1
|
Unconventional viral gene expression mechanisms as therapeutic targets. Nature 2021; 593:362-371. [PMID: 34012080 DOI: 10.1038/s41586-021-03511-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Unlike the human genome that comprises mostly noncoding and regulatory sequences, viruses have evolved under the constraints of maintaining a small genome size while expanding the efficiency of their coding and regulatory sequences. As a result, viruses use strategies of transcription and translation in which one or more of the steps in the conventional gene-protein production line are altered. These alternative strategies of viral gene expression (also known as gene recoding) can be uniquely brought about by dedicated viral enzymes or by co-opting host factors (known as host dependencies). Targeting these unique enzymatic activities and host factors exposes vulnerabilities of a virus and provides a paradigm for the design of novel antiviral therapies. In this Review, we describe the types and mechanisms of unconventional gene and protein expression in viruses, and provide a perspective on how future basic mechanistic work could inform translational efforts that are aimed at viral eradication.
Collapse
|
2
|
Ma J, Zhang Z, Yao Q, Su C, Yin X, Wang X. Regulation of Rev expression by the equine infectious anaemia virus tat-rev mRNA Kozak sequence and its potential influence on viral replication. J Gen Virol 2016; 97:2421-2426. [PMID: 27411804 DOI: 10.1099/jgv.0.000548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rev, an important accessory protein of equine infectious anaemia virus (EIAV), induces the nuclear export of incompletely spliced viral mRNAs. Rev is translated from the tat-rev mRNA through leaky scanning of the tat CUG. In this study, the function of the Kozak sequence at the beginning of the rev ORF was investigated. Deletion or attenuation of the Kozak sequence resulted in expression of an N-terminal 11 aa-truncated Rev in addition to WT Rev. Truncated Rev displayed weaker promotion of Gag expression and processing than WT Rev. Furthermore, EIAV rescued from an infectious molecular clone (pEIAVUK3) with Kozak attenuation exhibited decreased viral replication in host cells in vitro. These results provide a new understanding of the relationship between EIAV Rev expression and viral replication.
Collapse
Affiliation(s)
- Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Zeli Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Qiucheng Yao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Chao Su
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| |
Collapse
|
3
|
Murine leukemia virus uses NXF1 for nuclear export of spliced and unspliced viral transcripts. J Virol 2014; 88:4069-82. [PMID: 24478440 DOI: 10.1128/jvi.03584-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Intron-containing mRNAs are subject to restricted nuclear export in higher eukaryotes. Retroviral replication requires the nucleocytoplasmic transport of both spliced and unspliced RNA transcripts, and RNA export mechanisms of gammaretroviruses are poorly characterized. Here, we report the involvement of the nuclear export receptor NXF1/TAP in the nuclear export of gammaretroviral RNA transcripts. We identified a conserved cis-acting element in the pol gene of gammaretroviruses, including murine leukemia virus (MLV) and xenotropic murine leukemia virus (XMRV), named the CAE (cytoplasmic accumulation element). The CAE enhanced the cytoplasmic accumulation of viral RNA transcripts and the expression of viral proteins without significantly affecting the stability, splicing, or translation efficiency of the transcripts. Insertion of the CAE sequence also facilitated Rev-independent HIV Gag expression. We found that the CAE sequence interacted with NXF1, whereas disruption of NXF1 ablated CAE function. Thus, the CAE sequence mediates the cytoplasmic accumulation of gammaretroviral transcripts in an NXF1-dependent manner. Disruption of NXF1 expression impaired cytoplasmic accumulations of both spliced and unspliced RNA transcripts of XMRV and MLV, resulting in their nuclear retention or degradation. Thus, our results demonstrate that gammaretroviruses use NXF1 for the cytoplasmic accumulation of both spliced and nonspliced viral RNA transcripts. IMPORTANCE Murine leukemia virus (MLV) has been studied as one of the classic models of retrovirology. Although unspliced host messenger RNAs are rarely exported from the nucleus, MLV actively exports unspliced viral RNAs to the cytoplasm. Despite extensive studies, how MLV achieves this difficult task has remained a mystery. Here, we have studied the RNA export mechanism of MLV and found that (i) the genome contains a sequence which supports the efficient nuclear export of viral RNAs, (ii) the cellular factor NXF1 is involved in the nuclear export of both spliced and unspliced viral RNAs, and, finally, (iii) depletion of NXF1 results in nuclear retention or degradation of viral RNAs. Our study provides a novel insight into MLV nuclear export.
Collapse
|
4
|
Cook R, Leroux C, Issel C. Equine infectious anemia and equine infectious anemia virus in 2013: A review. Vet Microbiol 2013; 167:181-204. [DOI: 10.1016/j.vetmic.2013.09.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 09/16/2013] [Accepted: 09/21/2013] [Indexed: 10/26/2022]
|
5
|
Covaleda L, Fuller FJ, Payne SL. EIAV S2 enhances pro-inflammatory cytokine and chemokine response in infected macrophages. Virology 2009; 397:217-23. [PMID: 19945727 DOI: 10.1016/j.virol.2009.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/06/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
Equine infectious anemia virus (EIAV) infection is distinctive in that it causes a rapid onset of clinical disease relative to other retroviruses. In order to understand the interaction dynamics between EIAV and the host immune response, we explored the effects of EIAV and its S2 protein in the regulation of the cytokine and chemokine response in macrophages. EIAV infection markedly altered the expression pattern of a variety of pro-inflammatory cytokines and chemokines monitored in the study. Comparative studies in the cytokine response between EIAV(17) and EIAV(17DeltaS2) infection revealed that S2 enhances the expression of IL-1alpha, IL-1beta, IL-8, MCP-2, MIP-1beta and IP-10. Moreover, S2 specifically induced the expression of the newly discovered cytokine, IL-34. Taken together, these results may help explain the effect of cytokine and chemokine dysregulation in EIAV pathogenesis and suggest a role of S2 in optimizing the host cell environment to promote viral dissemination and replication.
Collapse
Affiliation(s)
- Lina Covaleda
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, MS4467, College Station, TX 77843-4467, USA
| | | | | |
Collapse
|
6
|
Abstract
Regulation of protein synthesis by viruses occurs at all levels of translation. Even prior to protein synthesis itself, the accessibility of the various open reading frames contained in the viral genome is precisely controlled. Eukaryotic viruses resort to a vast array of strategies to divert the translation machinery in their favor, in particular, at initiation of translation. These strategies are not only designed to circumvent strategies common to cell protein synthesis in eukaryotes, but as revealed more recently, they also aim at modifying or damaging cell factors, the virus having the capacity to multiply in the absence of these factors. In addition to unraveling mechanisms that may constitute new targets in view of controlling virus diseases, viruses constitute incomparably useful tools to gain in-depth knowledge on a multitude of cell pathways.
Collapse
|
7
|
Lee JH, Murphy SC, Belshan M, Sparks WO, Wannemuehler Y, Liu S, Hope TJ, Dobbs D, Carpenter S. Characterization of functional domains of equine infectious anemia virus Rev suggests a bipartite RNA-binding domain. J Virol 2006; 80:3844-52. [PMID: 16571801 PMCID: PMC1440447 DOI: 10.1128/jvi.80.8.3844-3852.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine infectious anemia virus (EIAV) Rev is an essential regulatory protein that facilitates expression of viral mRNAs encoding structural proteins and genomic RNA and regulates alternative splicing of the bicistronic tat/rev mRNA. EIAV Rev is characterized by a high rate of genetic variation in vivo, and changes in Rev genotype and phenotype have been shown to coincide with changes in clinical disease. To better understand how genetic variation alters Rev phenotype, we undertook deletion and mutational analyses to map functional domains and to identify specific motifs that are essential for EIAV Rev activity. All functional domains are contained within the second exon of EIAV Rev. The overall organization of domains within Rev exon 2 includes a nuclear export signal, a large central region required for RNA binding, a nonessential region, and a C-terminal region required for both nuclear localization and RNA binding. Subcellular localization of green fluorescent protein-Rev mutants indicated that basic residues within the KRRRK motif in the C-terminal region of Rev are necessary for targeting of Rev to the nucleus. Two separate regions of Rev were necessary for RNA binding: a central region encompassing residues 57 to 130 and a C-terminal region spanning residues 144 to 165. Within these regions were two distinct, short arginine-rich motifs essential for RNA binding, including an RRDRW motif in the central region and the KRRRK motif near the C terminus. These findings suggest that EIAV Rev utilizes a bipartite RNA-binding domain.
Collapse
Affiliation(s)
- Jae-Hyung Lee
- Bioinformatics and Computational Biology Program, Iowa State University, Ames 50011, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 2005; 361:13-37. [PMID: 16213112 DOI: 10.1016/j.gene.2005.06.037] [Citation(s) in RCA: 543] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/31/2005] [Accepted: 06/27/2005] [Indexed: 01/19/2023]
Abstract
The mechanism of initiation of translation differs between prokaryotes and eukaryotes, and the strategies used for regulation differ accordingly. Translation in prokaryotes is usually regulated by blocking access to the initiation site. This is accomplished via base-paired structures (within the mRNA itself, or between the mRNA and a small trans-acting RNA) or via mRNA-binding proteins. Classic examples of each mechanism are described. The polycistronic structure of mRNAs is an important aspect of translational control in prokaryotes, but polycistronic mRNAs are not usable (and usually not produced) in eukaryotes. Four structural elements in eukaryotic mRNAs are important for regulating translation: (i) the m7G cap; (ii) sequences flanking the AUG start codon; (iii) the position of the AUG codon relative to the 5' end of the mRNA; and (iv) secondary structure within the mRNA leader sequence. The scanning model provides a framework for understanding these effects. The scanning mechanism also explains how small open reading frames near the 5' end of the mRNA can down-regulate translation. This constraint is sometimes abrogated by changing the structure of the mRNA, sometimes with clinical consequences. Examples are described. Some mistaken ideas about regulation of translation that have found their way into textbooks are pointed out and corrected.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
9
|
Jin S, Issel CJ, Montelaro RC. Serological method using recombinant S2 protein to differentiate equine infectious anemia virus (EIAV)-infected and EIAV-vaccinated horses. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:1120-9. [PMID: 15539516 PMCID: PMC524783 DOI: 10.1128/cdli.11.6.1120-1129.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We recently reported a highly protective attenuated live virus vaccine for equine infectious anemia virus (EIAV) based on a proviral construct (EIAVUKDeltaS2) with a genetically engineered mutation in the viral S2 gene that eliminates expression of this accessory protein. While the EIAVUKDeltaS2 vaccine provides protection from detectable infection by experimental challenge with highly virulent virus, the potential for commercial application of this vaccine is complicated by the fact that horses inoculated with the EIAVUKDeltaS2 vaccine strain become seropositive in various reference diagnostic assays based on detection of antibodies to virion core or envelope proteins. To address this issue, we describe here the development and optimization of a new serologic EIAV diagnostic enzyme-linked immunosorbent assay (ELISA) to detect serum antibodies to the EIAV S2 protein that are produced in infected horses but not in horses inoculated with the EIAVUKDeltaS2 vaccine virus. The test S2 protein antigen was developed using the S2 gene sequence from the EIAVUK strain of virus and a series of modifications to facilitate production and purification of the diagnostic antigen, designated HS2G. Using this HS2G as antigen, we describe the development of an affinity ELISA that provides a sensitive and specific detection of S2-specific serum antibodies in experimentally and field-infected horses (22 of 24), without detectable reactivity with immune serum from uninfected (12 of 12) or vaccinated (29 of 29) horses. These data indicate that the S2-based diagnostic ELISA has the potential to accurately differentiate horses infected with EIAV from horses inoculated with an attenuated EIAV vaccine strain with a mutant S2 gene.
Collapse
Affiliation(s)
- Sha Jin
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
10
|
Saunders K, Norman A, Gucciardo S, Stanley J. The DNA beta satellite component associated with ageratum yellow vein disease encodes an essential pathogenicity protein (betaC1). Virology 2004; 324:37-47. [PMID: 15183051 DOI: 10.1016/j.virol.2004.03.018] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 03/11/2004] [Accepted: 03/12/2004] [Indexed: 11/18/2022]
Abstract
Ageratum yellow vein disease (AYVD) is caused by the geminivirus ageratum yellow vein virus (AYVV) and an associated DNA beta satellite. We have mapped a DNA beta transcript to a highly conserved open reading frame (betaC1 ORF). The most abundant transcript 5'-terminus is located 8 bases upstream of the betaC1 ORF putative initiation codon while the transcript terminates at multiple sites downstream from the putative termination codon. Disruption of betaC1 protein expression by the introduction of an internal nonsense codon prevented infection of the AYVV-satellite complex in ageratum and altered the phenotype in Nicotiana benthamiana to that produced by AYVV alone although the mutant was maintained in systemically infected tissues. Modification of the putative initiation codon to a nonsense codon produced an intermediate phenotype in N. benthamiana and a mild yellow vein phenotype in ageratum, suggesting that betaC1 protein expression could be initiated from an alternative site. N. benthamiana plants containing a dimeric DNA beta transgene produced severe developmental abnormalities, vein-greening, and cell proliferation in the vascular bundles. Expression of betaC1 protein from a potato virus X (PVX) vector also induced abnormal plant growth. Our results demonstrate that the satellite encodes at least one protein that plays a major role in symptom development and is essential for disease progression in ageratum, the natural host of the AYVD complex.
Collapse
Affiliation(s)
- Keith Saunders
- Department of Disease and Stress Biology, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
11
|
Abstract
Selection of the translational initiation site in most eukaryotic mRNAs appears to occur via a scanning mechanism which predicts that proximity to the 5' end plays a dominant role in identifying the start codon. This "position effect" is seen in cases where a mutation creates an AUG codon upstream from the normal start site and translation shifts to the upstream site. The position effect is evident also in cases where a silent internal AUG codon is activated upon being relocated closer to the 5' end. Two mechanisms for escaping the first-AUG rule--reinitiation and context-dependent leaky scanning--enable downstream AUG codons to be accessed in some mRNAs. Although these mechanisms are not new, many new examples of their use have emerged. Via these escape pathways, the scanning mechanism operates even in extreme cases, such as a plant virus mRNA in which translation initiates from three start sites over a distance of 900 nt. This depends on careful structural arrangements, however, which are rarely present in cellular mRNAs. Understanding the rules for initiation of translation enables understanding of human diseases in which the expression of a critical gene is reduced by mutations that add upstream AUG codons or change the context around the AUG(START) codon. The opposite problem occurs in the case of hereditary thrombocythemia: translational efficiency is increased by mutations that remove or restructure a small upstream open reading frame in thrombopoietin mRNA, and the resulting overproduction of the cytokine causes the disease. This and other examples support the idea that 5' leader sequences are sometimes structured deliberately in a way that constrains scanning in order to prevent harmful overproduction of potent regulatory proteins. The accumulated evidence reveals how the scanning mechanism dictates the pattern of transcription--forcing production of monocistronic mRNAs--and the pattern of translation of eukaryotic cellular and viral genes.
Collapse
Key Words
- translational control
- aug context
- 5′ untranslated region
- reinitiation
- leaky scanning
- dicistronic mrna
- internal ribosome entry site
- adometdc, s-adenosylmethionine decarboxylase
- a2ar, a2a adenosine receptor
- c/ebp, ccaat/enhancer binding protein
- ctl, cytotoxic t-lymphocyte
- egfp, enhanced green fluorescent protein
- eif, eukaryotic initiation factor
- hiv-1, human immunodeficiency virus 1
- ires, internal ribosome entry site
- lef1, lymphoid enhancer factor-1
- ogp, osteogenic growth peptide
- orf, open reading frame
- r, purine
- tpo, thrombopoietin
- uporf, upstream open reading frame
- utr, untranslated region
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
12
|
Chatterji U, de Parseval A, Elder JH. Feline immunodeficiency virus OrfA is distinct from other lentivirus transactivators. J Virol 2002; 76:9624-34. [PMID: 12208941 PMCID: PMC136529 DOI: 10.1128/jvi.76.19.9624-9634.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The feline immunodeficiency virus (FIV) accessory factor, OrfA, facilitates transactivation of transcription directed by elements of the viral long terminal repeat (LTR). In order to map OrfA domains required for this transactivation, we used N- and C-terminal deletion constructs of the protein, expressed in a Gal4-based transactivation system. The results demonstrated that FIV OrfA, unlike other lentiviral transactivators such as visna virus Tat, is unable to transactivate from minimal promoter-based reporters and requires additional elements of the viral LTR. Stable CrFK-based cell lines were prepared that expressed OrfA to readily detectable levels and in which we were able to demonstrate 32-fold transactivation of an LTR-chloramphenicol acetyltransferase construct. Transactivation was heavily dependent on the presence of an ATF site within the viral LTR. Changing the translation initiation codon context substantially increased the level of production of OrfA from a bicistronic message that also encodes Rev. In the presence of a more favorable context sequence, the upstream expression of OrfA increased 21-fold, with only a 0.5-fold drop in downstream Rev expression. This suggests that Rev translation may occur via an internal ribosomal entry site rather than by leaky scanning.
Collapse
Affiliation(s)
- Udayan Chatterji
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
13
|
Rohll JB, Mitrophanous KA, Martin-Rendon E, Ellard FM, Radcliffe PA, Mazarakis ND, Kingsman SM. Design, production, safety, evaluation, and clinical applications of nonprimate lentiviral vectors. Methods Enzymol 2002; 346:466-500. [PMID: 11883086 DOI: 10.1016/s0076-6879(02)46072-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Jonathan B Rohll
- Department of Biochemistry, Oxford BioMedica (UK) Limited, Oxford OX4 4GA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
14
|
Wang W, Lo P, Frasch M, Lufkin T. Hmx: an evolutionary conserved homeobox gene family expressed in the developing nervous system in mice and Drosophila. Mech Dev 2000; 99:123-37. [PMID: 11091080 DOI: 10.1016/s0925-4773(00)00488-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Three homeobox genes, one from Drosophila melanogaster (Drosophila Hmx gene) and two from mouse (murine Hmx2 and Hmx3) were isolated and the full-length cDNAs and corresponding genomic structures were characterized. The striking homeodomain similarity encoded by these three genes to previously identified genes in sea urchin, chick and human, as well as the recently cloned murine Hmx1 gene, and the low homology to other homeobox genes indicate that the Hmx genes comprise a novel gene family. The widespread existence of Hmx genes in the animal kingdom suggests that this gene family is of ancient origin. Drosophila Hmx was mapped to the 90B5 region of Chromosome 3 and at early embryonic stages is primarily expressed in distinct areas of the neuroectoderm and subsets of neuroblasts in the developing fly brain. Later its expression continues in rostral areas of the brain in a segmented pattern, suggesting a putative role in the development of the Drosophila central nervous system. During evolution, mouse Hmx2 and Hmx3 may have retained a primary function in central nervous system development as suggested by their expression in the postmitotic cells of the neural tube, as well as in the hypothalamus, the mesencephalon, metencephalon and discrete regions in the myelencephalon during embryogenesis. Hmx1 has diverged from other Hmx members by its expression in the dorsal root, sympathetic and vagal nerve (X) ganglia. Aside from their expression in the developing nervous system, all three Hmx genes display expression in sensory organ development, and in the adult uterus. Hmx2 and Hmx3 show identical expression in the otic vesicle, whereas Hmx1 is strongly expressed in the developing eye. Transgenic mouse lines were generated to examine the DNA regulatory elements controlling Hmx2 and Hmx3. Transgenic constructs spanning more than 31 kb of genomic DNA gave reproducible expression patterns in the developing central and peripheral nervous systems, eye, ear and other tissues, yet failed to fully recapitulate the endogenous expression pattern of either Hmx2 or Hmx3, suggesting both the presence and absence of certain critical enhancers in the transgenes, or the requirement of proximal enhancers to work synergistically.
Collapse
Affiliation(s)
- W Wang
- Brookdale Center for Developmental and Molecular Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Equine infectious anemia virus (EIAV) is an ungulate lentivirus that is related to human immunodeficiency virus (HIV). Much of the understanding of lentiviral gene regulation comes from studies using HIV. HIV studies have provided insights into molecular regulation of EIAV expression; however, much of the regulation of EIAV expression stands in stark contrast to that of HIV. This review provides an overview of the current state of knowledge of EIAV regulation by comparing and contrasting EIAV gene regulation to HIV. The role of EIAV gene regulation is discussed in relation to EIAV pathogenesis.
Collapse
Affiliation(s)
- W Maury
- Department of Microbiology, University of South Dakota School of Medicine, Vermillion 57069, USA.
| |
Collapse
|
16
|
Belshan M, Park GS, Bilodeau P, Stoltzfus CM, Carpenter S. Binding of equine infectious anemia virus rev to an exon splicing enhancer mediates alternative splicing and nuclear export of viral mRNAs. Mol Cell Biol 2000; 20:3550-7. [PMID: 10779344 PMCID: PMC85647 DOI: 10.1128/mcb.20.10.3550-3557.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to facilitating the nuclear export of incompletely spliced viral mRNAs, equine infectious anemia virus (EIAV) Rev regulates alternative splicing of the third exon of the tat/rev mRNA. In the presence of Rev, this exon of the bicistronic RNA is skipped in a fraction of the spliced mRNAs. In this report, the cis-acting requirements for exon 3 usage were correlated with sequences necessary for Rev binding and transport of incompletely spliced RNA. The presence of a purine-rich exon splicing enhancer (ESE) was required for exon 3 recognition, and the addition of Rev inhibited exon 3 splicing. Glutathione-S-transferase (GST)-Rev bound to probes containing the ESE, and mutation of GAA repeats to GCA within the ESE inhibited both exon 3 recognition in RNA splicing experiments and GST-Rev binding in vitro. These results suggest that Rev regulates alternative splicing by binding at or near the ESE to block SR protein-ESE interactions. A 57-nucleotide sequence containing the ESE was sufficient to mediate Rev-dependent nuclear export of incompletely spliced RNAs. Rev export activity was significantly inhibited by mutation of the ESE or by trans-complementation with SF2/ASF. These results indicate that the ESE functions as a Rev-responsive element and demonstrate that EIAV Rev mediates exon 3 exclusion through protein-RNA interactions required for efficient export of incompletely spliced viral RNAs.
Collapse
Affiliation(s)
- M Belshan
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
17
|
Corcelette S, Massé T, Madjar JJ. Initiation of translation by non-AUG codons in human T-cell lymphotropic virus type I mRNA encoding both Rex and Tax regulatory proteins. Nucleic Acids Res 2000; 28:1625-34. [PMID: 10710429 PMCID: PMC102795 DOI: 10.1093/nar/28.7.1625] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human T-cell lymphotropic virus type I (HTLV-I) double-spliced mRNA exhibits two GUG and two CUG codons upstream to, and in frame with, the sequences encoding Rex and Tax regulatory proteins, respectively. To verify whether these GUG and CUG codons could be used as additional initiation codons of translation, two chimeric constructs were built for directing the synthesis of either Rex-CAT or Tax-CAT fusion proteins. In both cases, the CAT reporter sequence was inserted after the Tax AUG codon and in frame with either the Rex or Tax AUG codon. Under transient expression of these constructs, other proteins of higher molecular mass were synthesized in addition to the expected Rex-CAT and Tax-CAT proteins. The potential non-AUG initiation codons were exchanged for either an AUG codon or a non-initiation codon. This allowed us to demonstrate that the two GUG codons in frame with the Rex coding sequence, and only the second CUG in frame with the Tax coding sequence, were used as additional initiation codons. In HTLV-I infected cells, two Rex and one Tax additional proteins were detected that exhibited molecular mass compatible with the use of the two GUG and the second CUG as additional initiation codons of translation. Comparison of the HTLV-I proviral DNA sequence with that of other HTLV-related retroviruses revealed a striking conservation of the three non-AUG initiation codons, strongly suggesting their use for the synthesis of additional Rex and Tax proteins.
Collapse
MESH Headings
- Base Sequence
- Chloramphenicol O-Acetyltransferase/biosynthesis
- Chloramphenicol O-Acetyltransferase/genetics
- Codon, Initiator/genetics
- DNA Primers/genetics
- Gene Products, rex/biosynthesis
- Gene Products, rex/genetics
- Gene Products, tax/biosynthesis
- Gene Products, tax/genetics
- Genes, Viral
- Genetic Vectors
- HeLa Cells
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/metabolism
- Humans
- Leukemia Virus, Bovine/genetics
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Peptide Chain Initiation, Translational
- RNA, Messenger/genetics
- RNA, Viral/genetics
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Sequence Homology, Nucleic Acid
- Simian T-lymphotropic virus 1/genetics
- Species Specificity
- Transfection
Collapse
Affiliation(s)
- S Corcelette
- Laboratoire de Biologie Moléculaire et Cellulaire, INSERM U 369, Faculté de Médecine Lyon-RTH Laennec, 7 rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | | | | |
Collapse
|
18
|
Riechmann JL, Ito T, Meyerowitz EM. Non-AUG initiation of AGAMOUS mRNA translation in Arabidopsis thaliana. Mol Cell Biol 1999; 19:8505-12. [PMID: 10567575 PMCID: PMC84964 DOI: 10.1128/mcb.19.12.8505] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MADS box organ identity gene AGAMOUS (AG) controls several steps during Arabidopsis thaliana flower development. AG cDNA contains an open reading frame that lacks an ATG triplet to function as the translation initiation codon, and the actual amino terminus of the AG protein remains uncharacterized. We have considered the possibility that AG translation can be initiated at a non-AUG codon. Two possible non-AUG initiation codons, CUG and ACG, are present in the 5' region of AG mRNA preceding the highly conserved MADS box sequence. We prepared a series of AG genomic constructs in which these codons are mutated and assayed their activity in phenotypic rescue experiments by introducing them as transgenes into ag mutant plants. Alteration of the CTG codon to render it unsuitable for acting as a translation initiation site does not affect complementation of the ag-3 mutation in transgenic plants. However, a similar mutation of the downstream ACG codon prevents the rescue of the ag-3 mutant phenotype. Conversely, if an ATG is introduced immediately 5' to the disrupted ACG codon, the resulting construct fully complements the ag-3 mutation. The AG protein synthesized in vitro by initiating translation at the ACG position is active in DNA binding and is of the same size as the AG protein detected from floral tissues, whereas AG polypeptides with additional amino-terminal residues do not appear to bind DNA. These results indicate that translation of AG is initiated exclusively at an ACG codon and prove that non-AUG triplets may be efficiently used as the sole translation initiation site in some plant cellular mRNAs.
Collapse
Affiliation(s)
- J L Riechmann
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
19
|
Li F, Puffer BA, Montelaro RC. The S2 gene of equine infectious anemia virus is dispensable for viral replication in vitro. J Virol 1998; 72:8344-8. [PMID: 9733881 PMCID: PMC110207 DOI: 10.1128/jvi.72.10.8344-8348.1998] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine infectious anemia virus (EIAV) contains the simplest genome among lentiviruses in that it encodes only three putative regulatory genes (S1, S2, S3) in addition to the canonical gag, pol, and env genes, presumably reflecting its limited tropism to cells of monocyte/macrophage lineage. Tat and Rev functions have been assigned to S1 and S3, respectively, but the specific function for the S2 gene has yet to be determined. Thus, the function of S2 in virus replication in vitro was investigated by using an infectious molecular viral clone, EIAVUK. Various EIAVUK mutants lacking S2 were constructed, and their replication kinetics were examined in several equine cell culture systems, including the natural in vivo target equine macrophage cells. The EIAV S2 mutants showed replication kinetics similar to those of the parental virus in all of the tested primary and transformed equine cell cultures, without any detectable reversion of mutant genomes. The EIAVUK mutants also showed replication kinetics similar to those of the parental virus in an equine blood monocyte differentiation-maturation system. These results demonstrate for the first time that the EIAV S2 gene is not essential and does not appear to affect virus infection and replication properties in target cells in vitro.
Collapse
Affiliation(s)
- F Li
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
20
|
Takahashi H, Noda S, Imamura Y, Nagasawa A, Kubota R, Mashima Y, Kudoh J, Oguchi Y, Shimizu N. Mouse myocilin (Myoc) gene expression in ocular tissues. Biochem Biophys Res Commun 1998; 248:104-9. [PMID: 9675094 DOI: 10.1006/bbrc.1998.8917] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human myocilin is identical to TIGR (trabecular meshwork inducible glucocorticoid response) which is responsible for the pathogenesis of juvenile-onset primary open angle glaucoma (GLCIA). We have isolated cDNA for mouse myocilin (Myoc) and investigated mouse myocilin gene expression in ocular tissues with in situ RNA hybridization. Hybridization signals were observed in the iris, ciliary body, trabecular meshwork, sclera, and retina in the mouse eye. The marked signals were seen in trabecular meshwork cells and the anterior portion of sclera. These findings suggest that myocilin mutation could affect the capacity of aqueous outflow and cause elevation of the intraocular pressure which is involved in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- H Takahashi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Harris ME, Gontarek RR, Derse D, Hope TJ. Differential requirements for alternative splicing and nuclear export functions of equine infectious anemia virus Rev protein. Mol Cell Biol 1998; 18:3889-99. [PMID: 9632773 PMCID: PMC108973 DOI: 10.1128/mcb.18.7.3889] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Rev protein of equine infectious anemia virus (ERev) exports unspliced and partially spliced viral RNAs from the nucleus. Like several cellular proteins, ERev regulates its own mRNA by mediating an alternative splicing event. To determine the requirements for these functions, we have identified ERev mutants that affect RNA export or both export and alternative splicing. Mutants were further characterized for subcellular localization, nuclear-cytoplasmic shuttling, and multimerization. None of the nuclear export signal (NES) mutants are defective for alternative splicing. Furthermore, the NES of ERev is similar in composition but distinct in spacing from other leucine-rich NESs. Basic residues at the C terminus of ERev are involved in nuclear localization, and disruption of the C-terminal residues affects both functions of ERev. ERev forms multimers, and no mutation disrupts this activity. In two mutants with substitutions of charged residues in the middle of ERev, RNA export is affected. One of these mutants is also defective for ERev-mediated alternative splicing but is identical to wild-type ERev in its localization, shuttling, and multimerization. Together, these results demonstrate that the two functions of ERev both require nuclear import and at least one other common activity, but RNA export can be separated from alternative splicing based on its requirement for a functional NES.
Collapse
Affiliation(s)
- M E Harris
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
22
|
Belshan M, Harris ME, Shoemaker AE, Hope TJ, Carpenter S. Biological characterization of Rev variation in equine infectious anemia virus. J Virol 1998; 72:4421-6. [PMID: 9557734 PMCID: PMC109674 DOI: 10.1128/jvi.72.5.4421-4426.1998] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1997] [Accepted: 01/23/1998] [Indexed: 02/07/2023] Open
Abstract
Sequence analysis identified significant variation in the second exon of equine infectious anemia virus (EIAV) rev. Functional analysis indicated that limited amino acid variation in Rev significantly altered the export activity of the protein but did not affect Rev-dependent alternative splicing. EIAV Rev can mediate export through two independent cis-acting Rev-responsive elements (RREs), and differences among Rev variants were more pronounced when both RREs were present. Variation in Rev may be an important mechanism for regulation of virus replication in vivo and may contribute to changes in clinical disease.
Collapse
Affiliation(s)
- M Belshan
- Department of Microbiology, Immunology, and Preventive Medicine, Iowa State University, Ames 50011, USA
| | | | | | | | | |
Collapse
|
23
|
Fütterer J, Rothnie HM, Hohn T, Potrykus I. Rice tungro bacilliform virus open reading frames II and III are translated from polycistronic pregenomic RNA by leaky scanning. J Virol 1997; 71:7984-9. [PMID: 9311892 PMCID: PMC192159 DOI: 10.1128/jvi.71.10.7984-7989.1997] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Posttranscriptional components of the gene expression mechanism of rice tungro bacilliform virus (RTBV) were studied in transiently transfected protoplasts. RTBV translates several open reading frames from a polycistronic mRNA by leaky scanning. This mechanism is supported by the particular sequence features of the corresponding genome region and does not require a virus-encoded transactivator.
Collapse
Affiliation(s)
- J Fütterer
- Institute for Plant Sciences, ETH Zentrum, Zürich, Switzerland.
| | | | | | | |
Collapse
|
24
|
Abstract
Small upstream open reading frames (ORFs) or minicistrons located in the 5' leader of eukaryotic mRNAs have been shown to play a role in translational regulation of some eukaryotic genes, particularly mammalian proto-oncogenes. A survey of the baculovirus Autographa californica multicapsid nuclear polyhedrosis virus genome suggests that at least 10 transcripts from late genes contain potential minicistrons, and at least three of these minicistrons appear to be conserved in homologous genes of the related Orygia pseudotsugata MNPV. The position of the minicistron from one of these genes, gp64, is also conserved in gp64 genes from several baculoviruses, suggesting a potential regulatory function. To identify the potential role of the gp64 minicistron in regulating translation from gp64 late mRNAs, we generated a series of recombinant viruses containing the gp64 promoter and minicistron in combination with a chloramphenicol acetyltransferase reporter gene (cat) inserted into the polyhedrin locus. We first fused a cat reporter in frame with the minicistron coding region to demonstrate that the minicistron initiator ATG was in a context suitable for translational initiation. In subsequent experiments, a cat reporter was fused in frame to the downstream gp64 ORF, and various constructs containing point mutations that inactivated the minicistron were examined. Translational efficiency in the presence and absence of the minicistron was measured by quantitative analysis of gp64-cat RNA and the GP64-CAT protein. In the absence of a functional minicistron, translational efficiency from the downstream gp64-cat reporter ORF increased. Surprisingly, single-point mutations that inactivated the minicistron initiator ATG also resulted in utilization of an upstream in-frame ATG that is found within the minicistron coding region and that is in a poor translational initiation context. Double-point mutation constructs that inactivated both the minicistron initiator ATG and the upstream in-frame ATG also resulted in increased translational efficiency from the downstream gp64-cat ORF. Thus, the gp64 minicistron serves as a negative regulatory element that decreases translation of the gp64 ORF on late mRNAs.
Collapse
Affiliation(s)
- M J Chang
- Boyce Thompson Institute at Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
25
|
Zou L, Barr MC, Hoose WA, Avery RJ. Characterization of the transcription map and Rev activity of a highly cytopathic feline immunodeficiency virus. Virology 1997; 236:266-78. [PMID: 9325234 DOI: 10.1006/viro.1997.8753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A highly cytopathic feline immunodeficiency virus, FIV-Oma, was previously isolated from a nondomestic cat. In this report, we describe experiments to characterize its transcription map and examine its Rev activity. The temporal progression of viral gene expression is similar to that of HIV-1. The splicing pattern of viral transcripts was determined by sequence analysis of RT-PCR-amplified viral cDNAs. In vitro transcription and translation of two putative rev cDNAs revealed that they encode at least one 22-kDa protein. The Rev-responsive element (RRE) of FIV-Oma, identified by computer-assisted RNA secondary structure analysis, was inserted into the intron of an HIV-1-derived reporter plasmid and used in a transient transfection assay for Rev activity. Cotransfection of the RRE construct with the two rev cDNA clones significantly increased the expression of the reporter gene linked to the RRE, indicating that both transcripts encode an active Rev protein. The Rev activity of FIV-Oma is 5 to 8 times higher than that of a domestic cat FIV isolate, FIV-PPR. Our experiments also demonstrate the heterologous interaction of FIV-PPR Rev with the FIV-Oma RRE, even though the RREs of the two viruses have very little nucleotide sequence identity.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cats
- Chromosome Mapping
- Cytopathogenic Effect, Viral/genetics
- DNA Primers/genetics
- DNA, Complementary/genetics
- DNA, Viral/genetics
- Genes, rev
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/pathogenicity
- Molecular Sequence Data
- Nucleic Acid Conformation
- Polymerase Chain Reaction
- Protein Biosynthesis
- RNA Splicing
- RNA, Messenger/genetics
- RNA, Viral/chemistry
- RNA, Viral/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- L Zou
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
26
|
Barr MC, Zou L, Long F, Hoose WA, Avery RJ. Proviral organization and sequence analysis of feline immunodeficiency virus isolated from a Pallas' cat. Virology 1997; 228:84-91. [PMID: 9024812 DOI: 10.1006/viro.1996.8358] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The nucleotide sequence and genomic organization have been determined for a highly cytopathic feline immunodeficiency virus (FIV) isolated from a Pallas' cat. The 9747-bp provirus of this virus, FIV-Oma, has typical lentivirus organization with LTRs, gag, pol, and env open reading frames (ORFs), putative vif and rev ORFs, and an ORF similar to ORF2/ORFA of domestic cat FIV isolates. Although the FIV-Oma provirus is 300 to 600 bp longer than other FIV proviruses, these additional bases are distributed throughout the genome. Phylogenetic analysis of a conserved region of the pol gene suggests that FIV-Oma is more closely related to some of the puma and lion lentiviruses than it is to domestic cat FIV isolates; however, many regions of the genome exhibit extensive nucleotide sequence divergence. None of the eight molecular proviral clones isolated from a genomic library are infectious, but we have constructed an infectious, cytopathic clone of FIV-Oma from subcloned and PCR-amplified fragments of these proviral clones. This clone will be useful for identifying the genetic determinants of FIV-Oma's biological activities.
Collapse
Affiliation(s)
- M C Barr
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Translation processes in plants are very similar to those in other eukaryotic organisms and can in general be explained with the scanning model. Particularly among plant viruses, unconventional mRNAs are frequent, which use modulated translation processes for their expression: leaky scanning, translational stop codon readthrough or frameshifting, and transactivation by virus-encoded proteins are used to translate polycistronic mRNAs; leader and trailer sequences confer (cap-independent) efficient ribosome binding, usually in an end-dependent mechanism, but true internal ribosome entry may occur as well; in a ribosome shunt, sequences within an RNA can be bypassed by scanning ribosomes. Translation in plant cells is regulated under conditions of stress and during development, but the underlying molecular mechanisms have not yet been determined. Only a small number of plant mRNAs, whose structure suggests that they might require some unusual translation mechanisms, have been described.
Collapse
Affiliation(s)
- J Fütterer
- Institute of Plant Sciences, ETHZ, Zürich, Switzerland
| | | |
Collapse
|
28
|
Abstract
This review discusses some rules for assessing the completeness of a cDNA sequence and identifying the start site for translation. Features commonly invoked-such as an ATG codon in a favorable context for initiation, or the presence of an upstream in-frame terminator codon, or the prediction of a signal peptide-like sequence at the amino terminus-have some validity; but examples drawn from the literature illustrate limitations to each of these criteria. The best advice is to inspect a cDNA sequence not only for these positive features but also for the absence of certain negative indicators. Three specific warning signs are discussed and documented: (i) The presence of numerous ATG codons upstream from the presumptive start site for translation often indicates an aberration (sometimes a retained intron) at the 5' end of the cDNA. (ii) Even one strong, upstream, out-of-frame ATG codon poses a problem if the reading frame set by the upstream ATG overlaps the presumptive start of the major open reading frame. Many cDNAs that display this arrangement turn out to be incomplete; that is, the out-of-frame ATG codon is within, rather than upstream from, the protein coding domain. (iii) A very weak context at the putative start site for translation often means that the cDNA lacks the authentic initiator codon. In addition to presenting some criteria that may aid in recognizing incomplete cDNA sequences, the review includes some advice for using in vitro translation systems for the expression of cDNAs. Some unresolved questions about translational regulation are discussed by way of illustrating the importance of verifying mRNA structures before making deductions about translation.
Collapse
Affiliation(s)
- M Kozak
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| |
Collapse
|
29
|
Tan W, Schalling M, Zhao C, Luukkonen M, Nilsson M, Fenyö EM, Pavlakis GN, Schwartz S. Inhibitory activity of the equine infectious anemia virus major 5' splice site in the absence of Rev. J Virol 1996; 70:3645-58. [PMID: 8648699 PMCID: PMC190240 DOI: 10.1128/jvi.70.6.3645-3658.1996] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The major 5' splice site of equine infectious anemia virus (EIAV) conforms to the consensus 5' splice site in eight consecutive positions and is located immediately upstream of the gag AUG. Our results show that the presence of this 5' splice site on the EIAV gag mRNA decreases Gag production 30- to 60-fold. This is caused by inefficient nuclear mRNA export and inefficient mRNA utilization. Inhibition could be overcome by providing human immunodeficiency virus type 1 Rev/Rev-responsive element, human T-cell leukemia virus type 1 Rex/Rex-responsive element, or simian retrovirus type 1 constitutive transport element. In addition, inhibition could be abolished by introducing single point mutations in the 5' splice site or by moving the 5' splice site away from its natural position immediately upstream of the gag AUG. This demonstrates that both maintenance of a perfect consensus 5' splice site and its proper location on the mRNA are important for inhibitory activity of the EIAV major 5' splice site.
Collapse
Affiliation(s)
- W Tan
- Microbiology and Tumorbiology Center, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hart D, Frerichs GN, Rambaut A, Onions DE. Complete nucleotide sequence and transcriptional analysis of snakehead fish retrovirus. J Virol 1996; 70:3606-16. [PMID: 8648695 PMCID: PMC190236 DOI: 10.1128/jvi.70.6.3606-3616.1996] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The complete genome of the snakehead fish retrovirus has been cloned and sequenced, and its transcriptional profile in cell culture has been determined. The 11.2-kb provirus displays a complex expression pattern capable of encoding accessory proteins and is unique in the predicted location of the env initiation codon and signal peptide upstream of gag and the common splice donor site. The virus is distinguishable from all known retrovirus groups by the presence of an arginine tRNA primer binding site. The coding regions are highly divergent and show a number of unusual characteristics, including a large Gag coiled-coil region, a Pol domain of unknown function, and a long, lentiviral-like, Env cytoplasmic domain. Phylogenetic analysis of the Pol sequence emphasizes the divergent nature of the virus from the avian and mammalian retroviruses. The snakehead virus is also distinct from a previously characterized complex fish retrovirus, suggesting that discrete groups of these viruses have yet to be identified in the lower vertebrates.
Collapse
Affiliation(s)
- D Hart
- Department of Veterinary Pathology, University of Glasgow Veterinary School, United Kingdom
| | | | | | | |
Collapse
|
31
|
Fütterer J, Potrykus I, Bao Y, Li L, Burns TM, Hull R, Hohn T. Position-dependent ATT initiation during plant pararetrovirus rice tungro bacilliform virus translation. J Virol 1996; 70:2999-3010. [PMID: 8627776 PMCID: PMC190159 DOI: 10.1128/jvi.70.5.2999-3010.1996] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The expression of the rice tungro bacilliform virus open reading frame I was studied in transiently transfected protoplasts. Expression occurs despite the presence of a long leader sequence and the absence of a proper ATG initiation codon. Translation is initiated at an ATT codon. The efficiency of initiation in rice protoplasts depends strongly on the mechanism by which ribosomes reach this codon. From the effects of scanning-inhibiting structures inserted into different leader regions, it can be deduced that this mechanism is related to the ribosome shunt described for cauliflower mosaic virus 35S RNA. The process delivers initiation-competent ribosomes to the region downstream of the leader and is so precise that only the second of two potential start codons only 12 nucleotides apart is recognized. The ATT codon that is used when it is present downstream of the leader is hardly recognized as a start codon by ribosomes that reach it by scanning.
Collapse
Affiliation(s)
- J Fütterer
- Institute for Plant Sciences, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
32
|
Luukkonen BG, Tan W, Schwartz S. Efficiency of reinitiation of translation on human immunodeficiency virus type 1 mRNAs is determined by the length of the upstream open reading frame and by intercistronic distance. J Virol 1995; 69:4086-94. [PMID: 7769666 PMCID: PMC189143 DOI: 10.1128/jvi.69.7.4086-4094.1995] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In this study, we examined the mechanism of translation of the human immunodeficiency virus type 1 tat mRNA in eucaryotic cells. This mRNA contains the tat open reading frame (ORF), followed by rev and nef ORFs, but only the first ORF, encoding tat, is efficiently translated. Introduction of premature stop codons in the tat ORF resulted in efficient translation of the downstream rev ORF. We show that the degree of inhibition of translation of rev is proportional to the length of the upstream tat ORF. An upstream ORF spanning 84 nucleotides was predicted to inhibit 50% of the ribosomes from initiating translation at downstream AUGs. Interestingly, the distance between the upstream ORF and the start codon of the second ORF also played a role in efficiency of downstream translation initiation. It remains to be investigated if these conclusions relate to translation of mRNAs other than human immunodeficiency virus type 1 mRNAs. The strong inhibition of rev translation exerted by the presence of the tat ORF may reflect the different roles of Tat and Rev in the viral life cycle. Tat acts early to induce high production of all viral mRNAs. Rev induces a switch from the early to the late phase of the viral life cycle, resulting in production of viral structural proteins and virions. Premature Rev production may result in entrance into the late phase in the presence of suboptimal levels of viral mRNAs coding for structural proteins, resulting in inefficient virus production.
Collapse
Affiliation(s)
- B G Luukkonen
- Microbiology and Tumorbiology Center, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
33
|
Yu L, Zhang Z, Loewenstein PM, Desai K, Tang Q, Mao D, Symington JS, Green M. Molecular cloning and characterization of a cellular protein that interacts with the human immunodeficiency virus type 1 Tat transactivator and encodes a strong transcriptional activation domain. J Virol 1995; 69:3007-16. [PMID: 7707527 PMCID: PMC189000 DOI: 10.1128/jvi.69.5.3007-3016.1995] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The mechanism by which human immunodeficiency virus type 1 Tat transactivates the long terminal repeat promoter is not understood. It is generally believed that Tat has one or more transcription factors as its cellular target. One might expect a cellular target for Tat to possess several properties, including (i) the ability to bind to the Tat activation region, (ii) the possession of a transcriptional activation domain, and (iii) the ability to contact the cellular transcription machinery. Here we describe the cloning, expression, and characterization of a human protein, termed TAP (Tat-associated protein), which possesses some of these properties. TAP is highly conserved in eukaryotes and is expressed in a variety of human tissues. The major intracellular species of TAP is a highly acidic 209-amino-acid protein that likely is formed by removal of a highly basic 70-amino-acid N-terminal segment from a primary translation product. By deletion analysis, we have identified a TAP C-terminal region rich in acidic amino acids and leucine residues which acts as a strong transcriptional activator when bound through GAL4 sites upstream of the core long terminal repeat promoter, as well as flanking sequences that mask the activation function. Amino acid substitution of two leucine residues within the core activation region results in loss of the TAP activation function. Two lines of evidence suggest that Tat interacts with TAP in vivo. First, promoter-bound Tat can recruit a TAP/VP16 fusion protein to the promoter. Second, transiently expressed Tat is found associated with endogenous TAP, as demonstrated by coimmuno-precipitation analysis. As shown in an accompanying report, the TAP activation region binds the Tat core activation region and general transcription factor TFIIB (L. Yu, P.M. Loewenstein, Z. Zhang, and M. Green, J. Virol. 69:3017-3023, 1995). These combined results suggest the hypothesis that TAP may function as a coactivator that bridges Tat to the general transcription machinery of the cell via TFIIB.
Collapse
Affiliation(s)
- L Yu
- Institute for Molecular Virology, Saint Louis University School of Medicine, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Berlioz C, Darlix JL. An internal ribosomal entry mechanism promotes translation of murine leukemia virus gag polyprotein precursors. J Virol 1995; 69:2214-22. [PMID: 7884868 PMCID: PMC188890 DOI: 10.1128/jvi.69.4.2214-2222.1995] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The genomic retroviral RNA is the messenger for the translation of the gag and pol genes encoding the precursors to the major structural proteins and enzymes, respectively, of the virion core. The long 5' untranslated region, the leader, is formed of independent well-structured domains involved in key steps of the viral life cycle such as the initiation of proviral DNA synthesis, genomic RNA dimerization and packaging, and the initiation of gag translation. These functional features and the presence of stable secondary structures between the cap and the gag initiation codon suggested that translation initiation of gag might proceed through a mechanism different from the canonical ribosome scanning process. Interestingly enough, murine leukemia viruses code also for a glycosylated gag precursor, named glyco-gag, initiated at a CUG codon upstream and in the same open reading frame as the AUGgag. We have investigated the translation initiation of gag and glyco-gag precursors of Friend murine leukemia virus (F-MLV) in the rabbit reticulocyte lysate system and in murine cells. Through site-directed mutagenesis of gag and glyco-gag initiation codons, we show that initiation of gag and glyco-gag synthesis does not utilize the classical ribosome scanning. When poliovirus protease 2A is coexpressed in murine cells, expression of MLV-lacZ RNA is not modified, indicating that translation initiation of MLV gag precursors is a cap-independent mechanism. In addition, the F-MLV leader was inserted between two genes in a dicistronic neo-MLV-lacZ mRNA, and its ability to promote expression was examined in vitro and in vivo. Results obtained demonstrate that an internal ribosome entry mechanism promotes translation of F-MLV gag precursors. This finding led us to construct a new dicistronic retroviral vector in which the F-MLV leader can promote both packaging of recombinant genomic RNA and expression of the 3' gene.
Collapse
Affiliation(s)
- C Berlioz
- LaboRétro, Unité de Virologie Humaine (INSERM-ENS U412), Ecole Normale Supérieure de Lyon, France
| | | |
Collapse
|
35
|
Rosin-Arbesfeld R, Mashiah P, Willbold D, Rosch P, Tronick SR, Yaniv A, Gazit A. Biological activity and intracellular location of the Tat protein of equine infectious anemia virus. Gene 1994; 150:307-11. [PMID: 7821797 DOI: 10.1016/0378-1119(94)90443-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Tat protein of equine infectious anemia virus (EIAV) was synthesized in Escherichia coli using the inducible expression plasmid, pET16b, which contains a His.Tag leader, thus allowing for rapid and efficient enrichment of the histidine-tagged protein by metal affinity chromatography. Yields of up to 20 mg of Tat were obtained from 10(11) bacterial cells. The recombinant Tat protein was shown to potently trans-activate the EIAV long terminal repeat (LTR) following its introduction into canine cells by 'scrape loading'. The EIAV Tat protein was found to localize predominantly within the cytoplasm, in contrast to HIV-1 Tat. The availability of large amounts of purified functional EIAV Tat protein should greatly facilitate detailed structure-function analyses.
Collapse
Affiliation(s)
- R Rosin-Arbesfeld
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | | | |
Collapse
|
36
|
Schneider PA, Schneemann A, Lipkin WI. RNA splicing in Borna disease virus, a nonsegmented, negative-strand RNA virus. J Virol 1994; 68:5007-12. [PMID: 8035500 PMCID: PMC236442 DOI: 10.1128/jvi.68.8.5007-5012.1994] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Borna disease virus (BDV) is a nonsegmented, negative-strand RNA virus related to rhabdoviruses and paramyxoviruses. Unlike animal viruses of these two families, BDV transcribes RNAs in the nuclei of infected cells and produces high levels of transcripts containing multiple open reading frames. Previous Northern blot analysis of RNA from BDV-infected rat brain tissue has shown that two viral transcripts, a 6.1-kb RNA and a 1.5-kb RNA, lack regions that are internal to two otherwise identical transcripts, the 7.1-kb RNA and the 2.8-kb RNA, respectively (T. Briese, A. Schneemann, A. Lewis, Y. Park, S. Kim, H. Ludwig, and W. I. Lipkin, Proc. Natl. Acad. Sci. USA 91:4362-4366, 1994). To determine the precise location of this deletion, we performed reverse transcription PCR analysis using total RNA from BDV-infected rat brain tissue. This investigation resulted in the identification of two introns in the 7.1- and 2.8-kb RNAs, which can be alternatively spliced to yield additional RNA species, including the 6.1- and 1.5-kb RNAs. Transient transfection of COS-7 cells with a cDNA clone of the 2.8-kb RNA resulted in the production of both the 2.8-kb RNA and the 1.5-kb RNA, confirming the theory that the 2.8-kb RNA is a sufficient substrate for splicing in mammalian cells. Splicing has not previously been observed in nonsegmented, negative-strand RNA viruses and presumably serves as a mechanism by which expression of BDV proteins is regulated in infected cells.
Collapse
Affiliation(s)
- P A Schneider
- Department of Microbiology, University of California-Irvine 92717
| | | | | |
Collapse
|
37
|
Martarano L, Stephens R, Rice N, Derse D. Equine infectious anemia virus trans-regulatory protein Rev controls viral mRNA stability, accumulation, and alternative splicing. J Virol 1994; 68:3102-11. [PMID: 8151775 PMCID: PMC236800 DOI: 10.1128/jvi.68.5.3102-3111.1994] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cis- and trans-acting components of the Rev regulatory pathway employed by equine infectious anemia virus (EIAV) to regulate and coordinate viral gene expression were examined in complementation experiments. Viral protein expression and mRNA expression were compared in cells transiently transfected with wild-type or mutant proviruses in combination with Rev expression plasmids. Mutation of the predicted rev gene abolished Gag protein synthesis, and this defect was complemented, in trans, by Rev. Analysis of viral mRNAs from transfected cells confirmed that EIAV expresses five major mRNAs: the full-length and singly spliced mRNAs contain introns and encode viral structural proteins while the three fully spliced mRNAs, encoding nonstructural genes, are generated by alternative splicing. Compared to cells transfected with the wild-type provirus, the intron-containing mRNAs produced from the rev-minus mutant were present at reduced levels in the nuclear RNA fraction and were not detected in the cytoplasm. This pattern of viral mRNA synthesis was restored to the wild-type pattern by providing Rev in trans. In contrast to the intron-containing mRNAs, cytoplasmic accumulation of the multiply spliced class of mRNAs was independent of Rev. Closer examination of the multiply spliced class of viral mRNAs by reverse transcriptase-PCR analysis revealed a Rev-dependent alternative splicing phenomenon. In the absence of Rev, proviruses expressed a four-exon mRNA at high levels; the addition of Rev caused both a decrease in the levels of the four-exon mRNA and the appearance of a related mRNA lacking exon 3. The cis-acting RNA elements that mediate Rev responsiveness were studied with deleted proviruses, which revealed that EIAV contains at least two elements located near the ends of envelope gene. Unlike the Rev-responsive elements in other retroviruses, the cis-acting regions of EIAV do not appear to form complex secondary structures.
Collapse
Affiliation(s)
- L Martarano
- Biological Carcinogenesis and Development Program, PRI/DynCorp, Frederick, Maryland 21702-1201
| | | | | | | |
Collapse
|
38
|
Abstract
Why should a preponderance of proto-oncogenes, growth factor genes and growth factor receptor genes contain translation initiation codons and associated open reading frames in their 5'-leaders? An increasing number of open reading frames are being shown to function as cis-acting regulatory signals able to moderate expression of the downstream reading frame. These regulatory elements could play a fundamental role in the regulation of proliferation of vertebrate cells.
Collapse
Affiliation(s)
- A P Geballe
- Department of Molecular Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | |
Collapse
|
39
|
Abstract
This article reviews current knowledge on the mechanisms affecting the fidelity of initiation codon selection, and discusses the effects of structural features in the 5′-non-coding region on the efficiency of translation of messenger RNA molecules.
Collapse
Affiliation(s)
- M Kozak
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Piscataway 08854
| |
Collapse
|
40
|
Fridell RA, Partin KM, Carpenter S, Cullen BR. Identification of the activation domain of equine infectious anemia virus rev. J Virol 1993; 67:7317-23. [PMID: 8230455 PMCID: PMC238195 DOI: 10.1128/jvi.67.12.7317-7323.1993] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Several members of the lentivirus family of complex retroviruses have been shown to encode proteins that are functionally equivalent to the Rev posttranscriptional regulatory protein of human immunodeficiency virus type 1 (HIV-1). Furthermore, the domain organization of HIV-1 Rev, featuring a highly basic N-terminal RNA binding domain and a leucin-rich C-terminal effector domain, has also been shown to be highly conserved among Rev proteins derived from not only the primate but also the ovine and caprine lentiviruses. Although it has therefore appeared highly probable that the lentivirus equine infectious anemia virus (EIAV) also encodes a Rev, the predicted amino acid sequence of this putative EIAV regulatory protein does not display any evident homology to the basic and leucine-rich motifs characteristic of other known Rev proteins. By fusion of different segments of the proposed EIAV Rev protein to the well-defined RNA binding domain of either HIV-1 or visna virus Rev, we have identified a segment of this EIAV protein that can efficiently substitute in cis for the otherwise essential activation motif. Interestingly, the minimal EIAV Rev activation motif identified in this study comprises approximately 18 amino acids located toward the protein N terminus that lack any evident similarity to the leucine-rich activation domains found in these other lentivirus Rev proteins. It therefore appears that the Rev protein of EIAV, while analogous in function to Rev proteins defined in lentiviruses of primate, ovine, and caprine origin, is nevertheless distinguished by an entirely novel domain organization.
Collapse
Affiliation(s)
- R A Fridell
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | |
Collapse
|