NC-PR cleavage site have on proteolytic processing in virus-like particles expressed in COS and quail cells. Mutant Gag proteins carrying the same mutations also were synthesized in vitro and tested for processing with purified PR. In both types of studies, N-terminal sequencing of the liberated PR domain was carried out to exactly identify the site of cleavage. Finally, synthetic peptides corresponding to the mutant proteins were assessed for the ability to act as substrates for PR. The results were all consistent and led to the following conclusions. (i) In vivo, if normal processing between NC and PR is prevented by mutations, limited cleavage occurs at a previously unrecognized alternative site three amino acids downstream, i.e., in PR. This N-terminally truncated PR is inactive as an enzyme, as inferred from the global processing defect in cs22 and a similar mutant. (ii) In Gag proteins translated in vitro, purified PR cleaves this alternative site as rapidly as it does the wild-type site. (iii) Contrary to previously accepted rules describing retroviral cleavage sites, an isoleucine residue placed at the P1 position of the NC-PR cleavage site does not hinder normal processing. (iv) A proline residue placed at the P2 position in this cleavage site blocks normal processing.
Collapse
Affiliation(s)
- G Schatz
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
11
|
Almog N, Roller R, Arad G, Passi-Even L, Wainberg MA, Kotler M. A p6Pol-protease fusion protein is present in mature particles of human immunodeficiency virus type 1. J Virol 1996; 70:7228-32. [PMID: 8794372 PMCID: PMC190778 DOI: 10.1128/jvi.70.10.7228-7232.1996] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) protease (PR) and p6(Pol) are translated as part of the Gag-Pol polyprotein after a ribosomal frameshift. PR is essential to virus replication and is responsible for cleaving Gag and Gag-Pol precursors, but the role of p6(Pol) in HIV-1 infection is poorly understood. Here, we report that (i) PR is present in mature HIV-1 virions primarily as a p6(Pol)-PR fusion protein; (ii) HIV-1 PR cleaves viral precursor proteins expressed in bacterial cells at the Phe-Leu bond (positions 1639 to 1642) located at the junction of the NC and p6(Pol) proteins, releasing the p6(Pol)-PR fusion protein; and (iii) purified p6(Pol)-PR fusion protein undergoes autocleavage in vitro at at least three sites.
Collapse
Affiliation(s)
- N Almog
- Department of Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
12
|
Girard PM, de Rocquigny H, Roques BP, Paoletti J. A model of PSI dimerization: destabilization of the C278-G303 stem-loop by the nucleocapsid protein (NCp10) of MoMuLV. Biochemistry 1996; 35:8705-14. [PMID: 8679633 DOI: 10.1021/bi952454s] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have shown that at low ionic strength (i.e., 100 mM NaCl) a short autocomplementary sequence spanning nucleotides C283 to G298 of MoMuLV RNA genome is involved in the process of PSI dimerization in vitro [Girard, P.-M., Bonnet-Mathonière, B., Muriaux, D., & Paoletti, J. (1995) Biochemistry 34, 9785-9794]. In order to identify other contributions of the PSI structure to RNA dimerization, we studied the kinetics of dimerization as a function of salt concentration of short RNA transcripts comprising or not the autocomplementary sequence C283-G298. We propose that, apart from the crucial role of this sequence in RNA dimerization, the 364-565 domain of PSI can interfere, in vitro, with the initiation of dimer formation. Intermolecular loop-loop recognitions involving the 364-565 domain could stabilize, in a salt concentration-dependent manner, a transient RNA dimer built around the loop-loop U288-A293 interaction. This dimer evolves toward a more stable structure which mainly corresponds to the annealing of two C283-G298 sequences. We also show that chemically synthesized NCp10 does not modify these steps but rather helps the system to pass over the energy barriers associated with the transition to stable RNA structures comprising the stem-loop C278-G303. Data obtained in the presence of NCp10 suggest a binding site size of 9 +/- 1 nucleotides per protein at 37 degrees C and a 10-20-fold increase in the rate constant (i.e., k1 = 24 000 +/- 7000 M-1 s-1) of dimer formation.
Collapse
Affiliation(s)
- P M Girard
- Unité de Biochimie, URA 147 CNRS, Institut Gustave Roussy, Villejuif, France
| | | | | | | |
Collapse
|
13
|
Krishna NK, Weldon RA, Wills JW. Transport and processing of the Rous sarcoma virus Gag protein in the endoplasmic reticulum. J Virol 1996; 70:1570-9. [PMID: 8627676 PMCID: PMC189979 DOI: 10.1128/jvi.70.3.1570-1579.1996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Gag proteins of replication-competent retroviruses direct budding at the plasma membrane and are cleaved by the viral protease (PR) just before or very soon after particle release. In contrast, defective retroviruses that bud into the endoplasmic reticulum (ER) have been found, and morphologically these appear to contain uncleaved Gag proteins. From this, it has been proposed that activation of PR may depend upon a host factor found only at the plasma membrane. However, if Gag proteins were cleaved by PR before the particle could pinch off the ER membrane, then the only particles that would remain visible are those that packaged smaller-than-normal amounts of PR, and these would have an immature morphology. To distinguish between these two hypotheses, we made use of the Rous sarcoma virus (RSV) Gag protein, the PR of RSV IS included on each Gag molecule. To target Gag to the ER, a signal peptide was installed at its amino terminus in place of the plasma membrane-binding domain. An intervening, hydrophobic, transmembrane anchor was included to keep Gag extended into the cytoplasm. We found that PR-mediated processing occurred, although the cleavage products were rapidly degraded. When the anchor was removed, allowing the entire protein to be inserted into the lumen of the ER, Gag processing occurred with a high level of efficiency, and the cleavage products were quite stable. Thus, PR activation does not require targeting of Gag molecules to the plasma membrane. Unexpectedly, molecules lacking the transmembrane anchor were rapidly secreted from the cell in a nonmembrane-enclosed form and in a manner that was very sensitive to brefeldin A and monensin. In contrast, the wild-type RSV and Moloney murine leukemia virus Gag proteins were completely insensitive to these inhibitors, suggesting that the normal mechanism of transport to the plasma membrane does not require interactions with the secretory pathway.
Collapse
Affiliation(s)
- N K Krishna
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | |
Collapse
|
14
|
Affiliation(s)
- V M Vogt
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
15
|
Hrusková-Heidingsfeldová O, Andreansky M, Fábry M, Bláha I, Strop P, Hunter E. Cloning, bacterial expression, and characterization of the Mason-Pfizer monkey virus proteinase. J Biol Chem 1995; 270:15053-8. [PMID: 7797487 DOI: 10.1074/jbc.270.25.15053] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have cloned and expressed the 3' region of the Mason-Pfizer monkey virus pro gene in Escherichia coli. The recombinant 26-kDa precursor undergoes rapid self-processing both in E. coli and in vitro at the NH2 terminus, yielding a proteolytically active 17-kDa protein, p17. This initial cleavage is followed in vitro by a much slower self-processing that leads to emergence of proteolytically active p12 and a COOH-terminal cleavage product p5. We have found the NH2-terminal processing site of both the p17 and p12 to be identical and similar to the amino terminus of the mouse mammary tumor virus proteinase. We have also identified the COOH-terminal processing site of the p12 form. Using purified recombinant proteins and synthetic oligopeptide substrates based on naturally occurring retroviral processing sites, we have determined the enzymatic activity and specificity of the Mason-Pfizer monkey virus proteinase to be more closely related to that of myeloblastosis-associated virus proteinase rather than that of the Human immunodeficiency virus type 1 proteinase. Inhibition studies using peptide inhibitors support these results.
Collapse
|
16
|
Arad G, Bar-Meir R, Kotler M. Ribosomal frameshifting at the Gag-Pol junction in avian leukemia sarcoma virus forms a novel cleavage site. FEBS Lett 1995; 364:1-4. [PMID: 7750533 DOI: 10.1016/0014-5793(95)00302-p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Gag and Gag-Pol precursors of avian sarcoma leukemia virus (ASLV) are translated from viral genomic-size mRNA at a molar ratio of about 20:1. Translation of Gag is terminated at the stop codon UAG located at the carboxyl-terminus of the viral protease (PR), whereas a ribosomal frameshift occurring at the carboxyl-terminus of Gag allows translation of the Gag-Pol precursor. To determine how PR is released from the Gag-Pol precursor, a single base (A or T) was inserted at the Gag-Pol junction in order to adjust the translation into a single reading frame. These mutations allow processing of the viral precursor when expressed in bacterial cells, but cause cessation of viral production after transfection of avian cells. The viral PR released from the large precursor is one amino acid longer than PR cleaved from the Gag polyprotein and is terminated by an Ile instead of a Leu residue.
Collapse
Affiliation(s)
- G Arad
- Department of Molecular Genetics, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
17
|
Wills JW, Cameron CE, Wilson CB, Xiang Y, Bennett RP, Leis J. An assembly domain of the Rous sarcoma virus Gag protein required late in budding. J Virol 1994; 68:6605-18. [PMID: 8083996 PMCID: PMC237081 DOI: 10.1128/jvi.68.10.6605-6618.1994] [Citation(s) in RCA: 230] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Gag protein of Rous sarcoma virus has the ability to direct particle assembly at the plasma membrane in the absence of all the other virus-encoded components. An extensive deletion analysis has revealed that very large regions of this protein can be deleted without impairing budding and has suggested that the essential functions map to three discrete regions. In the studies reported here, we establish the location of assembly domain 2 (AD2) within the proline-rich p2b sequence of this Gag protein. AD2 mutants lacking the p2b sequence were completely defective for particle release even though their Gag proteins were tightly associated with the membrane fraction and exhibited high levels of protease activity. Mutations that inactivate the viral protease did not restore budding to wild-type levels for these mutants, indicating that the defect is not due simply to a loss of protease regulation. AD2 mutants could be rescued into dense particles in genetic complementation assays, indicating that their defect is not due to a gross alteration of the overall conformation of the protein and that the assembly function is not needed on every Gag molecule in the population. Several mutants with amino acid substitutions in the p2b sequence were found to have an intermediate capacity for budding. Inactivation of the protease of these mutants stabilized the Gag polyprotein within the cells and allowed an increase in particle release; however, the rate of budding remained slow. We favor the idea that AD2 is a dynamic region of movement, perhaps serving as a molecular hinge to allow the particle to emerge from the surface of the cell during budding.
Collapse
Affiliation(s)
- J W Wills
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033
| | | | | | | | | | | |
Collapse
|
18
|
Louis JM, Nashed NT, Parris KD, Kimmel AR, Jerina DM. Kinetics and mechanism of autoprocessing of human immunodeficiency virus type 1 protease from an analog of the Gag-Pol polyprotein. Proc Natl Acad Sci U S A 1994; 91:7970-4. [PMID: 8058744 PMCID: PMC44526 DOI: 10.1073/pnas.91.17.7970] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Upon renaturation, the polyprotein MBP-delta TF-Protease-delta Pol, consisting of HIV-1 protease and short native sequences from the trans-frame protein (delta TF) and the polymerase (delta Pol) fused to the maltose-binding protein (MBP) of Escherichia coli, undergoes autoprocessing to produce the mature protease in two steps. The initial step corresponds to cleavage of the N-terminal sequence to release the protein intermediate Protease-delta Pol, which has enzymatic activity comparable to that of the mature enzyme. Subsequently, the mature enzyme is formed by a slower cleavage at the C terminus. The rate of increase in enzymatic activity is identical to that of the appearance of MBP-delta TF and the disappearance of the MBP-delta TF-Protease-delta Pol. Initial rates are linearly dependent on the protein concentration, indicating that the N-terminal cleavage is first-order in protein concentration. The reaction is competitively inhibited by pepstatin A and has a pH rate profile similar to that of the mature enzyme. These results and molecular modeling studies are discussed in terms of a mechanism in which a dimeric full-length fusion protein must form prior to rate-limiting intramolecular cleavage of the N-terminal sequence that leads to an increase in enzymatic activity.
Collapse
Affiliation(s)
- J M Louis
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
19
|
Zybarth G, Kräusslich HG, Partin K, Carter C. Proteolytic activity of novel human immunodeficiency virus type 1 proteinase proteins from a precursor with a blocking mutation at the N terminus of the PR domain. J Virol 1994; 68:240-50. [PMID: 8254734 PMCID: PMC236283 DOI: 10.1128/jvi.68.1.240-250.1994] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mature human immunodeficiency virus type 1 proteinase (PR; 11 kDa) can cleave all interdomain junctions in the Gag and Gag-Pol polyprotein precursors. To determine the activity of the enzyme in its precursor form, we blocked release of mature PR from a truncated Gag-Pol polyprotein by introducing mutations into the N-terminal Phe-Pro cleavage site of the PR domain. The mutant precursor autoprocessed efficiently upon expression in Escherichia coli. No detectable mature PR was released; however, several PR-related products ranging in size from approximately 14 to 18 kDa accumulated. Products of the same size were generated when mutant precursors were digested with wild-type PR. Thus, PR can utilize cleavage sites in the region upstream of the PR domain, resulting in the formation of extended PR species. On the basis of active-site titration, the PR species generated from mutated precursor exhibited wild-type activity on peptide substrates. However, the proteolytic activity of these extended enzymes on polyprotein substrates provided exogenously was low when equimolar amounts of extended and wild-type PR proteins were compared. Mammalian cells expressing the mutated precursor produced predominantly precursor and considerably reduced amounts of mature products. Released particles consisted mostly of uncleaved or partially cleaved polyproteins. Our results suggest that precursor forms of PR can autoprocess but are less efficient in processing of the Gag precursor for formation of mature virus particles.
Collapse
Affiliation(s)
- G Zybarth
- Department of Microbiology, State University of New York at Stony Brook 11794
| | | | | | | |
Collapse
|
20
|
Luban J, Lee C, Goff SP. Effect of linker insertion mutations in the human immunodeficiency virus type 1 gag gene on activation of viral protease expressed in bacteria. J Virol 1993; 67:3630-4. [PMID: 8497070 PMCID: PMC237714 DOI: 10.1128/jvi.67.6.3630-3634.1993] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have expressed the human immunodeficiency virus type 1 (HIV-1) protease (PR) in bacteria as a Gag-PR polyprotein (J. Luban and S.P. Goff, J. Virol. 65:3203-3212, 1991). The protein displays enzymatic activity, cleaving the Gag polyprotein precursor Pr55gag to the expected products. The PR enzyme is only active as a dimer, and we hypothesized that PR activation might be used as an indicator of polyprotein multimerization. We constructed 25 linker insertion mutations throughout gag and assessed the PR activity of mutant Gag-PR polyproteins by the appearance of Gag cleavage products in bacterial lysates. All mutant constructs produced stable protein in bacteria. PR activity of the majority of the Gag-PR mutants was indistinguishable from that of the wild type. Six mutants, one with an insertion in the matrix (MA), four with insertions in the capsid (CA), and one with insertions in the nucleocapsid (NC), globally disrupted polyprotein processing. When PR was provided in trans on a separate plasmid, the Gag proteins were cleaved with wild-type efficiency. These results suggest that the gag mutations identified as disruptive of polyprotein processing did not conceal the scissile bonds of the polyprotein. Rather, the mutations prevented PR activation in the context of a Gag-PR polyprotein, perhaps by preventing polyprotein dimerization.
Collapse
Affiliation(s)
- J Luban
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York 10032
| | | | | |
Collapse
|
21
|
Vogt VM, Burstein H, Skalka AM. Proteolysis in the maturation of avian retroviruses does not require calcium. Virology 1992; 189:771-4. [PMID: 1322601 DOI: 10.1016/0042-6822(92)90603-m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
After budding from the plasma membrane, retrovirus particles undergo a process of maturation, which includes changes in morphology caused by several proteolytic cleavages of the precursor of the internal structural proteins, products of the gag gene. Cleavage is mediated by the viral protease, PR. The fact that in most systems cleavage appears to occur only after assembly is complete, suggests that PR may become enzymatically active as a consequence of release of the virion from the cell. Using avian leukosis virus as a model system, we tested the hypothesis that leakage of calcium ions into newly budded virions plays a role in their maturation. We found that in both quail Qt35 cells and monkey COS-1 cells, maturation occurred normally in calcium-free medium and in the presence of EGTA. A calcium ionophore also did not affect maturation. We conclude that calcium influx does not act as a trigger for PR-mediated maturation.
Collapse
Affiliation(s)
- V M Vogt
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|