1
|
Oliveira ERA, Bouvier M. Immune evasion by adenoviruses: a window into host-virus adaptation. FEBS Lett 2019; 593:3496-3503. [PMID: 31736048 DOI: 10.1002/1873-3468.13682] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 11/09/2022]
Abstract
Human adenoviruses (HAdVs) are widespread pathogens that cause a number of partially overlapping, species-specific infections associated with respiratory, urinary, gastrointestinal, and ocular diseases. The early 3 (E3) region of adenoviruses is highly divergent between different species, and it encodes a multitude of proteins with immunomodulatory functions. The study of genetic diversity in the E3 region offers a unique opportunity to gain insight into how the various HAdVs have evolutionarily adapted in response to the selection pressures exerted by host immune defenses. The objective of this review was to discuss subversion of host antiviral immune responses by HAdVs, with a focus on suppression of MHC class I antigen presentation, as a window into host-HAdV adaptation.
Collapse
Affiliation(s)
- Edson R A Oliveira
- Department of Microbiology and Immunology, University of Illinois at Chicago, IL, USA
| | - Marlene Bouvier
- Department of Microbiology and Immunology, University of Illinois at Chicago, IL, USA
| |
Collapse
|
2
|
Li L, Santarsiero BD, Bouvier M. Structure of the Adenovirus Type 4 (Species E) E3-19K/HLA-A2 Complex Reveals Species-Specific Features in MHC Class I Recognition. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:1399-407. [PMID: 27385781 PMCID: PMC4975982 DOI: 10.4049/jimmunol.1600541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/02/2016] [Indexed: 01/07/2023]
Abstract
Adenoviruses (Ads) subvert MHC class I Ag presentation and impair host anti-Ad cellular activities. Specifically, the Ad-encoded E3-19K immunomodulatory protein targets MHC class I molecules for retention within the endoplasmic reticulum of infected cells. We report the x-ray crystal structure of the Ad type 4 (Ad4) E3-19K of species E bound to HLA-A2 at 2.64-Å resolution. Structural analysis shows that Ad4 E3-19K adopts a tertiary fold that is shared only with Ad2 E3-19K of species C. A comparative analysis of the Ad4 E3-19K/HLA-A2 structure with our x-ray structure of Ad2 E3-19K/HLA-A2 identifies species-specific features in HLA-A2 recognition. Our analysis also reveals common binding characteristics that explain the promiscuous, and yet high-affinity, association of E3-19K proteins with HLA-A and HLA-B molecules. We also provide structural insights into why E3-19K proteins do not associate with HLA-C molecules. Overall, our study provides new information about how E3-19K proteins selectively engage with MHC class I to abrogate Ag presentation and counteract activation of CD8(+) T cells. The significance of MHC class I Ag presentation for controlling viral infections, as well as the threats of viral infections in immunocompromised patients, underline our efforts to characterize viral immunoevasins, such as E3-19K.
Collapse
Affiliation(s)
- Lenong Li
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, IL 60612
| | - Bernard D Santarsiero
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, IL 60612; and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60607
| | - Marlene Bouvier
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, IL 60612;
| |
Collapse
|
3
|
The transmembrane domain of the adenovirus E3/19K protein acts as an endoplasmic reticulum retention signal and contributes to intracellular sequestration of major histocompatibility complex class I molecules. J Virol 2013; 87:6104-17. [PMID: 23514889 DOI: 10.1128/jvi.03391-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human adenovirus E3/19K protein is a type I transmembrane glycoprotein of the endoplasmic reticulum (ER) that abrogates cell surface transport of major histocompatibility complex class I (MHC-I) and MHC-I-related chain A and B (MICA/B) molecules. Previous data suggested that E3/19K comprises two functional modules: a luminal domain for interaction with MHC-I and MICA/B molecules and a dilysine motif in the cytoplasmic tail that confers retrieval from the Golgi apparatus back to the ER. This study was prompted by the unexpected phenotype of an E3/19K molecule that was largely retained intracellularly despite having a mutated ER retrieval motif. To identify additional structural determinants responsible for ER localization, chimeric molecules were generated containing the luminal E3/19K domain and the cytoplasmic and/or transmembrane domain (TMD) of the cell surface protein MHC-I K(d). These chimeras were analyzed for transport, cell surface expression, and impact on MHC-I and MICA/B downregulation. As with the retrieval mutant, replacement of the cytoplasmic tail of E3/19K allowed only limited transport of the chimera to the cell surface. Efficient cell surface expression was achieved only by additionally replacing the TMD of E3/19K with that of MHC-I, suggesting that the E3/19K TMD may confer static ER retention. This was verified by ER retention of an MHC-I K(d) molecule with the TMD replaced by that of E3/19K. Thus, we have identified the E3/19K TMD as a novel functional element that mediates static ER retention, thereby increasing the concentration of E3/19K in the ER. Remarkably, the ER retrieval signal alone, without the E3/19K TMD, did not mediate efficient HLA downregulation, even in the context of infection. This suggests that the TMD is required together with the ER retrieval function to ensure efficient ER localization and transport inhibition of MHC-I and MICA/B molecules.
Collapse
|
4
|
Li L, Muzahim Y, Bouvier M. Crystal structure of adenovirus E3-19K bound to HLA-A2 reveals mechanism for immunomodulation. Nat Struct Mol Biol 2012; 19:1176-81. [PMID: 23042604 PMCID: PMC3492506 DOI: 10.1038/nsmb.2396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 08/30/2012] [Indexed: 01/07/2023]
Abstract
E3-19K binds to and retains MHC class I molecules in the endoplasmic reticulum, suppressing anti-adenovirus activities of T cells. We determined the structure of the adenovirus serotype 2 (Ad2, species C) E3-19K-HLA-A2 complex to 1.95-Å resolution. Ad2 E3-19K binds to the N terminus of the HLA-A2 groove, contacting the α1, α2 and α3 domains and β(2)m. Ad2 E3-19K has a unique structure comprising a large N-terminal domain, formed by two partially overlapping β-sheets arranged in a V shape, and a C-terminal α-helix and tail. The structure reveals determinants in E3-19K and HLA-A2 that are important for complex formation; conservation of some of these determinants in E3-19K proteins of different species and MHC I molecules of different loci suggests a universal binding mode for all E3-19K proteins. Our structure is important for understanding the immunomodulatory function of E3-19K.
Collapse
Affiliation(s)
- Lenong Li
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL USA
| | - Yasameen Muzahim
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL USA
| | - Marlene Bouvier
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
5
|
Fu J, Li L, Bouvier M. Adenovirus E3-19K proteins of different serotypes and subgroups have similar, yet distinct, immunomodulatory functions toward major histocompatibility class I molecules. J Biol Chem 2011; 286:17631-9. [PMID: 21454588 DOI: 10.1074/jbc.m110.212050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our understanding of the mechanism by which the E3-19K protein from adenovirus (Ad) targets major histocompatibility complex (MHC) class I molecules for retention in the endoplasmic reticulum is derived largely from studies of Ad serotype 2 (subgroup C). It is not well understood to what extent observations on the Ad2 E3-19K/MHC I association can be generalized to E3-19K proteins of other serotypes and subgroups. The low levels of amino acid sequence homology between E3-19K proteins suggest that these proteins are likely to manifest distinct MHC I binding properties. This information is important as the E3-19K/MHC I interaction is thought to play a critical role in enabling Ads to cause persistent infections. Here, we characterized interaction between E3-19K proteins of serotypes 7 and 35 (subgroup B), 5 (subgroup C), 37 (subgroup D), and 4 (subgroup E) and a panel of HLA-A, -B, and -C molecules using native gel, surface plasmon resonance (SPR), and flow cytometry. Results show that all E3-19K proteins exhibited allele specificity toward HLA-A and -B molecules; this was less evident for Ad37 E3-19K. The allele specificity for HLA-A molecules was remarkably similar for different serotypes of subgroup B as well as subgroup C. Interestingly, all E3-19K proteins characterized also exhibited MHC I locus specificity. Importantly, we show that Lys(91) in the conserved region of Ad2 E3-19K targets the C terminus of the α2-helix (MHC residue 177) on MHC class I molecules. From our data, we propose a model of interaction between E3-19K and MHC class I molecules.
Collapse
Affiliation(s)
- Jie Fu
- Department of Microbiology and Immunology, University of Illinois, College of Medicine, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
6
|
Fu J, Bouvier M. Determinants of the endoplasmic reticulum (ER) lumenal-domain of the adenovirus serotype 2 E3-19K protein for association with and ER-retention of major histocompatibility complex class I molecules. Mol Immunol 2011; 48:532-8. [PMID: 21094528 PMCID: PMC3032990 DOI: 10.1016/j.molimm.2010.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/18/2010] [Accepted: 10/22/2010] [Indexed: 10/18/2022]
Abstract
The E3-19K immunomodulatory protein from adenoviruses (Ads) inhibits antigen presentation by major histocompatibility complex (MHC) class I molecules. As a result, the ability of Ad-specific cytotoxic T lymphocytes (CTLs) to lyse infected cells is suppressed. The ER-lumenal domain of E3-19K is subdivided into a variable (residues 1 to ∼78/81) and conserved (residues ∼79/82 to 98) region followed by a linker (residues 99-107). Using molecular and cellular approaches, we characterized in detail the properties of the ER-lumenal domain of E3-19K that enable it to target MHC class I molecules. Proteolysis of recombinant serotype 2 E3-19K (residues 1-100) (with six His residues) generated a large N-terminal (residues 1-88) and a small C-terminal fragment (residues 94-100) in solution. Neither of these fragments associates with HLA-A*1101 as shown by a native gel band-shift assay. In contrast, the N-terminal 1-93 residues of Ad2 E3-19K exhibited the same binding affinity to HLA-A*1101 as E3-19K. Using a site-directed mutational analysis and flow cytometry, we show that Tyr(93), but not Tyr(88), critically modulates the cell-surface expression of MHC class I molecules. Taken together, these results indicate that the sequence comprising residues 89-93 (M(89)SKQY(93)), and in particular Tyr(93), in the conserved region of E3-19K is critical for its immunomodulatory function. Residues 89-93 likely form a linker or loop in E3-19K. Overall, our data provide novel insights into the structure of E3-19K and identify key determinants for association with and ER-retention of its cellular target protein. This knowledge is important for our understanding of the molecular basis of Ad pathogenesis.
Collapse
Affiliation(s)
- Jie Fu
- Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, 835 S. Wolcott, Chicago, IL 60612
| | - Marlene Bouvier
- Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, 835 S. Wolcott, Chicago, IL 60612
| |
Collapse
|
7
|
Sester M, Koebernick K, Owen D, Ao M, Bromberg Y, May E, Stock E, Andrews L, Groh V, Spies T, Steinle A, Menz B, Burgert HG. Conserved amino acids within the adenovirus 2 E3/19K protein differentially affect downregulation of MHC class I and MICA/B proteins. THE JOURNAL OF IMMUNOLOGY 2009; 184:255-67. [PMID: 19949079 DOI: 10.4049/jimmunol.0902343] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Successful establishment and persistence of adenovirus (Ad) infections are facilitated by immunosubversive functions encoded in the early transcription unit 3 (E3). The E3/19K protein has a dual role, preventing cell surface transport of MHC class I/HLA class I (MHC-I/HLA-I) Ags and the MHC-I-like molecules (MHC-I chain-related chain A and B [MICA/B]), thereby inhibiting both recognition by CD8 T cells and NK cells. Although some crucial functional elements in E3/19K have been identified, a systematic analysis of the functional importance of individual amino acids is missing. We now have substituted alanine for each of 21 aas in the luminal domain of Ad2 E3/19K conserved among Ads and investigated the effects on HLA-I downregulation by coimmunoprecipitation, pulse-chase analysis, and/or flow cytometry. Potential structural alterations were monitored using conformation-dependent E3/19K-specific mAbs. The results revealed that only a small number of mutations abrogated HLA-I complex formation (e.g., substitutions W52, M87, and W96). Mutants M87 and W96 were particularly interesting as they exhibited only minimal structural changes suggesting that these amino acids make direct contacts with HLA-I. The considerable number of substitutions with little functional defects implied that E3/19K may have additional cellular target molecules. Indeed, when assessing MICA/B cell-surface expression we found that mutation of T14 and M82 selectively compromised MICA/B downregulation with essentially no effect on HLA-I modulation. In general, downregulation of HLA-I was more severely affected than that of MICA/B; for example, substitutions W52, M87, and W96 essentially abrogated HLA-I modulation while largely retaining the ability to sequester MICA/B. Thus, distinct conserved amino acids seem preferentially important for a particular functional activity of E3/19K.
Collapse
Affiliation(s)
- Martina Sester
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Menz B, Sester M, Koebernick K, Schmid R, Burgert HG. Structural analysis of the adenovirus type 2 E3/19K protein using mutagenesis and a panel of conformation-sensitive monoclonal antibodies. Mol Immunol 2008; 46:16-26. [DOI: 10.1016/j.molimm.2008.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
|
9
|
Viral proteins interfering with antigen presentation target the major histocompatibility complex class I peptide-loading complex. J Virol 2008; 82:8246-52. [PMID: 18448533 DOI: 10.1128/jvi.00207-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
10
|
Liao PH, Chen TH, Liao PY. Complex Formation between the Lumenal Domain of Adenovirus E3-19k Protein and the Extracellular Domain of Class I MHC Molecule In Vitro. J CHIN CHEM SOC-TAIP 2002. [DOI: 10.1002/jccs.200200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Lee S, Yoon J, Park B, Jun Y, Jin M, Sung HC, Kim IH, Kang S, Choi EJ, Ahn BY, Ahn K. Structural and functional dissection of human cytomegalovirus US3 in binding major histocompatibility complex class I molecules. J Virol 2000; 74:11262-9. [PMID: 11070025 PMCID: PMC113228 DOI: 10.1128/jvi.74.23.11262-11269.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus US3, an endoplasmic reticulum (ER)-resident transmembrane glycoprotein, forms a complex with major histocompatibility complex (MHC) class I molecules and retains them in the ER, thereby preventing cytolysis by cytotoxic T lymphocytes. To identify which parts of US3 confine the protein to the ER and which parts are responsible for the association with MHC class I molecules, we constructed truncated mutant and chimeric forms in which US3 domains were exchanged with corresponding domains of CD4 and analyzed them for their intracellular localization and the ability to associate with MHC class I molecules. All of the truncated mutant and chimeric proteins containing the luminal domain of US3 were retained in the ER, while replacement of the US3 luminal domain with that of CD4 led to cell surface expression of the chimera. Thus, the luminal domain of US3 was sufficient for ER retention. Immunolocalization of the US3 glycoprotein after nocodazole treatment and the observation that the carbohydrate moiety of the US3 glycoprotein was not modified by Golgi enzymes indicated that the ER localization of US3 involved true retention, without recycling through the Golgi. Unlike the ER retention signal, the ability to associate with MHC class I molecules required the transmembrane domain in addition to the luminal domain of US3. Direct interaction between US3 and MHC class I molecules could be demonstrated after in vitro translation by coimmunoprecipitation. Together, the present data indicate that the properties that allow US3 to be localized in the ER and bind MHC class I molecules are located in different parts of the molecule.
Collapse
Affiliation(s)
- S Lee
- Graduate School of Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cauthen AN, Spindler KR. Novel expression of mouse adenovirus type 1 early region 3 gp11K at late times after infection. Virology 1999; 259:119-28. [PMID: 10364495 DOI: 10.1006/viro.1999.9713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations were introduced into mouse adenovirus type 1 (MAV-1) early region 3 (E3) initiator codons by homologous recombination between viral DNA and a plasmid containing a mutagenized E3 region. The resulting mutant virus, pmE312, contained ATG --> TTA mutations at codon positions 1 and 4 and was expected to be null for the expression of the E3 proteins. However, gp11K, an MAV-1 E3 glycoprotein of 14K molecular weight, was detected in mutant-infected cell lysates at levels about 10-12% of that of wild-type (wt) virus at late times in infection. The gp11K polypeptide produced by pmE312 at late times was immunoprecipitated with two E3-specific antisera prepared against different regions of the protein. Like gp11K produced by wt virus infections, it was sensitive to endoglycosidase H (endo H) and thus resident in the endoplasmic reticulum (ER). In pmE312-infected cells treated with cytosine arabinoside (araC), an inhibitor of DNA replication, the gp11K protein was not detected by immunoprecipitation. This indicates that gp11K expression in pmE312-infected cells at late times was dependent on DNA replication and that it was thus translated from a late transcript. In vitro translation of poly(A)+ RNA from mock-, wild-type-, and pmE312-infected cells showed that gp11K was translated from late mRNA as an approximately 28K fusion between a late protein and gp11K. Our data are consistent with a model in which gp11K is expressed at late times as a late protein-gp11K chimera in both wt- and mutant-infected cells. This chimera is then processed: removal of a large N-terminal sequence results in the observed 14K ER-localized gp11K.
Collapse
Affiliation(s)
- A N Cauthen
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
13
|
|
14
|
Ehrlich R. Modulation of antigen processing and presentation by persistent virus infections and in tumors. Hum Immunol 1997; 54:104-16. [PMID: 9297529 DOI: 10.1016/s0198-8859(97)00083-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cell-mediated immunity is effective against cells harboring active virus replication and is critical for the elimination of ongoing infections, opposing tumor progression, and reducing or preventing the reactivation of persistent viruses and tumor metastasis. The capacity of persistent viruses and tumor cells to maintain a long-term relationship with their host presupposes mechanisms for circumventing antiviral or antitumor defenses. By suppressing the expression of molecules associated with antigen processing and presentation, abrogation of the major immune mechanism that deals with the elimination of infected and transformed cells is achieved. This is accomplished in tumors predominantly by transcriptional downregulation of genes encoding class I major histocompatibility complex antigens, peptide transporter molecules, and the proteasome-associated low molecular mass protease subunits, and in cells expressing viral proteins by interfering with peptide transport and the assembly/transport of class I complexes. In addition, virus-infected cells and selected tumor cells express mainly nonimmunogenic or antagonistic peptide epitopes. This review describes mechanisms used by viruses and in transformed cells for interference with antigen processing and presentation and addresses their significance for in vivo viral persistence and tumor progression.
Collapse
Affiliation(s)
- R Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
15
|
Abstract
Human adenoviruses have provided valuable insights into virus-host interactions at the clinical and experimental levels. In addition to the medical importance of adenoviruses in acute infections and the ability of the virus to persist in the host, adenovirus-based recombinants are being developed as potential vaccine vectors. It is now clear that adenoviruses employ various strategies to modulate the innate and the adaptive host immune defences. Adenovirus genome-coded products that interact with the immune response of the host have been identified, and to a large extent the molecular mechanisms of their functions have been revealed. Such knowledge will no doubt influence our approach to the areas of viral pathogenesis, vaccine development and immune modulation for disease management.
Collapse
Affiliation(s)
- H Hayder
- Division of Immunology and Cell Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory
| | | |
Collapse
|
16
|
Abstract
Early region 3 (E3) of mouse adenovirus type 1 has the potential to produce three proteins which have identical amino termini but unique carboxy-terminal sequences. Three recombinant deletion viruses were constructed so that each could produce only one of the three E3 proteins. A fourth mutant that should produce no E3 proteins was also constructed. These recombinants were able to grow in mouse 3T6 cells and produced wild-type levels of viral mRNAs and proteins except for those specifically deleted by the mutations. Early mRNA production from the mutant viruses was analyzed by reverse transcriptase PCR and confirmed that each deletion mutant would be able to produce only one of the three E3 proteins. Late mRNA production was analyzed by Northern (RNA) blotting and found to be similar in wild-type and mutant viruses. Capsid morphology was unaltered in the mutant viruses as seen by electron microscopy. Immunoprecipitation of E3 proteins from infections of mouse 3T6 cells using an antiserum specific for all three E3 proteins was used to examine the effect of the introduced mutations on protein expression. Two mutants produced only one class of E3 protein as predicted from their specific mutations and mRNA expression profiles. One mutant virus failed to produce any detectable E3 proteins. The predicted E3-null mutant was found to be leaky and could produce low levels of E3 proteins. Outbred Swiss mice were infected with the E3 mutant viruses to determine if the E3 proteins have an effect on the pathogenicity of the virus in mice. All of the mutants showed decreased pathogenicity as determined by increased 50% lethal doses, indicating that the proteins of the E3 region are important determinants of the pathogenesis of mouse adenovirus in its natural host.
Collapse
Affiliation(s)
- C W Beard
- Department of Genetics, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
17
|
Deryckere F, Burgert HG. Early region 3 of adenovirus type 19 (subgroup D) encodes an HLA-binding protein distinct from that of subgroups B and C. J Virol 1996; 70:2832-41. [PMID: 8627757 PMCID: PMC190140 DOI: 10.1128/jvi.70.5.2832-2841.1996] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Early region 3 (E3) of human adenoviruses (Ads) codes for proteins that appear to control viral interactions with the host. For example, the most abundant E3 protein, E3/19K, inhibits the transport of newly synthesized class I major histocompatibility molecules to the cell surface, thereby interfering with antigen presentation. So far, the E3 regions of Ad subgroups A, B, C, and F have been characterized. We have cloned the E3A region of Ad type 19a (Ad19a), which belongs to the largest subgroup, D, and causes epidemic keratoconjunctivitis in humans. The sequence reveals five open reading frames (ORFs) with the potential to encode the Ad19 equivalent of pVIII, as well as proteins 12.2K, 16.2K, and 18.6K. The last ORF predicts a novel 49K protein which has no counterpart in other subgroups. Both the sequence and the overall organization of the E3 region from Ad19a shows a closer relationship to group B than to group C Ads. The 18.6K ORF represents the Ad19 homolog of the Ad2 E3/19K protein. By using 293 cells stably transfected with the Adl9a E3A region, we showed by immunoprecipitation, pulse-chase experiments, and fluorescence-activated cell sorter analysis that the Ad19 E3/19K protein binds to and prevents the transport of major histocompatibility complex molecules to the cell surface. The similar but distinct functional activity of the Ad19 E3/19K protein, combined with the new sequence which differs from those of subgroup B and C proteins, allows a more precise definition of amino acids essential for HLA binding.
Collapse
Affiliation(s)
- F Deryckere
- Hans-Spemann-Laboratorium, Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | | |
Collapse
|
18
|
Burgert HG. Subversion of the MHC class I antigen-presentation pathway by adenoviruses and herpes simplex viruses. Trends Microbiol 1996; 4:107-12. [PMID: 8868089 DOI: 10.1016/0966-842x(96)81527-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- H G Burgert
- Hans-Spemann-Laboratorium, Max-Planck-Institut für Immunbiologie, Freiburg, Germany.
| |
Collapse
|
19
|
Ehrlich R. Selective mechanisms utilized by persistent and oncogenic viruses to interfere with antigen processing and presentation. Immunol Res 1995; 14:77-97. [PMID: 8530879 DOI: 10.1007/bf02918170] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cell-mediated immunity is effective against cells harboring active virus replication, and is critical for the elimination of ongoing infections, regression of virus-associated tumors, and reducing or preventing the reactivation of persistent viruses. The capacity of persistent and oncogenic viruses to maintain a long-term relationship with their host presupposes viral mechanisms for circumventing antiviral defenses. By suppressing the expression of molecules associated with antigen processing and presentation, viruses abrogate the major immune mechanism that deals with the elimination of infected and tumor cells. This is accomplished either by transcriptional downregulation of genes encoding class I MHC antigens, peptide transporter molecules, and the proteasome-associated LMP subunits, or by interfering with transport of class I molecules to the cell surface. In some cases viruses shut off the expression of most viral proteins during latency or express mainly nonimmunogenic or antagonistic peptide epitopes. This review describes selective mechanisms utilized by viruses for interference with antigen processing and presentation, and addresses their significance for in vivo viral persistence and tumor progression.
Collapse
Affiliation(s)
- R Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
20
|
Affiliation(s)
- W S Wold
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, MO 63104, USA
| | | | | |
Collapse
|
21
|
Affiliation(s)
- Y F Mei
- Department of Virology, Umeå University, Sweden
| | | |
Collapse
|
22
|
Flomenberg P, Gutierrez E, Hogan KT. Identification of class I MHC regions which bind to the adenovirus E3-19k protein. Mol Immunol 1994; 31:1277-84. [PMID: 7969188 DOI: 10.1016/0161-5890(94)90078-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The adenovirus early region 3 glycoprotein E3-19k binds to and inhibits expression of class I major histocompatibility complex (MHC)-encoded molecules, which may help infected cells evade immune recognition. The role of specific regions of the class I MHC molecule in the interaction with E3-19k was evaluated using a series of HLA-A2.1-, HLA-A2 variant-, and HLA-B7-expressing cell lines. The monoclonal antibody (mAb) W6/32, which recognizes a monomorphic epitope on class I MHC molecules, readily co-immunoprecipitated E3-19k with HLA-A2.1 and 14 different HLA-A2 variant molecules that differ from HLA-A2.1 by single amino acid substitutions. Thus, no single residue tested in the regions of the class I MHC molecule that bind peptide or the T-cell receptor controls the binding to E3-19k. Additional immunoprecipitations performed with mAbs directed against well-defined epitopes on the surface of HLA-A2.1 revealed a dichotomy in the ability of the mAbs to co-immunoprecipitate HLA-A2.1 and E3-19k. The mAbs LGIII-220 (directed against the C-terminal end of the alpha 1-helix), CR11-351 (directed against the N-terminal end of the alpha 2-helix), and PA2.1 (directed against the middle of the alpha 2-helix and an underlying beta-loop) readily co-precipitated HLA-A2.1 and E3-19k. In contrast, mAbs MA2.1 (directed against the N-terminal end of the alpha 1-helix and the C-terminal end of the alpha 2-helix) and HO-2 (directed against the N-terminal end of the alpha 1-helix) did not co-precipitate E3-19k with HLA-A2.1. Similarly, mAb MB40.2 (directed against residues 169-182 of HLA-B7) also did not co-precipitate E3-19k with HLA-B7. These studies lead to the conclusion that the N-terminal end of the alpha 1-helix and the C-terminal end of the alpha 2-helix play an important role in dictating the ability of the E3-19k protein to bind to the class I MHC molecule.
Collapse
Affiliation(s)
- P Flomenberg
- Department of Medicine, Medical College of Wisconsin, Milwaukee
| | | | | |
Collapse
|
23
|
Sester M, Burgert HG. Conserved cysteine residues within the E3/19K protein of adenovirus type 2 are essential for binding to major histocompatibility complex antigens. J Virol 1994; 68:5423-32. [PMID: 8057424 PMCID: PMC236942 DOI: 10.1128/jvi.68.9.5423-5432.1994] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The E3/19K protein of human adenovirus type 2 is a resident transmembrane glycoprotein of the endoplasmic reticulum. Its capacity to associate with class I histocompatibility (MHC) antigens abrogates cell surface expression and the antigen presentation function of MHC antigens. At present, it is unclear exactly which structure of the E3/19K protein mediates binding to MHC molecules. Apart from a stretch of approximately 20 conserved amino acids in front of the transmembrane segment, E3/19K molecules from different adenovirus subgroups (B and C) share little homology. Remarkably, the majority of cysteines are conserved. In this report, we examined the importance of cysteine residues for the structure and function of E3/19K. We show that E3/19K contains intramolecular disulfide bonds. By using site-directed mutagenesis, individual cysteines were replaced by serines and mutant proteins were stably expressed in 293 cells. On the basis of the differential binding of monoclonal antibody Tw1.3 and cyanogen bromide cleavage experiments, a structural model of E3/19K is proposed, in which Cys-11 and Cys-28 as well as Cys-22 and Cys-83 are linked by disulfide bonds. Both disulfide bonds (all four cysteines) are absolutely critical for the interaction with human MHC antigens. This was demonstrated by three criteria: loss of E3/19K coprecipitation, lack of transport inhibition, and normal cell surface expression of MHC molecules. Mutation of the three other cysteines had no effect. This indicates that a conformational determinant based on two disulfide bonds is crucial for the function of the E3/19K molecule, namely, to bind and to inhibit transport of MHC antigens.
Collapse
Affiliation(s)
- M Sester
- Hans-Spemann-Laboratorium, Max-Planck-Institut für Immunobiologie, Freiburg, Germany
| | | |
Collapse
|
24
|
McFadden G, Kane K. How DNA viruses perturb functional MHC expression to alter immune recognition. Adv Cancer Res 1994; 63:117-209. [PMID: 8036987 DOI: 10.1016/s0065-230x(08)60400-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- G McFadden
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
25
|
Hermiston TW, Tripp RA, Sparer T, Gooding LR, Wold WS. Deletion mutation analysis of the adenovirus type 2 E3-gp19K protein: identification of sequences within the endoplasmic reticulum lumenal domain that are required for class I antigen binding and protection from adenovirus-specific cytotoxic T lymphocytes. J Virol 1993; 67:5289-98. [PMID: 8350398 PMCID: PMC237927 DOI: 10.1128/jvi.67.9.5289-5298.1993] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Adenovirus E3-gp19K is a transmembrane glycoprotein, localized in the endoplasmic reticulum (ER), which forms a complex with major histocompatibility complex (MHC) class I antigens and retains them in the ER, thereby preventing cytolysis by cytotoxic T lymphocytes (CTL). The ER lumenal domain of gp19K, residues 1 to 107, is known to be sufficient for binding to class I antigens; the transmembrane and cytoplasmic ER retention domains are located at residues ca. 108 to 127 and 128 to 142, respectively. To identify more precisely which gp19K regions are involved in binding to class I antigens, we constructed 13 in-frame virus deletion mutants (4 to 12 amino acids deleted) in the ER lumenal domain of gp19K, and we analyzed the ability of the mutant proteins to form a complex with class I antigens, retain them in the ER, and prevent cytolysis by adenovirus-specific CTL. All mutant proteins except one (residues 102 to 107 deleted) were defective for these properties, indicating that the ability of gp19K to bind to class I antigens is highly sensitive to mutation. All mutant proteins were stable and were retained in the ER. Sequence comparisons among adenovirus serotypes reveal that the ER lumenal domain of gp19K consists of a variable region (residues 1 to 76) and a conserved region (residues 77 to 98). We show, using the mutant proteins, that the gp19K-specific monoclonal antibody Tw1.3 recognizes a noncontiguous epitope in the variable region and that disruption of the variable region by deletion destroys the epitope. The monoclonal antibody and class I antigen binding results, together with the serotype sequence comparisons, are consistent with the idea that the ER lumenal domain of gp19K has three subdomains that we have termed the ER lumenal variable domain (residues 1 to ca. 77 to 83), the ER lumenal conserved domain (residues ca. 84 to 98), and the ER lumenal spacer domain (residues 99 to 107). We suggest that the ER lumenal variable domain of gp19K has a specific tertiary structure that is important for binding to the polymorphic alpha 1 and alpha 2 domains of class I heavy (alpha) chains. We suggest that the ER lumenal conserved domain of gp19K may interact with some conserved protein, perhaps the highly conserved alpha 3 domain of class I heavy chains. Finally, the ER lumenal spacer domain may allow the ER lumenal variable and conserved domains to extend out from the ER membrane so that they can interact with class I heavy chains.
Collapse
Affiliation(s)
- T W Hermiston
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, Missouri 63104
| | | | | | | | | |
Collapse
|