1
|
Falci Finardi N, Kim H, Hernandez LZ, Russell MRG, Ho CMK, Sreenu VB, Wenham HA, Merritt A, Strang BL. Identification and characterization of bisbenzimide compounds that inhibit human cytomegalovirus replication. J Gen Virol 2021; 102. [PMID: 34882533 PMCID: PMC8744270 DOI: 10.1099/jgv.0.001702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The shortcomings of current anti-human cytomegalovirus (HCMV) drugs has stimulated a search for anti-HCMV compounds with novel targets. We screened collections of bioactive compounds and identified a range of compounds with the potential to inhibit HCMV replication. Of these compounds, we selected bisbenzimide compound RO-90-7501 for further study. We generated analogues of RO-90-7501 and found that one compound, MRT00210423, had increased anti-HCMV activity compared to RO-90-7501. Using a combination of compound analogues, microscopy and biochemical assays we found RO-90-7501 and MRT00210423 interacted with DNA. In single molecule microscopy experiments we found RO-90-7501, but not MRT00210423, was able to compact DNA, suggesting that compaction of DNA was non-obligatory for anti-HCMV effects. Using bioinformatics analysis, we found that there were many putative bisbenzimide binding sites in the HCMV DNA genome. However, using western blotting, quantitative PCR and electron microscopy, we found that at a concentration able to inhibit HCMV replication our compounds had little or no effect on production of certain HCMV proteins or DNA synthesis, but did have a notable inhibitory effect on HCMV capsid production. We reasoned that these effects may have involved binding of our compounds to the HCMV genome and/or host cell chromatin. Therefore, our data expand our understanding of compounds with anti-HCMV activity and suggest targeting of DNA with bisbenzimide compounds may be a useful anti-HCMV strategy.
Collapse
Affiliation(s)
- Nicole Falci Finardi
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - HyeongJun Kim
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Lee Z Hernandez
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | - Catherine M-K Ho
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Vattipally B Sreenu
- MRC - University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Hannah A Wenham
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Andy Merritt
- Centre for Therapeutic Discovery, LifeArc, Stevenage, UK
| | - Blair L Strang
- Institute of Infection & Immunity, St George's, University of London, London, UK.,Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Synthetic lethal mutations in the cyclin A interface of human cytomegalovirus. PLoS Pathog 2017; 13:e1006193. [PMID: 28129404 PMCID: PMC5298330 DOI: 10.1371/journal.ppat.1006193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/08/2017] [Accepted: 01/19/2017] [Indexed: 11/29/2022] Open
Abstract
Generally, the antagonism between host restriction factors and viral countermeasures decides on cellular permissiveness or resistance to virus infection. Human cytomegalovirus (HCMV) has evolved an additional level of self-imposed restriction by the viral tegument protein pp150. Depending on a cyclin A-binding motif, pp150 prevents the onset of viral gene expression in the S/G2 cell cycle phase of otherwise fully permissive cells. Here we address the physiological relevance of this restriction during productive HCMV infection by employing a cyclin A-binding deficient pp150 mutant virus. One consequence of unrestricted viral gene expression in S/G2 was the induction of a G2/M arrest. G2-arrested but not mitotic cells supported viral replication. Cyclin A destabilization by the viral gene product pUL21a was required to maintain the virus-permissive G2-arrest. An HCMV double-point mutant where both pp150 and pUL21a are disabled in cyclin A interaction forced mitotic entry of the majority of infected cells, with a severe negative impact on cell viability and virus growth. Thus, pp150 and pUL21a functionally cooperate, together building a cell cycle synchronization strategy of cyclin A targeting and avoidance that is essential for productive HCMV infection. Efficient virus replication depends on continuous, uninterrupted supply with metabolites and replication factors from the host cell. This is difficult to achieve in actively dividing cells, especially for a slowly replicating virus like HCMV, a widespread pathogen of major medical importance in immunocompromised patients. To ensure that viral replication is not disturbed by cell division, HCMV has developed a twofold strategy of cyclin A targeting and avoidance. First, HCMV employs the viral cyclin A substrate pp150 to synchronize the onset of replication with G1, a cell cycle phase of low cyclin A expression. Then, HCMV expresses the cyclin A destabilizing factor pUL21a to maintain the G1 cell cycle state until the successful release of virus progeny. While this strategy is based on two viral proteins, a cyclin A sensor and effector, it relies on one and the same type of cyclin A interaction motif, making HCMV vulnerable to binding site disruption.
Collapse
|
3
|
Murine cytomegalovirus protein pM79 is a key regulator for viral late transcription. J Virol 2013; 87:9135-47. [PMID: 23760242 DOI: 10.1128/jvi.00688-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Herpesvirus genes are temporally expressed during permissive infections, but how their expression is regulated at late times is poorly understood. Previous studies indicate that the human cytomegalovirus (CMV) gene, UL79, is required for late gene expression. However, the mechanism remains to be fully elucidated, and UL79 homologues in other CMVs have not been studied. Here, we characterized the role of the conserved murine CMV (MCMV) gene M79. We showed that M79 encoded a protein (pM79) which was expressed with early-late kinetics and localized to nuclear viral replication compartments. M79 transcription was significantly decreased in the absence of viral DNA synthesis but markedly stimulated by pM79. To investigate its role, we created the recombinant virus SMin79, in which pM79 expression was disrupted. While marker-rescued virus grew efficiently in fibroblasts, SMin79 failed to produce infectious progeny but was rescued by pM79 expression in trans. During SMin79 infection, representative viral immediate-early and early gene products as well as viral DNA accumulated sufficiently. Formation of viral replication compartments also appeared normal. Pulsed-field gel electrophoresis analysis indicated that the overall structure of replicating viral DNA was indistinguishable between wild-type and SMin79 infection. Viral tiled array and quantitative PCR analysis revealed that many late transcripts sensitive to a viral DNA synthesis inhibitor (phosphonoacetic acid) were markedly reduced by pM79 mutation. This study indicates that cytomegaloviruses use a conserved mechanism to promote transcription at late stages of infection and that pM79 is a critical regulator for at least a subset of viral DNA synthesis-dependent transcripts.
Collapse
|
4
|
The ULb' region of the human cytomegalovirus genome confers an increased requirement for the viral protein kinase UL97. J Virol 2013; 87:6359-76. [PMID: 23536674 DOI: 10.1128/jvi.03477-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We report a requirement for the viral protein kinase UL97 in human cytomegalovirus (HCMV) replication that maps to the ULb' region of the viral genome. A UL97-null (Δ97) mutant of strain TB40/E, which encodes a full-length ULb' region, exhibited replication defects, particularly in production of cell-free virus, that were more severe than those seen with a Δ97 mutant of laboratory strain AD169, which harbors extensive deletions in its ULb' region. These differences were recapitulated with additional HCMV strains by treatment with a UL97 kinase inhibitor, 1-(β-L-ribofuranosyl)-2-isopropylamino-5,6-dichlorobenzimidazole (maribavir). We observed lower levels of viral DNA synthesis and an increased requirement for UL97 in viral late gene expression in strains with full-length ULb' regions. Analysis of UL97-deficient TB40/E infections by electron microscopy revealed fewer C-capsids in nuclei, unusual viral particles in the cytoplasmic assembly compartment, and defective viral nuclear egress. Partial inhibition of viral DNA synthesis caused defects in production of cell-free virus that were up to ≈ 100-fold greater than those seen with cell-associated virus in strains TB40/E and TR, suggesting that UL97-dependent defects in cell-free virus production in strains with full-length ULb' regions were secondary to DNA synthesis defects. Accordingly, a chimeric virus in which the ULb' region of TB40/E was replaced with that of AD169 showed reduced effects of UL97 inhibition on viral DNA synthesis, late gene expression, and production of cell-free virus compared to parental TB40/E. Together, these results argue that the ULb' region encodes a factor(s) which invokes an increased requirement for UL97 during viral DNA synthesis.
Collapse
|
5
|
Isomura H, Stinski MF. Coordination of late gene transcription of human cytomegalovirus with viral DNA synthesis: recombinant viruses as potential therapeutic vaccine candidates. Expert Opin Ther Targets 2012; 17:157-66. [PMID: 23231449 DOI: 10.1517/14728222.2013.740460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION During productive infection, human cytomegalovirus (HCMV) genes are expressed in a temporal cascade, with temporal phases designated as immediate-early (IE), early, and late. The major IE (MIE) genes, UL123 and UL122 (IE1/IE2), play a critical role in subsequent viral gene expression and the efficiency of viral replication. The early viral genes encode proteins necessary for viral DNA replication. Following viral DNA replication, delayed-early and late viral genes are expressed which encode structural proteins for the virion. The late genes can be divided into two broad classes. At early times the gamma-1 or leaky-late class are expressed at low levels after infection and are dramatically upregulated at late times. In contrast, the gamma-2 or 'true' late genes are expressed exclusively after viral DNA replication. Expression of true late (gamma-2 class) viral genes is completely prevented by inhibition of viral DNA synthesis. AREAS COVERED This review addresses the viral genes required for HCMV late gene transcription. Recombinant viruses that are defective for late gene transcription allow for early viral gene expression and viral DNA synthesis, but not infectious virus production. Since current HCMV prophylaxis is limited by several shortcomings, the use of defective recombinant viruses to induce HCMV cell-mediated and humoral immunity is discussed. EXPERT OPINION HCMV DNA replication and late gene transcription are not completely linked. Viral-encoded trans-acting factors are required. Recombinant viruses proficient in MIE and early viral gene expression and defective in late gene expression may be an alternative therapeutic vaccine candidates for the induction of cell-mediated and humoral immunity.
Collapse
Affiliation(s)
- Hiroki Isomura
- Gunma University Graduate School of Medicine, Department of Virology and Preventive Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | | |
Collapse
|
6
|
Strang BL, Bender BJ, Sharma M, Pesola JM, Sanders RL, Spector DH, Coen DM. A mutation deleting sequences encoding the amino terminus of human cytomegalovirus UL84 impairs interaction with UL44 and capsid localization. J Virol 2012; 86:11066-77. [PMID: 22855486 PMCID: PMC3457161 DOI: 10.1128/jvi.01379-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/23/2012] [Indexed: 01/10/2023] Open
Abstract
Protein-protein interactions are required for many biological functions. Previous work has demonstrated an interaction between the human cytomegalovirus DNA polymerase subunit UL44 and the viral replication factor UL84. In this study, glutathione S-transferase pulldown assays indicated that residues 1 to 68 of UL84 are both necessary and sufficient for efficient interaction of UL84 with UL44 in vitro. We created a mutant virus in which sequences encoding these residues were deleted. This mutant displayed decreased virus replication compared to wild-type virus. Immunoprecipitation assays showed that the mutation decreased but did not abrogate association of UL84 with UL44 in infected cell lysate, suggesting that the association in the infected cell can involve other protein-protein interactions. Further immunoprecipitation assays indicated that IRS1, TRS1, and nucleolin are candidates for such interactions in infected cells. Quantitative real-time PCR analysis of viral DNA indicated that the absence of the UL84 amino terminus does not notably affect viral DNA synthesis. Western blotting experiments and pulse labeling of infected cells with [(35)S]methionine demonstrated a rather modest downregulation of levels of multiple proteins and particularly decreased levels of the minor capsid protein UL85. Electron microscopy demonstrated that viral capsids assemble but are mislocalized in nuclei of cells infected with the mutant virus, with fewer cytoplasmic capsids detected. In sum, deletion of the sequences encoding the amino terminus of UL84 affects interaction with UL44 and virus replication unexpectedly, not viral DNA synthesis. Mislocalization of viral capsids in infected cell nuclei likely contributes to the observed decrease in virus replication.
Collapse
Affiliation(s)
- Blair L. Strang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian J. Bender
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mayuri Sharma
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jean M. Pesola
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca L. Sanders
- Department of Cellular and Molecular Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Deborah H. Spector
- Department of Cellular and Molecular Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Tandon R, Mocarski ES. Viral and host control of cytomegalovirus maturation. Trends Microbiol 2012; 20:392-401. [PMID: 22633075 PMCID: PMC3408842 DOI: 10.1016/j.tim.2012.04.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 04/12/2012] [Accepted: 04/20/2012] [Indexed: 11/26/2022]
Abstract
Maturation in herpesviruses initiates in the nucleus of the infected cell, with encapsidation of viral DNA to form nucleocapsids, and concludes with envelopment in the cytoplasm to form infectious virions that egress the cell. The entire process of virus maturation is orchestrated by protein-protein interactions and enzymatic activities of viral and host origin. Viral tegument proteins play important roles in maintaining the structural stability of capsids and directing the acquisition of virus envelope. Envelopment occurs at modified host membranes and exploits host vesicular trafficking. In this review, we summarize current knowledge of and concepts in human cytomegalovirus (HCMV) maturation and their parallels in other herpesviruses, with an emphasis on viral and host factors that regulate this process.
Collapse
Affiliation(s)
- Ritesh Tandon
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
8
|
Evans Braun T, Poole E, Sinclair J. Depletion of cellular pre-replication complex factors results in increased human cytomegalovirus DNA replication. PLoS One 2012; 7:e36057. [PMID: 22586460 PMCID: PMC3346814 DOI: 10.1371/journal.pone.0036057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 03/29/2012] [Indexed: 12/11/2022] Open
Abstract
Although HCMV encodes many genes required for the replication of its DNA genome, no HCMV-encoded orthologue of the origin binding protein, which has been identified in other herpesviruses, has been identified. This has led to speculation that HCMV may use other viral proteins or possibly cellular factors for the initiation of DNA synthesis. It is also unclear whether cellular replication factors are required for efficient replication of viral DNA during or after viral replication origin recognition. Consequently, we have asked whether cellular pre-replication (pre-RC) factors that are either initially associated with cellular origin of replication (e.g. ORC2), those which recruit other replication factors (e.g. Cdt1 or Cdc6) or those which are subsequently recruited (e.g. MCMs) play any role in the HCMV DNA replication. We show that whilst RNAi-mediated knock-down of these factors in the cell affects cellular DNA replication, as predicted, it results in concomitant increases in viral DNA replication. These data show that cellular factors which initiate cellular DNA synthesis are not required for the initiation of replication of viral DNA and suggest that inhibition of cellular DNA synthesis, in itself, fosters conditions which are conducive to viral DNA replication.
Collapse
Affiliation(s)
- Tamara Evans Braun
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Emma Poole
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - John Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
The human cytomegalovirus gene products essential for late viral gene expression assemble into prereplication complexes before viral DNA replication. J Virol 2011; 85:6629-44. [PMID: 21507978 DOI: 10.1128/jvi.00384-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of human cytomegalovirus (HCMV) late gene expression by viral proteins is poorly understood, and these viral proteins could be targets for novel antivirals. HCMV open reading frames (ORFs) UL79, -87, and -95 encode proteins with homology to late gene transcription factors of murine gammaherpesvirus 68 ORFs 18, 24, and 34, respectively. To determine whether these HCMV proteins are also essential for late gene transcription of a betaherpesvirus, we mutated HCMV ORFs UL79, -87, and -95. Cells were infected with the recombinant viruses at high and low multiplicities of infection (MOIs). While viral DNA was detected with the recombinant viruses, infectious virus was not detected unless the wild-type viral proteins were expressed in trans. At a high MOI, mutation of ORF UL79, -87, or -95 had no effect on the level of major immediate-early (MIE) gene expression or viral DNA replication, but late viral gene expression from the UL44, -75, and -99 ORFs was not detected. At a low MOI, preexpression of UL79 or -87, but not UL95, in human fibroblast cells negatively affected the level of MIE viral gene expression and viral DNA replication. The products of ORFs UL79, -87, and -95 were expressed as early viral proteins and recruited to prereplication complexes (pre-RCs), along with UL44, before the initiation of viral DNA replication. All three HCMV ORFs are indispensable for late viral gene expression and viral growth. The roles of UL79, -87, and -95 in pre-RCs for late viral gene expression are discussed.
Collapse
|
10
|
Cellular and viral control over the initial events of human cytomegalovirus experimental latency in CD34+ cells. J Virol 2010; 84:5594-604. [PMID: 20335255 DOI: 10.1128/jvi.00348-10] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) persists for the life of its host by establishing a latent infection. The identification of viral and cellular determinants of latency is the first step toward developing antiviral treatments that target and might clear or control the reservoir of latent virus. HCMV latency is established in CD34(+) cells when expression of viral immediate early (IE) proteins that initiate lytic infection is silenced. Viral IE gene expression during lytic infection is controlled by a cellular intrinsic immune defense mediated by promyelocytic leukemia nuclear body (PML-NB) proteins such as Daxx and histone deacetylases (HDACs). This defense is inactivated at the start of lytic infection by the HCMV virion tegument protein pp71, which upon viral entry traffics to the nucleus and induces Daxx degradation. Here we show that a similar defense is present, active, and not neutralized during experimental latency in CD34(+) cells infected in vitro because tegument-delivered pp71 remains in the cytoplasm. Artificial inactivation of this defense by HDAC inhibition or Daxx knockdown rescues viral IE gene expression upon infection of CD34(+) cells with a laboratory-adapted viral strain but not with clinical strains. Interestingly, coinfection of CD34(+) cells with clinical viral strains blocked the ability of an HDAC inhibitor to activate IE1 and early protein expression during infection with a laboratory-adapted strain. This suggests that in addition to the intrinsic defense, HCMV clinical strains contribute an HDAC-independent, trans-acting dominant means of control over viral gene expression during the early stages of experimental HCMV latency modeled in vitro in CD34(+) cells.
Collapse
|
11
|
Abstract
Human cytomegalovirus (HCMV) infection has been shown to activate the mTORC1 signaling pathway. However, the phosphorylation of mTORC1 targets is differentially sensitive to the mTORC1 inhibitor rapamycin, and the drug inhibits HCMV replication to a modest extent. Using Torin1, a newly developed inhibitor that targets the catalytic site of mTOR kinase, we show that HCMV replication requires both rapamycin-sensitive and rapamycin-resistant mTOR activity. The treatment of infected cells with Torin1 inhibits the phosphorylation of rapamycin-sensitive and rapamycin-resistant mTOR targets and markedly blocks the production of virus progeny. The blockade of mTOR signaling with Torin1, but not rapamycin, disrupts the assembly of the eIF4F complex and increases the association of the translational repressor 4EBP1 to the 7-methylguanosine cap-binding complex. Torin1 does not affect HCMV entry and only modestly reduces the accumulation of the immediate-early and early viral proteins that were tested despite the disruption of the eIF4F complex. In contrast, Torin1 significantly decreases the accumulation of viral DNA and the pUL99 viral late protein. Similar mTOR signaling events were observed during murine cytomegalovirus (MCMV) infection, and we utilized murine fibroblasts containing several different mutations to dissect the mechanism by which Torin1 inhibits MCMV replication. This approach demonstrated that mTORC2 and the Akt1 and Akt2 kinases are not required for the Torin1-mediated inhibition of cytomegalovirus replication. The inhibition of MCMV replication by Torin1 was rescued in cells lacking 4EBP1, demonstrating that the inactivation of 4EBP1 by mTORC1 is critical for cytomegalovirus replication. Finally, we show that Torin1 inhibits the replication of representative members of the alpha-, beta-, and gammaherpesvirus families, demonstrating the potential of mTOR kinase inhibitors as broad-spectrum antiviral agents.
Collapse
|
12
|
Strang BL, Boulant S, Coen DM. Nucleolin associates with the human cytomegalovirus DNA polymerase accessory subunit UL44 and is necessary for efficient viral replication. J Virol 2010; 84:1771-84. [PMID: 20007282 PMCID: PMC2812382 DOI: 10.1128/jvi.01510-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/23/2009] [Indexed: 01/04/2023] Open
Abstract
In the eukaryotic cell, DNA replication entails the interaction of multiple proteins with the DNA polymerase processivity factor PCNA. As the structure of the presumptive human cytomegalovirus (HCMV) DNA polymerase processivity factor UL44 is highly homologous to that of PCNA, we hypothesized that UL44 also interacts with numerous proteins. To investigate this possibility, recombinant HCMV expressing FLAG-tagged UL44 was generated and used to immunoprecipitate UL44 and associated proteins from infected cell lysates. Unexpectedly, nucleolin, a major protein component of the nucleolus, was identified among these proteins by mass spectrometry and Western blotting. The association of nucleolin and UL44 in infected cell lysate was confirmed by reciprocal coimmunoprecipitation in the presence and absence of nuclease. Western blotting and immunofluorescence assays demonstrated that the level of nucleolin increases during infection and that nucleolin becomes distributed throughout the nucleus. Furthermore, the colocalization of nucleolin and UL44 in infected cell nuclei was observed by immunofluorescence assays. Assays of HCMV-infected cells treated with small interfering RNA (siRNA) targeting nucleolin mRNA indicated that nucleolin was required for efficient virus production, viral DNA synthesis, and the expression of a late viral protein, with a correlation between the efficacy of knockdown and the effect on virus replication. In contrast, the level of neither global protein synthesis nor the replication of an unrelated virus (reovirus) was reduced in siRNA-treated cells. Taken together, our results indicate an association of nucleolin and UL44 in HCMV-infected cells and a role for nucleolin in viral DNA synthesis.
Collapse
Affiliation(s)
- Blair L. Strang
- Department of Biological Chemistry and Molecular Pharmacology, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Steeve Boulant
- Department of Biological Chemistry and Molecular Pharmacology, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
13
|
Human papillomavirus 16 E7 inactivator of retinoblastoma family proteins complements human cytomegalovirus lacking UL97 protein kinase. Proc Natl Acad Sci U S A 2009; 106:16823-8. [PMID: 19805380 DOI: 10.1073/pnas.0901521106] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several different families of DNA viruses encode proteins that inactivate the cellular retinoblastoma tumor suppressor protein (pRb), which normally functions to bind E2F transcription factors and restrict expression of genes necessary for cellular processes including DNA replication. Human cytomegalovirus (HCMV) UL97, a protein kinase functionally orthologous to cellular cyclin-dependent kinases, phosphorylates pRb on inactivating residues during HCMV infection. To assess if such phosphorylation is biologically relevant, we tested whether the human papillomavirus type 16 E7 protein, which inactivates pRb family proteins by direct binding and destabilization, could substitute for UL97 during HCMV infection. In the absence of UL97, expression of wild-type E7 protein, but not a mutant E7 unable to bind pRb family proteins, restored E2F-responsive cellular gene expression, late viral gene expression, and viral DNA synthesis to levels normally observed during wild-type virus infection of quiescent cells. UL97-null mutants exhibited more pronounced defects in virus production and DNA synthesis in quiescent cells as compared to serum-fed, cycling cells. E7 expression substantially enhanced infectious virus production in quiescent cells, but did not complement the defects observed during UL97-null virus infection of cycling cells. Thus, a primary role of UL97 is to inactivate pRb family proteins during infection of quiescent cells, and this inactivation likely abets virus replication by induction of cellular E2F-responsive genes. Our findings have implications for human cytomegalovirus disease and for drugs that target UL97.
Collapse
|
14
|
Groves IJ, Reeves MB, Sinclair JH. Lytic infection of permissive cells with human cytomegalovirus is regulated by an intrinsic 'pre-immediate-early' repression of viral gene expression mediated by histone post-translational modification. J Gen Virol 2009; 90:2364-2374. [PMID: 19515830 DOI: 10.1099/vir.0.012526-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV) lytic gene expression occurs in a regulated cascade, initiated by expression of the viral major immediate-early (IE) proteins. Transcribed from the major IE promoter (MIEP), the major IE genes regulate viral early and late gene expression. This study found that a substantial proportion of infecting viral genomes became associated with histones immediately upon infection of permissive fibroblasts at low m.o.i. and these histones bore markers of repressed chromatin. As infection progressed, however, the viral MIEP became associated with histone marks, which correlate with the known transcriptional activity of the MIEP at IE time points. Interestingly, this chromatin-mediated repression of the MIEP at 'pre-IE' times of infection could be overcome by inhibition of histone deacetylases, as well as by infection at high m.o.i., and resulted in a temporal advance of the infection cycle by inducing premature viral early and late gene expression and DNA replication. As well as the MIEP, and consistent with previous observations, the viral early and late promoters were also initially associated with repressive chromatin. However, changes in histone modifications around these promoters also occurred as infection progressed, and this correlated with the known temporal regulation of the viral early and late gene expression cascade. These data argue that the chromatin structure of all classes of viral genes are initially repressed on infection of permissive cells and that the chromatin structure of HCMV gene promoters plays an important role in regulating the time course of viral gene expression during lytic infection.
Collapse
Affiliation(s)
- Ian J Groves
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Matthew B Reeves
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - John H Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
15
|
Abstract
SUMMARY Human cytomegalovirus (HCMV) is a common, medically relevant human herpesvirus. The tegument layer of herpesvirus virions lies between the genome-containing capsids and the viral envelope. Proteins within the tegument layer of herpesviruses are released into the cell upon entry when the viral envelope fuses with the cell membrane. These proteins are fully formed and active and control viral entry, gene expression, and immune evasion. Most tegument proteins accumulate to high levels during later stages of infection, when they direct the assembly and egress of progeny virions. Thus, viral tegument proteins play critical roles at the very earliest and very last steps of the HCMV lytic replication cycle. This review summarizes HCMV tegument composition and structure as well as the known and speculated functions of viral tegument proteins. Important directions for future investigation and the challenges that lie ahead are identified and discussed.
Collapse
|
16
|
Isomura H, Stinski MF, Kudoh A, Nakayama S, Iwahori S, Sato Y, Tsurumi T. The late promoter of the human cytomegalovirus viral DNA polymerase processivity factor has an impact on delayed early and late viral gene products but not on viral DNA synthesis. J Virol 2007; 81:6197-206. [PMID: 17409154 PMCID: PMC1900103 DOI: 10.1128/jvi.00089-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Transcription of the DNA polymerase processivity factor gene (UL44) of human cytomegalovirus initiates at three distinct start sites, which are differentially regulated during productive infection. Two of these start sites, the distal and proximal sites, are active at early times, and the middle start site is active at only late times after infection (F. Leach and E. S. Mocarski, J. Virol. 63:1783-1791, 1989). Compared to the wild type, UL44 gene expression was lower for recombinant viruses with the distal or the middle TATA element mutated. The transcripts initiating from the distal or middle start site facilitated late viral gene expression. The level of viral DNA synthesis was affected by mutation of the distal TATA element. In contrast, mutation of the middle TATA element did not affect the level of viral DNA synthesis, but it did affect significantly the level of late viral gene expression. Recombinant viruses with the distal or middle TATA element mutated grew more slowly than the wild type at both low and high multiplicities of infection. Reduced expression of the UL44 gene from the late middle viral promoter correlated with decreased late viral protein expression and decreased viral growth.
Collapse
Affiliation(s)
- Hiroki Isomura
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Walsh D, Perez C, Notary J, Mohr I. Regulation of the translation initiation factor eIF4F by multiple mechanisms in human cytomegalovirus-infected cells. J Virol 2005; 79:8057-64. [PMID: 15956551 PMCID: PMC1143722 DOI: 10.1128/jvi.79.13.8057-8064.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As a viral opportunistic pathogen associated with serious disease among the immunocompromised and congenital defects in newborns, human cytomegalovirus (HCMV) must engage the translational machinery within its host cell to synthesize the viral proteins required for its productive growth. However, unlike many viruses, HCMV does not suppress the translation of host polypeptides. Here, we examine how HCMV regulates the cellular cap recognition complex eIF4F, a critical component of the cellular translation initiation apparatus that recruits the 40S ribosome to the 5' end of the mRNA. This study establishes that the cap binding protein eIF4E, together with the translational repressor 4E-BP1, are both phosphorylated early in the productive viral growth cycle and that the activity of the cellular eIF4E kinase, mnk, is critical for efficient viral replication. Furthermore, HCMV replication also induces an increase in the overall abundance of eIF4F components and promotes assembly of eIF4F complexes. Notably, increasing the abundance of select eIF4F core components and associated factors alters the ratio of active eIF4F complexes in relation to the 4E-BP1 translational repressor, illustrating a new strategy through which members of the herpesvirus family enhance eIF4F activity during their replicative cycle.
Collapse
Affiliation(s)
- Derek Walsh
- Department of Microbiology, NYU Cancer Institute, New York, New York 10016, USA
| | | | | | | |
Collapse
|
18
|
Patrone M, Percivalle E, Secchi M, Fiorina L, Pedrali-Noy G, Zoppé M, Baldanti F, Hahn G, Koszinowski UH, Milanesi G, Gallina A. The human cytomegalovirus UL45 gene product is a late, virion-associated protein and influences virus growth at low multiplicities of infection. J Gen Virol 2003; 84:3359-3370. [PMID: 14645917 DOI: 10.1099/vir.0.19452-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes a protein related to the large (R1) subunit of ribonucleotide reductase (RR), but does not encode the corresponding small (R2) subunit. The R1 homologue, UL45, lacks many catalytic residues, and its impact on deoxyribonucleotide (dNTP) production remains unknown. Here, UL45 is shown to accumulate at late stages of infection and to be a virion tegument protein. To study UL45 function in its genome context, UL45 was disrupted by transposon insertion. The UL45-knockout (UL45-KO) mutant exhibited a growth defect in fibroblasts at a low m.o.i. and also a cell-to-cell spread defect. This did not result from a reduced dNTP supply because dNTP pools were unchanged in resting cells infected with the mutant virus. Irrespective of UL45 expression, all cellular RR subunits - S-phase RR subunits, and the p53-dependent p53R2 - were induced by infection. p53R2 was targeted to the infected cell nucleus, suggesting that HCMV diverts a mechanism normally activated by DNA damage response. Cells infected with the UL45-KO mutant were moderately sensitized to Fas-induced apoptosis relative to those infected with the parental virus. Together with the report on the UL45-KO endotheliotropic HCMV mutant (Hahn et al., J Virol 76, 9551-9555, 2002), these data suggest that UL45 does not share the prominent antiapototic role attributed to the mouse cytomegalovirus homologue M45 (Brune et al., Science 291, 303-305, 2001).
Collapse
Affiliation(s)
- Marco Patrone
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Elena Percivalle
- Servizio di Virologia, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Massimiliano Secchi
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Loretta Fiorina
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Guido Pedrali-Noy
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Monica Zoppé
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Fausto Baldanti
- Servizio di Virologia, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gabriele Hahn
- Max von Pettenkofer-Institut, Lehrstuhl für Virologie, LMU-München, München, Germany
| | - Ulrich H Koszinowski
- Max von Pettenkofer-Institut, Lehrstuhl für Virologie, LMU-München, München, Germany
| | - Gabriele Milanesi
- Department of Medicine and Surgery, San Paolo Hospital, University of Milano, via A. di Rudinı ` 8, I-20142 Milano, Italy
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Andrea Gallina
- Department of Medicine and Surgery, San Paolo Hospital, University of Milano, via A. di Rudinı ` 8, I-20142 Milano, Italy
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| |
Collapse
|
19
|
McWatters BJP, Stenberg RM, Kerry JA. Characterization of the human cytomegalovirus UL75 (glycoprotein H) late gene promoter. Virology 2002; 303:309-16. [PMID: 12490392 DOI: 10.1006/viro.2002.1614] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycoprotein H (gH, UL75) of human cytomegalovirus (HCMV) is an essential envelope glycoprotein that functions in viral entry and the activation of gene expression. To understand the regulation of this important viral gene, the promoter of the UL75 late gene was characterized in HCMV-infected cells at the late stages of viral infection. Primer extension analysis revealed a single major start site located 26 bp downstream of a putative TATA element. Deletion analysis showed the presence of a dominant activation domain from +14 to +35 that masked regulatory sequences upstream of the TATA element. Mutational analysis demonstrated that a PEA3-like element in this downstream domain was important for promoter activation. In addition, gel shift analysis revealed direct protein binding to the PEA3-like element. Together, these studies reveal that the gH promoter is regulated in a complex manner with sequences both upstream and downstream of the cap site influencing promoter activation.
Collapse
Affiliation(s)
- Bernard J P McWatters
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23501, USA
| | | | | |
Collapse
|
20
|
Wu J, O'Neill J, Barbosa MS. Late temporal gene expression from the human cytomegalovirus pp28US (UL99) promoter when integrated into the host cell chromosome. J Gen Virol 2001; 82:1147-1155. [PMID: 11297689 DOI: 10.1099/0022-1317-82-5-1147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Toward understanding the temporal regulation of human cytomegalovirus (HCMV) late genes, we studied the regulation of the late gene promoter (pp28US, UL99) when outside the context of the viral genome and its response to the immediate early (IE) proteins. Expression of the luciferase reporter gene, regulated by the pp28US promoter, was synchronous with that of the endogenous viral pp28 gene, independently of whether the reporter was episomal or integrated into the glioblastoma cell line U373MG. Cotransfection of the reporter with expression vectors for each of the three major IE genes, IE72, IE86 and IE55, indicated that only IE86 transactivated the pp28US promoter. However, the magnitude of the promoter activation upon HCMV infection suggested that additional factors are also required for higher promoter activity. The promoter activation was specific to HCMV, as herpes simplex virus type 1 infection did not induce luciferase expression.
Collapse
Affiliation(s)
- Jun Wu
- Signal Research Division of Celgene, 5555 Oberlin Drive, San Diego, CA 92121, USA1
| | - Joseph O'Neill
- Signal Research Division of Celgene, 5555 Oberlin Drive, San Diego, CA 92121, USA1
| | - Miguel S Barbosa
- Signal Research Division of Celgene, 5555 Oberlin Drive, San Diego, CA 92121, USA1
| |
Collapse
|
21
|
Hyun JJ, Park HS, Kim KH, Kim HJ. Analysis of transcripts expressed from the UL47 gene of human cytomegalovirus. Arch Pharm Res 1999; 22:542-8. [PMID: 10615857 DOI: 10.1007/bf02975323] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The UL47 gene (b 60390-b 60338) located in the unique long region of the human cytomegalovirus (HCMV) AD169 strain genome was analyzed by RNA mapping. Northern blot analysis showed that the UL47 gene was expressed at late times after infection (72 h postinfection). The 9.7-kb transcript was expressed in the infected cells but not in phosphonoformate-treated cells at 72 hpi, indicating that the UL47 gene was only expressed at late times after infection. To map the 5'-end and 3'-end of UL47 transcripts, primer extension and RNase protection analysis were performed. Primer extension analysis revealed that the transcription initiation site of UL47 was located in 27 bp downstream (b 60323) of the TATA box motif. The sizes of UL47 ORF (approximately 2.9-kb) and UL48 ORF (approximately 6.7-kb) deduced from computer sequence analysis suggest that the expressed 9.7-kb transcript of UL47 uses the 3'-end polyadenylation signal of UL48. The result of RNase protection determined that the 3'-end of UL47 RNA utilized the 3'-end polyadenylation signal of UL48, which is located in HCMV genome b 70082.
Collapse
Affiliation(s)
- J J Hyun
- College of Pharmacy, Chung Ang University, Seoul, Korea
| | | | | | | |
Collapse
|
22
|
Affiliation(s)
- E A Fortunato
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0366, USA
| | | |
Collapse
|
23
|
Battista MC, Bergamini G, Boccuni MC, Campanini F, Ripalti A, Landini MP. Expression and characterization of a novel structural protein of human cytomegalovirus, pUL25. J Virol 1999; 73:3800-9. [PMID: 10196274 PMCID: PMC104157 DOI: 10.1128/jvi.73.5.3800-3809.1999] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) UL25 has recently been found to encode a new structural protein that is present in both virion and defective viral particles (C. J. Baldick and T. Shenk, J. Virol. 70:6097-6105, 1996). In the present work a polyclonal antibody was raised against a prokaryotic pUL25 fusion protein in order to investigate the biosynthesis and localization of the UL25 product (pUL25) during HCMV replication in human fibroblasts. Furthermore, pUL25 was transiently expressed in its native form and fused to the FLAG epitope, in COS7 and U373MG cells, in order to compare the properties of the isolated protein and that produced during infection. Immunoblotting analysis revealed a group of polypeptides, ranging from 80 to 100 kDa, in both transfected and infected cells; in vivo labeling experiments with infected cells demonstrated they are posttranslationally modified by phosphorylation. The transcriptional analysis of the UL25 open reading frame combined with the study of pUL25 biosynthesis showed true late kinetics for this protein in infected human fibroblasts. By indirect immunofluorescence both recombinant and viral pUL25 were detected exclusively in the cytoplasm of transfected or infected cells. Interestingly, pUL25 was shown to localize in typical condensed structures in the perinuclear region as already observed for other HCMV tegument proteins. Colocalization of ppUL99 in the same vacuoles suggests that these structure are endosomal cisternae, which are proposed to be a preferential site of viral particle envelopment. Our data suggest that pUL25 is most likely a novel tegument protein and possibly plays a key role in the process of envelopment.
Collapse
Affiliation(s)
- M C Battista
- Department of Clinical and Experimental Medicine, Division of Microbiology, University of Bologna, St. Orsola Hospital, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Lukac DM, Alwine JC. Effects of human cytomegalovirus major immediate-early proteins in controlling the cell cycle and inhibiting apoptosis: studies with ts13 cells. J Virol 1999; 73:2825-31. [PMID: 10074130 PMCID: PMC104040 DOI: 10.1128/jvi.73.4.2825-2831.1999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The major immediate-early (MIE) gene of human cytomegalovirus (HCMV) encodes several MIE proteins (MIEPs) produced as a result of alternative splicing and polyadenylation of the primary transcript. Previously we demonstrated that the HCMV MIEPs expressed from the entire MIE gene could rescue the temperature-sensitive (ts) transcriptional defect in the ts13 cell line. This defect is caused by a ts mutation in TAFII250, the 250-kDa TATA binding protein-associated factor (TAF). These and other data suggested that the MIEPs perform a TAF-like function in complex with the basal transcription factor TFIID. In addition to the transcriptional defect, the ts mutation in ts13 cells results in a defect in cell cycle progression which ultimately leads to apoptosis. Since all of these defects can be rescued by wild-type TAFII250, we asked whether the MIEPs could rescue the cell cycle defect and/or affect the progression to apoptosis. We have found that the MIEPs, expressed from the entire MIE gene, do not rescue the cell cycle block in ts13 cells grown at the nonpermissive temperature. However, despite the maintenance of the cell cycle block, the ts13 cells which express the MIEPs are resistant to apoptosis. MIEP mutants, which have previously been shown to be defective in rescuing the ts transcriptional defect, maintained the ability to inhibit apoptosis. Hence, the MIEP functions which affect transcription appear to be separable from the functions which inhibit apoptosis. We discuss these data in the light of the HCMV life cycle and the possibility that the MIEPs promote cellular transformation by a "hit-and-run" mechanism.
Collapse
Affiliation(s)
- D M Lukac
- Department of Microbiology, Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6142, USA
| | | |
Collapse
|
25
|
Wing BA, Johnson RA, Huang ES. Identification of positive and negative regulatory regions involved in regulating expression of the human cytomegalovirus UL94 late promoter: role of IE2-86 and cellular p53 in mediating negative regulatory function. J Virol 1998; 72:1814-25. [PMID: 9499032 PMCID: PMC109471 DOI: 10.1128/jvi.72.3.1814-1825.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human cytomegalovirus (HCMV) UL94 gene product is a herpesvirus-common virion protein that is expressed with true late kinetics. To identify the important cis- and trans-acting factors which contribute to UL94 transcriptional regulation, we have cloned, sequenced, and analyzed UL94 promoter function by transient transfection analysis. Transfection of UL94 promoter-reporter gene constructs into permissive human fibroblasts or U373(MG) cells indicated that promoter activity was detected following infection with HCMV. Point mutations within a TATA-like element located upstream of the RNA start site significantly reduced UL94 promoter activity. Deletion mutagenesis of the promoter indicated that a positive regulatory element (PRE) was likely to exist downstream of the UL94 mRNA start site, while a negative regulatory element (NRE) was present upstream of the TATA box. At late times of infection, the PRE appeared to have a dominant effect over the NRE to stimulate maximum levels of UL94 promoter activity, while at earlier times of infection, no activity associated with the PRE could be detected. The NRE, however, appeared to cause constitutive down-regulation of UL94 promoter activity. Binding sites for the cellular p53 protein located within the NRE appeared to contribute to NRE function, and NRE function could be recapitulated in cotransfection assays by concomitant expression of p53 and HCMV IE2-86 protein. Our results suggest a novel mechanism by which the cellular protein p53, which is involved in both transcriptional regulation and progression of cellular DNA synthesis, plays a central role in the regulation of a viral promoter which is not activated prior the onset of viral DNA replication.
Collapse
Affiliation(s)
- B A Wing
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599-7595, USA
| | | | | |
Collapse
|
26
|
Lukac DM, Harel NY, Tanese N, Alwine JC. TAF-like functions of human cytomegalovirus immediate-early proteins. J Virol 1997; 71:7227-39. [PMID: 9311796 PMCID: PMC192063 DOI: 10.1128/jvi.71.10.7227-7239.1997] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human cytomegalovirus (HCMV) major immediate-early (IE) proteins IEP86 (IE2(579aa)) and IEP72 (IE1(491aa)) can transcriptionally activate a variety of simple promoters containing a TATA element and one upstream transcription factor binding site. In our previous studies, transcriptional activation was shown to correlate with IEP86 binding to both the TATA-box binding protein (TBP) and the transcription factor bound upstream. IEP72 often synergistically affects the activation by IEP86, although it has not previously been shown to directly interact in vitro with IEP86, TBP, or transcription factors (e.g., Sp1 and Tef-1) bound by IEP86. We report biochemical and genetic evidence suggesting that the major IE proteins may perform a function similar to that of the TBP-associated factors (TAFs) which make up TFIID. Consistent with this model, we found that the major IE proteins interact with a number of TAFs. In vitro, IEP86 bound with drosophila TAF(II)110 (dTAF(II)110) and human TAF(II)130 (hTAF(II)130), while IEP72 bound dTAF(II)40, dTAF(II)110, and hTAF(II)130. Regions on major IE proteins which mediate binding have been defined. In addition, our data indicate that both IEP72 and IEP86 can bind simultaneously to hTAF(II)130, suggesting that this TAF may provide bridging interactions between the two proteins for transcriptional activation and synergy. In agreement, a transcriptional activation mutant of IEP72 is unable to participate in bridging. Confirmation that these in vitro interactions were relevant was provided by data showing that both IEP72 and IEP86 copurify with TFIID and coimmunoprecipitate with purified TFIID derived from infected cell nuclei. To further support a TAF-like function of the IE proteins, we have found that the IE proteins expressed from the intact major IE gene, and to a lesser extent IEP86 alone, can rescue the temperature-sensitive (ts) transcriptional defect in TAF(II)250 in the BHK-21 cell line ts13. Analyses of mutations in the major IE region show that IEP86 is essential for rescue and that IEP72 augments its effect, and that mutations which affect TAF interactions are debilitated in rescue. Our data, showing that the IE proteins can bind with TFIID and rescue a ts transcriptional defect in TAF(II)250, support the model that the IE proteins perform a TAF-like function as components of TFIID.
Collapse
Affiliation(s)
- D M Lukac
- Department of Microbiology and Graduate Group of Molecular Biology, School of Medicine, University of Pennsylvania, Philadelphia 19104-6142, USA
| | | | | | | |
Collapse
|
27
|
Kerry JA, Priddy MA, Staley TL, Jones TR, Stenberg RM. The role of ATF in regulating the human cytomegalovirus DNA polymerase (UL54) promoter during viral infection. J Virol 1997; 71:2120-6. [PMID: 9032345 PMCID: PMC191310 DOI: 10.1128/jvi.71.3.2120-2126.1997] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previous analysis of the human cytomegalovirus (HCMV) DNA polymerase (UL54) early gene promoter demonstrated that transcriptional activation of this gene is dependent upon the interaction of cellular transcription factors with viral transactivators (J. A. Kerry, M. A. Priddy, T. Y. Jervey, C. P. Kohler, T. L. Staley, C. D. Vanson, T. R. Jones, A. C. Iskenderian, D. G. Anders, and R. M. Stenberg, J. Virol. 70:373-382, 1996). A sequence element, IR1, was shown to be the primary regulatory element of this promoter in transient assays. However, assessment of this element in the context of the viral genome revealed IR1-independent activation at late times after infection. To extend these studies, we aim to identify additional sequence elements involved in the activation of the UL54 promoter. Our present studies demonstrate that the level of binding of proteins to the ATF site in the UL54 promoter is enhanced by viral infection. Furthermore this increase is sensitive to treatment with phosphonoacetic acid (PAA), a DNA synthesis inhibitor. These data suggest that the increase in the level of ATF binding activity is regulated, either directly or indirectly, by HCMV late gene expression. By using specific antibodies, we determined that ATF-1 was a major component of the proteins binding to the UL54 ATF site at late times. In addition, we have demonstrated direct binding of recombinant ATF-1 to the UL54 ATF site. To assess the biological significance of these events, a recombinant virus construct was generated that contained the UL54 promoter with a mutation in the ATF site regulating expression of the chloramphenicol acetyltransferase (CAT) reporter gene inserted between open reading frames US9 and US10. Analysis of this virus (RVATFmCAT) revealed that mutation of the ATF site does not alter the kinetics of UL54 promoter activation. However, levels of CAT mRNA and activity were reduced by 5- to 10-fold compared to those of the wild-type promoter at all stages of infection. These findings indicate that ATF-1 can regulate the levels of UL54 promoter activity at both early and late times. Furthermore, these results imply that HCMV can regulate the activity of cellular factors involved in early gene regulation.
Collapse
Affiliation(s)
- J A Kerry
- Department of Microbiology and Immunology, Eastern Virginia Medical School, Norfolk 23501, USA
| | | | | | | | | |
Collapse
|
28
|
Kerry JA, Priddy MA, Kohler CP, Staley TL, Weber D, Jones TR, Stenberg RM. Translational regulation of the human cytomegalovirus pp28 (UL99) late gene. J Virol 1997; 71:981-7. [PMID: 8995616 PMCID: PMC191147 DOI: 10.1128/jvi.71.2.981-987.1997] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The pp28 (UL99) gene of human cytomegalovirus is expressed as a true late gene, in that DNA synthesis is absolutely required for mRNA expression. Our previous studies demonstrated that pp28 promoter sequences from position -40 to +106 are sufficient for late gene expression in the context of the viral genome (C. P. Kohler, J. A. Kerry, M. Carter, V. P. Muzithras, T. R. Jones, and R. M. Stenberg, J. Virol. 68:6589-6597, 1994). To extend these studies, we have examined the sequences in the downstream leader region of the pp28 gene for their role in late gene expression. Deletion of sequences from position -6 to +46 (deltaSS) results in a threefold increase in gene expression in transient assays. In contrast, deletion of sequences from position +46 to +88 (deltaA) has little effect on gene expression. These results indicate that the sequences from position -6 to +46 may repress gene expression. To further analyze this region, site-directed mutagenesis was performed. Mutation of residues from either position +1 to +6 (SS1) or position +12 to +17 (SS2) duplicated the effect of the deltaSS deletion mutant, indicating that sequences from position +1 to +17 were important for the inhibitory effect. To assess the biological significance of these events, a recombinant virus construct containing the deltaSS mutant promoter regulating expression of the chloramphenicol acetyltransferase (CAT) reporter gene was generated. Analysis of this virus (RV delta SSCAT) revealed that deletion of sequences from position -6 to +46 does not alter the kinetic class of this promoter. However, the ratio of CAT protein to CAT mRNA levels in RV delta SSCAT-infected cells was 8- to 12-fold higher than that observed in the parental RV24/26CAT-infected cells. These results imply that the leader sequences within the pp28 gene can regulate the translation of this late gene.
Collapse
Affiliation(s)
- J A Kerry
- Department of Microbiology and Immunology, Eastern Virginia Medical School, Norfolk 23501, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Poma EE, Kowalik TF, Zhu L, Sinclair JH, Huang ES. The human cytomegalovirus IE1-72 protein interacts with the cellular p107 protein and relieves p107-mediated transcriptional repression of an E2F-responsive promoter. J Virol 1996; 70:7867-77. [PMID: 8892909 PMCID: PMC190858 DOI: 10.1128/jvi.70.11.7867-7877.1996] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Rb-related p107 protein has been implicated as an important control element in proper cell cycle progression. The p107 protein is thought to restrict cellular proliferation in part through its interaction with the E2F family of transcription factors and is, therefore, a specific target for regulation by several DNA viruses. Here, we demonstrate that p107 protein levels are induced in a biphasic manner in human fibroblasts during productive infection by the human cytomegalovirus (HCMV). Expression patterns of p107 protein levels during HCMV infection of human embryonic lung cells (HELs) demonstrate a sustained induction from early to late times of infection. We also demonstrate that the HCMV immediate-early protein IE1-72 complexes in vivo with the p107 protein and that this interaction can be reconstituted in an in vitro system by using reticulocyte-translated protein. Our data demonstrate that the interaction between p107 and the IE1-72 protein occurs at times of infection that temporally match the second tier of p107 protein induction and the phosphorylation pattern of the IE1-72 protein. Furthermore, we show here that the ability of p107 to transcriptionally repress E2F-responsive promoters can be overcome by expression of the IE1-72 protein. This effect appears to be specific, since the IE1-72 protein is not capable of relieving Rb-mediated repression of an E2F-responsive promoter. Finally, our data demonstrate that HCMV infection can induce cellular proliferation in quiescent cells and that IE1-72 expression alone can, to a degree, drive a similar progression through the cell cycle. These data suggest that IE1-72-mediated transactivation of E2F-responsive promoters through alleviation of p107 transcriptional repression may play a key role in the cell cycle progression stimulated by HCMV infection.
Collapse
Affiliation(s)
- E E Poma
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599-7295, USA
| | | | | | | | | |
Collapse
|
30
|
Yoo YD, Chiou CJ, Choi KS, Yi Y, Michelson S, Kim S, Hayward GS, Kim SJ. The IE2 regulatory protein of human cytomegalovirus induces expression of the human transforming growth factor beta1 gene through an Egr-1 binding site. J Virol 1996; 70:7062-70. [PMID: 8794351 PMCID: PMC190757 DOI: 10.1128/jvi.70.10.7062-7070.1996] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Increases in transforming growth factor beta1 (TGF-beta1) mRNA and biological activity in the early phase of human cytomegalovirus (CMV) infection in fibroblasts are paralleled by increased TGF-beta1-chloramphenicol acetyltransferase (CAT) reporter gene activity. To determine how CMV infection transactivates the TGF-beta1 promoter, we examined the effects of the cotransfected IE2 regulatory protein of human CMV on 5'-deleted TGF-beta1 promoter-CAT reporter genes in transient DNA transfection assays. Two upstream TGF-beta1 promoter regions each containing an Egr-1 consensus site were shown to be important for IE2-induced transactivation in a cell type that displayed greatly reduced nonspecific activity. Furthermore, transfer of an Egr-l site from between positions -125 and -98, but not point mutant versions of this site, to a heterologous promoter also conveyed IE2 responsiveness. Addition of an IE2 expression vector or use of the U373 A45 astrocytoma cell line expressing IE2 also produced synergistic stimulation of GAL4-Egr-l-mediated activation of a target promoter containing GAL4 binding sites. The 80-kDa IE2 protein present in A45 cells proved to selectively bind to glutathione S-transferase (GST)-Egr-1 beads. The results of in vitro protein binding assays also revealed that an intact in vitro-translated IE2 protein bound directly to the GST-Egr-1 fusion protein through the zinc finger domain of the Egr-1 protein and that this binding activity was abolished by deletion of parts of the zinc finger DNA-binding domain. Similarly, the Egr-1 protein was found to associate preferentially with a small region within the C-terminal half of the IE2 protein adjacent to the DNA-binding and dimerization domains that are important for both transactivation and downregulation. We conclude from these observations that IE2 may regulate transcription of the TGF-beta1 gene as well as other potential cellular targets by virtue of its ability to interact with the Egr-1 DNA-binding protein.
Collapse
Affiliation(s)
- Y D Yoo
- Laboratory of Chemoprevention, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Byrnes V, Hazuda D. A system to analyze and identify inhibitors of HIV-1 gene regulation using a defective integrated provirus. Methods Enzymol 1996; 275:348-61. [PMID: 9026648 DOI: 10.1016/s0076-6879(96)75021-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- V Byrnes
- Department of Antiviral Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | |
Collapse
|
32
|
Yurochko AD, Kowalik TF, Huong SM, Huang ES. Human cytomegalovirus upregulates NF-kappa B activity by transactivating the NF-kappa B p105/p50 and p65 promoters. J Virol 1995; 69:5391-400. [PMID: 7636984 PMCID: PMC189383 DOI: 10.1128/jvi.69.9.5391-5400.1995] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
During human cytomegalovirus (HCMV) infection, a series of regulated events take place following virus binding and entry into the cell, including the upregulation of cellular transcription factors, such as NF-kappa B, which play an essential role in the viral life cycle. We show here that NF-kappa B message is induced during HCMV infection and that the induction is biphasic, suggesting an initial induction at immediate-early (IE) times and a second round of induction at early times. This hypothesis is supported by experiments using cyclohexamide, which showed that the first tier of induction was drug insensitive, while the second tier was drug sensitive. We then show that virus binding alone is sufficient to stimulate NF-kappa DNA binding activity, supporting its role in the initial induction of NF-kappa B. To begin to elucidate the mechanism(s) for the second tier of NF-kappa B regulation, we examined promoter constructs from the NF-kappa B subunits (p105/p50 and p65) for responsiveness following HCMV infection. HCMV infection transactivated the p105/p50 and p65 promoters. The viral IE proteins (IE1-72, IE2-55, and IE2-86) are expressed during the time we see NF-kappa B induction, so we examined their role in NF-kappa B induction. The IE1-72, IE2-55, and IE2-86 proteins transactivated the p65 promoter, while only the IE2-55 protein transactivated the p105/p50 promoter. The p105/p50 promoter has NF-kappa B sites; therefore, upregulation could also be caused by an autoregulatory mechanism. The p65 promoter, however, has been demonstrated to contain only Sp1 sites. To investigate the potential role of SP1, we examined nuclear extracts from HCMV-infected cells. Here, we show that there is a biphasic increase in SP1 activity during viral infection and that there is apparently an absolute requirement for SP1 in the transactivation of the p65 promoter. In conclusion, we suggest a model in which the initial induction of NF-kappa B occurs through viral modulation of cellular factors and the sustained levels of NF-kappa B induction are regulated by a combination of cellular and viral factors.
Collapse
Affiliation(s)
- A D Yurochko
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 27599-7295, USA
| | | | | | | |
Collapse
|
33
|
Adam BL, Jervey TY, Kohler CP, Wright GL, Nelson JA, Stenberg RM. The human cytomegalovirus UL98 gene transcription unit overlaps with the pp28 true late gene (UL99) and encodes a 58-kilodalton early protein. J Virol 1995; 69:5304-10. [PMID: 7636973 PMCID: PMC189368 DOI: 10.1128/jvi.69.9.5304-5310.1995] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A murine monoclonal antibody (I2) reacts strongly with the nucleus of human cytomegalovirus (HCMV)-infected human fibroblasts. Western blot (immunoblot) analysis using I2 demonstrated that a protein with an apparent molecular mass of 58-kDa (E58) was expressed at 5 h after infection, and levels increased through 72 h. Immunoblot screening of an early cDNA expression library resulted in a positive clone which hybridized to the right end of the XbaI C fragment of the HCMV Towne strain. Further analysis demonstrated that the E58-specific clone was homologous to the putative UL98 open reading frame, which has been proposed to encode the viral alkaline exonuclease homolog. RNA analysis demonstrated a 3.0-kb RNA which is expressed at early times after infection, as well as in the absence of viral DNA replication, and which is 3' coterminal with the pp28 (UL99) gene region. Insertion of the UL98 genomic sequence into a eucaryotic expression vector and subsequent Western blot analysis using I2 demonstrated that the expressed protein comigrated with E58 from infected cells. E58 also reacts specifically with a previously described antibody, anti-P2-1, which was proposed to recognize a putative late 58-kDa protein. E58 comigrates with the putative late 58-kDa protein, indicating that these two proteins are likely the same. Analysis of the UL98 promoter revealed a TATATAA sequence located at nucleotide 142525. Insertion of the putative promoter 5' to a reporter gene demonstrated that the UL98 promoter was activated in cotransfection experiments with IE1 and IE2 proteins. These studies demonstrate that UL98 is a bona fide early gene, which is consistent with its probable role as the viral alkaline exonuclease gene.
Collapse
Affiliation(s)
- B L Adam
- Department of Microbiology and Immunology, Eastern Virginia Medical School, Norfolk 23501, USA
| | | | | | | | | | | |
Collapse
|
34
|
Wing BA, Huang ES. Analysis and mapping of a family of 3'-coterminal transcripts containing coding sequences for human cytomegalovirus open reading frames UL93 through UL99. J Virol 1995; 69:1521-31. [PMID: 7853485 PMCID: PMC188744 DOI: 10.1128/jvi.69.3.1521-1531.1995] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) open reading frames (ORFs) UL93 through UL99 are contained within a region of viral genome that is well conserved in all herpesviruses. Previous reports detailing the expression of ORF UL99 (also referred to as the 28-kDa virion phosphoprotein or pp28) indicated that the pattern of transcription proximal to pp28 is extremely complex and involves a number of large overlapping transcripts, none of which have been characterized. We have used an RNA-mapping approach consisting of Northern (RNA) hybridization, RNase protection, and primer extensions to determine the coding capacity of several large-molecular-weight transcripts which overlap the 1.3- and 1.6-kb UL99-specific transcripts. Our results suggest that six differentially regulated transcripts with sizes of 2.6, 4.7, 5.6, 7.3, 9.1, and 10.5 kb, and derived from the same strand of the viral genome overlap, are 3'-coterminal with the smaller UL99-specific transcripts. On the basis of 5'-end mapping via primer extension and RNase protection, we have determined that the 2.6- to 10.5-kb messages initiate upstream of each of the potential ORFs in this region, UL98, UL97, UL96, UL95, UL94, and UL93. By using cycloheximide and ganciclovir [9-(1,3-dihydroxy-2-propoxymethyl)guanine] to block de novo viral protein synthesis and viral DNA replication, respectively, we have determined that the 2.6-, 4.7-, 5.6-, and 7.3-kb messages have characteristics of early or early-late transcripts, whereas the 9.1- and 10.5-kb messages appear to be true late transcripts. The evolutionary conservation of ORFs UL93 through UL99 and their transcriptional regulation in other herpesviruses are discussed.
Collapse
Affiliation(s)
- B A Wing
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill 27599
| | | |
Collapse
|
35
|
Kohler CP, Kerry JA, Carter M, Muzithras VP, Jones TR, Stenberg RM. Use of recombinant virus to assess human cytomegalovirus early and late promoters in the context of the viral genome. J Virol 1994; 68:6589-97. [PMID: 8083994 PMCID: PMC237079 DOI: 10.1128/jvi.68.10.6589-6597.1994] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have developed a system to study human cytomegalovirus (HCMV) cis-acting promoter elements within the context of the viral genome. A recombinant HCMV (RV134) containing a marker gene (beta-glucuronidase) was used to insert HCMV promoter-chloramphenicol acetyltransferase gene constructs into the viral genome between open reading frames US9 and US10. Using this system, we have studied the promoters for the early DNA polymerase gene (UL54), the early-late lower matrix phosphoprotein gene (pp65, UL83), and the true late 28-kDa structural phosphoprotein gene (pp28, UL99). Transient-expression assays demonstrated that the pp65 and pp28 promoters are activated earlier and to higher levels than typically observed with the endogenous gene. In contrast, insertion of these promoters into the viral genome resulted in kinetics which mimicked that of the endogenous genes. In addition, we have also tested a variant of the pp28 promoter (d24/26CAT) which is deleted from -609 to -41. This promoter behaved similarly to the wild-type pp28 promoter, indicating that sequences from -40 to +106 are sufficient for conferring true late kinetics. Taken together, these data demonstrate that the viral genome affords a level of regulation on HCMV gene expression that has been previously unrealized. Therefore, these experiments provide a model system for the analysis of cis-acting promoter regulatory elements in the context of the viral genome.
Collapse
Affiliation(s)
- C P Kohler
- Department of Microbiology and Immunology, Eastern Virginia Medical School, Norfolk 23501
| | | | | | | | | | | |
Collapse
|
36
|
Lukac DM, Manuppello JR, Alwine JC. Transcriptional activation by the human cytomegalovirus immediate-early proteins: requirements for simple promoter structures and interactions with multiple components of the transcription complex. J Virol 1994; 68:5184-93. [PMID: 8035517 PMCID: PMC236462 DOI: 10.1128/jvi.68.8.5184-5193.1994] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have utilized a number of well-defined, simple, synthetic promoters (upstream factor binding sites and TATA elements) to analyze the activation mechanisms of the human cytomegalovirus immediate-early (IE) proteins. We found that the 86-kDa IE protein (known as IEP86, IE2(559aa), or ppUL122a) can recognize and activate a variety of simple promoters, in agreement with the observation that it is a promiscuous activator. However, in the comparison of otherwise identical promoters IEP86 does have preferences for specific TATA elements (hsp70 > adenovirus E2 > simian virus 40 early) and specific upstream transcription factor binding sites (CAAT > SP1 approximately Tef-1 > ATF; no activation with AP1 or OCT). In contrast, the 72-kDa IE protein (known as IEP72, IE1(491aa), or ppUL123) alone did not significantly activate the simple promoters under our experimental conditions. However, each promoter activated by IEP86 was synergistically affected by the addition of IEP72. In addition, the 55-kDa IE protein (IEP55, a splice variant form of IE2, IE2(425aa), or ppUL122b) repeatedly had a negative effect, downregulating the activation of promoters caused by IEP86 and the synergy of IEP86 and IEP72. We show that the ability of IEP86 to activate many simple promoters correlates not only with its previously described ability to interact with the TATA-binding protein (TBP) (B. A. Furnari, E. Poma, T. F. Kowalik, S.-M. Huong, and E.-S. Huang, J. Virol. 67:4981-4991, 1993; C. Hagemeier, S. Walker, R. Caswell, T. Kouzarides, and J. Sinclair, J. Virol. 66:4452-4456, 1992; R. Jupp, S. Hoffman, R. M. Stenberg, J. A. Nelson, and P. Ghazal, J. Virol. 67:7539-7546, 1993) but also with its ability to interact with the transcription factors which bind to the upstream element of promoters it activated (e.g., SP1 and Tef-1 but not Oct-1). This ability to have multiple interactions with the promoter complex may be crucial for transcriptional activation, since the IE proteins cannot activate promoters having only a TATA element or only an upstream transcription factor binding site. In addition, we show that proteins which bind IEP86 also bind to IEP55. Thus, the negative effect on transcription noted with IEP55 may be the result of competition with IEP86 for interaction with the promoter complex. The synergy caused by IEP72 appears to be mediated by a more indirect mechanism. This is suggested by our observation that IEP72 could not bind to any of the proteins tested (TBP, Tef-1, or Oct-1) or to IEP86.
Collapse
Affiliation(s)
- D M Lukac
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
37
|
Winkler M, Rice SA, Stamminger T. UL69 of human cytomegalovirus, an open reading frame with homology to ICP27 of herpes simplex virus, encodes a transactivator of gene expression. J Virol 1994; 68:3943-54. [PMID: 8189530 PMCID: PMC236900 DOI: 10.1128/jvi.68.6.3943-3954.1994] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The UL69 open reading frame of human cytomegalovirus (HCMV) is homologous to the immediate-early protein ICP27 of herpes simplex virus, an essential viral regulatory protein involved in the transition from early to late gene expression. Genes with homology to ICP27 have been detected in all subclasses of herpesviruses so far. While the respective proteins in alpha- and gammaherpesviruses have been defined as trans-regulatory molecules, nothing is known about these genes in betaherpesviruses. This study was therefore undertaken in order to investigate expression from the UL69 gene locus of HCMV. Northern (RNA) blot experiments revealed a complex pattern of transcripts that changed during the time course of the HCMV replicative cycle: two transcripts of 2.7 and 3.5 kb that were regulated differentially could be detected as early as 7 h after infection. However, these transcripts could not be detected in the presence of cycloheximide. Additional, larger transcripts were present exclusively at late times after infection. To analyze protein expression from the UL69 gene region, the UL69 open reading frame was expressed as a histidine-tagged protein in Escherichia coli. A specific antiserum was generated and used to detect the UL69 protein in HCMV-infected cells which revealed its localization within the intranuclear inclusions that are characteristic for HCMV infection. In cotransfection experiments, an HCMV true late promoter could not be activated by UL69, whereas an early promoter and several heterologous promoters were stimulated about 10-fold. Complementation studies showed that the UL69 protein cannot substitute for ICP27 in the context of the HSV infection, suggesting functional differences between these two proteins. In summary, these experiments define a novel regulatory protein encoded by HCMV that is expressed as an early-late gene and appears to exert a broad stimulatory effect on gene expression.
Collapse
Affiliation(s)
- M Winkler
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
38
|
Jupp R, Hoffmann S, Stenberg RM, Nelson JA, Ghazal P. Human cytomegalovirus IE86 protein interacts with promoter-bound TATA-binding protein via a specific region distinct from the autorepression domain. J Virol 1993; 67:7539-46. [PMID: 8230473 PMCID: PMC238220 DOI: 10.1128/jvi.67.12.7539-7546.1993] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The major immediate-early gene of human cytomegalovirus encodes several isoforms of an immediate-early protein which has distinct transcriptional regulatory properties. The IE86 isoform autorepresses the major immediate-early promoter by directly binding the cis repression signal element located between the TATA box and the mRNA cap site. In addition to this activity, IE86 stimulates other viral and cellular promoters. One mechanism by which eukaryotic regulatory proteins are thought to stimulate transcription is by contacting one or more general transcription factors. We show that the IE86 protein physically interacts with the DNA-binding subunit (TATA-binding protein) human transcription factor IID via the TATA-binding protein-contacting domain in the N terminus of IE86. In a mobility shift assay, IE86 was also observed to stabilize the binding of TATA-binding protein to promoter DNA. The domains within IE86 responsible for mediating transactivation and repression functioned independently. These experiments thus demonstrate the elegant ability of human cytomegalovirus to join different protein domains to produce distinct multifunctional proteins.
Collapse
Affiliation(s)
- R Jupp
- Department of Microbiology and Immunology, Oregon Health Sciences University, Portland 97201
| | | | | | | | | |
Collapse
|
39
|
Wu J, Jupp R, Stenberg RM, Nelson JA, Ghazal P. Site-specific inhibition of RNA polymerase II preinitiation complex assembly by human cytomegalovirus IE86 protein. J Virol 1993; 67:7547-55. [PMID: 8230474 PMCID: PMC238221 DOI: 10.1128/jvi.67.12.7547-7555.1993] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The human cytomegalovirus major immediate-early gene encodes several protein isoforms which autoregulate the major immediate-early promoter (MIEP). One of these isoforms, the IE86 protein (UL122, IE2), is a DNA-binding protein that represses the MIEP through its cognate recognition sequence (designated the cis repression signal [crs]) located between the TATA box and the initiation site of transcription. Purified recombinant IE86 protein was shown to repress MIEP transcription in vitro, in a cis-acting mediated pathway, with nuclear extracts from HeLa S3, U373-MG, and primary human foreskin fibroblast cells. Repression of the MIEP by IE86 was shown by two criteria to be dependent on the direct interaction of IE86 with the crs element. Core promoter constructs containing essentially the MIEP TATA box and crs element were also specifically repressed by IE86 but not by a mutant IE86 protein, indicating the general transcription machinery as the target for IE86 repression. Kinetic and template commitment experiments demonstrated that IE86 affects preinitiation complex formation but not the rate of reinitiation. Sarkosyl inhibition experiments further revealed that IE86 was unable to effect repression by either disassembling or preventing the elongation of a preexisting transcription complex. Further, the ability of IE86 to interact with the DNA-binding subunit of TFIID was shown not to be required for repression. These functional protein-DNA and protein-protein interaction experiments demonstrate that IE86 specifically interferes with the assembly of RNA polymerase II preinitiation complexes. The biological significance of these results and the precise mechanism by which IE86 represses transcription are discussed.
Collapse
Affiliation(s)
- J Wu
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | | | |
Collapse
|
40
|
Jupp R, Hoffmann S, Depto A, Stenberg RM, Ghazal P, Nelson JA. Direct interaction of the human cytomegalovirus IE86 protein with the cis repression signal does not preclude TBP from binding to the TATA box. J Virol 1993; 67:5595-604. [PMID: 8394462 PMCID: PMC237963 DOI: 10.1128/jvi.67.9.5595-5604.1993] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The human cytomegalovirus major immediate-early gene encodes several protein isoforms which autoregulate the major immediate-early promoter (MIEP). One of these isoforms, the IE86 protein, represses the MIEP through a DNA sequence located between the TATA box and the transcription initiation site, designated the cis repression signal (crs). Through mutational analysis, amino acid domains within IE86 responsible for binding the crs element were located at the C terminus. Mutation of the putative zinc finger domain, which precluded IE86 from binding DNA, converted the protein from a repressor of MIEP transcription into an activator. DNase I protection analysis demonstrated that the IE86 footprint overlapped the sequence protected by the TATA-binding protein (TBP). Investigation of whether IE86 was able to displace TBP from DNA revealed that both proteins could bind DNA simultaneously. However, higher concentrations of IE86 were required to obtain protection of the crs element in the presence of prebound TBP. Similarly, higher concentrations of TBP were required to obtain protection in the presence of prebound IE86. These observations indicate that steric hinderance impairs but does not prevent both proteins from binding DNA synchronously.
Collapse
Affiliation(s)
- R Jupp
- Department of Microbiology and Immunology, Oregon Health Sciences University, Portland 97201
| | | | | | | | | | | |
Collapse
|
41
|
Stenberg RM. Immediate-Early Genes of Human Cytomegalovirus: Organization and Function. MOLECULAR ASPECTS OF HUMAN CYTOMEGALOVIRUS DISEASES 1993. [DOI: 10.1007/978-3-642-84850-6_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|