1
|
Low YH, Loh CJL, Peh DYY, Chu AJM, Han S, Toh HC. Pathogenesis and therapeutic implications of EBV-associated epithelial cancers. Front Oncol 2023; 13:1202117. [PMID: 37901329 PMCID: PMC10600384 DOI: 10.3389/fonc.2023.1202117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Epstein-Barr virus (EBV), one of the most common human viruses, has been associated with both lymphoid and epithelial cancers. Undifferentiated nasopharyngeal carcinoma (NPC), EBV associated gastric cancer (EBVaGC) and lymphoepithelioma-like carcinoma (LELC) are amongst the few common epithelial cancers that EBV has been associated with. The pathogenesis of EBV-associated NPC has been well described, however, the same cannot be said for primary pulmonary LELC (PPLELC) owing to the rarity of the cancer. In this review, we outline the pathogenesis of EBV-associated NPC and EBVaGCs and their recent advances. By drawing on similarities between NPC and PPLELC, we then also postulated the pathogenesis of PPLELC. A deeper understanding about the pathogenesis of EBV enables us to postulate the pathogenesis of other EBV associated cancers such as PPLELC.
Collapse
Affiliation(s)
- Yi Hua Low
- Duke-NUS Medical School, Singapore, Singapore
| | | | - Daniel Yang Yao Peh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Axel Jun Ming Chu
- Singapore Health Services Internal Medicine Residency Programme, Singapore, Singapore
| | - Shuting Han
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Giammanco A, Anzalone R, Serra N, Graceffa G, Vieni S, Scibetta N, Rea T, Capra G, Fasciana T. Helicobacter pylori and Epstein-Barr Virus Co-Infection in Gastric Disease: What Is the Correlation with p53 Mutation, Genes Methylation and Microsatellite Instability in a Cohort of Sicilian Population? Int J Mol Sci 2023; 24:ijms24098104. [PMID: 37175810 PMCID: PMC10179236 DOI: 10.3390/ijms24098104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Genetic predisposition, environmental factors, and infectious agents interact in the development of gastric diseases. Helicobacter pylori (Hp) and Epstein-Barr virus (EBV) infection has recently been shown to be correlated with these diseases. A cross-sectional study was performed on 100 hospitalized Italian patients with and without gastric diseases. The patients were stratified into four groups. Significant methylation status differences among CDH1, DAPK, COX2, hMLH1 and CDKN2A were observed for coinfected (Hp-EBV group) patients; particularly, a significant presence of COX2 (p = 0.0179) was observed. For microsatellite instability, minor stability was described in the Hp-HBV group (69.23%, p = 0.0456). Finally, for p53 mutation in the EBV group, exon 6 was, significantly, most frequent in comparison to others (p = 0.0124), and in the Hp-EBV group exon 8 was, significantly, most frequent in comparison to others (p < 0.0001). A significant positive relationship was found between patients with infection (Hp, EBV or both) and p53 mutation (rho = 0.383, p = 0.0001), methylation status (rho = 0.432, p < 0.0001) and microsatellite instability (rho = 0.285, p = 0.004). Finally, we observed among infection and methylation status, microsatellite instability, and p53 mutation a significant positive relationship only between infection and methylation status (OR = 3.78, p = 0.0075) and infection and p53 mutation (OR = 6.21, p = 0.0082). According to our analysis, gastric disease in the Sicilian population has different pathways depending on the presence of various factors, including infectious agents such as Hp and EBV and genetic factors of the subject.
Collapse
Affiliation(s)
- Anna Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Rita Anzalone
- Department of Surgical Oncological and Oral Sciences, University of Palermo, 90133 Palermo, Italy
| | - Nicola Serra
- Department of Public Health, University Federico II of Naples, 80138 Napoli, Italy
| | - Giuseppa Graceffa
- Department of Surgical Oncological and Oral Sciences, University of Palermo, 90133 Palermo, Italy
| | - Salvatore Vieni
- Department of Surgical Oncological and Oral Sciences, University of Palermo, 90133 Palermo, Italy
| | - Nunzia Scibetta
- Anatomopathology Unit, Arnas Civico Di Cristina Benfratelli Hospital, 90127 Palermo, Italy
| | - Teresa Rea
- Public Health Department, Federico II University Hospital, 80131 Naples, Italy
| | - Giuseppina Capra
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Teresa Fasciana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
3
|
Mireștean CC, Iancu RI, Iancu DPT. p53 Modulates Radiosensitivity in Head and Neck Cancers-From Classic to Future Horizons. Diagnostics (Basel) 2022; 12:3052. [PMID: 36553058 PMCID: PMC9777383 DOI: 10.3390/diagnostics12123052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
p53, initially considered a tumor suppressor, has been the subject of research related to cancer treatment resistance in the last 30 years. The unfavorable response to multimodal therapy and the higher recurrence rate, despite an aggressive approach, make HNSCC a research topic of interest for improving therapeutic outcomes, even if it is only the sixth most common malignancy worldwide. New advances in molecular biology and genetics include the involvement of miRNA in the control of the p53 pathway, the understanding of mechanisms such as gain/loss of function, and the development of different methods to restore p53 function, especially for HPV-negative cases. The different ratio between mutant p53 status in the primary tumor and distant metastasis originating HNSCC may serve to select the best therapeutic target for activating an abscopal effect by radiotherapy as a "booster" of the immune system. P53 may also be a key player in choosing radiotherapy fractionation regimens. Targeting any pathway involving p53, including tumor metabolism, in particular the Warburg effect, could modulate the radiosensitivity and chemo-sensitivity of head and neck cancers.
Collapse
Affiliation(s)
- Camil Ciprian Mireștean
- Department of Oncology and Radiotherapy, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
- Department of Surgery, Railways Clinical Hospital Iasi, 700506 Iași, Romania
| | - Roxana Irina Iancu
- Oral Pathology Department, Faculty of Dental Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Clinical Laboratory, “St. Spiridon” Emergency Universitary Hospital, 700111 Iași, Romania
| | - Dragoș Petru Teodor Iancu
- Oncology and Radiotherapy Department, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Radiation Oncology, Regional Institute of Oncology, 700483 Iași, Romania
| |
Collapse
|
4
|
Fierti AO, Yakass MB, Okertchiri EA, Adadey SM, Quaye O. The Role of Epstein-Barr Virus in Modulating Key Tumor Suppressor Genes in Associated Malignancies: Epigenetics, Transcriptional, and Post-Translational Modifications. Biomolecules 2022; 12:biom12010127. [PMID: 35053275 PMCID: PMC8773690 DOI: 10.3390/biom12010127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is ubiquitous and carried by approximately 90% of the world’s adult population. Several mechanisms and pathways have been proposed as to how EBV facilitates the pathogenesis and progression of malignancies, such as Hodgkin’s lymphoma, Burkitt’s lymphoma, nasopharyngeal carcinoma, and gastric cancers, the majority of which have been linked to viral proteins that are expressed upon infection including latent membrane proteins (LMPs) and Epstein-Barr virus nuclear antigens (EBNAs). EBV expresses microRNAs that facilitate the progression of some cancers. Mostly, EBV induces epigenetic silencing of tumor suppressor genes, degradation of tumor suppressor mRNA transcripts, post-translational modification, and inactivation of tumor suppressor proteins. This review summarizes the mechanisms by which EBV modulates different tumor suppressors at the molecular and cellular levels in associated cancers. Briefly, EBV gene products upregulate DNA methylases to induce epigenetic silencing of tumor suppressor genes via hypermethylation. MicroRNAs expressed by EBV are also involved in the direct targeting of tumor suppressor genes for degradation, and other EBV gene products directly bind to tumor suppressor proteins to inactivate them. All these processes result in downregulation and impaired function of tumor suppressors, ultimately promoting malignances.
Collapse
|
5
|
de Bakker T, Journe F, Descamps G, Saussez S, Dragan T, Ghanem G, Krayem M, Van Gestel D. Restoring p53 Function in Head and Neck Squamous Cell Carcinoma to Improve Treatments. Front Oncol 2022; 11:799993. [PMID: 35071005 PMCID: PMC8770810 DOI: 10.3389/fonc.2021.799993] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023] Open
Abstract
TP53 mutation is one of the most frequent genetic alterations in head and neck squamous cell carcinoma (HNSCC) and results in an accumulation of p53 protein in tumor cells. This makes p53 an attractive target to improve HNSCC therapy by restoring the tumor suppressor activity of this protein. Therapeutic strategies targeting p53 in HNSCC can be divided into three categories related to three subtypes encompassing WT p53, mutated p53 and HPV-positive HNSCC. First, compounds targeting degradation or direct inhibition of WT p53, such as PM2, RITA, nutlin-3 and CH1iB, achieve p53 reactivation by affecting p53 inhibitors such as MDM2 and MDMX/4 or by preventing the breakdown of p53 by inhibiting the proteasomal complex. Second, compounds that directly affect mutated p53 by binding it and restoring the WT conformation and transcriptional activity (PRIMA-1, APR-246, COTI-2, CP-31398). Third, treatments that specifically affect HPV+ cancer cells by targeting the viral enzymes E6/E7 which are responsible for the breakdown of p53 such as Ad-E6/E7-As and bortezomib. In this review, we describe and discuss p53 regulation and its targeting in combination with existing therapies for HNSCC through a new classification of such cancers based on p53 mutation status and HPV infection.
Collapse
Affiliation(s)
- Tycho de Bakker
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabrice Journe
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Géraldine Descamps
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Sven Saussez
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Tatiana Dragan
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ghanem Ghanem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mohammad Krayem
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
6
|
Baloche V, Ferrand FR, Makowska A, Even C, Kontny U, Busson P. Emerging therapeutic targets for nasopharyngeal carcinoma: opportunities and challenges. Expert Opin Ther Targets 2020; 24:545-558. [PMID: 32249657 DOI: 10.1080/14728222.2020.1751820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Introduction: Nasopharyngeal carcinoma (NPC) is a major public health problem in several countries, especially those in Southeast Asia and North Africa. In its typical poorly differentiated form, the Epstein-Barr virus (EBV) genome is present in the nuclei of all malignant cells with restricted expression of a few viral genes. The malignant phenotype of NPC cells results from the influence of these viral products in combination with cellular genetic, epigenetic and functional alterations. With regard to host/tumor interactions, NPC is a remarkable example of immune escape in the context of a hot tumor.Areas covered: This article has an emphasis on emerging therapeutic targets that are considered upstream or at an early stage of clinical application. It examines targets related to cellular oncogenic alterations, latent EBV infection and tumor interactions with the immune system.Expert opinion: There is a remarkable emergence of new agents that target EBV products. The clinical application of these agents would benefit from a systematic and comprehensive molecular classification of NPCs and from easy access to pre-clinical models in public repositories. There is a strong rationale for more investigations on the potential of immune modulators, especially those related to NK cells.
Collapse
Affiliation(s)
- Valentin Baloche
- CNRS, UMR 9018, Gustave Roussy and Uuniversité Paris-Saclay, 39, rue Camille Desmoulins, Villejuif, France
| | | | - Anna Makowska
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Caroline Even
- Département de cancérologie cervico-faciale, Gustave Roussy and université Paris-Saclay, 39, rue Camille Desmoulins, F-94805, Villejuif, France
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Pierre Busson
- CNRS, UMR 9018, Gustave Roussy and Uuniversité Paris-Saclay, 39, rue Camille Desmoulins, Villejuif, France
| |
Collapse
|
7
|
Tsang CM, Lui VWY, Bruce JP, Pugh TJ, Lo KW. Translational genomics of nasopharyngeal cancer. Semin Cancer Biol 2019; 61:84-100. [PMID: 31521748 DOI: 10.1016/j.semcancer.2019.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022]
Abstract
Nasopharyngeal carcinoma (NPC), also named the Cantonese cancer, is a unique cancer with strong etiological association with infection of the Epstein-Barr virus (EBV). With particularly high prevalence in Southeast Asia, the involvement of EBV and genetic aberrations contributive to NPC tumorigenesis have remained unclear for decades. Recently, genomic analysis of NPC has defined it as a genetically homogeneous cancer, driven largely by NF-κB signaling caused by either somatic aberrations of NF-κB negative regulators or by overexpression of the latent membrane protein 1 (LMP1), an EBV viral oncoprotein. This represents a landmark finding of the NPC genome. Exome and RNA sequencing data from new EBV-positive NPC models also highlight the importance of PI3K pathway aberrations in NPC. We also realize for the first time that NPC mutational burden, mutational signatures, MAPK/PI3K aberrations, and MHC Class I gene aberrations, are prognostic for patient outcome. Together, these multiple genomic discoveries begin to shape the focus of NPC therapy development. Given the challenge of NF-κB targeting in human cancers, more innovative drug discovery approaches should be explored to target the unique atypical NF-κB activation feature of NPC. Our next decade of NPC research should focus on further identification of the -omic landscapes of recurrent and metastatic NPC, development of gene-based precision medicines, as well as large-scale drug screening with the newly developed and well-characterized EBV-positive NPC models. Focused preclinical and clinical investigations on these major directions may identify new and effective targeting strategies to further improve survival of NPC patients.
Collapse
Affiliation(s)
- Chi Man Tsang
- Department of Anatomical and cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON, M5G 1L7, Canada
| | - Kwok Wai Lo
- Department of Anatomical and cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
8
|
Roy Chattopadhyay N, Chakrabarti S, Chatterjee K, Deb Roy S, Kumar Sahu S, Reddy RR, Das P, Bijay Kanrar B, Kumar Das A, Tsering S, Puii Z, Zomawia E, Singh YI, Suryawanshi A, Choudhuri T. Histocompatibility locus antigens regions contribute to the ethnicity bias of Epstein-Barr virus-associated nasopharyngeal carcinoma in higher-incidence populations. Scand J Immunol 2019; 90:e12796. [PMID: 31145476 DOI: 10.1111/sji.12796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/28/2019] [Indexed: 02/04/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one the most confusing and rare malignancy in most part of the world with significantly high occurrence in some populations of Southeast Asia, North Africa and Alaska. Apart from the dietary and environmental factors, NPC is well-associated with Epstein-Barr virus (EBV) infection in these ethnic groups. However, the internal molecular mechanism(s) for such association in specific populations is not known till date. Polymorphisms in the genes of histocompatibility locus antigens (HLA) are reported in NPC, but association of any particular polymorphism with ethnicity is not established yet. Here, we report a set of HLA polymorphisms in EBV-infected NPC samples from Northeast Indian population. These polymorphisms might play an important role for the lack of proper immune function against EBV infection and thus, eventually, for NPC generation in endemic populations like those of Northeast India.
Collapse
Affiliation(s)
| | | | - Koustav Chatterjee
- Department of Biotechnology, Visva Bharati University, Santiniketan, Bolpur, West Bengal, India
| | - Sankar Deb Roy
- Department of Radiation Oncology, Civil Hospital, Dimapur, Nagaland, India
| | - Sushil Kumar Sahu
- Depatrment of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - R Rajendra Reddy
- Division of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Piyanki Das
- Department of Biotechnology, Visva Bharati University, Santiniketan, Bolpur, West Bengal, India
| | - Basab Bijay Kanrar
- Department of Biotechnology, Visva Bharati University, Santiniketan, Bolpur, West Bengal, India
| | - Ashok Kumar Das
- ENT Department, Dr B. Borooah Cancer Institute, Guwahati, Assam, India
| | - Sam Tsering
- Tertiary Cancer Center, Tomo Riba Institute of Health And Medical Sciences, Arunachal Pradesh, India
| | | | | | - Y Indibor Singh
- Department of Radiotherapy, Regional Institute of Medical Sciences, Imphal, Manipur, India
| | - Amol Suryawanshi
- Division of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Tathagata Choudhuri
- Department of Biotechnology, Visva Bharati University, Santiniketan, Bolpur, West Bengal, India
| |
Collapse
|
9
|
Roy Chattopadhyay N, Das P, Chatterjee K, Choudhuri T. Higher incidence of nasopharyngeal carcinoma in some regions in the world confers for interplay between genetic factors and external stimuli. Drug Discov Ther 2019; 11:170-180. [PMID: 28867748 DOI: 10.5582/ddt.2017.01030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a rare variety of head and neck cancers. The risk factors include three major causes: genetic factors, viral infection, and environmental and dietary factors. The types of NPC show strong ethnic and geographic variations. The keratinizing and non-keratinizing types are prevalent in the lower incidence regions like North America and Europe; whereas the undifferentiated type is mostly found in the regions with higher incidences like China, North Africa, Arctic, and Nagaland of North-East India. These suggest a possible major role of the internal genetic factors for generation and promotion of this disease. Viral infections might accelerate the process of carcinogenesis by helping in cellular proliferation and loss of apoptosis. Diet and other environmental factors promote these neoplastic processes and further progression of the disease occurs.
Collapse
Affiliation(s)
| | - Piyanki Das
- Department of Biotechnology, Visva-Bharati, Siksha Bhavana
| | | | | |
Collapse
|
10
|
Epstein-Barr Virus MicroRNA miR-BART5-3p Inhibits p53 Expression. J Virol 2018; 92:JVI.01022-18. [PMID: 30209170 DOI: 10.1128/jvi.01022-18] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) is the first human virus found to encode many microRNAs. It is etiologically linked to nasopharyngeal carcinoma and EBV-associated gastric carcinoma. During the latent infection period, there are only a few EBV proteins expressed, whereas EBV microRNAs, such as the BamHI-A region rightward transcript (BART) microRNAs, are highly expressed. However, how these BART miRNAs precisely regulate the tumor growth in nasopharyngeal carcinoma and gastric carcinoma remains obscure. Here, we report that upregulation of EBV-miR-BART5-3p promotes the growth of nasopharyngeal carcinoma and gastric carcinoma cells. BART5-3p directly targets the tumor suppressor gene TP53 on its 3'-untranslated region (3'-UTR) and consequently downregulates CDKN1A, BAX, and FAS expression, leading to acceleration of the cell cycle progress and inhibition of cell apoptosis. BART5-3p contributes to the resistance to chemotherapeutic drugs and ionizing irradiation-induced p53 increase. Moreover, BART5-3p also facilitates degradation of p53 proteins. BART5-3p is the first EBV-microRNA to be identified as inhibiting p53 expression and function, which suggests a novel mechanism underlying the strategies employed by EBV to maintain latent infection and promote the development of EBV-associated carcinomas.IMPORTANCE EBV encodes 44 mature microRNAs, which have been proven to promote EBV-associated diseases by targeting host genes and self-viral genes. In EBV-associated carcinomas, the expression of viral protein is limited but the expression of BART microRNAs is extremely high, suggesting that they could be major factors in the contribution of EBV-associated tumorigenesis. p53 is a critical tumor suppressor. Unlike in most human solid tumors, TP53 mutations are rare in nasopharyngeal carcinoma and EBV-associated gastric carcinoma tissues, suggesting a possibility that some EBV-encoded products suppress the functions of p53. This study provides the first evidence that a BART microRNA can suppress p53 expression by directly targeting its 3'-UTR. This study implies that EBV can use its BART microRNAs to modulate the expression of p53, thus maintaining its latency and contributing to tumorigenesis.
Collapse
|
11
|
Aswarin R, Yusuf M, Wiyadi MS. Association of Protein Expression p53 Mutants with Regional Lymph Gland Status on type III Carcinoma Nasofaring Patients. Indian J Otolaryngol Head Neck Surg 2018; 70:405-409. [PMID: 30211098 DOI: 10.1007/s12070-018-1401-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/14/2018] [Indexed: 11/25/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant disease originating from the nasopharyngeal epithelial cells. The molecular mechanism of cancer occurrence is a change in the oncogene and tumor suppressor genes. One of the tumor suppressor genes that mutate in cancer cells is the mutant p53 gene. One of nasopharyngeal carcinoma progression is determined by the status of regional lymph gland. The enormous regional lymph node has a poor prognosis. To analyze the expression of the mutant p53 protein in Nasopharyngeal carcinoma (NPC) that correlated with regional lymph gland status (N) as a clinical manifestation. Expression of mutant p53 protein from NPC tissue paraffin block with immunohistochemical cracking technique was using monoclonal rabbit Anti Human p53 clone 318-6-11 (Dako, North America, Inc., 6392 Via Real Carpinteria, CA 93013 USA), microscope light binoculars was assessed visually by an Anatomical Pathology Consultant. Positive expression of p53 mutants was obtained 57.58% from all the sample in N0 by 0 subjects, N1 was 6 subjects, N2 was 7 subjects, and N3 was 7 subjects. The results of Mann-Whitney U test was p = 0.706, then there was no significant (p > 0.05) correlation between positive expression of p53 protein in type III WHO NPC with the regional lymph gland were N0, N1, N2, and N3. There was no significant between expression protein p53 mutants' regional and lymph gland in type III WHO NPC.
Collapse
Affiliation(s)
- Riza Aswarin
- Department of Otorhinolaryngology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Hospital, Jalan Prof. Dr. Moestopo No. 47, Surabaya, 60131 Indonesia
| | - Muhtarum Yusuf
- Department of Otorhinolaryngology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Hospital, Jalan Prof. Dr. Moestopo No. 47, Surabaya, 60131 Indonesia
| | - M S Wiyadi
- Department of Otorhinolaryngology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Hospital, Jalan Prof. Dr. Moestopo No. 47, Surabaya, 60131 Indonesia
| |
Collapse
|
12
|
Huang SCM, Tsao SW, Tsang CM. Interplay of Viral Infection, Host Cell Factors and Tumor Microenvironment in the Pathogenesis of Nasopharyngeal Carcinoma. Cancers (Basel) 2018; 10:E106. [PMID: 29617291 PMCID: PMC5923361 DOI: 10.3390/cancers10040106] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/15/2022] Open
Abstract
Undifferentiated nasopharyngeal carcinoma (NPC) is strongly associated with Epstein-Barr virus (EBV) infection. In addition, heavy infiltration of leukocytes is a common characteristic of EBV-associated NPC. It has long been suggested that substantial and interactive impacts between cancer and stromal cells create a tumor microenvironment (TME) to promote tumorigenesis. The coexistence of tumor-infiltrating lymphocytes with EBV-infected NPC cells represents a distinct TME which supports immune evasion and cancer development from the early phase of EBV infection. Intracellularly, EBV-encoded viral products alter host cell signaling to facilitate tumor development and progression. Intercellularly, EBV-infected cancer cells communicate with stromal cells through secretion of cytokines and chemokines, or via release of tumor exosomes, to repress immune surveillance and enhance metastasis. Although high expression of miR-BARTs has been detected in NPC patients, contributions of these more recently discovered viral products to the establishment of TME are still vaguely defined. Further investigations are needed to delineate the mechanistic linkage of the interplay between viral and host factors, especially in relation to TME, which can be harnessed in future therapeutic strategies.
Collapse
Affiliation(s)
| | - Sai Wah Tsao
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, HK, China.
| | - Chi Man Tsang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, HK, China.
| |
Collapse
|
13
|
Yee-Lin V, Pooi-Fong W, Soo-Beng AK. Nutlin-3, A p53-Mdm2 Antagonist for Nasopharyngeal Carcinoma Treatment. Mini Rev Med Chem 2018; 18:173-183. [PMID: 28714398 PMCID: PMC5769085 DOI: 10.2174/1389557517666170717125821] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 04/07/2017] [Accepted: 04/16/2017] [Indexed: 01/08/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a form of head and neck cancer of multifactorial etiolo-gies that is highly prevalent among men in the population of Southern China and Southeast Asia. NPC has claimed many thousands of lives worldwide; but the low awareness of NPC remains a hindrance in early diagnosis and prevention of the disease. NPC is highly responsive to radiotherapy and chemothera-py, but radiocurable NPC is still dependent on concurrent treatment of megavoltage radiotherapy with chemotherapy. Despite a significant reduction in loco-regional and distant metastases, radiotherapy alone has failed to provide a significant improvement in the overall survival rate of NPC, compared to chemo-therapy. In addition, chemo-resistance persists as the major challenge in the management of metastatic NPC although the survival rate of advanced metastatic NPC has significantly improved with the admin-istration of chemotherapy adjunctive to radiotherapy. In this regard, targeted molecular therapy could be explored for the discovery of alternative NPC therapies. Nutlin-3, a small molecule inhibitor that specifi-cally targets p53-Mdm2 interaction offers new therapeutic opportunities by enhancing cancer cell growth arrest and apoptosis through the restoration of the p53-mediated tumor suppression pathway while pro-ducing minimal cytotoxicity and side effects. This review discusses the potential use of Nutlin-3 as a p53-activating drug and the future directions of its clinical research for NPC treatment.
Collapse
Affiliation(s)
- Voon Yee-Lin
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur. Malaysia
| | - Wong Pooi-Fong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur. Malaysia
| | - Alan Khoo Soo-Beng
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, 50588 Kuala Lumpur. Malaysia
| |
Collapse
|
14
|
Ke L, Zhou H, Wang C, Xiong G, Xiang Y, Ling Y, Khabir A, Tsao GS, Zeng Y, Zeng M, Busson P, Kieff E, Guo X, Zhao B. Nasopharyngeal carcinoma super-enhancer-driven ETV6 correlates with prognosis. Proc Natl Acad Sci U S A 2017; 114:9683-9688. [PMID: 28831010 PMCID: PMC5594663 DOI: 10.1073/pnas.1705236114] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) most frequently occurs in southern China and southeast Asia. Epidemiology studies link NPC to genetic predisposition, Epstein-Barr virus (EBV) infection, and environmental factors. Genetic studies indicate that mutations in chromatin-modifying enzymes are the most frequent genetic alterations in NPC. Here, we used H3K27ac chromatin immune precipitation followed by deep sequencing (ChIP-seq) to define the NPC epigenome in primary NPC biopsies, NPC xenografts, and an NPC cell line, and compared them to immortalized normal nasopharyngeal or oral epithelial cells. We identified NPC-specific enhancers and found these enhancers were enriched with nuclear factor κB (NF-κB), IFN-responsive factor 1 (IRF1) and IRF2, and ETS family members ETS1 motifs. Normal cell-specific enhancers were enriched with basic leucine zipper family members and TP53 motifs. NPC super-enhancers with extraordinarily broad and high H3K27ac signals were also identified, and they were linked to genes important for oncogenesis including ETV6. ETV6 was also highly expressed in NPC biopsies by immunohistochemistry. High ETV6 expression correlated with a poor prognosis. Furthermore, we defined the EBV episome epigenetic landscapes in primary NPC tissue.
Collapse
Affiliation(s)
- Liangru Ke
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Hufeng Zhou
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Chong Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Geng Xiong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Yanqun Xiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Yihong Ling
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Abdelmajid Khabir
- Pathology Department, Habib Bourguiba Hospital, 4100 Medenine, Tunisia
- School of Medicine, University of Sfax, 3029 Sfax, Tunisia
| | - George S Tsao
- Department of Anatomy, Center for Cancer Research, University of Hong Kong, Hong Kong, People's Republic of China
| | - Yixin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China;
| | - Pierre Busson
- CNRS, UMR 8126, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
| | - Elliott Kieff
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115;
| | - Xiang Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China;
| | - Bo Zhao
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
15
|
Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma. Sci Rep 2017; 7:42980. [PMID: 28256603 PMCID: PMC5335658 DOI: 10.1038/srep42980] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/17/2017] [Indexed: 12/15/2022] Open
Abstract
In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies.
Collapse
|
16
|
Yi M, Yang J, Li W, Li X, Xiong W, McCarthy JB, Li G, Xiang B. The NOR1/OSCP1 proteins in cancer: from epigenetic silencing to functional characterization of a novel tumor suppressor. J Cancer 2017; 8:626-635. [PMID: 28367242 PMCID: PMC5370506 DOI: 10.7150/jca.17579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/27/2016] [Indexed: 12/16/2022] Open
Abstract
NOR1 (Oxidored-nitro domain-containing protein 1), also known as OSCP1, was first identified in nasopharyngeal carcinoma (NPC) cells in 2003. NOR1 is evolutionarily conserved among species with its expression is restricted to brain, testis and respiratory epithelial cells. NOR1 was downregulated in NPC and the downregulation associates with poor prognosis. Previous study demonstrated that hypermethylation of NOR1 promoter was observed in NPC and hematological malignancies, which has been believed to be the main epigenetic cause for NOR1 silencing in these cancers. Recently, the NOR1 tumor suppressor status has been fully established. NOR1 inhibited cancer cell growth by disturbing tumor cell energe metabolism. NOR1 also promote tumor cells apoptosis in oxidative stress and hypoxia by inhibition of stress induced autophagy. Moreover, NOR1 suppressed cancer cell epithelial-mesenchymal transition, invasion and metastasis via activation of FOXA1/HDAC2-slug regulatory network. Deciphering the molecular mechanisms underlying NOR1 mediated tumor suppressive role would be helpful to a deeper understanding of carcinogenesis and, furthermore, to the development of new therapeutic approaches. Here we summarize the current knowledge on NOR1 focusing on its expression pattern, epigenetic and genetic association with human cancers and its biological functions. This review will also elucidate the potential application of NOR1/OSCP1 for some human malignancies.
Collapse
Affiliation(s)
- Mei Yi
- Department of Dermatology, Xiangya Hospital, The Central South University, Changsha, 410008, Hunan, China;; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan410078, China;; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan410078, China
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Wenjuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan410078, China;; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan410078, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan410078, China;; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan410078, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan410078, China;; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan410078, China
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan410078, China;; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan410078, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan410078, China;; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan410078, China
| |
Collapse
|
17
|
Wasylishen AR, Lozano G. Attenuating the p53 Pathway in Human Cancers: Many Means to the Same End. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026211. [PMID: 27329033 DOI: 10.1101/cshperspect.a026211] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The p53 pathway is perturbed in the majority of human cancers. Although this most frequently occurs through the direct mutation or deletion of p53 itself, there are a number of other alterations that can attenuate the pathway and contribute to tumorigenesis. For example, amplification of important negative regulators, MDM2 and MDM4, occurs in a number of cancers. In this work, we will review both the normal regulation of the p53 pathway and the different mechanisms of pathway inhibition in cancer, discuss these alterations in the context of the global genomic analyses that have been conducted across tumor types, and highlight the translational implications for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Amanda R Wasylishen
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Guillermina Lozano
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
18
|
Bruce JP, Yip K, Bratman SV, Ito E, Liu FF. Nasopharyngeal Cancer: Molecular Landscape. J Clin Oncol 2015; 33:3346-55. [DOI: 10.1200/jco.2015.60.7846] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a unique epithelial malignancy arising from the superior aspect of the pharyngeal mucosal space, associated with latent Epstein-Barr virus infection in most cases. The capacity to characterize cancer genomes in unprecedented detail is now providing insights into the genesis and molecular underpinnings of this disease. Herein, we provide an overview of the molecular aberrations that likely drive nasopharyngeal tumor development and progression. The contributions of major Epstein-Barr virus–encoded factors, including proteins, small RNAs, and microRNAs, along with their interactions with pathways regulating cell proliferation and survival are highlighted. We review recent analyses that clearly define the role of genetic and epigenetic variations affecting the human genome in NPC. These findings point to the impact of DNA methylation and histone modifications on gene expression programs that promote this malignancy. The molecular interactions that allow NPC cells to evade immune recognition and elimination, which is crucial for the survival of cells expressing potentially immunogenic viral proteins, are also described. Finally, the potential utility of detecting host and viral factors for the diagnosis and prognosis of NPC is discussed. Altogether, the studies summarized herein have greatly expanded our knowledge of the molecular biology of NPC, yet much remains to be uncovered. Emerging techniques for using and analyzing well-annotated biospecimens from patients with NPC will ultimately lead to a greater level of understanding, and enable improvements in precision therapies and clinical outcomes.
Collapse
Affiliation(s)
- Jeff P. Bruce
- Jeff P. Bruce, Kenneth Yip, Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University Health Network; and Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Yip
- Jeff P. Bruce, Kenneth Yip, Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University Health Network; and Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University of Toronto, Toronto, Ontario, Canada
| | - Scott V. Bratman
- Jeff P. Bruce, Kenneth Yip, Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University Health Network; and Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University of Toronto, Toronto, Ontario, Canada
| | - Emma Ito
- Jeff P. Bruce, Kenneth Yip, Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University Health Network; and Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University of Toronto, Toronto, Ontario, Canada
| | - Fei-Fei Liu
- Jeff P. Bruce, Kenneth Yip, Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University Health Network; and Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Voon YL, Ahmad M, Wong PF, Husaini R, Ng WTW, Leong CO, Lane DP, Khoo ASB. Nutlin-3 sensitizes nasopharyngeal carcinoma cells to cisplatin-induced cytotoxicity. Oncol Rep 2015; 34:1692-700. [PMID: 26252575 PMCID: PMC4564086 DOI: 10.3892/or.2015.4177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/29/2015] [Indexed: 11/24/2022] Open
Abstract
The small-molecule inhibitor of p53-Mdm2 interaction, Nutlin-3, is known to be effective against cancers expressing wild-type (wt) p53. p53 mutations are rare in nasopharyngeal carcinoma (NPC), hence targeting disruption of p53-Mdm2 interaction to reactivate p53 may offer a promising therapeutic strategy for NPC. In the present study, the effects of Nutlin-3 alone or in combination with cisplatin, a standard chemotherapeutic agent, were tested on C666-1 cells, an Epstein-Barr virus (EBV)-positive NPC cell line bearing wt p53. Treatment with Nutlin-3 activated the p53 pathway and sensitized NPC cells to the cytotoxic effects of cisplatin. The combined treatment also markedly suppressed soft agar colony growth formation and increased apoptosis of NPC cells. The effect of Nutlin-3 on NPC cells was inhibited by knockdown of p53, suggesting that its effect was p53-dependent. Extended treatment with increasing concentrations of Nutlin-3 did not result in emergence of p53 mutations in the C666-1 cells. Collectively, the present study revealed supportive evidence of the effectiveness of combining cisplatin and Nutlin-3 as a potential therapy against NPC.
Collapse
Affiliation(s)
- Yee-Lin Voon
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia
| | - Munirah Ahmad
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Roslina Husaini
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia
| | - Wayne Tiong-Weng Ng
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia
| | - Chee-Onn Leong
- School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - David Philip Lane
- p53 Laboratory (p53Lab), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Alan Soo-Beng Khoo
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia
| |
Collapse
|
20
|
Regulation of DNA Damage Signaling and Cell Death Responses by Epstein-Barr Virus Latent Membrane Protein 1 (LMP1) and LMP2A in Nasopharyngeal Carcinoma Cells. J Virol 2015; 89:7612-24. [PMID: 25972552 DOI: 10.1128/jvi.00958-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 05/05/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Nasopharyngeal carcinoma (NPC) is closely associated with latent Epstein-Barr virus (EBV) infection. Although EBV infection of preneoplastic epithelial cells is not immortalizing, EBV can modulate oncogenic and cell death mechanisms. The viral latent membrane proteins 1 (LMP1) and LMP2A are consistently expressed in NPC and can cooperate in bitransgenic mice expressed from the keratin-14 promoter to enhance carcinoma development in an epithelial chemical carcinogenesis model. In this study, LMP1 and LMP2A were coexpressed in the EBV-negative NPC cell line HK1 and examined for combined effects in response to genotoxic treatments. In response to DNA damage activation, LMP1 and LMP2A coexpression reduced γH2AX (S139) phosphorylation and caspase cleavage induced by a lower dose (5 μM) of the topoisomerase II inhibitor etoposide. Regulation of γH2AX occurred before the onset of caspase activation without modulation of other DNA damage signaling mediators, including ATM, Chk1, or Chk2, and additionally was suppressed by inducers of DNA single-strand breaks (SSBs) and replication stress. Despite reduced DNA damage repair signaling, LMP1-2A coexpressing cells recovered from cytotoxic doses of etoposide; however, LMP1 expression was sufficient for this effect. LMP1 and LMP2A coexpression did not enhance cell growth, with a moderate increase of cell motility to fibronectin. This study supports that LMP1 and LMP2A jointly regulate DNA repair signaling and cell death activation with no further enhancement in the growth properties of neoplastic cells. IMPORTANCE NPC is characterized by clonal EBV infection and accounts for >78,000 annual cancer cases with increased incidence in regions where EBV is endemic, such as southeast Asia. The latent proteins LMP1 and LMP2A coexpressed in NPC can individually enhance growth or survival properties in epithelial cells, but their combined effects and potential regulation of DNA repair and checkpoint mechanisms are relatively undetermined. In this study, LMP1-2A coexpression suppressed activation of the DNA damage response (DDR) protein γH2AX induced by selective genotoxins that promote DNA replication stress or SSBs. Expression of LMP1 was sufficient to recover cells, resulting in outgrowth of LMP1 and LMP1-2A-coexpressing cells and indicating distinct LMP1-dependent effects in the restoration of replicative potential. These findings demonstrate novel properties for LMP1 and LMP2A in the cooperative modulation of DDR and apoptotic signaling pathways, further implicating both proteins in the progression of NPC and epithelial malignancies.
Collapse
|
21
|
Raab-Traub N. Nasopharyngeal Carcinoma: An Evolving Role for the Epstein-Barr Virus. Curr Top Microbiol Immunol 2015; 390:339-63. [PMID: 26424653 DOI: 10.1007/978-3-319-22822-8_14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Epstein-Barr herpesvirus (EBV) is an important human pathogen that is closely linked to several major malignancies including the major epithelial tumor, undifferentiated nasopharyngeal carcinoma (NPC). This important tumor occurs with elevated incidence in specific areas, particularly in southern China but also in Mediterranean Africa and some regions of the Middle East. Regardless of tumor prevalence, undifferentiated NPC is consistently associated with EBV. The consistent detection of EBV in all cases of NPC, the maintenance of the viral genome in every cell, and the continued expression of viral gene products suggest that EBV is a necessary factor for the malignant growth in vivo. However, the molecular characterization of the infection and identification of critical events have been hampered by the difficulty in developing in vitro models of NPC. Epithelial cell infection is difficult in vitro and in contrast to B-cell infection does not result in immortalization and transformation. Cell lines established from NPC usually do not retain the genome, and the successful establishment of tumor xenografts is difficult. However, critical genetic changes that contribute to the onset and progression of NPC and key molecular properties of the viral genes expressed in NPC have been identified. In some cases, viral expression becomes increasingly restricted during tumor progression and tumor cells may express only the viral nuclear antigen EBNA1 and viral noncoding RNAs. As NPC develops in the immunocompetent, the continued progression of deregulated growth likely reflects the combination of expression of viral oncogenes in some cells and viral noncoding RNAs that likely function synergistically with changes in cellular RNA and miRNA expression.
Collapse
Affiliation(s)
- Nancy Raab-Traub
- Department of Microbiology, Lineberger Comprehensive Cancer Center, CB#7295, University of North Carolina, Chapel Hill, NC, 27599-7295, USA.
| |
Collapse
|
22
|
Treatment of nasopharyngeal carcinoma cells with the histone-deacetylase inhibitor abexinostat: cooperative effects with cis-platin and radiotherapy on patient-derived xenografts. PLoS One 2014; 9:e91325. [PMID: 24618637 PMCID: PMC3949989 DOI: 10.1371/journal.pone.0091325] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/09/2014] [Indexed: 01/02/2023] Open
Abstract
EBV-related nasopharyngeal carcinomas (NPCs) still raise serious therapeutic problems. The therapeutic potential of the histone-deacetylase (HDAC) inhibitor Abexinostat was investigated using 5 preclinical NPC models including 2 patient-derived xenografts (C15 and C17). The cytotoxicity of Abexinostat used either alone or in combination with cis-platin or irradiation was assessed in vitro by MTT and clonogenic assays using 2 EBV-negative (CNE1 and HONE1) and 3 EBV-positive NPC models (C15, C17 and C666-1). Subsequently, the 3 EBV-positive models were used under the form of xenografts to assess the impact of systemic treatments by Abexinostat or combinations of Abexinostat with cis-platin or irradiation. Several cell proteins known to be affected by HDAC inhibitors and the small viral non-coding RNA EBER1 were investigated in the treated tumors. Synergistic cytotoxic effects of Abexinostat combined with cis-platin or irradiation were demonstrated in vitro for each NPC model. When using xenografts, Abexinostat by itself (12.5 mg/kg, BID, 4 days a week for 3 weeks) had significant anti-tumor effects against C17. Cooperative effects with cis-platin (2 mg/kg, IP, at days 3, 10 and 17) and irradiation (1 Gy) were observed for the C15 and C17 xenografts. Simultaneously two types of biological alterations were induced in the tumor tissue, especially in the C17 model: a depletion of the DNA-repair protein RAD51 and a stronger in situ detection of the small viral RNA EBER1. Overall, these results support implementation of phase I/II clinical trials of Abexinostat for the treatment of NPC. A depletion of RAD51 is likely to contribute to the cooperation of Abexinostat with DNA damaging agents. Reduction of RAD51 combined to enhanced detection of EBER 1 might be helpful for early assessment of tumor response.
Collapse
|
23
|
Poon RYC. DNA damage checkpoints in nasopharyngeal carcinoma. Oral Oncol 2014; 50:339-44. [PMID: 24503238 DOI: 10.1016/j.oraloncology.2014.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a highly invasive cancer with poor prognosis. One of the recurring themes of NPC biology and treatments is DNA damage. Epstein-Barr virus infection, which is generally accepted as a key etiological factor for NPC, triggers DNA damage responses. In normal cells, DNA damage checkpoints are able to prevent cell cycle progression following DNA damage and are critical for maintaining genome stability. Main features of the checkpoints include activation of ATM and ATR by sensors of DNA damage, which activates effector kinases CHK1 and CHK2; they in turn targets the CDC25/WEE1-cyclin B1-CDK1 axis to cause G(2) arrest, or the p53-p21(CIP1/WAF1) and pRb pathways to cause G(1) arrest. Significantly, these checkpoints are typically disrupted in NPC cells. While mutations are relatively rare, mechanisms including promoter modifications, miRNAs, and actions of Epstein-Barr virus-encoded proteins such as EBNA3C and LMP1 have been described. Paradoxically, radiation-mediated DNA damage remains the primary treatment of NPC. How dysregulation of the DNA damage checkpoints contribute to NPC tumorigenesis and responses to treatment remain poorly understood. In this review, the current understanding of the molecular mechanisms of the various DNA damage checkpoints and what is known about them in NPC are discussed.
Collapse
Affiliation(s)
- Randy Y C Poon
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
24
|
Gourzones C, Busson P, Raab-Traub N. Epstein-Barr Virus and the Pathogenesis of Nasopharyngeal Carcinomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013. [DOI: 10.1007/978-1-4614-5947-7_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Lo KW, Chung GTY, To KF. Acquired Genetic and Epigenetic Alterations in Nasopharyngeal Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013. [DOI: 10.1007/978-1-4614-5947-7_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Dawson CW, Port RJ, Young LS. The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol 2012; 22:144-53. [PMID: 22249143 DOI: 10.1016/j.semcancer.2012.01.004] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 02/08/2023]
Abstract
Although frequently expressed in EBV-positive malignancies, the contribution of the oncogenic latent membrane proteins, LMP1 and LMP2, to the pathogenesis of nasopharyngeal carcinoma (NPC) is not fully defined. As a key effector in EBV-driven B cell transformation and an established "transforming" gene, LMP1 displays oncogenic properties in rodent fibroblasts and induces profound morphological and phenotypic effects in epithelial cells. LMP1 functions as a viral mimic of the TNFR family member, CD40, engaging a number of signalling pathways that induce morphological and phenotypic alterations in epithelial cells. Although LMP2A plays an essential role in maintaining viral latency in EBV infected B cells, its role in epithelial cells is less clear. Unlike LMP1, LMP2A does not display "classical" transforming functions in rodent fibroblasts but its ability to engage a number of potentially oncogenic cell signalling pathways suggests that LMP2A can also participate in EBV-induced epithelial cell growth transformation. Here we review the effects of LMP1 and LMP2 on various aspects of epithelial cell behaviour highlighting key aspects that may contribute to the pathogenesis of NPC.
Collapse
Affiliation(s)
- Christopher W Dawson
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | | | | |
Collapse
|
27
|
Li W, Li X, Wang W, Li X, Tan Y, Yi M, Yang J, McCarthy JB, Xiong W, Wu M, Ma J, Su B, Zhang Z, Liao Q, Xiang B, Li G. NOR1 is an HSF1- and NRF1-regulated putative tumor suppressor inactivated by promoter hypermethylation in nasopharyngeal carcinoma. Carcinogenesis 2011; 32:1305-14. [PMID: 21803736 DOI: 10.1093/carcin/bgr174] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Promoter hypermethylation-mediated silencing of tumor suppressor genes (TSGs) is a hallmark of oncogenesis. Oxidored-nitro domain-containing protein 1 (NOR1) is a candidate TSG that is downregulated in nasopharyngeal carcinoma (NPC). In the present study, we identified a functional NOR1 promoter that is regulated by heat shock factor 1 and nuclear respiratory factor 1. The promoter is located within a CpG island. Hypermethylation of this CpG island was found in NPC tissue samples and cancer cell lines, whereas no aberrant promoter methylation was detected in non-cancerous nasopharyngeal tissue samples or normal nasopharyngeal epithelial cells. Treatment of NPC 6-10B cells and leukemia HL60 cells with 5'-aza-2'-deoxycytidine increased endogenous levels of NOR1 messenger RNA. Ectopic expression of NOR1 in NPC HNE1 cells inhibited tumor cell colony formation and viability. These findings suggest that promoter hypermethylation may participate in transcriptional inactivation of the NOR1 gene in NPC. Frequent epigenetic inactivation of the NOR1 gene in NPC suggests that it may be a critical tumor suppressor involved in the development of NPC.
Collapse
Affiliation(s)
- Wenjuan Li
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Xiangya Road, Changsha, Hunan 410078, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Marquitz AR, Mathur A, Nam CS, Raab-Traub N. The Epstein-Barr Virus BART microRNAs target the pro-apoptotic protein Bim. Virology 2011; 412:392-400. [PMID: 21333317 DOI: 10.1016/j.virol.2011.01.028] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/24/2010] [Accepted: 01/20/2011] [Indexed: 12/13/2022]
Abstract
In Epstein-Barr Virus infected epithelial cancers, the alternatively spliced BamHI A rightward transcripts (BARTs) are abundantly expressed and are the template for two large clusters of miRNAs. This study indicates that both of these clusters independently can inhibit apoptosis in response to etoposide in an epithelial cell line. The Bcl-2 interacting mediator of cell death (Bim) was identified using gene expression microarrays and bioinformatic analysis indicated multiple potential binding sites for several BART miRNAs in the Bim 3'UTR. Bim protein was reduced by Cluster I and the individual expression of several miRNAs, while mRNA levels were unaffected. In reporter assays, the Bim 3' untranslated region (UTR) was inhibited by both clusters but not by any individual miRNAs. These results are consistent with the BART miRNAs downregulating Bim post-transcriptionally in part through the 3'UTR and suggest that there are miRNA recognition sites within other areas of the Bim mRNA.
Collapse
Affiliation(s)
- Aron R Marquitz
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
29
|
The Epstein-Barr virus BRRF1 protein, Na, induces lytic infection in a TRAF2- and p53-dependent manner. J Virol 2011; 85:4318-29. [PMID: 21325409 DOI: 10.1128/jvi.01856-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) BRRF1 lytic gene product (Na) is encoded within the same immediate-early region as the BZLF1 (Z) and BRLF1(R) gene products, but its role during EBV infection has not been well defined. We previously showed that Na cooperates with the R protein to induce lytic gene expression in latently infected EBV-positive 293 cells, and in some EBV-negative cell lines it can activate the Z promoter in reporter gene assays. Here we show that overexpression of Na alone is sufficient to induce lytic gene expression in several different latently infected epithelial cell lines (Hone-Akata, CNE2-Akata, and AGS-Akata), while knockdown of endogenous Na expression reduces lytic gene expression. Consistent with its ability to interact with tumor necrosis factor receptor-associated factor 2 (TRAF2) in a yeast two-hybrid assay, we demonstrate that Na interacts with TRAF2 in cells. Furthermore, we show that TRAF2 is required for Na induction of lytic gene expression, that Na induces Jun N-terminal protein kinase (JNK) activation in a TRAF2-dependent manner, and that a JNK inhibitor abolishes the ability of Na to disrupt viral latency. Additionally, we show that Na and the tumor suppressor protein p53 cooperate to induce lytic gene expression in epithelial cells (including the C666-1 nasopharyngeal carcinoma cell line), although Na does not appear to affect p53 function. Together these data suggest that Na plays an important role in regulating the switch between latent and lytic infection in epithelial cells and that this effect requires both the TRAF2 and p53 cellular proteins.
Collapse
|
30
|
Kouvidou C, Kanavaros P, Papaioannou D, Stathopoulos E, Sotsiou F, Datseris G, Tzardi M, Kittas C, Delides G. Expression of bcl-2 and p53 proteins in nasopharyngeal carcinoma. Absence of correlation with the presence of EBV encoded EBER1-2 transcripts and latent membrane protein-1. Mol Pathol 2010; 48:M17-22. [PMID: 16695969 PMCID: PMC407914 DOI: 10.1136/mp.48.1.m17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aims-To investigate the immunohistochemical expression of bcl-2 and p53 proteins in nasopharyngeal carcinomas in relation to the expression of the Epstein-Barr virus (EBV) encoded EBER messenger RNAs (mRNAs) and latent membrane protein-1 (LMP-1).Methods-Formalin fixed, paraffin wax embedded tissue from 44 nasopharyngeal carcinomas (NPCs) was stained by immunohistochemistry for p53, bcl-2 and LMP-1 proteins and by RNA in situ hybridisation for EBER mRNAs.Results-The tumours were divided histologically into 13 cases of keratinising squamous cell NPC (KNPC), 15 cases of non-keratinising squamous cell NPC (NKNPC) and 16 cases of undifferentiated NPC (UNPC). Bcl-2 expression was observed in five of 15 NKNPC cases and in six of 16 UNPC cases; p53 expression was observed in one of 13 KNPC, two of 15 NKNPC and four of 16 UNPC cases. EBER 1-2 transcripts were detected in five of 15 NKNPC and nine of 16 UNPC cases, while LMP-1 expression was observed in one of 16 UNPC cases. All 13 KNPCs were EBV and bcl-2 negative. No correlation was found between the presence of EBER 1-2 transcripts and the detection of bcl-2 or p53 proteins, or both, in NPC cells.Conclusions-The expression of bcl-2 and p53 proteins may be associated with the level of the tumour cell differentiation in NPC. In addition, in view of the important role of the bcl-2 protein in the inhibition of apoptosis, the expression of bcl-2 protein may contribute to tumour cell survival in a proportion of NPCs. Furthermore, in the light of previous findings that the p53 gene in most UNPCs is in the wild-type configuration, mechanisms other than mutation may be responsible for stabilisation of the p53 protein in UNPCs.
Collapse
Affiliation(s)
- C Kouvidou
- Department of Pathology, University Hospital, Heraklion
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hsieh WS, Soo R, Peh BK, Loh T, Dong D, Soh D, Wong LS, Green S, Chiao J, Cui CY, Lai YF, Lee SC, Mow B, Soong R, Salto-Tellez M, Goh BC. Pharmacodynamic effects of seliciclib, an orally administered cell cycle modulator, in undifferentiated nasopharyngeal cancer. Clin Cancer Res 2009; 15:1435-42. [PMID: 19228744 DOI: 10.1158/1078-0432.ccr-08-1748] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cell cycle dysregulation resulting in expression of antiapoptotic genes and uncontrolled proliferation is a feature of undifferentiated nasopharyngeal carcinoma. The pharmacodynamic effects of seliciclib, a cyclin-dependent kinase (CDK) inhibitor, were studied in patients with nasopharyngeal carcinoma. EXPERIMENTAL DESIGN Patients with treatment-naïve locally advanced nasopharyngeal carcinoma received seliciclib at 800 mg or 400 mg twice daily on days 1 to 3 and 8 to 12. Paired tumor samples obtained at baseline and on day 13 were assessed by light microscopy, immunohistochemistry, and transcriptional profiling using real-time PCR low-density array consisting of a panel of 380 genes related to cell cycle inhibition, apoptosis, signal transduction, and cell proliferation. RESULTS At 800 mg bd, one patient experienced grade 3 liver toxicity and another had grade 2 vomiting; no significant toxicities were experienced in 13 patients treated at 400 mg bd. Seven of fourteen evaluable patients had clinical evidence of tumor reduction. Some of these responses were associated with increased tumor apoptosis, necrosis, and decreases in plasma EBV DNA posttreatment. Reduced protein expression of Mcl-1, cyclin D1, phosphorylated retinoblastoma protein pRB (T821), and significant transcriptional down-regulation of genes related to cellular proliferation and survival were shown in some patients posttreatment, indicative of cell cycle modulation by seliciclib, more specifically inhibition of cdk2/cyclin E, cdk7/cyclin H, and cdk9/cyclin T. CONCLUSIONS Brief treatment with this regimen of seliciclib in patients with nasopharyngeal carcinoma is tolerable at 400 mg bd and associated with tumor pharmacodynamic changes consistent with cdk inhibition, and warrants further efficacy studies in this tumor.
Collapse
Affiliation(s)
- Wen-Son Hsieh
- Department of Hematology-Oncology, National University Hospital, Oncology Research Institute, School of Computing, and Department of Head and Neck Surgery, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Choy EYW, Siu KL, Kok KH, Lung RWM, Tsang CM, To KF, Kwong DLW, Tsao SW, Jin DY. An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. ACTA ACUST UNITED AC 2008; 205:2551-60. [PMID: 18838543 PMCID: PMC2571930 DOI: 10.1084/jem.20072581] [Citation(s) in RCA: 362] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV) is a herpesvirus associated with nasopharyngeal carcinoma (NPC), gastric carcinoma (GC), and other malignancies. EBV is the first human virus found to express microRNAs (miRNAs), the functions of which remain largely unknown. We report on the regulation of a cellular protein named p53 up-regulated modulator of apoptosis (PUMA) by an EBV miRNA known as miR-BART5, which is abundantly expressed in NPC and EBV-GC cells. Modulation of PUMA expression by miR-BART5 and anti–miR-BART5 oligonucleotide was demonstrated in EBV-positive cells. In addition, PUMA was found to be significantly underexpressed in ∼60% of human NPC tissues. Although expression of miR-BART5 rendered NPC and EBV-GC cells less sensitive to proapoptotic agents, apoptosis can be triggered by depleting miR-BART5 or inducing the expression of PUMA. Collectively, our findings suggest that EBV encodes an miRNA to facilitate the establishment of latent infection by promoting host cell survival.
Collapse
|
33
|
Deyrup AT. Epstein-Barr virus-associated epithelial and mesenchymal neoplasms. Hum Pathol 2008; 39:473-83. [PMID: 18342658 DOI: 10.1016/j.humpath.2007.10.030] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 10/29/2007] [Accepted: 10/30/2007] [Indexed: 01/22/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human pathogen that usually maintains a harmonious relationship with its host. Rarely, this host-virus balance is perturbed, causing a diverse group of malignancies in both immunocompetent and immunosuppressed patients. In addition to its role in hematologic malignancies (Burkitt lymphoma, subsets of Hodgkin and T-cell lymphomas, posttransplant lymphomas), EBV has been implicated in both epithelial (undifferentiated nasopharyngeal carcinoma, a subset of gastric adenocarcinomas) and mesenchymal (EBV-associated smooth muscle tumor, inflammatory pseudotumor-like follicular dendritic cell tumor) neoplasms. This review will focus on EBV-associated epithelial and mesenchymal neoplasms.
Collapse
Affiliation(s)
- Andrea T Deyrup
- Department of Pathology, Emory University Atlanta, GA 30322, USA.
| |
Collapse
|
34
|
Li L, Zhou S, Chen X, Guo L, Li Z, Hu D, Luo X, Ma X, Tang M, Yi W, Tsao SW, Cao Y. The activation of p53 mediated by Epstein-Barr virus latent membrane protein 1 in SV40 large T-antigen transformed cells. FEBS Lett 2008; 582:755-62. [PMID: 18242176 DOI: 10.1016/j.febslet.2008.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 11/29/2007] [Accepted: 01/20/2008] [Indexed: 11/25/2022]
Abstract
The Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) plays an important role in the carcinogenesis of nasopharyngeal carcinoma (NPC). The tumor suppressor p53 is an important transcription factor. The mutation of the p53 gene is the frequent alteration in most of tumors, but nearly 100% wild-type p53 gene is found in NPC biopsy. Here, our study testified that SV40 T-antigen transformed nasopharyngeal epithelial cells contained free, wild-type p53. Moreover, LMP1 regulated p53 both at transcriptional and translational level. Furthermore, the mechanism of p53 accumulation mediated by LMP1 from post-translational level-phosphorylation and ubiquitination were determined. Therefore, the effects of EBV LMP1 on p53 may potentially contribute to EBV-associated pathogenesis.
Collapse
Affiliation(s)
- Lili Li
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Proline homozygosity in codon 72 of TP53 is a factor of susceptibility to nasopharyngeal carcinoma in Tunisia. ACTA ACUST UNITED AC 2007; 178:89-93. [DOI: 10.1016/j.cancergencyto.2007.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 05/15/2007] [Accepted: 05/17/2007] [Indexed: 11/20/2022]
|
36
|
Li L, Guo L, Tao Y, Zhou S, Wang Z, Luo W, Hu D, Li Z, Xiao L, Tang M, Yi W, Tsao SW, Cao Y. Latent membrane protein 1 of Epstein-Barr virus regulates p53 phosphorylation through MAP kinases. Cancer Lett 2007; 255:219-31. [PMID: 17582679 DOI: 10.1016/j.canlet.2007.04.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 04/05/2007] [Accepted: 04/25/2007] [Indexed: 12/27/2022]
Abstract
The Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1), an oncogenic protein, plays an important role in the carcinogenesis of nasopharyngeal carcinoma (NPC). Phosphorylation of p53 protein is likely to play the key role in regulating its activity. p53 protein accumulates but mutation of p53 gene is not common in NPC. The molecular mechanisms of p53 augmentation have not been completely elucidated. Here, the role of MAP kinases in the phosphorylation of p53 modulated by LMP1 was determined. p53 could be activated and phosphorylated clearly at Ser15, Ser20, Ser392, and Thr81 modulated by LMP1. Furthermore, LMP1-induced phosphorylation of p53 at Ser15 was directly by ERKs; at Ser20 and Thr81 by JNK, at Ser 15 and Ser392 by p38 kinase. The phosphorylation of p53 was associated with its transcriptional activity and stability modulated by LMP1. These results strongly suggest that MAP kinases have a direct role in LMP1-induced phosphorylation of p53 at multiple sites, which provide a novel view for us to understand the mechanism of the activation of p53 in the carcinogenesis of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Lili Li
- Cancer Research Institute, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li L, Li Z, Zhou S, Xiao L, Guo L, Tao Y, Tang M, Shi Y, Li W, Yi W, Cao Y. Ubiquitination of MDM2 modulated by Epstein-Barr virus encoded latent membrane protein 1. Virus Res 2007; 130:275-80. [PMID: 17576019 DOI: 10.1016/j.virusres.2007.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 05/12/2007] [Accepted: 05/12/2007] [Indexed: 10/23/2022]
Abstract
Epstein-Barr virus encoded latent membrane protein 1 (LMP1), an oncogenic protein, plays an important role in the carcinogenesis of nasopharyngeal carcinoma. The MDM2 gene is a cellular pro-oncogene that is abnormally up-regulated in human tumors. MDM2 is overexpressed in nasopharyngeal carcinoma, which is associated with the presence of EBV and cervical lymph node metastasis. Because MDM2 is capable of self-ubiquitination, and the ubiquitin proteasome pathway-dependent degradation is an important mechanism for regulating MDM2 levels in cells. Here we show that LMP1 augment MDM2 protein expression in dose-dependent level, and also lead to a drastic accumulation of ubiquitinated MDM2 species, this effect is associated with the stability of MDM2 modulated by LMP1. This is the first time to explain LMP1-regulated MDM2 through a post-ubiquitination mechanism.
Collapse
Affiliation(s)
- Lili Li
- Cancer Research Institute, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Nasopharyngeal carcinoma (NPC) is a prevalent tumour in southern China and southeast Asia, particularly in the Cantonese population, where its incidence has remained high for decades. Recent studies have demonstrated that the aetiology of NPC is complex, involving multiple factors including genetic susceptibility, infection with the Epstein-Barr virus (EBV) and exposure to chemical carcinogens. During development of the disease, viral infection and multiple somatic genetic and epigenetic changes synergistically disrupt normal cell function, thus contributing to NPC pathogenesis. NPC is highly radiosensitive and chemosensitive, but treatment of patients with locoregionally advanced disease remains problematic. New biomarkers for NPC, including EBV DNA copy number or methylation of multiple tumour suppressor genes, which can be detected in serum and nasopharyngeal brushings, have been developed for the molecular diagnosis of this tumour. Meanwhile, new therapeutic strategies such as intensity-modulated radiation therapy and immuno- and epigenetic therapies might lead to more specific and effective treatments.
Collapse
Affiliation(s)
- Qian Tao
- Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, Chinese University of Hong Kong, Shatin, Hong Kong.
| | | |
Collapse
|
39
|
Sousa H, Santos AM, Catarino R, Pinto D, Vasconcelos A, Lopes C, Breda E, Medeiros R. Linkage of TP53 codon 72 pro/pro genotype as predictive factor for nasopharyngeal carcinoma development. Eur J Cancer Prev 2007; 15:362-6. [PMID: 16835507 DOI: 10.1097/00008469-200608000-00010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic predisposition has been suggested as a cofactor for cancer aetiology and a polymorphism in TP53 codon 72 has been associated as a susceptibility factor for several cancers. Nasopharyngeal carcinoma is a rare neoplasia in western civilizations and genetic predisposition might play an important role in its development. We evaluated the linkage of the polymorphic variants (Arg/Pro) on TP53 codon 72 with nasopharyngeal cancer development in a case-control study with 392 individuals from a northern Portuguese population, including 107 patients with nasopharyngeal carcinoma and 285 healthy controls. This study revealed a three-fold risk for carriers of Pro/Pro genotype either against carriers of Arg/Arg (OR=2.62; 95% CI=1.10-6.30; P=0.016) or total Arg carriers (OR=2.67; 95% CI=1.21-5.90; P=0.012). Moreover, step-wise logistic regression analysis identified Pro/Pro genotype (OR=3.1; 95% CI=1.3-7.3; P=0.009), age >49 at diagnosis (OR=2.5; 95% CI=1.6-4.0; P<0.001) and male gender (OR=2.7; 95% CI=1.6-4.4; P<0.001) as predictive factors for the development of nasopharyngeal carcinoma. These results confirm the data from Asiatic populations suggesting that Pro/Pro genotype represents a stable risk factor for nasopharyngeal carcinoma development in Portugal and that TP53 codon 72 polymorphism can contribute as a genetic susceptibility marker, providing additional information to improve the knowledge about nasopharyngeal carcinoma aetiology.
Collapse
Affiliation(s)
- Hugo Sousa
- Molecular Oncology Unit, Portuguese Institute of Oncology - Oporto, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Yip KW, Shi W, Pintilie M, Martin JD, Mocanu JD, Wong D, MacMillan C, Gullane P, O'Sullivan B, Bastianutto C, Liu FF. Prognostic Significance of the Epstein-Barr Virus, p53, Bcl-2, and Survivin in Nasopharyngeal Cancer. Clin Cancer Res 2006; 12:5726-32. [PMID: 17020977 DOI: 10.1158/1078-0432.ccr-06-0571] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Nasopharyngeal cancer (NPC) is a malignant epithelial carcinoma which is intimately associated with EBV. The latent presence of EBV affects the function of p53, Bcl-2, and survivin. We thus investigated the relationship between EBV status, p53, Bcl-2, and survivin in biopsy specimens from patients with primary NPC. EXPERIMENTAL DESIGN Archival formalin-fixed, paraffin-embedded NPC biopsies were evaluated in 80 patients treated with curative radiation from a single institution. The presence of EBV was determined using EBER in situ hybridization, whereas p53, Bcl-2, and survivin were assessed using immunohistochemistry. RESULTS The majority of NPC specimens in this patient cohort were EBER-positive (64 of 78, or 82%), which in turn, was significantly associated with ethnicity (P = 0.0007), and WHO subtype 2A/2B (P = 0.04). EBER-positive tumors were also associated with p53 (P = 0.002), Bcl-2 (P = 0.04), and nuclear survivin (P = 0.03) expression. Patients with EBER-positive NPC fared better, with a 10-year overall survival of 68% versus 48% for EBER-negative patients (P = 0.03). For nuclear survivin, patients with either low or high nuclear survivin fared worse than patients with intermediate survivin expression (P = 0.05), suggesting that there is an optimal proportion of survivin-expressing cells for best function and clinical outcome. CONCLUSIONS With an extended median follow-up time of 11.4 years, EBV status remains a strong predictor for overall survival in NPC. EBV-positive NPC has strong molecular associations with p53, Bcl-2, and survivin expression. Furthermore, we provide clinical data revealing the potentially dual nature of survivin in predicting clinical outcome.
Collapse
Affiliation(s)
- Kenneth W Yip
- Department of Medical Biophysics, University of Toronto, and Division of Applied Molecular Oncology, Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Seng TJ, Low JSW, Li H, Cui Y, Goh HK, Wong MLY, Srivastava G, Sidransky D, Califano J, Steenbergen RDM, Rha SY, Tan J, Hsieh WS, Ambinder RF, Lin X, Chan ATC, Tao Q. The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation. Oncogene 2006; 26:934-44. [PMID: 16862168 DOI: 10.1038/sj.onc.1209839] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Identification of tumor suppressor genes (TSG) silenced by methylation uncovers mechanisms of tumorigenesis and identifies new epigenetic tumor markers for early cancer detection. Both nasopharyngeal carcinoma (NPC) and esophageal carcinoma are major tumors in Southern China and Southeast Asia. Through expression subtraction of NPC, we identified Deleted in Liver Cancer 1 (DLC1)/ARHGAP7 (NM_006094)--an 8p22 TSG as a major downregulated gene. Although expressed in all normal tissues, DLC1 was silenced or downregulated in 11/12 (91%) NPC, 6/15 (40%) esophageal, 5/8 (63%) cervical and 3/9 (33%) breast carcinoma cell lines. No genetic deletion of DLC1 was detected in NPC although a hemizygous deletion at 8p22-11 was found by 1-Mb array-CGH in some cell lines. We then located the functional DLC1 promoter by 5'-RACE and promoter activity assays. This promoter was frequently methylated in all downregulated cell lines and in a large collection of primary tumors including 89% (64/72) NPC (endemic and sporadic types), 51% (48/94) esophageal, 87% (7/8) cervical and 36% (5/14) breast carcinomas, but seldom in paired surgical marginal tissues and not in any normal epithelial tissue. The transcriptional silencing of DLC1 could be reversed by 5-aza-2'-deoxycytidine or genetic double knock-out of DNMT1 and DNMT3B. Furthermore, ectopic expression of DLC1 in NPC and esophageal carcinoma cells strongly inhibited their colony formation. We thus found frequent epigenetic silencing of DLC1 in NPC, esophageal and cervical carcinomas, and a high correlation of methylation with its downregulation, suggesting a predominant role of epigenetic inactivation. DLC1 appears to be a major TSG implicated in the pathogenesis of these tumors, and should be further tested as a molecular biomarker in patients with these cancers.
Collapse
Affiliation(s)
- T J Seng
- Johns Hopkins Singapore, Biopolis, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kusano M, Toyota M, Suzuki H, Akino K, Aoki F, Fujita M, Hosokawa M, Shinomura Y, Imai K, Tokino T. Genetic, epigenetic, and clinicopathologic features of gastric carcinomas with the CpG island methylator phenotype and an association with Epstein-Barr virus. Cancer 2006; 106:1467-79. [PMID: 16518809 DOI: 10.1002/cncr.21789] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The CpG island methylator phenotype (CIMP), which is characterized by simultaneous methylation of the CpG islands of multiple genes, has been recognized as one of the important mechanisms in gastrointestinal carcinogenesis. METHODS Methylation of the 5 methylated-in-tumors (MINT) loci and 12 tumor-related genes in 78 primary gastric carcinomas was examined using combined bisulfite-restriction analysis. Epstein-Barr virus (EBV)-associated gastric tumors were detected using real-time polymerase chain reaction analysis followed by an evaluation of the correlations between CIMP status, EBV-association, and genetic alteration of p53 and K-ras. The authors compared the clinicopathologic features of gastric carcinomas that had high CIMP methylation (CIMP-H) with tumors that had low CIMP methylation (CIMP-L) or negative CIMP methylation (CIMP-N). RESULTS The methylation profiles of 12 genes showed nonrandom methylation, supporting the presence of CIMP in gastric carcinoma. No p53 mutations were detected among CIMP-H tumors, and no EBV association was detected in tumors that showed mutation of p53 and K-ras. In a multiple logistic regression model with CIMP-H as the dependent variable, proximal location (P = .011), diffuse type (P = .019), and less advanced pathologic TNM status (P = .043) contributed significantly to CIMP-H. Patients who had CIMP-N gastric tumors had a significantly worse survival than patients who had CIMP-H tumors (P = .004) or CIMP-L tumors (P = .012). EBV-associated tumors were associated strongly with CIMP-H, hypermethylation of tumor-related genes, and no p53 or K-ras mutation. CONCLUSIONS CIMP status appeared to be associated with distinct genetic, epigenetic, and clinicopathologic features in gastric carcinomas. The finding that gastric carcinomas arose through different molecular pathways may affect not only tumor characteristics but also patient prognosis.
Collapse
Affiliation(s)
- Masanobu Kusano
- First Department of Internal Medicine, Cancer Research Institute, Sapporo Medical University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Thornburg NJ, Kulwichit W, Edwards RH, Shair KHY, Bendt KM, Raab-Traub N. LMP1 signaling and activation of NF-kappaB in LMP1 transgenic mice. Oncogene 2006; 25:288-97. [PMID: 16247482 DOI: 10.1038/sj.onc.1209023] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transgenic mice expressing Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) under the control of an immunoglobulin heavy-chain promoter and enhancer develop lymphoma at a threefold higher incidence than LMP1-negative mice. In vitro, LMP1 activates numerous signaling pathways including p38, c-Jun N terminal kinase (JNK), phosphatidylinositol 3 kinase (PI3K)/Akt, and NF-kappaB through interactions with tumor necrosis receptor-associated factors (TRAFs). These pathways are frequently activated in EBV-associated malignancies, although their activation cannot be definitively linked to LMP1 expression in vivo. In this study, interactions between LMP1 and TRAFs and the activation of PI3K/Akt, JNK, p38, and NF-kappaB were examined in LMP1 transgenic mice. LMP1 co-immunoprecipitated with TRAFs 1, 2, and 3. Akt, JNK, and p38 were activated in LMP1-positive and -negative splenocytes as well as LMP1-positive and -negative lymphomas. Multiple forms of NF-kappaB were activated in healthy splenocytes from LMP1 transgenic mice, in contrast to healthy splenocytes from LMP1-negative mice. However, in both LMP1-positive and -negative lymphomas, only the oncogenic NF-kappaB c-Rel, was specifically activated. Similarly to EBV-associated malignancies, p53 protein was detected at high levels in the transgenic lymphomas, although mutations were not detected in the p53 gene. These data indicate that NF-kappaB is activated in LMP1-positive healthy splenocytes; however, NF-kappaB c-Rel is specifically activated in both the transgenic lymphomas and in the rare lymphomas that develop in negative mice. The LMP1-mediated activation of NF-kappaB may contribute to the specific activation of c-Rel and lead to the increased development of lymphoma in the LMP1 transgenic mice.
Collapse
Affiliation(s)
- N J Thornburg
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599-7925, USA
| | | | | | | | | | | |
Collapse
|
44
|
Wang Y, Luo B, Yan LP, Huang BH, Zhao P. Relationship between Epstein-Barr virus-encoded proteins with cell proliferation, apoptosis, and apoptosis-related proteins in gastric carcinoma. World J Gastroenterol 2005; 11:3234-9. [PMID: 15929173 PMCID: PMC4316054 DOI: 10.3748/wjg.v11.i21.3234] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the interrelationship between Epstein-Barr virus (EBV)-encoded proteins and cell proliferation, apoptosis and apoptosis-related proteins in gastric carcinoma, and to explore their role in gastric carcinogenesis.
METHODS: Tissues from 13 cases of EBV-associated gastric carcinoma (EBVaGC) and 45 cases of matched EBV-negative gastric carcinoma (EBVnGC) were collected, and then subjected to analysis for apoptotic index (AI) using the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end-labeling (TUNEL) assay. Nuclear cell proliferation-associated antigen ki-67 index (KI), bcl-2, and p53 expression were examined by immunohistochemistry. p53 mutation in exons 5-8 of 13 EBVaGC cases was determined by single-strand conformation polymorphism (SSCP) and DNA sequencing. RT-PCR and Southern hybridization were used to detect the expression of nuclear antigens (EBNAs) 1 and 2, latent membrane protein (LMP) 1, immediately early gene BZLF1 and early genes BARF1 and BHRF1 in 13 EBVaGC cases.
RESULTS: The percentage of AI, KI and p53 overexpression was significantly lower in the EBVaGC group than in the EBVnGC group. However, bcl-2 expression did not show significant difference between the two groups. p53 gene mutations were not found in 13 EBVaGCs. Transcripts of EBNA1 were detected in all 13 EBVaGCs, while both EBNA2 and LMP1 mRNA were not detected. Six of the thirteen cases exhibited BZLF1 transcripts and two exhibited BHRF1 transcripts. BARF1 mRNA was detected in six cases.
CONCLUSION: Lower AI and KI may reflect a low biological activity in EBVaGC. EBV infection is associated with p53 abnormal expression but not bcl-2 protein in EBVaGC. BZLF1, BARF1, and BHRF1 may play important roles in inhibiting cell apoptosis and tumorigenesis of EBVaGC through different pathways.
Collapse
Affiliation(s)
- Yun Wang
- Department of Microbiology, Qingdao University Medical College, Number 38 of Dengzhou Road, Qingdao 266021, Shandong Province, China
| | | | | | | | | |
Collapse
|
45
|
Shaminie J, Peh SC, Tan J. p53 alterations in sequential biopsies of Asian follicular lymphoma: a study of immunohistochemical staining pattern and gene mutations by PCR-SSCP in paraffin-embedded tissues. Pathology 2005; 37:39-44. [PMID: 15875732 DOI: 10.1080/00313020400011334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AIM Tumour suppressor gene p53 is a common target in carcinogenesis, reported to be altered and functionally inactive in 70% of human cancers. Although p53 mutations are less commonly present in haematological malignancies when compared with other solid tumours, they have been reported in histological transformation of follicular lymphoma. We aimed to investigate the frequency of p53 gene alterations in paraffin-embedded tissue using commercially available PCR-SSCP, and to correlate the results with P53 protein expression by immunohistochemistry. METHODS Surgical samples from seven patients with a total of 17 sequential biopsies were retrieved for the study of p53 gene expression using immunohistochemical stain, and gene status by PCR-SSCP for exons 5-8. The tumours were graded according to the WHO classification criteria. P53 was distinctly over-expressed in five transformed higher grade biopsies, and all except one showed electrophoretic mobility shift in PCR-SSCP analysis. Sequencing analysis revealed single nucleotide substitutions in three of four of these high-grade transformed cases with band shift (75%), whereas some other studies reported a lower frequency of 25-30%, and mobility shift result was found to correlate with P53 expression. Lower grade tumours without P53 over-expression did not demonstrate band shift, and sequencing analysis did not reveal mutations. CONCLUSIONS We demonstrated the feasibility of adopting PCR-SSCP for screening of p53 mutations in archival tissue samples in this study, and there is a strong correlation of p53 gene over-expression and mutation events in high-grade transformed tumours.
Collapse
Affiliation(s)
- J Shaminie
- Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
46
|
Wu HC, Lu TY, Lee JJ, Hwang JK, Lin YJ, Wang CK, Lin CT. MDM2 expression in EBV-infected nasopharyngeal carcinoma cells. J Transl Med 2004; 84:1547-56. [PMID: 15448710 DOI: 10.1038/labinvest.3700183] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
To understand whether the p53-regulated mdm2 gene expression was altered by the Epstein-Barr virus (EBV) in nasopharyngeal carcinoma (NPC), the NPC-TW01 cell line was infected by EBV through IgA receptor-mediated endocytosis. The mdm2 gene was expressed only in a small fraction of the NPC cell population and could be enhanced in the EBV-infected (EBV+) cells. In the animals bearing EBV+ and EBV- NPC xenografts, the MDM2+ cells only appeared in clusters in both EBV+ and EBV- tumors with stronger expression in EBV+ cells. Cotransfection of pmdm2-Luc plus pSV40-p53 plus pCMV-LMP1 in the NPC-TW06 line that had p53 heterozygous point mutation showed stronger mdm2 promoter activity than cells cotransfected with pmdm2-Luc plus pSV40-p53, but no mdm2 promoter activity was seen in cells cotransfected with pmdm2-Luc plus pCMV-LMP1. Only the EBV-LMP1 but not the EBV-LMP2A gene could enhance p53 to upregulated mdm2 expression. Tumor cells in NPC biopsy specimens revealed similar mdm2 expression as in the animal model. It is concluded that although EBV can indirectly enhance mdm2 gene expression in tumor cells that express this gene, it cannot turn on or directly regulate mdm2 expression in cells that do not express this gene. In other words, EBV plays a role as an enhancer in NPC tumorigenesis.
Collapse
Affiliation(s)
- Han-Chung Wu
- Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
47
|
Morrison JA, Gulley ML, Pathmanathan R, Raab-Traub N. Differential signaling pathways are activated in the Epstein-Barr virus-associated malignancies nasopharyngeal carcinoma and Hodgkin lymphoma. Cancer Res 2004; 64:5251-60. [PMID: 15289331 DOI: 10.1158/0008-5472.can-04-0538] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
EBV is associated with the epithelial cancer, nasopharyngeal carcinoma (NPC), and the lymphoid malignancy, Hodgkin lymphoma (HL). The EBV latent membrane proteins 1 and 2A are expressed in these tumors. These proteins activate the phosphatidylinositol 3'-OH kinase (PI3K)/Akt pathway, which is commonly activated inappropriately in malignancy. In this study, the status of Akt activation and its targets, glycogen synthase kinase-3beta (GSK-3beta) and beta-catenin, was investigated in NPC and HL clinical specimens. In the majority of HL and NPC specimens, Akt was activated, indicating an important role for this kinase in the development and/or progression of these tumors. Akt phosphorylates and inactivates GSK-3beta, a negative regulator of the proto-oncoprotein beta-catenin that is aberrantly activated in many cancers. GSK-3beta was phosphorylated and inactivated with concomitant nuclear beta-catenin accumulation in the majority of NPC specimens. The malignant cells of the majority of HL cases, however, did not have inactivated GSK-3beta and lacked nuclear beta-catenin expression. These data indicate that this signaling arm of PI3K/Akt is universal and important in NPC pathogenesis but is apparently not affected in HL. These findings point to a divergence in pathways activated by EBV in different cellular contexts.
Collapse
Affiliation(s)
- Jennifer A Morrison
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | | |
Collapse
|
48
|
Huang Z, Desper R, Schäffer AA, Yin Z, Li X, Yao K. Construction of tree models for pathogenesis of nasopharyngeal carcinoma. Genes Chromosomes Cancer 2004; 40:307-15. [PMID: 15188453 DOI: 10.1002/gcc.20036] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Pathogenesis of nasopharyngeal carcinoma (NPC) is a multistep and multipathway process that cannot be fully explained by a fixed linear progression model. We used distance-based and branching-tree methods to construct more general tree-like models for NPC carcinogenesis from 170 comparative genomic hybridization (CGH) samples previously published in five smaller studies. Imbalances were classified into "overlap regions," each containing the most commonly gained or lost band on each chromosome arm as well as adjacent bands that were gained or lost almost as often. The chromosome abnormalities associated with NPC were -3p26-13 (48.9%), -11q22-25 (38.1%), -16q12-24 (38.1%), -14q24-32 (32.4%), -13q21-32 (22.3%), -9p23-21(21.6%), +12p12 (46%), +12q13-15 (43.9%), +1q22-32 (33.1%), +3q13.1-26.2 (30.2%), and +8q22.1-24.2 (27.3%). NPC can be classified into two groups, one marked by +12p12 and +8q22.1-24.2 and the other by -3p26-13, -11q22-25, -14q24-32, and +1q22-32. The tree models predicted -3p26-13 and +12p12 as early events and +8q22.1-24.2 as a late event. The predictions for -3p26-13 and +8q22.1-24.2 were consistent with previous studies. The prediction for +12p12 is being reported for the first time. Many known NPC-related genes on chromosomal regions of these tree models are discussed, some of which may merit additional study. The potential applications of tree models are also discussed.
Collapse
Affiliation(s)
- Zhongxi Huang
- Cancer Institute, Department of Pathology, First Military Medical University, Guangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
49
|
Qiu GH, Tan LKS, Loh KS, Lim CY, Srivastava G, Tsai ST, Tsao SW, Tao Q. The candidate tumor suppressor gene BLU, located at the commonly deleted region 3p21.3, is an E2F-regulated, stress-responsive gene and inactivated by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma. Oncogene 2004; 23:4793-806. [PMID: 15122337 DOI: 10.1038/sj.onc.1207632] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Loss of heterozygosity at 3p21 is common in various cancers including nasopharyngeal carcinoma (NPC). BLU is one of the candidate tumor suppressor genes (TSGs) in this region. Ectopic expression of BLU results in the inhibition of colony formation of cancer cells, suggesting that BLU is a tumor suppressor. We have identified a functional BLU promoter and found that it can be activated by environmental stresses such as heat shock, and is regulated by E2F. The promoter and first exon are located within a CpG island. BLU is highly expressed in testis and normal upper respiratory tract tissues including nasopharynx. However, in all seven NPC cell lines examined, BLU expression was downregulated and inversely correlated with promoter hypermethylation. Biallelic epigenetic inactivation of BLU was also observed in three cell lines. Hypermethylation was further detected in 19/29 (66%) of primary NPC tumors, but not in normal nasopharyngeal tissues. Treatment of NPC cell lines with 5-aza-2'-deoxycytidine activated BLU expression along with promoter demethylation. Although hypermethylation of RASSF1A, another TSG located immediately downstream of BLU, was detected in 20/27 (74%) of NPC tumors, no correlation between the hypermethylation of these two TSGs was observed (P=0.6334). In addition to methylation, homozygous deletion of BLU was found in 7/29 (24%) of tumors. Therefore, BLU is a stress-responsive gene, being disrupted in 83% (24/29) of NPC tumors by either epigenetic or genetic mechanisms. Our data are consistent with the interpretation that BLU is a TSG for NPC.
Collapse
MESH Headings
- Alleles
- Animals
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Base Sequence
- Carcinoma/genetics
- Carcinoma/pathology
- Cell Line
- Cell Line, Tumor
- Cell Transformation, Viral
- Chromosomes, Human, Pair 3
- CpG Islands
- DNA Methylation
- Decitabine
- Enzyme Inhibitors/pharmacology
- Epigenesis, Genetic
- Gene Deletion
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Genes, Tumor Suppressor
- Humans
- Mice
- Mice, Nude
- Molecular Sequence Data
- Nasopharyngeal Neoplasms/genetics
- Nasopharyngeal Neoplasms/pathology
- Promoter Regions, Genetic
- Protein Binding
- Stress, Physiological/genetics
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Cancer Epigenetics/Tumor Virology Laboratory, Division of Johns Hopkins in Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Given the high rate of mortality still associated with advanced stages of nasopharyngeal carcinoma, this review focuses on some specific aspects of this potentially curable disease that could translate into improved therapeutic approaches. RECENT FINDINGS Epstein-Barr viral-induced carcinogenesis is almost constantly reported in the undifferentiated type of nasopharyngeal carcinoma. Nasopharyngeal carcinoma retains clonal characteristics and p53 functionality up to late stages that may account for its high level of chemo- and radiotherapy sensitivity, with several cases of long-term survivors reported among patients with bone metastasis. Recent imaging and biologic techniques will help to identify patients at risk of distant failures (detection of plasma Epstein-Barr virus DNA) or those harboring posttherapeutic residual diseases (positron emission tomographic scan). Cisplatin-based induction chemotherapy has shown disease-free survival benefit, whereas concomitant chemoradiotherapy is associated with an improved local-regional control. Late radiation-induced toxicities (especially xerostomia) will hopefully be reduced using intensity-modulated radiation therapy. New therapeutic agents such as taxanes, or targeted therapies (epidermal growth factor receptor inhibitors) are of major interest in the challenge of circumventing resistance to alkylating agents. SUMMARY Better knowledge of nasopharyngeal carcinoma pathogenesis and biology, management of patients in highly specialized oncologic units, and careful selection of cytotoxic agents along with multimodality integrated therapeutic programs will likely yield to improved survival, particularly for patients with locally advanced nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Sandrine Faivre
- Department of Medicine, Institut Gustave-Roussy, Villejuif, France.
| | | | | |
Collapse
|