1
|
Nagy GÁ, Tombácz D, Prazsák I, Csabai Z, Dörmő Á, Gulyás G, Kemenesi G, Tóth GE, Holoubek J, Růžek D, Kakuk B, Boldogkői Z. Exploring the transcriptomic profile of human monkeypox virus via CAGE and native RNA sequencing approaches. mSphere 2024; 9:e0035624. [PMID: 39191390 PMCID: PMC11423596 DOI: 10.1128/msphere.00356-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
In this study, we employed short- and long-read sequencing technologies to delineate the transcriptional architecture of the human monkeypox virus and to identify key regulatory elements that govern its gene expression. Specifically, we conducted a transcriptomic analysis to annotate the transcription start sites (TSSs) and transcription end sites (TESs) of the virus by utilizing Cap Analysis of gene expression sequencing on the Illumina platform and direct RNA sequencing on the Oxford Nanopore technology device. Our investigations uncovered significant complexity in the use of alternative TSSs and TESs in viral genes. In this research, we also detected the promoter elements and poly(A) signals associated with the viral genes. Additionally, we identified novel genes in both the left and right variable regions of the viral genome.IMPORTANCEGenerally, gaining insight into how the transcription of a virus is regulated offers insights into the key mechanisms that control its life cycle. The recent outbreak of the human monkeypox virus has underscored the necessity of understanding the basic biology of its causative agent. Our results are pivotal for constructing a comprehensive transcriptomic atlas of the human monkeypox virus, providing valuable resources for future studies.
Collapse
Affiliation(s)
- Gergely Ármin Nagy
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - István Prazsák
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Gábor E Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Jiří Holoubek
- Veterinary Research Institute, Brno, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Daniel Růžek
- Veterinary Research Institute, Brno, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Time-Course Transcriptome Profiling of a Poxvirus Using Long-Read Full-Length Assay. Pathogens 2021; 10:pathogens10080919. [PMID: 34451383 PMCID: PMC8398953 DOI: 10.3390/pathogens10080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Viral transcriptomes that are determined using first- and second-generation sequencing techniques are incomplete. Due to the short read length, these methods are inefficient or fail to distinguish between transcript isoforms, polycistronic RNAs, and transcriptional overlaps and readthroughs. Additionally, these approaches are insensitive for the identification of splice and transcriptional start sites (TSSs) and, in most cases, transcriptional end sites (TESs), especially in transcript isoforms with varying transcript ends, and in multi-spliced transcripts. Long-read sequencing is able to read full-length nucleic acids and can therefore be used to assemble complete transcriptome atlases. Although vaccinia virus (VACV) does not produce spliced RNAs, its transcriptome has a high diversity of TSSs and TESs, and a high degree of polycistronism that leads to enormous complexity. We applied single-molecule, real-time, and nanopore-based sequencing methods to investigate the time-lapse transcriptome patterns of VACV gene expression.
Collapse
|
3
|
Genomic Characterisation of a Novel Avipoxvirus Isolated from an Endangered Yellow-Eyed Penguin ( Megadyptes antipodes). Viruses 2021; 13:v13020194. [PMID: 33525382 PMCID: PMC7911368 DOI: 10.3390/v13020194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Emerging viral diseases have become a significant concern due to their potential consequences for animal and environmental health. Over the past few decades, it has become clear that viruses emerging in wildlife may pose a major threat to vulnerable or endangered species. Diphtheritic stomatitis, likely to be caused by an avipoxvirus, has been recognised as a significant cause of mortality for the endangered yellow-eyed penguin (Megadyptes antipodes) in New Zealand. However, the avipoxvirus that infects yellow-eyed penguins has remained uncharacterised. Here, we report the complete genome of a novel avipoxvirus, penguinpox virus 2 (PEPV2), which was derived from a virus isolate obtained from a skin lesion of a yellow-eyed penguin. The PEPV2 genome is 349.8 kbp in length and contains 327 predicted genes; five of these genes were found to be unique, while a further two genes were absent compared to shearwaterpox virus 2 (SWPV2). In comparison with penguinpox virus (PEPV) isolated from an African penguin, there was a lack of conservation within the central region of the genome. Subsequent phylogenetic analyses of the PEPV2 genome positioned it within a distinct subclade comprising the recently isolated avipoxvirus genome sequences from shearwater, canary, and magpie bird species, and demonstrated a high degree of sequence similarity with SWPV2 (96.27%). This is the first reported genome sequence of PEPV2 from a yellow-eyed penguin and will help to track the evolution of avipoxvirus infections in this rare and endangered species.
Collapse
|
4
|
Long-read assays shed new light on the transcriptome complexity of a viral pathogen. Sci Rep 2020; 10:13822. [PMID: 32796917 PMCID: PMC7427789 DOI: 10.1038/s41598-020-70794-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Characterization of global transcriptomes using conventional short-read sequencing is challenging due to the insensitivity of these platforms to transcripts isoforms, multigenic RNA molecules, and transcriptional overlaps. Long-read sequencing (LRS) can overcome these limitations by reading full-length transcripts. Employment of these technologies has led to the redefinition of transcriptional complexities in reported organisms. In this study, we applied LRS platforms from Pacific Biosciences and Oxford Nanopore Technologies to profile the vaccinia virus (VACV) transcriptome. We performed cDNA and direct RNA sequencing analyses and revealed an extremely complex transcriptional landscape of this virus. In particular, VACV genes produce large numbers of transcript isoforms that vary in their start and termination sites. A significant fraction of VACV transcripts start or end within coding regions of neighbouring genes. This study provides new insights into the transcriptomic profile of this viral pathogen.
Collapse
|
5
|
Moss B. Investigating Viruses During the Transformation of Molecular Biology: Part II. Annu Rev Virol 2020; 7:15-36. [PMID: 32392458 DOI: 10.1146/annurev-virology-021020-100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My scientific career started at an extraordinary time, shortly after the discoveries of the helical structure of DNA, the central dogma of DNA to RNA to protein, and the genetic code. Part I of this series emphasizes my education and early studies highlighted by the isolation and characterization of numerous vaccinia virus enzymes, determination of the cap structure of messenger RNA, and development of poxviruses as gene expression vectors for use as recombinant vaccines. Here I describe a shift in my research focus to combine molecular biology and genetics for a comprehensive understanding of poxvirus biology. The dominant paradigm during the early years was to select a function, isolate the responsible proteins, and locate the corresponding gene, whereas later the common paradigm was to select a gene, make a mutation, and determine the altered function. Motivations, behind-the-scenes insights, importance of new technologies, and the vital roles of trainees and coworkers are emphasized.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
6
|
Tombácz D, Prazsák I, Szucs A, Dénes B, Snyder M, Boldogkoi Z. Dynamic transcriptome profiling dataset of vaccinia virus obtained from long-read sequencing techniques. Gigascience 2018; 7:5202462. [PMID: 30476066 PMCID: PMC6290886 DOI: 10.1093/gigascience/giy139] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Poxviruses are large DNA viruses that infect humans and animals. Vaccinia virus (VACV) has been applied as a live vaccine for immunization against smallpox, which was eradicated by 1980 as a result of worldwide vaccination. VACV is the prototype of poxviruses in the investigation of the molecular pathogenesis of the virus. Short-read sequencing methods have revolutionized transcriptomics; however, they are not efficient in distinguishing between the RNA isoforms and transcript overlaps. Long-read sequencing (LRS) is much better suited to solve these problems and also allow direct RNA sequencing. Despite the scientific relevance of VACV, no LRS data have been generated for the viral transcriptome to date. Findings For the deep characterization of the VACV RNA profile, various LRS platforms and library preparation approaches were applied. The raw reads were mapped to the VACV reference genome and also to the host (Chlorocebus sabaeus) genome. In this study, we applied the Pacific Biosciences RSII and Sequel platforms, which altogether resulted in 937,531 mapped reads of inserts (1.42 Gb), while we obtained 2,160,348 aligned reads (1.75 Gb) from the different library preparation methods using the MinION device from Oxford Nanopore Technologies. Conclusions By applying cutting-edge technologies, we were able to generate a large dataset that can serve as a valuable resource for the investigation of the dynamic VACV transcriptome, the virus-host interactions, and RNA base modifications. These data can provide useful information for novel gene annotations in the VACV genome. Our dataset can also be used to analyze the currently available LRS platforms, library preparation methods, and bioinformatics pipelines.
Collapse
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary
| | - István Prazsák
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary
| | - Attila Szucs
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary
| | - Béla Dénes
- Veterinary Diagnostic Directorate of the National Food Chain Safety Office, Tábornok u. 2., 1143 Budapest, Hungary
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr, Stanford, California, USA
| | - Zsolt Boldogkoi
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary
| |
Collapse
|
7
|
Human Host Range Restriction of the Vaccinia Virus C7/K1 Double Deletion Mutant Is Mediated by an Atypical Mode of Translation Inhibition. J Virol 2018; 92:JVI.01329-18. [PMID: 30209174 DOI: 10.1128/jvi.01329-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/10/2018] [Indexed: 01/09/2023] Open
Abstract
Replication of vaccinia virus in human cells depends on the viral C7 or K1 protein. A previous human genome-wide short interfering RNA (siRNA) screen with a C7/K1 double deletion mutant revealed SAMD9 as a principal host range restriction factor along with additional candidates, including WDR6 and FTSJ1. To compare their abilities to restrict replication, the cellular genes were individually inactivated by CRISPR/Cas9 mutagenesis. The C7/K1 deletion mutant exhibited enhanced replication in each knockout (KO) cell line but reached wild-type levels only in SAMD9 KO cells. SAMD9 was not depleted in either WDR6 or FTSJ1 KO cells, suggesting less efficient alternative rescue mechanisms. Using the SAMD9 KO cells as controls, we verified a specific block in host and viral intermediate and late protein synthesis in HeLa cells and demonstrated that the inhibition could be triggered by events preceding viral DNA replication. Inhibition of cap-dependent and -independent protein synthesis occurred primarily at the translational level, as supported by DNA and mRNA transfection experiments. Concurrent with collapse of polyribosomes, viral mRNA was predominantly in 80S and lighter ribonucleoprotein fractions. We confirmed the accumulation of cytoplasmic granules in HeLa cells infected with the C7/K1 deletion mutant and further showed that viral mRNA was sequestered with SAMD9. RNA granules were still detected in G3BP KO U2OS cells, which remained nonpermissive for the C7/K1 deletion mutant. Inhibition of cap-dependent and internal ribosome entry site-mediated translation, sequestration of viral mRNA, and failure of PKR, RNase L, or G3BP KO cells to restore protein synthesis support an unusual mechanism of host restriction.IMPORTANCE A dynamic relationship exists between viruses and their hosts in which each ostensibly attempts to exploit the other's vulnerabilities. A window is opened into the established condition, which evolved over millennia, if loss-of-function mutations occur in either the virus or host. Thus, the inability of viral host range mutants to replicate in specific cells can be overcome by identifying and inactivating the opposing cellular gene. Here, we investigated a C7/K1 host range mutant of vaccinia virus in which the cellular gene SAMD9 serves as the principal host restriction factor. Host restriction was triggered early in infection and manifested as a block in translation of viral mRNAs. Features of the block include inhibition of cap-dependent and internal ribosome entry site-mediated translation, sequestration of viral RNA, and inability to overcome the inhibition by inactivation of protein kinase R, ribonuclease L, or G3 binding proteins, suggesting a novel mechanism of host restriction.
Collapse
|
8
|
Sýkora M, Pospíšek M, Novák J, Mrvová S, Krásný L, Vopálenský V. Transcription apparatus of the yeast virus-like elements: Architecture, function, and evolutionary origin. PLoS Pathog 2018; 14:e1007377. [PMID: 30346988 PMCID: PMC6211774 DOI: 10.1371/journal.ppat.1007377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/01/2018] [Accepted: 10/03/2018] [Indexed: 11/19/2022] Open
Abstract
Extrachromosomal hereditary elements such as organelles, viruses, and plasmids are important for the cell fitness and survival. Their transcription is dependent on host cellular RNA polymerase (RNAP) or intrinsic RNAP encoded by these elements. The yeast Kluyveromyces lactis contains linear cytoplasmic DNA virus-like elements (VLEs, also known as linear plasmids) that bear genes encoding putative non-canonical two-subunit RNAP. Here, we describe the architecture and identify the evolutionary origin of this transcription machinery. We show that the two RNAP subunits interact in vivo, and this complex interacts with another two VLE-encoded proteins, namely the mRNA capping enzyme and a putative helicase. RNAP, mRNA capping enzyme and the helicase also interact with VLE-specific DNA in vivo. Further, we identify a promoter sequence element that causes 5' mRNA polyadenylation of VLE-specific transcripts via RNAP slippage at the transcription initiation site, and structural elements that precede the termination sites. As a result, we present a first model of the yeast virus-like element transcription initiation and intrinsic termination. Finally, we demonstrate that VLE RNAP and its promoters display high similarity to poxviral RNAP and promoters of early poxviral genes, respectively, thereby pointing to their evolutionary origin.
Collapse
Affiliation(s)
- Michal Sýkora
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Pospíšek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail: (MP); (VV)
| | - Josef Novák
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Silvia Mrvová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Libor Krásný
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Václav Vopálenský
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail: (MP); (VV)
| |
Collapse
|
9
|
Oliveira GP, Andrade ACDSP, Rodrigues RAL, Arantes TS, Boratto PVM, Silva LKDS, Dornas FP, Trindade GDS, Drumond BP, La Scola B, Kroon EG, Abrahão JS. Promoter Motifs in NCLDVs: An Evolutionary Perspective. Viruses 2017; 9:v9010016. [PMID: 28117683 PMCID: PMC5294985 DOI: 10.3390/v9010016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/30/2016] [Accepted: 01/05/2017] [Indexed: 01/18/2023] Open
Abstract
For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV), raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’) that could be evolved gradually by nucleotides’ gain and loss and point mutations.
Collapse
Affiliation(s)
- Graziele Pereira Oliveira
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Ana Cláudia Dos Santos Pereira Andrade
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Rodrigo Araújo Lima Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Thalita Souza Arantes
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Paulo Victor Miranda Boratto
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Ludmila Karen Dos Santos Silva
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Fábio Pio Dornas
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Giliane de Souza Trindade
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Betânia Paiva Drumond
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Université., 27 Boulevard Jean Moulin, Faculté de Médecine, 13385 Marseille Cedex 05, France.
| | - Erna Geessien Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Zhang H, Sun Z, Zhang N, Li Z, Wang P, Fu Q, Ren Y, Shao X, Zhang Y, Guo Z, Chen C. Identification and functional analysis of the GTPV bidirectional promoter region. Arch Microbiol 2016; 199:357-364. [PMID: 27771746 DOI: 10.1007/s00203-016-1309-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/07/2016] [Accepted: 10/16/2016] [Indexed: 10/20/2022]
Abstract
The goat pox chick embryo-attenuated virus (GTPV) has been developed as an effective vaccine that can elicit protective immune responses. It possesses a large genome and a robust ability to express exogenous genes. Thus, this virus is an ideal vector for recombinant live vaccines for infectious diseases in ruminant animals. In this study, we identified a novel bidirectional promoter region of GTPV through screening named PbVV(±). PbVV(±) is located between ETF-l and VITF-3, which are transcribed in opposite directions. A new recombinant goat pox virus (rGTPV) was constructed, in which duplicate PbVV(+) was used as a promoter element to enhance Brucella OMP31 expression, and duplicate PbVV(-) was used as a promoter element to regulate enhanced green fluorescent protein (EGFP) at the same time as the selection marker. PbVV(-) promoter activity was compared to that of the P7.5 promoter of vaccinia virus, as measured by EGFP expression; the fluorescence intensity of EGFP expressed in cells was confirmed by fluorescence microscopy and flow cytometry. PbVV(+) promoter activity was measured by Brucella OMP31 expression. Interaction with the anti-Brucella-OMP31 monoclonal antibody was confirmed by western blotting, and OMP31 mRNA expression was assessed by qRT-PCR. The results of this study will be useful for the further study of effective multivalent vaccines based on rGTPV. This study also provides a theoretical basis for overcoming the problem of low expression of exogenous genes.
Collapse
Affiliation(s)
- Hui Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Province, 832000, People's Republic of China
| | - Zhihua Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Province, 832000, People's Republic of China
| | - Na Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Province, 832000, People's Republic of China
| | - Zhiqiang Li
- School of Life Sciences, Shangqiu Normal University, Shangqiu, Henan Province, 476000, People's Republic of China
| | - Pengyan Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Province, 832000, People's Republic of China
| | - Qiang Fu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Province, 832000, People's Republic of China
| | - Yan Ren
- School of Medicine, Shihezi University, Shihezi, Xinjiang Province, 832000, People's Republic of China
| | - Xuehua Shao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Province, 832000, People's Republic of China
| | - Yu Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Province, 832000, People's Republic of China
| | - Zhiru Guo
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Province, 832000, People's Republic of China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Province, 832000, People's Republic of China.
| |
Collapse
|
11
|
Volz A, Sutter G. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development. Adv Virus Res 2016; 97:187-243. [PMID: 28057259 PMCID: PMC7112317 DOI: 10.1016/bs.aivir.2016.07.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Safety tested Modified Vaccinia virus Ankara (MVA) is licensed as third-generation vaccine against smallpox and serves as a potent vector system for development of new candidate vaccines against infectious diseases and cancer. Historically, MVA was developed by serial tissue culture passage in primary chicken cells of vaccinia virus strain Ankara, and clinically used to avoid the undesirable side effects of conventional smallpox vaccination. Adapted to growth in avian cells MVA lost the ability to replicate in mammalian hosts and lacks many of the genes orthopoxviruses use to conquer their host (cell) environment. As a biologically well-characterized mutant virus, MVA facilitates fundamental research to elucidate the functions of poxvirus host-interaction factors. As extremely safe viral vectors MVA vaccines have been found immunogenic and protective in various preclinical infection models. Multiple recombinant MVA currently undergo clinical testing for vaccination against human immunodeficiency viruses, Mycobacterium tuberculosis or Plasmodium falciparum. The versatility of the MVA vector vaccine platform is readily demonstrated by the swift development of experimental vaccines for immunization against emerging infections such as the Middle East Respiratory Syndrome. Recent advances include promising results from the clinical testing of recombinant MVA-producing antigens of highly pathogenic avian influenza virus H5N1 or Ebola virus. This review summarizes our current knowledge about MVA as a unique strain of vaccinia virus, and discusses the prospects of exploiting this virus as research tool in poxvirus biology or as safe viral vector vaccine to challenge existing and future bottlenecks in vaccinology.
Collapse
Affiliation(s)
- A Volz
- German Center for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany
| | - G Sutter
- German Center for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany.
| |
Collapse
|
12
|
Yang Z, Maruri-Avidal L, Sisler J, Stuart CA, Moss B. Cascade regulation of vaccinia virus gene expression is modulated by multistage promoters. Virology 2013; 447:213-20. [PMID: 24210117 DOI: 10.1016/j.virol.2013.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 08/12/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
Vaccinia virus contains ~200 genes classified temporally as early, intermediate or late. We analyzed 53 intermediate promoters to determine whether any have dual late promoter activity. Our strategy involved (i) construction of a cell line that stably expressed the three late transcription factors, (ii) infection with a vaccinia virus mutant that expresses RNA polymerase but neither intermediate nor late transcription factors, and (iii) transfection with plasmids containing a luciferase reporter regulated by an intermediate promoter. After confirming the specificity of the system for late promoters, we found that many intermediate promoters had late promoter activity, the strength of which correlated with a TAAAT at the initiator site and T-content from positions -12 to -8 of the coding strand. In contrast, intermediate promoter activity correlated with the A-content from positions -22 to -14. The sequence correlations were confirmed by altering the specificities of strict intermediate and late promoters.
Collapse
Affiliation(s)
- Zhilong Yang
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
13
|
Ibrahim N, Wicklund A, Jamin A, Wiebe MS. Barrier to autointegration factor (BAF) inhibits vaccinia virus intermediate transcription in the absence of the viral B1 kinase. Virology 2013; 444:363-73. [PMID: 23891157 DOI: 10.1016/j.virol.2013.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/01/2013] [Accepted: 07/02/2013] [Indexed: 11/16/2022]
Abstract
Barrier to autointegration factor (BAF/BANF1) is a cellular DNA-binding protein found in the nucleus and cytoplasm. Cytoplasmic BAF binds to foreign DNA and can act as a defense against vaccinia DNA replication. To evade BAF, vaccinia expresses the B1 kinase, which phosphorylates BAF and blocks its ability to bind DNA. Interestingly, B1 is also needed for viral intermediate gene expression via an unknown mechanism. Therefore, we evaluated the impact of B1-BAF signaling on vaccinia transcription. Strikingly, the decrease in vaccinia transcription caused by loss of B1 can be rescued by depletion of BAF. The repressive action of BAF is greatest on a viral promoter, and is more modest when non-vaccinia promoters are employed, which suggests BAF acts in a gene specific manner. These studies expand our understanding of the role of the B1 kinase during infection and provide the first evidence that BAF is a defense against viral gene expression.
Collapse
Affiliation(s)
- Nouhou Ibrahim
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | | | | | | |
Collapse
|
14
|
Rodríguez JM, Salas ML. African swine fever virus transcription. Virus Res 2012; 173:15-28. [PMID: 23041356 DOI: 10.1016/j.virusres.2012.09.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
Abstract
African swine fever virus (ASFV), a large, enveloped, icosahedral dsDNA virus, is currently the only known DNA-containing arbovirus and the only recognized member of the family Asfarviridae. Its genome encodes more than 150 open reading frames that are densely distributed, separated by short intergenic regions. ASFV gene expression follows a complex temporal programming. Four classes of mRNAs have been identified by its distinctive accumulation kinetics. Gene transcription is coordinated with DNA replication that acts as the main switch on ASFV gene expression. Immediate early and early genes are expressed before the onset of DNA replication, whereas intermediate and late genes are expressed afterwards. ASFV mRNAs have a cap 1 structure at its 5'-end and a short poly(A) tail on its 3'-end. Transcription initiation and termination occurs at very precise positions within the genome, producing transcripts of definite length throughout the expression program. ASFV devotes approximately 20% of its genome to encode the 20 genes currently considered to be involved in the transcription and modification of its mRNAs. This transcriptional machinery gives to ASFV a remarkable independence from its host and an accurate positional and temporal control of its gene expression. Here, we review the components of the ASFV transcriptional apparatus, its expression strategies and the relevant data about the transcriptional cis-acting control sequences.
Collapse
Affiliation(s)
- Javier M Rodríguez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km 2.2, Majadahonda, 28220 Madrid, Spain.
| | | |
Collapse
|
15
|
Yang Z, Martens CA, Bruno DP, Porcella SF, Moss B. Pervasive initiation and 3'-end formation of poxvirus postreplicative RNAs. J Biol Chem 2012; 287:31050-60. [PMID: 22829601 DOI: 10.1074/jbc.m112.390054] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poxviruses are large DNA viruses that replicate within the cytoplasm and encode a complete transcription system, including a multisubunit RNA polymerase, stage-specific transcription factors, capping and methylating enzymes, and a poly(A) polymerase. Expression of the more than 200 open reading frames by vaccinia virus, the prototype poxvirus, is temporally regulated: early mRNAs are synthesized immediately after infection, whereas intermediate and late mRNAs are synthesized following genome replication. The postreplicative transcripts are heterogeneous in length and overlap the entire genome, which pose obstacles for high resolution mapping. We used tag-based methods in conjunction with high throughput cDNA sequencing to determine the precise 5'-capped and 3'-polyadenylated ends of postreplicative RNAs. Polymerase slippage during initiation of intermediate and late RNA synthesis results in a 5'-poly(A) leader that allowed the unambiguous identification of true transcription start sites. Ninety RNA start sites were located just upstream of intermediate and late open reading frames, but many more appeared anomalous, occurring within coding and non-coding regions, indicating pervasive transcription initiation. We confirmed the presence of functional promoter sequences upstream of representative anomalous start sites and demonstrated that alternative start sites within open reading frames could generate truncated isoforms of proteins. In an analogous manner, poly(A) sequences allowed accurate mapping of the numerous 3'-ends of postreplicative RNAs, which were preceded by a pyrimidine-rich sequence in the DNA coding strand. The distribution of postreplicative promoter sequences throughout the genome provides enormous transcriptional complexity, and the large number of previously unmapped RNAs may have novel functions.
Collapse
Affiliation(s)
- Zhilong Yang
- Laboratory of Viral Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3210, USA
| | | | | | | | | |
Collapse
|
16
|
Expression profiling of the intermediate and late stages of poxvirus replication. J Virol 2011; 85:9899-908. [PMID: 21795349 DOI: 10.1128/jvi.05446-11] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The double-stranded DNA genome of vaccinia virus (VACV), the prototype poxvirus, contains approximately 200 open reading frames (ORFs) that are transcribed at early, intermediate, and late stages of infection. Previous high-throughput deep RNA sequencing allowed us to map 118 VACV early genes that are expressed before viral DNA replication and 93 postreplicative genes. However, the intermediate- and late-stage postreplicative genes could not be differentiated. Here, we synchronized infections with a reversible inhibitor of DNA replication and used a VACV mutant that conditionally transcribes late genes to sequence the two classes of mRNAs. In addition, each postreplicative ORF was individually expressed under conditions that distinguished intermediate and late classes. We identified 38 VACV genes that belong to the late class and 53 that belong to the intermediate class, with some of the latter continuing to be expressed late. These data allowed us to prepare a genome-wide early, intermediate, and late transcription map. Inspection of sequences upstream of these ORFs revealed distinctive characteristics of intermediate and late promoters and suggested that some promoters have intermediate and late elements. The intermediate genes encoded many DNA binding/packaging and core-associated proteins in addition to late transcription factors; the late genes encoded many morphogenesis and mature virion membrane proteins, including those involved in entry, in addition to early transcription factors. The top-ranked antigens for CD4(+) T cells and B cells were mainly intermediate rather than late gene products. The differentiation of intermediate and late genes may enhance understanding of poxvirus replication and lead to improvements in expression vectors and recombinant vaccines.
Collapse
|
17
|
Dower K, Rubins KH, Hensley LE, Connor JH. Development of Vaccinia reporter viruses for rapid, high content analysis of viral function at all stages of gene expression. Antiviral Res 2011; 91:72-80. [PMID: 21569797 PMCID: PMC3177160 DOI: 10.1016/j.antiviral.2011.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/20/2011] [Accepted: 04/27/2011] [Indexed: 01/25/2023]
Abstract
Vaccinia virus is the prototypical orthopoxvirus of Poxviridae, a family of viruses that includes the human pathogens Variola (smallpox) and Monkeypox. Core viral functions are conserved among orthopoxviruses, and consequently Vaccinia is routinely used to study poxvirus biology and screen for novel antiviral compounds. Here we describe the development of a series of fluorescent protein-based reporter Vaccinia viruses that provide unprecedented resolution for tracking viral function. The reporter viruses are divided into two sets: (1) single reporter viruses that utilize temporally regulated early, intermediate, or late viral promoters; and (2) multi-reporter viruses that utilize multiple temporally regulated promoters. Promoter and reporter combinations were chosen that yielded high signal-to-background for stage-specific viral outputs. We provide examples for how these viruses can be used in the rapid and accurate monitoring of Vaccinia function and drug action.
Collapse
Affiliation(s)
- Ken Dower
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
18
|
Genome-wide analysis of the 5' and 3' ends of vaccinia virus early mRNAs delineates regulatory sequences of annotated and anomalous transcripts. J Virol 2011; 85:5897-909. [PMID: 21490097 DOI: 10.1128/jvi.00428-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Poxviruses are large DNA viruses that encode a multisubunit RNA polymerase, stage-specific transcription factors, and enzymes that cap and polyadenylate mRNAs within the cytoplasm of infected animal cells. Genome-wide microarray and RNA-seq technologies have been used to profile the transcriptome of vaccinia virus (VACV), the prototype member of the family. Here, we adapted tag-based methods in conjunction with SOLiD and Illumina deep sequencing platforms to determine the precise 5' and 3' ends of VACV early mRNAs and map the putative transcription start sites (TSSs) and polyadenylation sites (PASs). Individual and clustered TSSs were found preceding 104 annotated open reading frames (ORFs), excluding pseudogenes. In the majority of cases, a 15-nucleotide consensus core motif was present upstream of the ORF. This motif, however, was also present at numerous other locations, indicating that it was insufficient for transcription initiation. Further analysis revealed a 10-nucleotide AT-rich spacer following functional core motifs that may facilitate DNA unwinding. Additional putative TSSs occurred in anomalous locations that may expand the functional repertoire of the VACV genome. However, many of the anomalous TSSs lacked an upstream core motif, raising the possibility that they arose by a processing mechanism as has been proposed for eukaryotic systems. Discrete and clustered PASs occurred about 40 nucleotides after an UUUUUNU termination signal. However, a large number of PASs were not preceded by this motif, suggesting alternative polyadenylation mechanisms. Pyrimidine-rich coding strand sequences were found immediately upstream of both types of PASs, signifying an additional feature of VACV 3'-end formation and polyadenylation.
Collapse
|
19
|
Abstract
Most DNA viruses selfishly exploit the cellular transcription machinery of infected cells. Poxviruses are unique among DNA viruses in that they encode the majority of the enzymes required for RNA synthesis. Poxviruses are large DNA viruses that replicate entirely within the cytoplasmic compartment of the cell, and they encode their own multisubunit RNA polymerase and gene-specific transcription and termination factors. The virus-encoded RNA polymerase has sequence and structural homology to eukaryotic RNA polymerases. Virus-encoded and cellular proteins regulate promoter specificity by recruiting the viral RNA polymerase to one of three different classes of genes. Functional interplay between viral and cellular transcription factors in viral gene regulation represents a new frontier in poxvirus biology. Targeting these transcription systems may serve as an undeveloped and potent antiviral strategy to combat poxvirus infections.
Collapse
Affiliation(s)
- Steven S Broyles
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Bruce A Knutson
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109–1024, USA
| |
Collapse
|
20
|
JaPaFi: A Novel Program for the Identification of Highly Conserved DNA Sequences. Viruses 2010; 2:1867-1885. [PMID: 21994712 PMCID: PMC3185747 DOI: 10.3390/v2091867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/05/2010] [Accepted: 08/18/2010] [Indexed: 11/25/2022] Open
Abstract
We describe the use of Java Pattern Finder (JaPaFi) to identify short (<100 nt) highly conserved sequences in a series of poxvirus genomes. The algorithm utilizes pattern matching to identify approximate matches appearing at least once in each member of a set of genomes; a key feature is that the genomes do not need to be aligned. The user simply specifies the genomes to search, minimum length of sequences to find and the maximum number of mismatches and indels allowed. Many of the most highly conserved segments contain poxvirus promoter elements.
Collapse
|
21
|
Simultaneous high-resolution analysis of vaccinia virus and host cell transcriptomes by deep RNA sequencing. Proc Natl Acad Sci U S A 2010; 107:11513-8. [PMID: 20534518 DOI: 10.1073/pnas.1006594107] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deep RNA sequencing was used to simultaneously analyze vaccinia virus (VACV) and HeLa cell transcriptomes at progressive times following infection. VACV, the prototypic member of the poxvirus family, replicates in the cytoplasm and contains a double-stranded DNA genome with approximately 200 closely spaced open reading frames (ORFs). The acquisition of a total of nearly 500 million short cDNA sequences allowed construction of temporal strand-specific maps of the entire VACV transcriptome at single-base resolution and analysis of over 14,000 host mRNAs. Before viral DNA replication, transcripts from 118 VACV ORFs were detected; after replication, transcripts from 93 additional ORFs were characterized. The high resolution permitted determination of the precise boundaries of many mRNAs including read-through transcripts and location of mRNA start sites and adjacent promoters. Temporal analysis revealed two clusters of early mRNAs that were synthesized in the presence of inhibitors of protein as well as DNA synthesis, indicating that they do not correspond to separate immediate- and delayed-early classes as defined for other DNA viruses. The proportion of viral RNAs reached 25-55% of the total at 4 h. This rapid change, resulting in a relative decrease of the vast majority of host mRNAs, can contribute to the profound shutdown of host protein synthesis and blunting of antiviral responses. At 2 h, however, a minority of cellular mRNAs was increased. The overrepresented functional categories of the up-regulated RNAs were NF-kappaB cascade, apoptosis, signal transduction, and ligand-mediated signaling, which likely represent the host response to invasion.
Collapse
|
22
|
Knutson BA, Oh J, Broyles SS. Downregulation of vaccinia virus intermediate and late promoters by host transcription factor YY1. J Gen Virol 2009; 90:1592-1599. [PMID: 19297611 DOI: 10.1099/vir.0.006924-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Approximately half of the intermediate and late gene transcriptional promoters of vaccinia virus have a binding site for the cellular transcription factor YY1 that overlaps the initiator elements. Depletion of YY1 using RNA interference enhanced the activity of these promoters, while overexpression of YY1 repressed their activity. Viral promoter nucleotide replacements that specifically impair the binding of YY1 mostly alleviated the transcriptional repression and correlated with the ability of YY1 to stably interact with the initiator DNAs in vitro. The transcriptional repression activity was localized to the C-terminal DNA-binding domain of the protein. These results indicate that YY1 functions to negatively regulate these vaccinia virus promoters by binding to their initiator elements.
Collapse
Affiliation(s)
- Bruce A Knutson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Jaewook Oh
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Steven S Broyles
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
23
|
Knutson BA, Drennan M, Liu X, Broyles SS. Bidirectional transcriptional promoters in the vaccinia virus genome. Virology 2008; 385:198-203. [PMID: 19064274 DOI: 10.1016/j.virol.2008.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 09/27/2008] [Accepted: 11/07/2008] [Indexed: 11/16/2022]
Abstract
Vaccinia virus intermediate and late class transcriptional promoters each have two essential sequence elements: an initiator at the transcriptional start site and an upstream core element. Many of the transcription units in the viral genome are oriented divergently with insufficient nucleotides between the start of the open reading frames to accommodate two separate upstream core elements in their promoters. This raises the possibility that two promoters could share essential elements. Reporter gene experiments were used in this study to document examples of promoter arrangements in which two late promoters share a core element and another in which a late promoter shares a core element with an intermediate promoter. Another arrangement in which the core element of one late promoter is the initiator of the other is shown. Nucleotide replacements in the initiator element of a bidirectional promoter lead to activation of the other, suggesting that bidirectional promoter arrangement is a mechanism of attenuating promoter strength.
Collapse
Affiliation(s)
- Bruce A Knutson
- Department of Biochemistry, Purdue University, West Lafayatte, IN 47907, USA
| | | | | | | |
Collapse
|
24
|
Rubins KH, Hensley LE, Bell GW, Wang C, Lefkowitz EJ, Brown PO, Relman DA. Comparative analysis of viral gene expression programs during poxvirus infection: a transcriptional map of the vaccinia and monkeypox genomes. PLoS One 2008; 3:e2628. [PMID: 18612436 PMCID: PMC2440811 DOI: 10.1371/journal.pone.0002628] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 05/02/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Poxviruses engage in a complex and intricate dialogue with host cells as part of their strategy for replication. However, relatively little molecular detail is available with which to understand the mechanisms behind this dialogue. METHODOLOGY/PRINCIPAL FINDINGS We designed a specialized microarray that contains probes specific to all predicted ORFs in the Monkeypox Zaire (MPXV) and Vaccinia Western Reserve (VACV) genomes, as well as >18,000 human genes, and used this tool to characterize MPXV and VACV gene expression responses in vitro during the course of primary infection of human monocytes, primary human fibroblasts and HeLa cells. The two viral transcriptomes show distinct features of temporal regulation and species-specific gene expression, and provide an early foundation for understanding global gene expression responses during poxvirus infection. CONCLUSIONS/SIGNIFICANCE The results provide a temporal map of the transcriptome of each virus during infection, enabling us to compare viral gene expression across species, and classify expression patterns of previously uncharacterized ORFs.
Collapse
Affiliation(s)
- Kathleen H Rubins
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Vaccinia virus E2L null mutants exhibit a major reduction in extracellular virion formation and virus spread. J Virol 2008; 82:4215-26. [PMID: 18287229 DOI: 10.1128/jvi.00037-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus E2L (VACWR058) gene is conserved in all sequenced chordopoxviruses and is predicted to encode an 86-kDa protein with no recognizable functional motifs or nonpoxvirus homologs. Although the region immediately upstream of the open reading frame lacked optimal consensus promoter motifs, expression of the E2 protein occurred after viral DNA replication. Transfection studies, however, indicated that the promoter was weak compared to well-characterized intermediate and late promoters. The E2 protein was present in mature virions purified from infected cells but was more abundant in extracellular enveloped forms. Despite the conservation of the E2L gene in chordopoxviruses, deletion mutants could be isolated from both the WR and IHD-J strains of vaccinia virus. These null mutants produced very small plaques in all cell lines tested, reduced amounts of mature infectious virions, and very low numbers of extracellular virions. Nevertheless, viral protein synthesis appeared qualitatively and quantitatively normal. The defect in extracellular virus formation was corroborated by electron microscopy, which also showed some aberration in the wrapping of virions by cisternal membranes. Extracellular virions that did form, however, were able to induce actin tail formation.
Collapse
|
27
|
Abstract
Poxviruses are large enveloped viruses that replicate in the cytoplasm of vertebrate or invertebrate cells. At least six virus-encoded proteins are required for synthesis and processing of the double-stranded DNA genome of vaccinia virus, the prototype member of the family. One of these proteins, D5, is an NTPase that contains an N-terminal archaeoeukaryotic primase domain and a C-terminal superfamily III helicase domain. Here we report that individual conserved aspartic acid residues in the predicted primase active site were required for in vivo complementation of infectious virus formation as well as genome and plasmid replication. Furthermore, purified recombinant D5 protein synthesized oligoribonucleotides in vitro. Incorporation of label from [alpha-(32)P]CTP or [alpha-(32)P]UTP into a RNase-sensitive and DNase-resistant product was demonstrated by using single-stranded circular bacteriophage DNA templates and depended on ATP or GTP and a divalent cation. Mutagenesis studies showed that the primase and NTPase activities of the recombinant D5 protein could be independently inactivated. Highly conserved orthologs of D5 are present in all poxviruses that have been sequenced, and more diverged orthologs are found in members of all other families of nucleocytoplasmic large DNA viruses. These viral primases may have roles in initiation of DNA replication or lagging-strand synthesis and represent potential therapeutic targets.
Collapse
|
28
|
Abstract
Cancer is a multigenic disorder involving mutations of both tumor suppressor genes and oncogenes. A large body of preclinical data, however, has suggested that cancer growth can be arrested or reversed by treatment with gene transfer vectors that carry a single growth inhibitory or pro-apoptotic gene or a gene that can recruit immune responses against the tumor. Many of these gene transfer vectors are modified viruses. The ability for the delivery of therapeutic genes, made them desirable for engineering virus vector systems. The viral vectors recently in laboratory and clinical use are based on RNA and DNA viruses processing very different genomic structures and host ranges. Particular viruses have been selected as gene delivery vehicles because of their capacities to carry foreign genes and their ability to efficiently deliver these genes associated with efficient gene expression. These are the major reasons why viral vectors derived from retroviruses, adenovirus, adeno-associated virus, herpesvirus and poxvirus are employed in more than 70% of clinical gene therapy trials worldwide. Because these vector systems have unique advantages and limitations, each has applications for which it is best suited. Retroviral vectors can permanently integrate into the genome of the infected cell, but require mitotic cell division for transduction. Adenoviral vectors can efficiently deliver genes to a wide variety of dividing and nondividing cell types, but immune elimination of infected cells often limits gene expression in vivo. Herpes simplex virus can deliver large amounts of exogenous DNA; however, cytotoxicity and maintenance of transgene expression remain as obstacles. AAV also infects many non-dividing and dividing cell types, but has a limited DNA capacity. This review discusses current and emerging virusbased genetic engineering strategies for the delivery of therapeutic molecules or several approaches for cancer treatment.
Collapse
Affiliation(s)
- P Mancheño-Corvo
- Dpto. de Biotecnología, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | | |
Collapse
|
29
|
Knutson BA, Liu X, Oh J, Broyles SS. Vaccinia virus intermediate and late promoter elements are targeted by the TATA-binding protein. J Virol 2006; 80:6784-93. [PMID: 16809284 PMCID: PMC1489061 DOI: 10.1128/jvi.02705-05] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus replicates in the cytoplasm of the host cell and encodes its own RNA polymerase and transcription factors. The proteins that target the poxvirus RNA polymerase to intermediate- and late-class promoters have not been identified. In this study, representatives of the intermediate and late promoters were characterized at the nucleotide level to identify essential motifs. Both intermediate and late viral promoters are shown to have an essential element suggestive of TATA boxes, which are potential targets for the TATA-binding protein (TBP). Several approaches were used to test for TBP requirement in vaccinia virus transcription, including overexpression of TBP, expression of a dominant negative mutant of TBP, RNA interference, and expression of adenovirus E1A protein, which inactivates TBP. In each case, the results support an essential role for TBP in vaccinia virus intermediate- and late-gene transcription. These findings indicate that poxviruses have integrated TBP as a central feature into an otherwise heterologous transcription system. A model for transcriptional switching, in which both intermediate and late promoter elements are targeted by TBP that recruits viral transcription factors to assemble a functional complex on their cognate promoters and a dysfunctional, repressed complex on the other class, is proposed.
Collapse
Affiliation(s)
- Bruce A Knutson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
30
|
Liu X, Kremer M, Broyles SS. A natural vaccinia virus promoter with exceptional capacity to direct protein synthesis. J Virol Methods 2005; 122:141-5. [PMID: 15542137 DOI: 10.1016/j.jviromet.2004.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 08/16/2004] [Accepted: 08/19/2004] [Indexed: 11/22/2022]
Abstract
A survey of vaccinia virus promoters, through a reporter gene approach, has identified the viral I1L promoter as having exceptional activity. The I1L promoter exhibited over 10 times the activity of other vaccinia promoters and even rivaled the activity of the bacteriophage T7 promoter in the hybrid vaccinia/T7 expression system. The I1L promoter had high activity in both transient transfection experiments and in the context of recombinant viruses. The I1L promoter should be useful for high-level protein synthesis and poxvirus studies in general.
Collapse
Affiliation(s)
- Xu Liu
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907-1153, USA
| | | | | |
Collapse
|
31
|
Shen Y, Nemunaitis J. Fighting Cancer with Vaccinia Virus: Teaching New Tricks to an Old Dog. Mol Ther 2005; 11:180-95. [PMID: 15668130 DOI: 10.1016/j.ymthe.2004.10.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 10/22/2004] [Indexed: 11/22/2022] Open
Abstract
Vaccinia virus has played a huge part in human beings' victory over smallpox. With smallpox being eradicated and large-scale vaccination stopped worldwide, vaccinia has assumed a new role in our fight against another serious threat to human health: cancer. Recent advances in molecular biology, virology, immunology, and cancer genetics have led to the design of novel cancer therapeutics based on vaccinia virus backbones. With the ability to infect efficiently a wide range of host cells, a genome that can accommodate large DNA inserts and express multiple genes, high immunogenicity, and cytoplasmic replication without the possibility of chromosomal integration, vaccinia virus has become the platform of many exploratory approaches to treat cancer. Vaccinia virus has been used as (1) a delivery vehicle for anti-cancer transgenes, (2) a vaccine carrier for tumor-associated antigens and immunoregulatory molecules in cancer immunotherapy, and (3) an oncolytic agent that selectively replicates in and lyses cancer cells.
Collapse
Affiliation(s)
- Yuqiao Shen
- Mary Crowley Medical Research Center, 1717 Main Street, 60th Floor, Dallas, TX 75201, USA
| | | |
Collapse
|
32
|
Broyles SS, Kremer M, Knutson BA. Antiviral activity of distamycin A against vaccinia virus is the result of inhibition of postreplicative mRNA synthesis. J Virol 2004; 78:2137-41. [PMID: 14747579 PMCID: PMC369444 DOI: 10.1128/jvi.78.4.2137-2141.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Distamycin A has been described as an inhibitor of the cellular pathogenesis of vaccinia virus in culture. Distamycin is an antibiotic that specifically targets the minor groove of DNA. We show here that distamycin is a potent inhibitor of vaccinia virus replication. Pulse-labeling experiments showed that most major late proteins failed to accumulate in the presence of the antibiotic. We characterized the effect of distamycin on vaccinia virus nucleic acid biosynthesis with the goal of determining the inhibitor's target. Early gene transcription was unaffected. DNA synthesis proceeded at normal rates, but DNA accumulated in large masses in the cytoplasm with no evidence of virion assembly. Transcription from the intermediate class promoter for the I1L gene was partially reduced by distamycin; however, transcription from the intermediate promoters for the three late transcription factor genes was severely inhibited. The accumulation of the late transcripts for the viral F17R and A10L genes also was severely impaired and was shown to be a direct inhibition of late promoter activity. These results indicate that inhibition of postreplicative intermediate and late transcription is the basis for inhibition of vaccinia virus by distamycin and indicate that DNA minor-groove ligands hold promise for effective anti-poxvirus drugs.
Collapse
Affiliation(s)
- Steven S Broyles
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153, USA.
| | | | | |
Collapse
|
33
|
Abstract
Vaccinia virus replication takes place in the cytoplasm of the host cell. The nearly 200 kbp genome owes part of its complexity to encoding most of the proteins involved in genome and mRNA synthesis. The multisubunit vaccinia virus RNA polymerase requires a separate set of virus-encoded proteins for the transcription of the early, intermediate and late classes of genes. Cell fractionation studies have provided evidence for a role for host cell proteins in the initiation and termination of vaccinia virus intermediate and late gene transcription. Vaccinia virus resembles nuclear DNA viruses in the integration of viral and host proteins for viral mRNA synthesis, yet is markedly less reliant on host proteins than its nuclear counterparts.
Collapse
Affiliation(s)
- Steven S Broyles
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1153, USA
| |
Collapse
|
34
|
Condit RC, Niles EG. Regulation of viral transcription elongation and termination during vaccinia virus infection. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:325-36. [PMID: 12213661 DOI: 10.1016/s0167-4781(02)00461-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vaccinia virus provides a useful genetic and biochemical tool for studies of the basic mechanisms of eukaryotic transcription. Vaccinia genes are transcribed in three successive gene classes during infection, early, intermediate, and late. Vaccinia transcription is regulated primarily by virus gene products not only during initiation, but also during elongation and termination. The factors and mechanisms regulating early elongation and termination differ from those regulating intermediate and late gene expression. Control of transcription elongation and termination in vaccinia virus bears some similarity to the same process in other prokaryotic and eukaryotic systems, yet features some novel mechanisms as well.
Collapse
Affiliation(s)
- Richard C Condit
- Department of Molecular Genetics and Microbiology, P.O. Box 100266, University of Florida, Gainesville, FL 32610, USA.
| | | |
Collapse
|
35
|
Mohamed MR, Christen LA, Niles EG. Antibodies directed against an epitope in the N-terminal region of the H4L subunit of the vaccinia virus RNA polymerase inhibit both transcription initiation and transcription termination, in vitro. Virology 2002; 299:142-53. [PMID: 12167349 DOI: 10.1006/viro.2002.1498] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vaccinia virus virion RNA polymerase that is active in early gene transcription contains a unique subunit encoded by the H4L gene. Prior studies demonstrated that this protein is required both for early gene transcription initiation and for transcription termination. Polyclonal antibodies raised against H4L amino acids 1 to 256 prevent both initiation and termination of transcription, in vitro. Pretreatment of the anti-H4L antibody with a H4L fragment containing amino acids 1 to 99 prevents antibody inhibition of both steps, mapping the inhibitory antibody-binding site to this region. A combination of immunoprecipitation and competition studies of antibody binding to wild-type and site-specific mutations of H4L(1-195) mapped the strong epitope to a site that includes Y18. H4L fragments containing an Y18A mutation exhibit diminished ability to block antibody inhibition of transcription initiation and termination. Antibodies inhibit preinitiation complex (PIC) formation but not the activity of preformed PICs, indicating that this region of H4L interacts with one or more factors during active PIC formation. Furthermore, isolated H4L(1-195) directly inhibits PIC activity, supporting this model. Anti-H4L antibody inhibition of transcription termination is only observed in the absence of the essential termination cofactor NPH I. In contrast, antibody inhibition of PIC formation is unaffected by NPH I, demonstrating that the inhibitory antibody and NPH I can bind to H4L at the same time.
Collapse
Affiliation(s)
- Mohamed R Mohamed
- Department of Biochemistry, The Witebsky Center for Microbial Pathogenesis, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 14214-3000, USA
| | | | | |
Collapse
|
36
|
Szajner P, Weisberg AS, Wolffe EJ, Moss B. Vaccinia virus A30L protein is required for association of viral membranes with dense viroplasm to form immature virions. J Virol 2001; 75:5752-61. [PMID: 11390577 PMCID: PMC114291 DOI: 10.1128/jvi.75.13.5752-5761.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The previously uncharacterized A30L gene of vaccinia virus has orthologs in all vertebrate poxviruses but no recognizable nonpoxvirus homologs or functional motifs. We determined that the A30L gene was regulated by a late promoter and encoded a protein of approximately 9 kDa. Immunoelectron microscopy of infected cells indicated that the A30L protein was associated with viroplasm enclosed by crescent and immature virion membranes. The A30L protein was also present in mature virions and was partially released by treatment with a nonionic detergent and reducing agent, consistent with a location in the matrix between the core and envelope. To determine the role of the A30L protein, we constructed a stringent conditional lethal mutant with an inducible A30L gene. In the absence of inducer, synthesis of viral early and late proteins occurred but the proteolytic processing of certain core proteins was inhibited, suggesting an assembly block. Inhibition of virus maturation was confirmed by electron microscopy. Under nonpermissive conditions, we observed aberrant large, dense, granular masses of viroplasm with clearly defined margins; viral crescent membranes that appeared normal except for their location at a distance from viroplasm; empty immature virions; and an absence of mature virions. The data indicated that the A30L protein is needed for vaccinia virus morphogenesis, specifically the association of the dense viroplasm with viral membranes.
Collapse
Affiliation(s)
- P Szajner
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Dr., Bethesda, MD 20892-0445, USA
| | | | | | | |
Collapse
|
37
|
Kovacs GR, Vasilakis N, Moss B. Regulation of viral intermediate gene expression by the vaccinia virus B1 protein kinase. J Virol 2001; 75:4048-55. [PMID: 11287554 PMCID: PMC114150 DOI: 10.1128/jvi.75.9.4048-4055.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The B1 gene of vaccinia virus encodes a serine/threonine protein kinase that is expressed early after infection. Under nonpermissive conditions, temperature-sensitive mutants (ts2 and ts25) that map to B1 fail to efficiently replicate viral DNA. Our goal was to extend studies on the function of B1 by determining if the kinase is required for intermediate or late gene expression, two events that ordinarily depend on viral DNA replication. First, we established that early viral gene expression occurred at the nonpermissive temperature. By using a transfection procedure that circumvents the viral DNA replication requirement, we found that reporter genes regulated by an intermediate promoter were transcribed only under conditions permissive for expression of active B1. To assay late gene expression, the T7 RNA polymerase gene was inserted into the genome of ts25 to form ts25/T7. A DNA replication-independent late gene transcription system was established by cotransfecting plasmids containing T7 promoter-driven late gene transcription factors and a late promoter reporter gene into ts25/T7-infected cells. Late genes, unlike intermediate genes, were expressed at the nonpermissive temperature. Last, we showed that overexpression of B1 stimulated intermediate but inhibited late gene expression in cells infected with wild-type virus.
Collapse
Affiliation(s)
- G R Kovacs
- Department of Viral Vaccine Research, Wyeth-Lederle Vaccines, Pearl River, New York 10965, USA.
| | | | | |
Collapse
|
38
|
Abstract
The genome sequence of Yaba-like disease virus (YLDV), an unclassified member of the yatapoxvirus genus, has been determined. Excluding the terminal hairpin loops, the YLDV genome is 144,575 bp in length and contains inverted terminal repeats (ITRs) of 1883 bp. Within 20 nucleotides of the termini, there is a sequence that is conserved in other poxviruses and is required for the resolution of concatemeric replicative DNA intermediates. The nucleotide composition of the genome is 73% A+T, but the ITRs are only 63% A+T. The genome contains 151 tightly packed open reading frames (ORFs) that either are > or =180 nucleotides in length or are conserved in other poxviruses. ORFs within 23 kb of each end are transcribed toward the termini, whereas ORFs within the central region of the genome are encoded on either DNA strand. In the central region ORFs have a conserved position, orientation, and sequence compared with vaccinia virus ORFs and encode many enzymes, transcription factors, or structural proteins. In contrast, ORFs near the termini are more divergent and in seven cases are without counterparts in other poxviruses. The YLDV genome encodes several predicted immunomodulators; examples include two proteins with similarity to CC chemokine receptors and predicted secreted proteins with similarity to MHC class I antigen, OX-2, interleukin-10/mda-7, poxvirus growth factor, serpins, and a type I interferon-binding protein. Phylogenic analyses indicated that YLDV is very closely related to yaba monkey tumor virus, but outside the yatapoxvirus genus YLDV is more closely related to swinepox virus and leporipoxviruses than to other chordopoxvirus genera.
Collapse
Affiliation(s)
- H J Lee
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | | | | |
Collapse
|
39
|
Srinivasan V, Schnitzlein WM, Tripathy DN. Fowlpox virus encodes a novel DNA repair enzyme, CPD-photolyase, that restores infectivity of UV light-damaged virus. J Virol 2001; 75:1681-8. [PMID: 11160666 PMCID: PMC114077 DOI: 10.1128/jvi.75.4.1681-1688.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fowlpox virus (FPV), a pathogen of poultry, can persist in desiccated scabs shed from infected hosts. Although the mechanisms which ensure virus survival are unknown, it is likely that some type of remedial action against environmentally induced damage is required. In this regard, we have identified an open reading frame (ORF) coding for a putative class II cyclobutane pyrimidine dimer (CPD)-photolyase in the genome of FPV. This enzyme repairs the UV light-induced formation of CPDs in DNA by using blue light as an energy source and thus could enhance the viability of FPV during its exposure to sunlight. Based on transcriptional analyses, the photolyase gene was found to be expressed late during the FPV replicative cycle. That the resultant protein retained DNA repair activity was demonstrated by the ability of the corresponding FPV ORF to complement functionally a photolyase-deficient Escherichia coli strain. Interestingly, insertional inactivation of the FPV photolyase gene did not impair the replication of such a genetically altered virus in cultured cells. However, greater sensitivity of this mutant than of the parental virus to UV light irradiation was evident when both were subsequently photoreactivated in the absence of host participation. Therefore, FPV appears to incorporate its photolyase into mature virions where the enzyme can promote their survival in the environment. Although expression of a homologous protein has been predicted for some chordopoxviruses, this report is the first to demonstrate that a poxvirus can utilize light to repair damage to its genome.
Collapse
Affiliation(s)
- V Srinivasan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois 61802, USA
| | | | | |
Collapse
|
40
|
Xiang Y, Latner DR, Niles EG, Condit RC. Transcription elongation activity of the vaccinia virus J3 protein in vivo is independent of poly(A) polymerase stimulation. Virology 2000; 269:356-69. [PMID: 10753714 DOI: 10.1006/viro.2000.0242] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prior genetic analysis suggests that the vaccinia virus J3 gene product, previously characterized as a bifunctional (nucleoside-2'-O-)-methyltransferase and poly(A) polymerase stimulatory factor, is a postreplicative positive transcription elongation factor. To test this hypothesis, viruses bearing mutations in the J3 gene were characterized with respect to viral protein and RNA synthesis in infected cells. The analysis reveals that compared to wt virus infections, J3 mutants synthesize reduced amounts of large late viral proteins and shorter-than-normal intermediate and late mRNAs. Structural analysis of one late mRNA shows that it is specifically truncated from the 3' end, thus accounting for its shorter than normal chain length. Thus J3 mutant viruses are defective in elongation of transcription of postreplicative viral genes, strongly suggesting that the J3 gene product normally acts as a positive transcription elongation factor. Biochemical analysis of one J3 missense mutant demonstrates that it retains poly(A) stimulatory activity but is defective in (nucleoside-2'-O-)-methyltransferase activity. Thus the elongation factor activity of the J3 gene product is independent of the poly(A) stimulatory activity. It remains to be determined whether the (nucleoside-2'-O-)-methyltransferase and elongation factor activities of the J3 protein are linked or can be uncoupled by mutation.
Collapse
Affiliation(s)
- Y Xiang
- Department of Molecular Genetics, Center for Mammalian Genetics, University of Florida, Gainesville, Florida, 32610-0266, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Here we present the genomic sequence, with analysis, of a pathogenic fowlpox virus (FPV). The 288-kbp FPV genome consists of a central coding region bounded by identical 9.5-kbp inverted terminal repeats and contains 260 open reading frames, of which 101 exhibit similarity to genes of known function. Comparison of the FPV genome with those of other chordopoxviruses (ChPVs) revealed 65 conserved gene homologues, encoding proteins involved in transcription and mRNA biogenesis, nucleotide metabolism, DNA replication and repair, protein processing, and virion structure. Comparison of the FPV genome with those of other ChPVs revealed extensive genome colinearity which is interrupted in FPV by a translocation and a major inversion, the presence of multiple and in some cases large gene families, and novel cellular homologues. Large numbers of cellular homologues together with 10 multigene families largely account for the marked size difference between the FPV genome (260 to 309 kbp) and other known ChPV genomes (178 to 191 kbp). Predicted proteins with putative functions involving immune evasion included eight natural killer cell receptors, four CC chemokines, three G-protein-coupled receptors, two beta nerve growth factors, transforming growth factor beta, interleukin-18-binding protein, semaphorin, and five serine proteinase inhibitors (serpins). Other potential FPV host range proteins included homologues of those involved in apoptosis (e.g., Bcl-2 protein), cell growth (e.g., epidermal growth factor domain protein), tissue tropism (e.g., ankyrin repeat-containing gene family, N1R/p28 gene family, and a T10 homologue), and avian host range (e.g., a protein present in both fowl adenovirus and Marek's disease virus). The presence of homologues of genes encoding proteins involved in steroid biogenesis (e.g., hydroxysteroid dehydrogenase), antioxidant functions (e.g., glutathione peroxidase), vesicle trafficking (e.g., two alpha-type soluble NSF attachment proteins), and other, unknown conserved cellular processes (e.g., Hal3 domain protein and GSN1/SUR4) suggests that significant modification of host cell function occurs upon viral infection. The presence of a cyclobutane pyrimidine dimer photolyase homologue in FPV suggests the presence of a photoreactivation DNA repair pathway. This diverse complement of genes with likely host range functions in FPV suggests significant viral adaptation to the avian host.
Collapse
Affiliation(s)
- C L Afonso
- Plum Island Animal Disease Center, Agricultural Research Service, U. S. Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | | | | | |
Collapse
|
42
|
Cameron C, Hota-Mitchell S, Chen L, Barrett J, Cao JX, Macaulay C, Willer D, Evans D, McFadden G. The complete DNA sequence of myxoma virus. Virology 1999; 264:298-318. [PMID: 10562494 DOI: 10.1006/viro.1999.0001] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myxomatosis in European rabbits is a severely debilitating disease characterized by profound systemic cellular immunosuppression and a high rate of mortality. The causative agent, myxoma virus, is a member of the poxvirus family and prototype of the Leporipoxvirus genus. As a major step toward defining the genetic strategies by which the virus circumvents host antiviral responses, the genomic DNA sequence of myxoma virus, strain Lausanne, was determined. A total of 171 open reading frames were assigned to cover the 161.8-kb genome, including two copies each of the 12 genes that map within the 11.5-kb terminal inverted repeats. Database searches revealed a central core of approximately 120 kb that encodes more than 100 genes that exhibit close relationships to the conserved genes of members of other poxvirus genera. Open reading frames with predicted signal sequences, localization motifs, or homology to known proteins with immunomodulatory or host-range functions were examined more extensively for predicted features such as hydrophobic regions, nucleic acid binding domains, ankyrin repeats, serpin signatures, lectin domains. and structural cysteine spacings. As a result, several novel, potentially immunomodulatory proteins have been identified, including a family with multiple ankyrin-repeat domains, an OX-2 like member of the neural cell adhesion molecule family, a third myxoma serpin, a putative chemokine receptor fragment, two natural killer receptor-like species, and a variety of species with domains closely related to diverse host immune regulatory proteins. Coupled with the genomic sequencing of the related leporipoxvirus Shope fibroma virus, this work affirms the existence of a conserved complement of poxvirus-specific core genes and expands the growing repertoire of virus genes that confer the unique capacity of each poxvirus family member to counter the immune responses of the infected host.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Ankyrins/genetics
- Antigens, CD/genetics
- Antigens, Ly
- Apoptosis
- Base Sequence
- CD47 Antigen
- Carrier Proteins/genetics
- Cell Line
- Chlorocebus aethiops
- DNA, Viral/analysis
- Fibroma Virus, Rabbit/genetics
- Genome, Viral
- Humans
- Killer Cells, Natural
- Lectins, C-Type
- Membrane Glycoproteins/genetics
- Molecular Sequence Data
- Myxoma virus/genetics
- Myxoma virus/pathogenicity
- Myxoma virus/physiology
- Neural Cell Adhesion Molecules/genetics
- Open Reading Frames
- Protein Sorting Signals
- Rabbits
- Receptors, Cell Surface/genetics
- Receptors, Immunologic/genetics
- Receptors, NK Cell Lectin-Like
- Receptors, Natural Killer Cell
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- C Cameron
- Department of Microbiology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sanz P, Moss B. Identification of a transcription factor, encoded by two vaccinia virus early genes, that regulates the intermediate stage of viral gene expression. Proc Natl Acad Sci U S A 1999; 96:2692-7. [PMID: 10077573 PMCID: PMC15831 DOI: 10.1073/pnas.96.6.2692] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Vaccinia virus early, intermediate, and late stage genes are sequentially transcribed by the viral RNA polymerase within the cytoplasm of infected cells. We found that the 34- and 45-kDa polypeptides encoded by vaccinia virus ORFs A8R and A23R, respectively, were necessary to reconstitute transcription of a template with an intermediate stage promoter. Coexpression of the A8R and A23R genes in Escherichia coli was required for in vitro activity. In addition, the two polypeptides copurified, indicating their association as protein subunits of a vaccinia virus intermediate transcription factor. This factor, which we named VITF-3, complemented three viral proteins-namely, the RNA polymerase, capping enzyme, and a 30-kDa protein called VITF-1 that is also a subunit of the RNA polymerase-and an unidentified cell factor called VITF-2. Expression of the A8R and A23R genes occurred between 1 and 5 h after vaccinia virus infection and was not prevented by an inhibitor of DNA replication, consistent with a role for VITF-3 in specifically regulating intermediate transcription in vivo. The vaccinia virus A8R and A23R genes are highly conserved among vertebrate poxviruses, but no other viral or cellular homologs were identified.
Collapse
Affiliation(s)
- P Sanz
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0445, USA
| | | |
Collapse
|
44
|
Abstract
Vaccinia virus genes are expressed in a sequential fashion, suggesting a role for negative as well as positive regulatory mechanisms. A potential down regulator of gene expression was mapped by transfection assays to vaccinia virus open reading frame D10, which encodes a protein with no previously known function. Inhibition was independent of the promoter type used for the reporter gene, indicating that the mechanism did not involve promoter sequence recognition. The inhibition was overcome, however, when the open reading frame of the reporter gene was preceded by the encephalomyocarditis virus internal ribosome entry site, which excludes the possibility of nonspecific metabolic or other antiviral effects and suggests that capped mRNAs or cap-dependent translation might be the target of the D10 product. The inducible overexpression of the D10 gene by a recombinant vaccinia virus severely inhibited viral protein synthesis, decreased the steady-state level of viral late mRNA, and blocked the formation of infectious virus.
Collapse
Affiliation(s)
- T Shors
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0445, USA
| | | | | |
Collapse
|
45
|
Jackson RJ, Hall DF. The myxoma virus EcoRI-O fragment encodes the DNA binding core protein and the major envelope protein of extracellular poxvirus. Virus Genes 1998; 17:55-62. [PMID: 9778789 DOI: 10.1023/a:1008005101787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The nucleotide sequences of the myxoma virus gene homologs encoding the DNA binding core protein (MF17) and the major envelope protein of the extracellular poxvirus particle (MF13) have been localized to the myxoma virus 4 kB EcoRI-O fragment. The EcoRI-O fragment is located approximately 22 kb from the left end of the 163 kb DNA genome and encodes homologs of the F12L, F13L, F15L, F16L, F17R and E1L genes of the Copenhagen strain of vaccinia virus. The inferred amino acid sequences of the myxoma virus EcoRI-O encoded products have been compared to the protein databases to identify related proteins. The myxoma virus open reading frames MF12, MF15, MF16, MF17 and ME1 encode homologs of poxvirus specific proteins while the MF13 envelope protein also shares amino acid similarity with other poxvirus and cellular proteins.
Collapse
Affiliation(s)
- R J Jackson
- Vertebrate Biocontrol Co-operative Research Centre, CSIRO Division of Wildlife and Ecology, Canberra, Australia.
| | | |
Collapse
|
46
|
Xiang Y, Simpson DA, Spiegel J, Zhou A, Silverman RH, Condit RC. The vaccinia virus A18R DNA helicase is a postreplicative negative transcription elongation factor. J Virol 1998; 72:7012-23. [PMID: 9696793 PMCID: PMC109921 DOI: 10.1128/jvi.72.9.7012-7023.1998] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loss of vaccinia virus A18R gene function results in an aberrant transcription profile termed promiscuous transcription, defined as transcription within regions of the genome which are normally transcriptionally silent late during infection. Promiscuous transcription results in an increase in the intracellular concentration of double-stranded RNA, which in turn results in activation of the cellular 2-5A pathway and subsequent RNase L-catalyzed degradation of viral and cellular RNAs. One of three hypotheses could account for promiscuous transcription: (i) reactivation of early promoters late during infection, (ii) random transcription initiation, (iii) readthrough transcription from upstream promoters. Transcriptional analysis of several viral genes, presented here, argues strongly against the first two hypotheses. We have tested the readthrough hypothesis by conducting a detailed transcriptional analysis of a region of the vaccinia virus genome which contains three early genes (M1L, M2L, and K1L) positioned directly downstream of the intermediate gene, K2L. The results show that mutation of the A18R gene results in increased readthrough transcription of the M1L gene originating from the K2L intermediate promoter. A18R mutant infection of RNase L knockout mouse fibroblast (KO3) cells does not result in 2-5A pathway activation, yet the virus mutant is defective in late viral gene expression and remains temperature sensitive. These results demonstrate that the A18R gene product is a negative transcription elongation factor for postreplicative viral genes.
Collapse
Affiliation(s)
- Y Xiang
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610-0266, USA
| | | | | | | | | | | |
Collapse
|
47
|
Hassett DE, Lewis JI, Xing X, DeLange L, Condit RC. Analysis of a temperature-sensitive vaccinia virus mutant in the viral mRNA capping enzyme isolated by clustered charge-to-alanine mutagenesis and transient dominant selection. Virology 1997; 238:391-409. [PMID: 9400612 DOI: 10.1006/viro.1997.8820] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously reported the successful development of a targeted genetic method for the creation of temperature-sensitive vaccinia virus mutants [D. E. Hassett and R. C. Condit (1994) Proc. Natl. Acad. Sci. USA 91, 4554-4558]. This method has now been applied to the large subunit of the multifunctional vaccinia virus capping enzyme, encoded by gene D1R. Ten clustered charge-to-alanine mutations were created in a cloned copy of D1R. Four of these mutations were successfully transferred into the viral genome using transient dominant selection, and each of these four mutations yielded viruses with plaque phenotypes different from that of wild-type virus. Two of the mutant viruses, 516 and 793, were temperature sensitive in a plaque assay. Mutant 793 was also temperature sensitive in a one-step growth experiment. Phenotypic characterization of the 793 virus under both permissive and nonpermissive conditions revealed nearly normal patterns of viral protein and mRNA synthesis. Under nonpermissive conditions the 793 virus was defective in telomere resolution and blocked at an intermediate stage of viral morphogenesis. In vitro assays of various capping enzyme activities revealed that in permeabilized virions, enzyme guanylylate intermediate formation was reduced and methyltransferase activity was thermolabile, while in solubilized virion extracts enzyme guanylylate activity was reduced and both guanylyltransferase and methyltransferase activities were absent. Thus, the 793 mutation affects at least two separate enzymatic activities of the capping enzyme, guanylyltransferase and methyltransferase, and when incorporated into the virus genome, the mutation yields a virus that is temperature sensitive for growth, telomere resolution, and virion morphogenesis.
Collapse
Affiliation(s)
- D E Hassett
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
48
|
Katsafanas GC, Grem JL, Blough HA, Moss B. Inhibition of vaccinia virus replication by N-(phosphonoacetyl)-L-aspartate: differential effects on viral gene expression result from a reduced pyrimidine nucleotide pool. Virology 1997; 236:177-87. [PMID: 9299630 DOI: 10.1006/viro.1997.8735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The replication of vaccinia virus was reduced by 3 logs in cells that had been treated before and during infection with a concentration of N-(phosphonoacetyl)-L-aspartate (PALA) which lowered the UTP and CTP to 5 and 20% of controls, respectively, without affecting cell viability. The antiviral activity of PALA was reversed with uridine, indicating that it was entirely due to the diminution in pyrimidine nucleotides. Analysis of viral proteins revealed prolonged synthesis of some early stage species but a drastic reduction in late stage species, even though the nucleotide concentrations remained relatively constant throughout the infection. Although the gene expression pattern resembled that caused by a potent inhibitor of DNA synthesis, viral DNA accumulation was reduced by only 60%. Very little of the DNA made in the presence of PALA was converted to genome length molecules. The effect of PALA on transcription of early genes was complex: there was a twofold increase in the amount of a relatively short mRNA of 500 nucleotides but a two- to threefold decrease in the amount of a 4300-nucleotide mRNA encoding the largest subunit of RNA polymerase. In contrast, PALA severely inhibited the accumulation of viral intermediate and late stage mRNAs. The extreme sensitivity of vaccinia virus to PALA and the differential effects of the drug on viral gene expression result from the cascade mechanism of viral gene regulation.
Collapse
Affiliation(s)
- G C Katsafanas
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0445, USA
| | | | | | | |
Collapse
|
49
|
Moss B. Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc Natl Acad Sci U S A 1996; 93:11341-8. [PMID: 8876137 PMCID: PMC38059 DOI: 10.1073/pnas.93.21.11341] [Citation(s) in RCA: 383] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Vaccinia virus, no longer required for immunization against smallpox, now serves as a unique vector for expressing genes within the cytoplasm of mammalian cells. As a research tool, recombinant vaccinia viruses are used to synthesize and analyze the structure-function relationships of proteins, determine the targets of humoral and cell-mediated immunity, and investigate the types of immune response needed for protection against specific infectious diseases and cancer. The vaccine potential of recombinant vaccinia virus has been realized in the form of an effective oral wild-life rabies vaccine, although no product for humans has been licensed. A genetically altered vaccinia virus that is unable to replicate in mammalian cells and produces diminished cytopathic effects retains the capacity for high-level gene expression and immunogenicity while promising exceptional safety for laboratory workers and potential vaccine recipients.
Collapse
Affiliation(s)
- B Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0445, USA
| |
Collapse
|
50
|
Kovacs GR, Moss B. The vaccinia virus H5R gene encodes late gene transcription factor 4: purification, cloning, and overexpression. J Virol 1996; 70:6796-802. [PMID: 8794318 PMCID: PMC190724 DOI: 10.1128/jvi.70.10.6796-6802.1996] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The vaccinia virus late stage-specific transcription factor P3 was purified to homogeneity from HeLa cells that were infected in the presence of an inhibitor of viral DNA replication. The purified 36-kDa protein was digested with trypsin, and the peptides were analyzed by mass spectroscopy and amino-terminal sequencing. The purified factor was identified as the product of the vaccinia virus H5R open reading frame by both methods. A recombinant baculovirus was engineered to express the H5R open reading frame. The partially purified recombinant protein could replace the vaccinia virus P3 factor in transcription assays. On the basis of these findings, we assigned the H5R gene product the name viral late gene transcription factor 4 (VLTF-4). Unlike VLTF-1, -2, and -3, which are synthesized exclusively after viral DNA replication, VLTF-4 is synthesized before and after viral DNA synthesis. Indirect immunofluorescence of infected cells with anti-H5R protein antiserum demonstrated that VLTF-4 is diffusely distributed in the cytoplasm when DNA replication is blocked but is localized to discrete viral DNA-containing factories during a productive infection. Its expression pattern and subcellular distribution suggest that the H5R gene product may have multiple roles in the viral life cycle.
Collapse
Affiliation(s)
- G R Kovacs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | |
Collapse
|