1
|
Haas GD, Kowdle S, Schmitz KS, Azarm KD, Johnson KN, Klain WR, Freiberg AN, Cox RM, Plemper RK, Lee B. Tetracistronic minigenomes elucidate a functional promoter for Ghana virus and unveils Cedar virus replicase promiscuity for all henipaviruses. J Virol 2024; 98:e0080624. [PMID: 39345144 PMCID: PMC11495047 DOI: 10.1128/jvi.00806-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Batborne henipaviruses, such as Nipah and Hendra viruses, represent a major threat to global health due to their propensity for spillover, severe pathogenicity, and high mortality rate in human hosts. Coupled with the absence of approved vaccines or therapeutics, work with the prototypical species and uncharacterized, emergent species is restricted to high biocontainment facilities. There is a scarcity of such specialized spaces for research, and often, the scope and capacity of research, which can be conducted at BSL-4, is limited. Therefore, there is a pressing need for innovative life-cycle modeling systems to enable comprehensive research within lower biocontainment settings. This work showcases tetracistronic, transcription, and replication-competent minigenomes for the Nipah, Hendra, and Cedar viruses, which encode viral proteins facilitating budding, fusion, and receptor binding. We validate the functionality of all encoded viral proteins and demonstrate a variety of applications to interrogate the viral life cycle. Notably, we found that the Cedar virus replicase exhibits remarkable promiscuity, efficiently driving replication and transcription of minigenomes from all tested henipaviruses. We also apply this technology to Ghana virus (GhV), an emergent species that has so far not been isolated in culture. We demonstrate that the reported sequence of GhV is incomplete, but that this missing sequence can be substituted with analogous sequences from other henipaviruses. The use of our GhV system establishes the functionality of the GhV replicase and identifies two antivirals that are highly efficacious against the GhV polymerase. IMPORTANCE Henipaviruses are recognized as significant global health threats due to their high mortality rates and lack of effective vaccines or therapeutics. Due to the requirement for high biocontainment facilities, the scope of research which may be conducted on henipaviruses is limited. To address this challenge, we developed innovative tetracistronic, transcription, and replication-competent minigenomes. We demonstrate that these systems replicate key aspects of the viral life cycle, such as budding, fusion, and receptor binding, and are safe for use in lower biocontainment settings. Importantly, the application of this system to the Ghana virus revealed that its known sequence is incomplete; however, substituting the missing sequences with those from other henipaviruses allowed us to overcome this challenge. We demonstrate that the Ghana virus replicative machinery is functional and can identify two orally efficacious antivirals effective against it. Our research offers a versatile system for life-cycle modeling of highly pathogenic henipaviruses at low biocontainment.
Collapse
Affiliation(s)
- Griffin D. Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Kristopher D. Azarm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kendra N. Johnson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - William R. Klain
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Robert M. Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Taye B, Yousaf I, Navaratnarajah CK, Schroeder DC, Pfaller CK, Cattaneo R. A measles virus collective infectious unit that caused lethal human brain disease includes many locally restricted and few widespread copy-back defective genomes. J Virol 2024:e0123224. [PMID: 39431848 DOI: 10.1128/jvi.01232-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024] Open
Abstract
During virus replication in cultured cells, copy-back defective viral genomes (cbDVGs) can arise. CbDVGs are powerful inducers of innate immune responses in vitro, but their occurrence and impact on natural infections of human hosts remain poorly defined. We asked whether cbDVGs were generated in the brain of a patient who succumbed to subacute sclerosing panencephalitis (SSPE) about 20 years after acute measles virus (MeV) infection. Previous analyses of 13 brain specimens of this patient indicated that a collective infectious unit (CIU) drove lethal MeV spread. In this study, we identified 276 replication-competent cbDVG species, each present in over 100 copies in the brain. Six species were detected in multiple forebrain locations, implying that they travelled long-distance with the CIU. The cbDVG to full-length genomes ratio was often close to 1 (0.6-1.74). Most cbDVGs were 324-2,000 bases in length, corresponding to 2%-12% of the full-length genome; all are predicted to have complementary terminal sequences. If improperly encapsidated, these sequences have the potential to form double-stranded structures that can induce innate immune responses. To assess this, we examined the transcriptome of all brain specimens. Several interferon and inflammatory response genes were upregulated, but upregulation levels did not correlate with cbDVG levels in the specimens. Thus, the CIU that drove MeV pathogenesis in this brain includes, in addition to two complementary full-length genome populations, many locally restricted and few widespread cbDVG species. The widespread cbDVG species may have been positively selected but how they impacted pathogenesis remains to be determined.IMPORTANCECopy-back defective viral genomes (cbDVGs) can drive virus-host interactions. They can suppress virus replication directly, by competing with full-length genomes, or indirectly by stimulating antiviral immunity. In vitro, cbDVG can slow down infections and promote persistence, but there is limited documentation of their presence in human hosts or of their impact on disease. We had the unique opportunity to analyze the brain of a patient who succumbed to subacute sclerosing panencephalitis, a rare but lethal consequence of measles. We detected more than 270 distinct cbDVG species; most were restricted to one specimen, but several reached all lobes of the forebrain, suggesting positive selection. Our analyses provide the missing knowledge of the diversity of cbDVG in a natural infection of a human host. They also reveal that a collective infectious unit that caused lethal human brain disease includes few widespread cbDVG, in addition to two ubiquitous complementary full-length genome populations.
Collapse
Affiliation(s)
- Biruhalem Taye
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Iris Yousaf
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Chanakha K Navaratnarajah
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Christian K Pfaller
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Huang C, Tu S, Sheng W, Wang Z, Lin Z, Qian J, Zou J, Zhou H. Phylogenetic analysis, genetic diversity, and epidemiology of pigeon paramyxovirus type 1 in China. Arch Virol 2024; 169:213. [PMID: 39365477 DOI: 10.1007/s00705-024-06144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 08/10/2024] [Indexed: 10/05/2024]
Abstract
Pigeon paramyxovirus type 1 (PPMV-1) poses significant economic challenges to the pigeon industry in China. However, information about the prevalence, genetic diversity, and epidemiology of PPMV-1 in China is still lacking. In this study, we isolated six strains of PPMV-1 from Hubei and Zhejiang provinces in 2022. All six isolates were found to belong to subgenotype VI.2.1.1.2.2. Five of them were identified as mesogenic and one as lentogenic. Multiple mutations were observed in the F and HN proteins of these isolates. Comprehensive analysis of global PPMV-1 strains highlighted the dominance of genotype VI, showing that VI.2.1.1.2.2 has been the dominant subgenotype since 2011. We also identified 36 host-specific amino acid substitutions that are unique to PPMV-1 in comparison to chicken-origin NDVs. The data reported here contribute to our understanding of the epidemiology, genetic diversity, and prevalence of PPMV-1 and serve as a valuable reference for the prevention and control of PPMV-1.
Collapse
Affiliation(s)
- Chuqi Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030, P.R. China
| | - Shaoyu Tu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030, P.R. China
| | - Wei Sheng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030, P.R. China
| | - Zhihao Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030, P.R. China
| | - Zhipeng Lin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030, P.R. China
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Jiahui Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030, P.R. China.
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510640, P.R. China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030, P.R. China.
| |
Collapse
|
4
|
DeRuyter E, Subramaniam K, Wisely SM, Morris JG, Lednicky JA. A Novel Jeilongvirus from Florida, USA, Has a Broad Host Cell Tropism Including Human and Non-Human Primate Cells. Pathogens 2024; 13:831. [PMID: 39452704 PMCID: PMC11510135 DOI: 10.3390/pathogens13100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
A novel jeilongvirus was identified through next-generation sequencing in cell cultures inoculated with spleen and kidney extracts. The spleen and kidney were obtained from a Peromyscus gossypinus rodent (cotton mouse) found dead in the city of Gainesville, in North-Central Florida, USA. Jeilongviruses are paramyxoviruses of the subfamily Orthoparamyxovirinae that have been found in bats, cats, and rodents. We designated the virus we discovered as Gainesville rodent jeilong virus 1 (GRJV1). Preliminary results indicate that GRJV1 can complete its life cycle in various human, non-human primate, and rodent cell lines, suggesting that the virus has a generalist nature with the potential for a spillover event. The early detection of endemic viruses circulating within hosts in North-Central Florida can significantly enhance surveillance efforts, thereby bolstering our ability to monitor and respond to potential outbreaks effectively.
Collapse
Affiliation(s)
- Emily DeRuyter
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA;
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA; (K.S.); (S.M.W.); (J.G.M.J.)
| | - Kuttichantran Subramaniam
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA; (K.S.); (S.M.W.); (J.G.M.J.)
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Samantha M. Wisely
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA; (K.S.); (S.M.W.); (J.G.M.J.)
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - J. Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA; (K.S.); (S.M.W.); (J.G.M.J.)
- Department of Internal Medicine, Division of Infectious Diseases and Global Medicine, University of Florida Health/Shands Hospital, Gainesville, FL 32610, USA
| | - John A. Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA;
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA; (K.S.); (S.M.W.); (J.G.M.J.)
| |
Collapse
|
5
|
Kleiner VA, Fearns R. How does the polymerase of non-segmented negative strand RNA viruses commit to transcription or genome replication? J Virol 2024; 98:e0033224. [PMID: 39078194 PMCID: PMC11334523 DOI: 10.1128/jvi.00332-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
The Mononegavirales, or non-segmented negative-sense RNA viruses (nsNSVs), includes significant human pathogens, such as respiratory syncytial virus, parainfluenza virus, measles virus, Ebola virus, and rabies virus. Although these viruses differ widely in their pathogenic properties, they are united by each having a genome consisting of a single strand of negative-sense RNA. Consistent with their shared genome structure, the nsNSVs have evolved similar ways to transcribe their genome into mRNAs and replicate it to produce new genomes. Importantly, both mRNA transcription and genome replication are performed by a single virus-encoded polymerase. A fundamental and intriguing question is: how does the nsNSV polymerase commit to being either an mRNA transcriptase or a replicase? The polymerase must become committed to one process or the other either before it interacts with the genome template or in its initial interactions with the promoter sequence at the 3´ end of the genomic RNA. This review examines the biochemical, molecular biology, and structural biology data regarding the first steps of transcription and RNA replication that have been gathered over several decades for different families of nsNSVs. These findings are discussed in relation to possible models that could explain how an nsNSV polymerase initiates and commits to either transcription or genome replication.
Collapse
Affiliation(s)
- Victoria A. Kleiner
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Bhattacharya S, Deka P, Das S, Ali S, Choudhury B, Kakati P, Kumar S. Spillover of Newcastle disease virus to Himalayan Griffon vulture: a possible food-based transmission. Virus Genes 2024; 60:385-392. [PMID: 38739246 DOI: 10.1007/s11262-024-02072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
The Newcastle disease virus (NDV) affects wild and domesticated bird species, including commercial poultry. Although the diversity of NDV in domestic chickens is well documented, limited information is available about Newcastle disease (ND) outbreaks in other bird species. We report an annotated sequence of NDV/Vulture/Borjuri/01/22, an avirulent strain of NDV reported from Borjuri, Northeast India, in Himalayan Griffon vulture. The complete genome is 15,186 bases long with a fusion protein (F) cleavage site 112GRQGR↓L117. The phylogenetic analysis based on the F protein gene and the whole genome sequence revealed that the isolate from the vulture belongs to genotype II, sharing significant homology with vaccine strain LaSota. The study highlights the possible spillover of the virus from domestic to wild species through the food chain.
Collapse
Affiliation(s)
- Shinjini Bhattacharya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Pankaj Deka
- Department of Microbiology, College of Veterinary Science, Assam Agricultural University Khanapara Campus, Guwahati, Assam, 781022, India
| | - Sangeeta Das
- Department of Microbiology, College of Veterinary Science, Assam Agricultural University Khanapara Campus, Guwahati, Assam, 781022, India
| | - Samshul Ali
- Centre for Wildlife Rehabilitation and Conservation, Kaziranga National Park, Bokakhat, Assam, 785612, India
| | | | | | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
7
|
Passchier TC, White JBR, Maskell DP, Byrne MJ, Ranson NA, Edwards TA, Barr JN. The cryoEM structure of the Hendra henipavirus nucleoprotein reveals insights into paramyxoviral nucleocapsid architectures. Sci Rep 2024; 14:14099. [PMID: 38890308 PMCID: PMC11189427 DOI: 10.1038/s41598-024-58243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/27/2024] [Indexed: 06/20/2024] Open
Abstract
We report the first cryoEM structure of the Hendra henipavirus nucleoprotein in complex with RNA, at 3.5 Å resolution, derived from single particle analysis of a double homotetradecameric RNA-bound N protein ring assembly exhibiting D14 symmetry. The structure of the HeV N protein adopts the common bi-lobed paramyxoviral N protein fold; the N-terminal and C-terminal globular domains are bisected by an RNA binding cleft containing six RNA nucleotides and are flanked by the N-terminal and C-terminal arms, respectively. In common with other paramyxoviral nucleocapsids, the lateral interface between adjacent Ni and Ni+1 protomers involves electrostatic and hydrophobic interactions mediated primarily through the N-terminal arm and globular domains with minor contribution from the C-terminal arm. However, the HeV N multimeric assembly uniquely identifies an additional protomer-protomer contact between the Ni+1 N-terminus and Ni-1 C-terminal arm linker. The model presented here broadens the understanding of RNA-bound paramyxoviral nucleocapsid architectures and provides a platform for further insight into the molecular biology of HeV, as well as the development of antiviral interventions.
Collapse
Affiliation(s)
- Tim C Passchier
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- Department of Biology, University of York, York, YO10 5DD, UK.
| | - Joshua B R White
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel P Maskell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew J Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Exscientia, The Schrödinger Building Oxford Science Park, Oxford, OX4 4GE, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- College of Biomedical Sciences, Larkin University, 18301 N Miami Avenue, Miami, FL, 33169, USA.
| | - John N Barr
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
8
|
Brunet J, Choucha Z, Gransagne M, Tabbal H, Ku MW, Buchrieser J, Fernandes P, Batalie D, Lopez J, Ma L, Dufour E, Simon E, Hardy D, Petres S, Guinet F, Strick-Marchand H, Monot M, Charneau P, Majlessi L, Duprex WP, Gerke C, Martin A, Escriou N. A measles-vectored vaccine candidate expressing prefusion-stabilized SARS-CoV-2 spike protein brought to phase I/II clinical trials: candidate selection in a preclinical murine model. J Virol 2024; 98:e0169323. [PMID: 38563763 PMCID: PMC11210269 DOI: 10.1128/jvi.01693-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
In the early COVID-19 pandemic with urgent need for countermeasures, we aimed at developing a replicating viral vaccine using the highly efficacious measles vaccine as vector, a promising technology with prior clinical proof of concept. Building on our successful pre-clinical development of a measles virus (MV)-based vaccine candidate against the related SARS-CoV, we evaluated several recombinant MV expressing codon-optimized SARS-CoV-2 spike glycoprotein. Candidate V591 expressing a prefusion-stabilized spike through introduction of two proline residues in HR1 hinge loop, together with deleted S1/S2 furin cleavage site and additional inactivation of the endoplasmic reticulum retrieval signal, was the most potent in eliciting neutralizing antibodies in mice. After single immunization, V591 induced similar neutralization titers as observed in sera of convalescent patients. The cellular immune response was confirmed to be Th1 skewed. V591 conferred long-lasting protection against SARS-CoV-2 challenge in a murine model with marked decrease in viral RNA load, absence of detectable infectious virus loads, and reduced lesions in the lungs. V591 was furthermore efficacious in an established non-human primate model of disease (see companion article [S. Nambulli, N. Escriou, L. J. Rennick, M. J. Demers, N. L. Tilston-Lunel et al., J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23]). Thus, V591 was taken forward into phase I/II clinical trials in August 2020. Unexpected low immunogenicity in humans (O. Launay, C. Artaud, M. Lachâtre, M. Ait-Ahmed, J. Klein et al., eBioMedicine 75:103810, 2022, https://doi.org/10.1016/j.ebiom.2021.103810) revealed that the underlying mechanisms for resistance or sensitivity to pre-existing anti-measles immunity are not yet understood. Different hypotheses are discussed here, which will be important to investigate for further development of the measles-vectored vaccine platform.IMPORTANCESARS-CoV-2 emerged at the end of 2019 and rapidly spread worldwide causing the COVID-19 pandemic that urgently called for vaccines. We developed a vaccine candidate using the highly efficacious measles vaccine as vector, a technology which has proved highly promising in clinical trials for other pathogens. We report here and in the companion article by Nambulli et al. (J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23) the design, selection, and preclinical efficacy of the V591 vaccine candidate that was moved into clinical development in August 2020, 7 months after the identification of SARS-CoV-2 in Wuhan. These unique in-human trials of a measles vector-based COVID-19 vaccine revealed insufficient immunogenicity, which may be the consequence of previous exposure to the pediatric measles vaccine. The three studies together in mice, primates, and humans provide a unique insight into the measles-vectored vaccine platform, raising potential limitations of surrogate preclinical models and calling for further refinement of the platform.
Collapse
Affiliation(s)
- Jérémy Brunet
- Institut Pasteur, Université Paris Cité, Département de Santé Globale, Paris, France
| | - Zaineb Choucha
- Institut Pasteur, Université Paris Cité, Département de Santé Globale, Paris, France
| | - Marion Gransagne
- Institut Pasteur, Université Paris Cité, Département de Santé Globale, Paris, France
| | - Houda Tabbal
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Génétique Moléculaire des Virus à ARN, Paris, France
| | - Min-Wen Ku
- Institut Pasteur, Université Paris Cité, Pasteur-TheraVectys Joint Lab, Paris, France
| | - Julian Buchrieser
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Virus and Immunity Unit, Paris, France
| | - Priyanka Fernandes
- Institut Pasteur, Université Paris Cité, INSERM U1223, Innate Immunity Unit, Paris, France
| | - Damien Batalie
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Génétique Moléculaire des Virus à ARN, Paris, France
| | - Jodie Lopez
- Institut Pasteur, Université Paris Cité, Pasteur-TheraVectys Joint Lab, Paris, France
| | - Laurence Ma
- Institut Pasteur, Université Paris Cité, Biomics, C2RT, Paris, France
| | - Evelyne Dufour
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Production and Purification of Recombinant Proteins Technological Platform, Paris, France
| | - Emeline Simon
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Génétique Moléculaire des Virus à ARN, Paris, France
| | - David Hardy
- Institut Pasteur, Université Paris Cité, Histopathology Platform, Paris, France
| | - Stéphane Petres
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Production and Purification of Recombinant Proteins Technological Platform, Paris, France
| | - Françoise Guinet
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocytes and Immunity Unit, Paris, France
| | - Helene Strick-Marchand
- Institut Pasteur, Université Paris Cité, INSERM U1223, Innate Immunity Unit, Paris, France
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Biomics, C2RT, Paris, France
| | - Pierre Charneau
- Institut Pasteur, Université Paris Cité, Pasteur-TheraVectys Joint Lab, Paris, France
| | - Laleh Majlessi
- Institut Pasteur, Université Paris Cité, Pasteur-TheraVectys Joint Lab, Paris, France
| | - W. Paul Duprex
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christiane Gerke
- Institut Pasteur, Université Paris Cité, Innovation Office, Vaccine Programs, Paris, France
| | - Annette Martin
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Génétique Moléculaire des Virus à ARN, Paris, France
| | - Nicolas Escriou
- Institut Pasteur, Université Paris Cité, Département de Santé Globale, Paris, France
| |
Collapse
|
9
|
Brennan JW, Sun Y. Defective viral genomes: advances in understanding their generation, function, and impact on infection outcomes. mBio 2024; 15:e0069224. [PMID: 38567955 PMCID: PMC11077978 DOI: 10.1128/mbio.00692-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Defective viral genomes (DVGs) are truncated derivatives of their parental viral genomes generated during an aberrant round of viral genomic replication. Distinct classes of DVGs have been identified in most families of both positive- and negative-sense RNA viruses. Importantly, DVGs have been detected in clinical samples from virally infected individuals and an emerging body of association studies implicates DVGs in shaping the severity of disease caused by viral infections in humans. Consequently, there is growing interest in understanding the molecular mechanisms of de novo DVG generation, how DVGs interact with the innate immune system, and harnessing DVGs as novel therapeutics and vaccine adjuvants to attenuate viral pathogenesis. This minireview focuses on single-stranded RNA viruses (excluding retroviridae), and summarizes the current knowledge of DVG generation, the functions and diversity of DVG species, the roles DVGs play in influencing disease progression, and their application as antivirals and vaccine adjuvants.
Collapse
Affiliation(s)
- Justin W. Brennan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Yan Sun
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
10
|
Ashida S, Kojima S, Okura T, Kato F, Furuyama W, Urata S, Matsumoto Y. Phylogenetic analysis of the promoter element 2 of paramyxo- and filoviruses. Microbiol Spectr 2024; 12:e0041724. [PMID: 38606982 PMCID: PMC11064532 DOI: 10.1128/spectrum.00417-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Paramyxo- and filovirus genomes are equipped with bipartite promoters at their 3' ends to initiate RNA synthesis. The two elements, the primary promoter element 1 (PE1) and the secondary promoter element 2 (PE2), are separated by a spacer region that must be precisely a multiple of 6 nucleotides (nts), indicating these viruses adhere to the "rule of six." However, our knowledge of PE2 has been limited to a narrow spectrum of virus species. In this study, a comparative analysis of 1,647 paramyxoviral genomes from a public database revealed that the paramyxovirus PE2 can be clearly categorized into two distinct subcategories: one marked by C repeats at every six bases (exclusive to the subfamily Orthoparamyxovirinae) and another characterized by CG repeats every 6 nts (observed in the subfamilies Avulavirinae and Rubulavirinae). This unique pattern collectively mirrors the evolutionary lineage of these subfamilies. Furthermore, we showed that PE2 of the Rubulavirinae, with the exception of mumps virus, serves as part of the gene-coding region. This may be due to the fact that the Rubulavirinae are the only paramyxoviruses that cannot propagate without RNA editing. Filoviruses have three to eight consecutive uracil repeats every six bases (UN5) in PE2, which is located in the 3' end region of the genome. We obtained PE2 sequences from 2,195 filoviruses in a public database and analyzed the sequence conservation among virus species. Our results indicate that the continuity of UN5 hexamers is consistently maintained with a high degree of conservation across virus species. IMPORTANCE The genomic intricacies of paramyxo- and filoviruses are highlighted by the bipartite promoters-promoter element 1 (PE1) and promoter element 2 (PE2)-at their 3' termini. The spacer region between these elements follows the "rule of six," crucial for genome replication. By a comprehensive analysis of paramyxoviral genome sequences, we identified distinct subcategories of PE2 based on C and CG repeats that were specific to Orthoparamyxovirinae and Avulavirinae/Rubulavirinae, respectively, mirroring their evolutionary lineages. Notably, the PE2 of Rubulavirinae is integrated into the gene-coding region, a unique trait potentially linked to its strict dependence on RNA editing for virus growth. This study also focused on the PE2 sequences in filovirus genomes. The strict conservation of the continuity of UN5 among virus species emphasizes its crucial role in viral genome replication.
Collapse
Affiliation(s)
- Shoichi Ashida
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Shohei Kojima
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Okura
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Fumihiro Kato
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wakako Furuyama
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Shuzo Urata
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Yusuke Matsumoto
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
11
|
Haas GD, Schmitz KS, Azarm KD, Johnson KN, Klain WR, Freiberg AN, Cox RM, Plemper RK, Lee B. Tetracistronic Minigenomes Elucidate a Functional Promoter for Ghana Virus and Unveils Cedar Virus Replicase Promiscuity for all Henipaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589704. [PMID: 38659760 PMCID: PMC11042316 DOI: 10.1101/2024.04.16.589704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Batborne henipaviruses, such as Nipah virus and Hendra virus, represent a major threat to global health due to their propensity for spillover, severe pathogenicity, and high mortality rate in human hosts. Coupled with the absence of approved vaccines or therapeutics, work with the prototypical species and uncharacterized, emergent species is restricted to high biocontainment facilities. There is a scarcity of such specialized spaces for research, and often the scope and capacity of research which can be conducted at BSL-4 is limited. Therefore, there is a pressing need for innovative life-cycle modeling systems to enable comprehensive research within lower biocontainment settings. This work showcases tetracistronic, transcription and replication competent minigenomes for Nipah virus, Hendra virus, Cedar virus, and Ghana virus, which encode viral proteins facilitating budding, fusion, and receptor binding. We validate the functionality of all encoded viral proteins and demonstrate a variety of applications to interrogate the viral life cycle. Notably, we found that the Cedar virus replicase exhibits remarkable promiscuity, efficiently rescuing minigenomes from all tested henipaviruses. We also apply this technology to GhV, an emergent species which has so far not been isolated in culture. We demonstrate that the reported sequence of GhV is incomplete, but that this missing sequence can be substituted with analogous sequences from other henipaviruses. Use of our GhV system establishes the functionality of the GhV replicase and identifies two antivirals which are highly efficacious against the GhV polymerase.
Collapse
Affiliation(s)
- Griffin D. Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Kristopher D. Azarm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kendra N. Johnson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - William R. Klain
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Robert M. Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
12
|
Wei Q, Wang W, Meng F, Wang Y, Wei N, Tian J, Li H, Hao Q, Zhou Z, Liu H, Yang Z, Xiao S. The W195 Residue of the Newcastle Disease Virus V Protein Is Critical for Multiple Aspects of Viral Self-Regulation through Interactions between V and Nucleoproteins. Viruses 2024; 16:584. [PMID: 38675926 PMCID: PMC11054343 DOI: 10.3390/v16040584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The transcription and replication of the Newcastle disease virus (NDV) strictly rely on the viral ribonucleoprotein (RNP) complex, which is composed of viral NP, P, L and RNA. However, it is not known whether other viral non-RNP proteins participate in this process for viral self-regulation. In this study, we used a minigenome (MG) system to identify the regulatory role of the viral non-RNP proteins V, M, W, F and HN. Among them, V significantly reduced MG-encoded reporter activity compared with the other proteins and inhibited the synthesis of viral mRNA and cRNA. Further, V interacted with NP. A mutation in residue W195 of V diminished V-NP interaction and inhibited inclusion body (IB) formation in NP-P-L-cotransfected cells. Furthermore, a reverse-genetics system for the highly virulent strain F48E9 was established. The mutant rF48E9-VW195R increased viral replication and apparently enhanced IB formation. In vivo experiments demonstrated that rF48E9-VW195R decreased virulence and retarded time of death. Overall, the results indicate that the V-NP interaction of the W195 mutant V decreased, which regulated viral RNA synthesis, IB formation, viral replication and pathogenicity. This study provides insight into the self-regulation of non-RNP proteins in paramyxoviruses.
Collapse
Affiliation(s)
- Qiaolin Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (Q.W.); (F.M.); (Y.W.); (N.W.); (J.T.); (H.L.); (Q.H.); (Z.Z.); (H.L.); (Z.Y.)
| | - Wenbin Wang
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan 250100, China;
| | - Fanxing Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (Q.W.); (F.M.); (Y.W.); (N.W.); (J.T.); (H.L.); (Q.H.); (Z.Z.); (H.L.); (Z.Y.)
| | - Ying Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (Q.W.); (F.M.); (Y.W.); (N.W.); (J.T.); (H.L.); (Q.H.); (Z.Z.); (H.L.); (Z.Y.)
| | - Ning Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (Q.W.); (F.M.); (Y.W.); (N.W.); (J.T.); (H.L.); (Q.H.); (Z.Z.); (H.L.); (Z.Y.)
| | - Jianxia Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (Q.W.); (F.M.); (Y.W.); (N.W.); (J.T.); (H.L.); (Q.H.); (Z.Z.); (H.L.); (Z.Y.)
| | - Hanlue Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (Q.W.); (F.M.); (Y.W.); (N.W.); (J.T.); (H.L.); (Q.H.); (Z.Z.); (H.L.); (Z.Y.)
| | - Qiqi Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (Q.W.); (F.M.); (Y.W.); (N.W.); (J.T.); (H.L.); (Q.H.); (Z.Z.); (H.L.); (Z.Y.)
| | - Zijie Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (Q.W.); (F.M.); (Y.W.); (N.W.); (J.T.); (H.L.); (Q.H.); (Z.Z.); (H.L.); (Z.Y.)
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (Q.W.); (F.M.); (Y.W.); (N.W.); (J.T.); (H.L.); (Q.H.); (Z.Z.); (H.L.); (Z.Y.)
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (Q.W.); (F.M.); (Y.W.); (N.W.); (J.T.); (H.L.); (Q.H.); (Z.Z.); (H.L.); (Z.Y.)
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (Q.W.); (F.M.); (Y.W.); (N.W.); (J.T.); (H.L.); (Q.H.); (Z.Z.); (H.L.); (Z.Y.)
| |
Collapse
|
13
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, Peng KW, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, prefusion-stabilized SARS-CoV-2 spike glycoproteins boost neutralizing antibody responses to Omicron and historical variants, independent of measles seropositivity. mBio 2024; 15:e0292823. [PMID: 38193729 PMCID: PMC10865805 DOI: 10.1128/mbio.02928-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Serum titers of SARS-CoV-2-neutralizing antibodies (nAbs) correlate well with protection from symptomatic COVID-19 but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are lifelong after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We, therefore, sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain, and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated the potent induction of high titer nAbs in measles-immune mice and confirmed the significant contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin display of the SARS-CoV-2 spike glycoprotein. In animals primed and boosted with a measles virus (MeV) vaccine encoding the ancestral SARS-CoV-2 spike, high-titer nAb responses against ancestral virus strains were only weakly cross-reactive with the Omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the Omicron BA.1 spike, antibody titers to both ancestral and Omicron strains were robustly elevated, and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that by engineering the antigen, we can develop potent measles-based vaccine candidates against SARS-CoV-2.IMPORTANCEAlthough the live-attenuated measles virus (MeV) is one of the safest and most efficacious human vaccines, a measles-vectored COVID-19 vaccine candidate expressing the SARS-CoV-2 spike failed to elicit neutralizing antibody (nAb) responses in a phase-1 clinical trial, especially in measles-immune individuals. Here, we constructed a comprehensive panel of MeV-based COVID-19 vaccine candidates using a MeV with extensive modifications on the envelope glycoproteins (MeV-MR). We show that artificial trimerization of the spike is critical for the induction of nAbs and that their magnitude can be significantly augmented when the spike protein is synchronously fused to a dodecahedral scaffold. Furthermore, preexisting measles immunity did not abolish heterologous immunity elicited by our vector. Our results highlight the importance of antigen optimization in the development of spike-based COVID-19 vaccines and therapies.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Rennick LJ, Duprex WP, Tilston-Lunel NL. Generation of Defective Interfering Particles of Morbilliviruses Using Reverse Genetics. Methods Mol Biol 2024; 2808:57-70. [PMID: 38743362 DOI: 10.1007/978-1-0716-3870-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
RNA viruses generate defective genomes naturally during virus replication. Defective genomes that interfere with the infection dynamics either through resource competition or by interferon stimulation are known as defective interfering (DI) genomes. DI genomes can be successfully packaged into virus-like-particles referred to as defective interfering particles (DIPs). Such DIPs can sustainably coexist with the full-length virus particles and have been shown to negatively impact virus replication in vitro and in vivo. Here, we describe a method to generate a clonal DI genome population by reverse genetics. This method is applicable to other RNA viruses and will enable assessment of DIPs for their antiviral properties.
Collapse
Affiliation(s)
- Linda J Rennick
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - W Paul Duprex
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Natasha L Tilston-Lunel
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
15
|
Haas G, Lee B. Reverse Genetics Systems for the De Novo Rescue of Diverse Members of Paramyxoviridae. Methods Mol Biol 2024; 2733:15-35. [PMID: 38064024 DOI: 10.1007/978-1-0716-3533-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Paramyxoviruses place significant burdens on both human and wildlife health; while some paramyxoviruses are established within human populations, others circulate within diverse animal reservoirs. Concerningly, bat-borne paramyxoviruses have spilled over into humans with increasing frequency in recent years, resulting in severe disease. The risk of future zoonotic outbreaks, as well as the persistence of paramyxoviruses that currently circulate within humans, highlights the need for efficient tools through which to interrogate paramyxovirus biology. Reverse genetics systems provide scientists with the ability to rescue paramyxoviruses de novo, offering versatile tools for implementation in both research and public health settings. Reverse genetics systems have greatly improved over the past 30 years, with several key innovations optimizing the success of paramyxovirus rescue. Here, we describe the significance of such advances and provide a generally applicable guide for the development and use of reverse genetics systems for the rescue of diverse members of Paramyxoviridae.
Collapse
Affiliation(s)
- Griffin Haas
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
16
|
Cobela-García A, Mena I, García-Sastre A. Rescue of Recombinant Newcastle Disease Virus Expressing Heterologous Genes. Methods Mol Biol 2024; 2733:37-46. [PMID: 38064025 DOI: 10.1007/978-1-0716-3533-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Reverse genetics allows for the generation of recombinant infectious viruses from viral sequences or complete viral genomes cloned into plasmids. Using reverse genetics, it is then possible to introduce changes in the genome of infectious viruses for multiple applications.Newcastle disease virus (NDV) is a non-segmented, negative-sense RNA virus that has been amenable to manipulation by reverse genetics for more than two decades. Since then, recombinant NDVs have been extensively used as viral vectors to express heterologous proteins. We describe the key steps required to design and introduce an additional transcription unit in the genome of the Newcastle disease virus for the efficient expression of a heterologous gene.
Collapse
Affiliation(s)
- Arantza Cobela-García
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University Hamburg, Hamburg, Germany
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-BasedMedicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Murr M, Mettenleiter T. Negative-Strand RNA Virus-Vectored Vaccines. Methods Mol Biol 2024; 2786:51-87. [PMID: 38814390 DOI: 10.1007/978-1-0716-3770-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Vectored RNA vaccines offer a variety of possibilities to engineer targeted vaccines. They are cost-effective and safe, but replication competent, activating the humoral as well as the cellular immune system.This chapter focuses on RNA vaccines derived from negative-strand RNA viruses from the order Mononegavirales with special attention to Newcastle disease virus-based vaccines and their generation. It shall provide an overview on the advantages and disadvantages of certain vector platforms as well as their scopes of application, including an additional section on experimental COVID-19 vaccines.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| | - Thomas Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
18
|
Horemans M, Van Bets J, Joly Maes T, Maes P, Vanmechelen B. Discovery and genome characterization of six new orthoparamyxoviruses in small Belgian mammals. Virus Evol 2023; 9:vead065. [PMID: 38034864 PMCID: PMC10684267 DOI: 10.1093/ve/vead065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
In the future, zoonotic spillover events are expected to occur more frequently. Consequences of such events have clearly been demonstrated by recent outbreaks of monkeypox, Ebola virus, and the well-known severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Virus discovery has proven to be an important tool in the preparation against viral outbreaks, generating data concerning the diversity, quantity, and ecology of the vertebrate virome. Orthoparamyxoviruses, a subfamily within the Paramyxoviridae, are important biosurveillance targets, since they include several known animal, human, and zoonotic pathogens such as Nipah virus, measles virus, and Hendra virus. During this study, 127 bat samples, thirty-four rodent samples, and seventeen shrew samples originating from Belgium were screened for orthoparamyxovirus presence using nested reverse transcription-polymerase chain reaction assays and nanopore sequencing. We present here the complete genomes of six putative new viral species, belonging to the genera Jeilongvirus and Henipavirus. Characterization of these genomes revealed significant differences in gene composition and organization, both within viruses of the same genus and between viruses of different genera. Remarkably, a previously undetected gene coding for a protein of unknown function was identified in the genome of a putative new Henipavirus. Additionally, phylogenetic analysis of jeilongviruses and henipaviruses reveals a division of both genera into two clades, one consisting of bat-borne viruses and the other consisting of rodent- and shrew-borne viruses, elucidating the need for proper reclassification.
Collapse
Affiliation(s)
| | - Jessica Van Bets
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven, Herestraat 49/Box 1040, Leuven BE3000, Belgium
| | - Tibe Joly Maes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven, Herestraat 49/Box 1040, Leuven BE3000, Belgium
| | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven, Herestraat 49/Box 1040, Leuven BE3000, Belgium
| | - Bert Vanmechelen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven, Herestraat 49/Box 1040, Leuven BE3000, Belgium
| |
Collapse
|
19
|
Kariithi HM, Volkening JD, Chiwanga GH, Goraichuk IV, Olivier TL, Msoffe PLM, Suarez DL. Virulent Newcastle disease virus genotypes V.3, VII.2, and XIII.1.1 and their coinfections with infectious bronchitis viruses and other avian pathogens in backyard chickens in Tanzania. Front Vet Sci 2023; 10:1272402. [PMID: 37929287 PMCID: PMC10625407 DOI: 10.3389/fvets.2023.1272402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Oropharyngeal (OP) and cloacal (CL) swabs from 2049 adult backyard chickens collected at 12 live bird markets, two each in Arusha, Dar es Salaam, Iringa, Mbeya, Morogoro and Tanga regions of Tanzania were screened for Newcastle disease virus (NDV) using reverse transcription real-time PCR (rRT-PCR). The virus was confirmed in 25.23% of the birds (n = 517; rRT-PCR CT ≤ 30), with the highest positivity rates observed in birds from Dar es Salaam region with higher prevalence during the dry season (September-November 2018) compared to the rainy season (January and April-May 2019). Next-generation sequencing of OP/CL samples of 20 out of 32 birds that had high amounts of viral RNAs (CT ≤ 25) resulted in the assembly of 18 complete and two partial genome sequences (15,192 bp and 15,045-15,190 bp in length, respectively) of NDV sub-genotypes V.3, VII.2 and XIII.1.1 (n = 1, 13 and 4 strains, respectively). Two birds had mixed NDV infections (V.3/VII.2 and VII.2/XIII.1.1), and nine were coinfected with viruses of families Astroviridae, Coronaviridae, Orthomyxoviridae, Picornaviridae, Pneumoviridae, and Reoviridae. Of the coinfecting viruses, complete genome sequences of two avastroviruses (a recombinant chicken astrovirus antigenic group-Aii and avian nephritis virus genogroup-5) and two infectious bronchitis viruses (a turkey coronavirus-like recombinant and a GI-19 virus) were determined. The fusion (F) protein F1/F2 cleavage sites of the Tanzanian NDVs have the consensus motifs 112 RRRKR↓F 117 (VII.2 strains) and 112 RRQKR↓F 117 (V.3 and XIII.1.1 strains) consistent with virulent virus; virulence was confirmed by intracerebral pathogenicity index scores of 1.66-1.88 in 1-day-old chicks using nine of the 20 isolates. Phylogenetically, the complete F-gene and full genome sequences regionally cluster the Tanzanian NDVs with, but distinctly from, other strains previously reported in eastern and southern African countries. These data contribute to the understanding of NDV epidemiology in Tanzania and the region.
Collapse
Affiliation(s)
- Henry M. Kariithi
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA, United States
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | | | | | - Iryna V. Goraichuk
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA, United States
- National Scientific Center Institute of Experimental and Veterinary Medicine, Kharkiv, Ukraine
| | - Tim L. Olivier
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA, United States
| | - Peter L. M. Msoffe
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
- National Ranching Company Ltd., Dodoma, Tanzania
| | - David L. Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA, United States
| |
Collapse
|
20
|
Optimal Conditions for In Vitro Assembly of Respiratory Syncytial Virus Nucleocapsid-like Particles. Viruses 2023; 15:v15020344. [PMID: 36851557 PMCID: PMC9962444 DOI: 10.3390/v15020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The nucleocapsids (NCs) of the respiratory syncytial virus (RSV) can display multiple morphologies in vivo, including spherical, asymmetric, and filamentous conformations. Obtaining homogeneous ring-like oligomers in vitro is significant since they structurally represent one turn of the characteristic RSV NC helical filament. Here, we analyzed and optimized conditions for forming homogenous, recombinant nucleocapsid-like particles (NCLPs) of RSV in vitro. We examined the effects of modifying the integrated RNA length and sequence, altering incubation time, and varying buffer parameters, including salt concentration and pH, on ring-like NCLPs assembly using negative stain electron microscopy (EM) imaging. We showed that high-quality, homogeneous particles are assembled when incubating short, adenine-rich RNA sequences with RNA-free N associated with P (N0P). Further, we reported that a co-incubation duration greater than 3 days, a NaCl concentration between 100 mM and 200 mM, and a pH between 7 and 8 are optimal for N-RNA ring assembly with polyadenine RNA sequences. We believe assembling high-quality, homogeneous NCLPs in vitro will allow for further analysis of RSV RNA synthesis. This work may also lend insights into obtaining high-resolution nucleocapsid homogeneous structures for in vitro analysis of antiviral drug candidates against RSV and related viruses.
Collapse
|
21
|
Anker SC, Szczeponik MG, Dessila J, Dittus K, Engeland CE, Jäger D, Ungerechts G, Leber MF. Oncolytic Measles Virus Encoding MicroRNA for Targeted RNA Interference. Viruses 2023; 15:v15020308. [PMID: 36851522 PMCID: PMC9964028 DOI: 10.3390/v15020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Virotherapy is a promising, novel form of cancer immunotherapy currently being investigated in pre-clinical and clinical settings. While generally well-tolerated, the anti-tumor potency of oncolytic virus-based monotherapies needs to be improved further. One of the major factors limiting the replication efficiency of oncolytic viruses are the antiviral defense pathways activated by tumor cells. In this study, we have designed and validated a universal expression cassette for artificial microRNAs that can now be adapted to suppress genes of interest, including potential resistance factors. Transcripts are encoded as a primary microRNA for processing via the predominantly nuclear RNase III Drosha. We have engineered an oncolytic measles virus encoding this universal expression cassette for artificial microRNAs. Virally encoded microRNA was expressed in the range of endogenous microRNA transcripts and successfully mediated target protein suppression. However, absolute expression levels of mature microRNAs were limited when delivered by an oncolytic measles virus. We demonstrate that measles virus, in contrast to other cytosolic viruses, does not induce translocation of Drosha from the nucleus into the cytoplasm, potentially resulting in a limited processing efficiency of virus-derived, cytosolically delivered artificial microRNAs. To our knowledge, this is the first report demonstrating functional expression of microRNA from oncolytic measles viruses potentially enabling future targeted knockdown, for instance of antiviral factors specifically in tumor cells.
Collapse
Affiliation(s)
- Sophie C. Anker
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 671, 69120 Heidelberg, Germany
| | - Marie G. Szczeponik
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Medical School, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Jan Dessila
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Katia Dittus
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Christine E. Engeland
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Center for Biomedical Research and Education (ZBAF), Institute of Virology and Microbiology, Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Straße 10, 58453 Witten, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Mathias F. Leber
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
22
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, fusion-stabilized SARS-CoV-2 spike glycoproteins bypass measles seropositivity, boosting neutralizing antibody responses to omicron and historical variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.16.520799. [PMID: 36561187 PMCID: PMC9774211 DOI: 10.1101/2022.12.16.520799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Serum titers of SARS-CoV-2 neutralizing antibodies (nAb) correlate well with protection from symptomatic COVID-19, but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are life-long after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We therefore sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated potent induction of high titer nAb in measles-immune mice and confirmed the significant incremental contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin-display of the SARS-CoV-2 spike glycoprotein, and vaccine resurfacing. In animals primed and boosted with a MeV vaccine encoding the ancestral SARS-CoV-2 spike, high titer nAb responses against ancestral virus strains were only weakly cross-reactive with the omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the omicron BA.1 spike, antibody titers to both ancestral and omicron strains were robustly elevated and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that antigen engineering can enable the development of potent measles-based SARS-CoV-2 vaccine candidates.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Imanis Life Sciences, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
23
|
Jamil F, Aslam L, Ali H, Shoukat K, Rasheed MA, Raza S, Ibrahim M. An In silico study of derivative of Newcastle disease virus epitopes based vaccine against Hemagglutunin neuraminidase protein. J Anim Sci 2022; 101:skac375. [PMID: 36371806 PMCID: PMC9883717 DOI: 10.1093/jas/skac375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/11/2022] [Indexed: 11/14/2022] Open
Abstract
The causative agent of Newcastle disease (ND) is Newcastle disease virus. It belongs to avian species of Orthoavulavirus, Avulavirinae subfamily and if left untreated it may cause epidemic in poultry. Many vaccines have been made against Newcastle disease based on inactivated and attenuated viruses but become useless due to the genetic changes in the virus. We have recently reported epitope based vaccine by using immunoinformatics approaches. The vaccine was previously constructed against Hemagglutunin neuraminidase protein of Newcastle disease virus. Here we extended our work to develop several chimera of the proposed vaccine to design a new multi-epitope vaccine by shuffling the cytotoxic T lymphocytes (CTL) segments of the vaccine. Total 5040 constructs have been analyzed by shuffling 7 CTL epitopes. Highest antigenic multi-epitope construct was selected for the further study. Our new multi-epitope vaccine (MEV) construct contains 259 amino acids and is immunogenic, more antigenic and non-allergen. The refinement of the structure of MEV construct was performed. Molecular docking analyses showed its maximum binding with avian Toll-like 4 receptor. Subsequently, immune simulations showed its predicted ability to induce the host primary and secondary responses. Study suggests that our new multi-epitope vaccine chimera is more effective and stable protein against Newcastle disease virus strains in Pakistan. However, further studies are required to validate the vaccine through In vitro and In vivo studies.
Collapse
Affiliation(s)
- Farrukh Jamil
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Laiba Aslam
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Hira Ali
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Kainaat Shoukat
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Muhammad Asif Rasheed
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Sohail Raza
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ibrahim
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| |
Collapse
|
24
|
Auste A, Mühlebach MD. Concentrating all helper protein functions on a single entity allows rescue of recombinant measles virus by transfection of just two plasmids. J Gen Virol 2022; 103. [PMID: 36748683 DOI: 10.1099/jgv.0.001815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The generation of recombinant measles virus (MeV) from manipulated genomes on plasmid DNA is quite a complex and inefficient process. As a member of the order Mononegavirales its single-stranded ssRNA genome in negative sense orientation is not infectious, but requires co-availability of the viral RNA-dependent RNA polymerase L, the polymerase co-factor phosphoprotein P, and the nucleocapsid protein N in defined relative amounts to establish infectious centres in transfected cell cultures that release replication-competent recombinant MeV particles. For this so-called rescue, different rescue systems were developed that rely on at least four different components. In this work, we establish a functional MeV rescue system just being composed of two components: the plasmid encoding the (modified) viral genome, and a one-helper-plasmid bundling all helper functions. In contrast to a rescue-system for Newcastle Disease Virus, another paramyxovirus, co-expression of all helper proteins by the same promoter failed. Instead, adaptation of the strength of the respective promoters to drive each helper gene´s expression to the relative expression found in MeV-infected cells or other rescue systems, which indeed adjusted respective mRNA and protein expression, yielded success, albeit not yet to the same efficacy as the four-component system. Thereby, our study paves the way for the development of easier and, after further optimization, more efficient rescue systems to generate recombinant MeV for e.g. the application as a vaccine platform or oncolytic virus, for example.
Collapse
Affiliation(s)
- Arne Auste
- Section Product Testing of IVMPs, Div. Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany.,German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Michael D Mühlebach
- Section Product Testing of IVMPs, Div. Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany.,German Center for Infection Research, Gießen-Marburg-Langen, Germany
| |
Collapse
|
25
|
Discovery and Genomic Characterization of a Novel Henipavirus, Angavokely Virus, from Fruit Bats in Madagascar. J Virol 2022; 96:e0092122. [PMID: 36040175 PMCID: PMC9517717 DOI: 10.1128/jvi.00921-22] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Henipavirus (family Paramyxoviridae) currently comprises seven viruses, four of which have demonstrated prior evidence of zoonotic capacity. These include the biosafety level 4 agents Hendra (HeV) and Nipah (NiV) viruses, which circulate naturally in pteropodid fruit bats. Here, we describe and characterize Angavokely virus (AngV), a divergent henipavirus identified in urine samples from wild, Madagascar fruit bats. We report the nearly complete 16,740-nucleotide genome of AngV, which encodes the six major henipavirus structural proteins (nucleocapsid, phosphoprotein, matrix, fusion, glycoprotein, and L polymerase). Within the phosphoprotein (P) gene, we identify an alternative start codon encoding the AngV C protein and a putative mRNA editing site where the insertion of one or two guanine residues encodes, respectively, additional V and W proteins. In other paramyxovirus systems, C, V, and W are accessory proteins involved in antagonism of host immune responses during infection. Phylogenetic analysis suggests that AngV is ancestral to all four previously described bat henipaviruses-HeV, NiV, Cedar virus (CedV), and Ghanaian bat virus (GhV)-but evolved more recently than rodent- and shrew-derived henipaviruses, Mojiang (MojV), Gamak (GAKV), and Daeryong (DARV) viruses. Predictive structure-based alignments suggest that AngV is unlikely to bind ephrin receptors, which mediate cell entry for all other known bat henipaviruses. Identification of the AngV receptor is needed to clarify the virus's potential host range. The presence of V and W proteins in the AngV genome suggest that the virus could be pathogenic following zoonotic spillover. IMPORTANCE Henipaviruses include highly pathogenic emerging zoonotic viruses, derived from bat, rodent, and shrew reservoirs. Bat-borne Hendra (HeV) and Nipah (NiV) are the most well-known henipaviruses, for which no effective antivirals or vaccines for humans have been described. Here, we report the discovery and characterization of a novel henipavirus, Angavokely virus (AngV), isolated from wild fruit bats in Madagascar. Genomic characterization of AngV reveals all major features associated with pathogenicity in other henipaviruses, suggesting that AngV could be pathogenic following spillover to human hosts. Our work suggests that AngV is an ancestral bat henipavirus that likely uses viral entry pathways distinct from those previously described for HeV and NiV. In Madagascar, bats are consumed as a source of human food, presenting opportunities for cross-species transmission. Characterization of novel henipaviruses and documentation of their pathogenic and zoonotic potential are essential to predicting and preventing the emergence of future zoonoses that cause pandemics.
Collapse
|
26
|
Sharp B, Rallabandi R, Devaux P. Advances in RNA Viral Vector Technology to Reprogram Somatic Cells: The Paramyxovirus Wave. Mol Diagn Ther 2022; 26:353-367. [PMID: 35763161 DOI: 10.1007/s40291-022-00599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
Ethical issues are a significant barrier to the use of embryonic stem cells in patients due to their origin: human embryos. To further the development of stem cells in a patient application, alternative sources of cells were sought. A process referred to as reprogramming was established to create induced pluripotent stem cells from somatic cells, resolving the ethical issues, and vectors were developed to deliver the reprogramming factors to generate induced pluripotent stem cells. Early viral vectors used integrating retroviruses and lentiviruses as delivery vehicles for the transcription factors required to initiate reprogramming. However, because of the inherent risk associated with vectors that integrate into the host genome, non-integrating approaches were explored. The development of non-integrating viral vectors offers a safer alternative, and these modern vectors are reliable, efficient, and easy to use to achieve induced pluripotent stem cells suitable for direct patient application in the growing field of individualized medicine. This review summarizes all the RNA viral vectors in the field of reprogramming with a special focus on the emerging delivery vectors based on non-integrating Paramyxoviruses, Sendai and measles viruses. We discuss their design and evolution towards being safe and efficient reprogramming vectors in generating induced pluripotent stem cells from somatic cells.
Collapse
Affiliation(s)
- Brenna Sharp
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ramya Rallabandi
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA.,Regenerative Sciences Program, Mayo Clinic, Rochester, MN, USA
| | - Patricia Devaux
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA. .,Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA. .,Regenerative Sciences Program, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
27
|
Li Y, Yuan F, Yan X, Matta T, Cino-Ozuna GA, Fang Y. Characterization of an emerging porcine respirovirus 1 isolate in the US: A novel viral vector for expression of foreign antigens. Virology 2022; 570:107-116. [DOI: 10.1016/j.virol.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
28
|
Oncolytic measles vaccines encoding PD-1 and PD-L1 checkpoint blocking antibodies to increase tumor-specific T cell memory. Mol Ther Oncolytics 2022; 24:43-58. [PMID: 34977341 PMCID: PMC8693420 DOI: 10.1016/j.omto.2021.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
PD-1/PD-L1 checkpoint blockade has achieved unprecedented success in cancer immunotherapy. Nevertheless, many immune-excluded tumors are resistant to therapy. Combination with oncolytic virotherapy may overcome resistance by inducing acute inflammation, immune cell recruitment, and remodeling of the tumor immune environment. Here, we assessed the combination of oncolytic measles vaccine (MV) vectors and PD-1/PD-L1 blockade. In the MC38cea model of measles virus oncolysis, MV combined with anti-PD-1 and MV vectors encoding anti-PD-1 or anti-PD-L1 antibodies achieved modest survival benefits compared with control MV or vectors encoding the antibody constant regions only. Analyses of tumor samples and tumor-draining lymph nodes revealed slight increases in intratumoral T cell effector cytokines as well as a shift toward an effector memory phenotype in the T cell compartment. Importantly, increased IFN-γ recall responses were observed in tumor rechallenge experiments with mice in complete tumor remission after treatment with MV encoding anti-PD-1 or anti-PD-L1 compared with control MV. These results prompted us to generate MV encoding the clinically approved agents pembrolizumab and nivolumab. Previously, we have generated MV encoding atezolizumab. We demonstrated the functionality of the novel vectors in vitro. We envision these vectors as therapeutics that induce and support durable anti-tumor immune memory.
Collapse
|
29
|
Slović A, Košutić-Gulija T, Forčić D, Šantak M, Jagušić M, Jurković M, Pali D, Ivančić-Jelečki J. Population Variability Generated during Rescue Process and Passaging of Recombinant Mumps Viruses. Viruses 2021; 13:2550. [PMID: 34960819 PMCID: PMC8707793 DOI: 10.3390/v13122550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Recombinant mumps viruses (MuVs) based on established vaccine strains represent attractive vector candidates as they have known track records for high efficacy and the viral genome does not integrate in the host cells. We developed a rescue system based on the consensus sequence of the L-Zagreb vaccine and generated seven different recombinant MuVs by (a) insertion of one or two additional transcription units (ATUs), (b) lengthening of a noncoding region to the extent that the longest noncoding region in MuV genome is created, or (c) replacement of original L-Zagreb sequences with sequences rich in CG and AT dinucleotides. All viruses were successfully rescued and faithfully matched sequences of input plasmids. In primary rescued stocks, low percentages of heterogeneous positions were found (maximum 0.12%) and substitutions were predominantly obtained in minor variants, with maximally four substitutions seen in consensus. ATUs did not accumulate more mutations than the natural MuV genes. Six substitutions characteristic for recombinant viruses generated in our system were defined, as they repetitively occurred during rescue processes. In subsequent passaging of primary rescue stocks in Vero cells, different inconsistencies within quasispecies structures were observed. In order to assure that unwanted mutations did not emerge and accumulate, sub-consensus variability should be closely monitored. As we show for Pro408Leu mutation in L gene and a stop codon in one of ATUs, positively selected variants can rise to frequencies over 85% in only few passages.
Collapse
Affiliation(s)
- Anamarija Slović
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| | - Tanja Košutić-Gulija
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| | - Dubravko Forčić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| | - Maja Šantak
- Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Maja Jagušić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| | - Mirna Jurković
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| | - Dorotea Pali
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| | - Jelena Ivančić-Jelečki
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| |
Collapse
|
30
|
Insights into Paramyxovirus Nucleocapsids from Diverse Assemblies. Viruses 2021; 13:v13122479. [PMID: 34960748 PMCID: PMC8705878 DOI: 10.3390/v13122479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
All paramyxoviruses, which include the mumps virus, measles virus, Nipah virus, Newcastle disease virus, and Sendai virus, have non-segmented single-stranded negative-sense RNA genomes. These RNA genomes are enwrapped throughout the viral life cycle by nucleoproteins, forming helical nucleocapsids. In addition to these helical structures, recombinant paramyxovirus nucleocapsids may occur in other assembly forms such as rings, clam-shaped structures, and double-headed nucleocapsids; the latter two are composed of two single-stranded helices packed in a back-to-back pattern. In all of these assemblies, the neighboring nucleoprotein protomers adopt the same domain-swapping mode via the N-terminal arm, C-terminal arm, and recently disclosed N-hole. An intrinsically disordered region in the C-terminal domain of the nucleoproteins, called the N-tail, plays an unexpected role in regulating the transition among the different assembly forms that occurs with other viral proteins, especially phosphoprotein. These structures, together with the helical nucleocapsids, significantly enrich the structural diversity of the paramyxovirus nucleocapsids and help explain the functions of these diverse assemblies, including RNA genome protection, transcription, and replication, as well as encapsulation.
Collapse
|
31
|
Kolakofsky D, Le Mercier P, Nishio M, Blackledge M, Crépin T, Ruigrok RWH. Sendai Virus and a Unified Model of Mononegavirus RNA Synthesis. Viruses 2021; 13:v13122466. [PMID: 34960735 PMCID: PMC8708023 DOI: 10.3390/v13122466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022] Open
Abstract
Vesicular stomatitis virus (VSV), the founding member of the mononegavirus order (Mononegavirales), was found to be a negative strand RNA virus in the 1960s, and since then the number of such viruses has continually increased with no end in sight. Sendai virus (SeV) was noted soon afterwards due to an outbreak of newborn pneumonitis in Japan whose putative agent was passed in mice, and nowadays this mouse virus is mainly the bane of animal houses and immunologists. However, SeV was important in the study of this class of viruses because, like flu, it grows to high titers in embryonated chicken eggs, facilitating the biochemical characterization of its infection and that of its nucleocapsid, which is very close to that of measles virus (MeV). This review and opinion piece follow SeV as more is known about how various mononegaviruses express their genetic information and carry out their RNA synthesis, and proposes a unified model based on what all MNV have in common.
Collapse
Affiliation(s)
- Daniel Kolakofsky
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Medical School, University of Geneva, 1211 Geneva, Switzerland
- Correspondence: (D.K.); (R.W.H.R.)
| | - Philippe Le Mercier
- Swiss-Prot Group, Swiss Institute of Bioinformatics, School of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan;
| | - Martin Blackledge
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 38058 Grenoble, France; (M.B.); (T.C.)
| | - Thibaut Crépin
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 38058 Grenoble, France; (M.B.); (T.C.)
| | - Rob W. H. Ruigrok
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 38058 Grenoble, France; (M.B.); (T.C.)
- Correspondence: (D.K.); (R.W.H.R.)
| |
Collapse
|
32
|
The Nucleocapsid of Paramyxoviruses: Structure and Function of an Encapsidated Template. Viruses 2021; 13:v13122465. [PMID: 34960734 PMCID: PMC8708338 DOI: 10.3390/v13122465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/28/2023] Open
Abstract
Viruses of the Paramyxoviridae family share a common and complex molecular machinery for transcribing and replicating their genomes. Their non-segmented, negative-strand RNA genome is encased in a tight homopolymer of viral nucleoproteins (N). This ribonucleoprotein complex, termed a nucleocapsid, is the template of the viral polymerase complex made of the large protein (L) and its co-factor, the phosphoprotein (P). This review summarizes the current knowledge on several aspects of paramyxovirus transcription and replication, including structural and functional data on (1) the architecture of the nucleocapsid (structure of the nucleoprotein, interprotomer contacts, interaction with RNA, and organization of the disordered C-terminal tail of N), (2) the encapsidation of the genomic RNAs (structure of the nucleoprotein in complex with its chaperon P and kinetics of RNA encapsidation in vitro), and (3) the use of the nucleocapsid as a template for the polymerase complex (release of the encased RNA and interaction network allowing the progress of the polymerase complex). Finally, this review presents models of paramyxovirus transcription and replication.
Collapse
|
33
|
Pyle JD, Whelan SPJ, Bloyet LM. Structure and function of negative-strand RNA virus polymerase complexes. Enzymes 2021; 50:21-78. [PMID: 34861938 DOI: 10.1016/bs.enz.2021.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Viruses with negative-strand RNA genomes (NSVs) include many highly pathogenic and economically devastating disease-causing agents of humans, livestock, and plants-highlighted by recent Ebola and measles virus epidemics, and continuously circulating influenza virus. Because of their protein-coding orientation, NSVs face unique challenges for efficient gene expression and genome replication. To overcome these barriers, NSVs deliver a large and multifunctional RNA-dependent RNA polymerase into infected host cells. NSV-encoded polymerases contain all the enzymatic activities required for transcription and replication of their genome-including RNA synthesis and mRNA capping. Here, we review the structures and functions of NSV polymerases with a focus on key domains responsible for viral replication and gene expression. We highlight shared and unique features among polymerases of NSVs from the Mononegavirales, Bunyavirales, and Articulavirales orders.
Collapse
Affiliation(s)
- Jesse D Pyle
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States; Ph.D. Program in Virology, Harvard Medical School, Boston, MA, United States
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
34
|
A live measles-vectored COVID-19 vaccine induces strong immunity and protection from SARS-CoV-2 challenge in mice and hamsters. Nat Commun 2021; 12:6277. [PMID: 34725327 PMCID: PMC8560864 DOI: 10.1038/s41467-021-26506-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 10/05/2021] [Indexed: 11/08/2022] Open
Abstract
Several COVID-19 vaccines have now been deployed to tackle the SARS-CoV-2 pandemic, most of them based on messenger RNA or adenovirus vectors.The duration of protection afforded by these vaccines is unknown, as well as their capacity to protect from emerging new variants. To provide sufficient coverage for the world population, additional strategies need to be tested. The live pediatric measles vaccine (MV) is an attractive approach, given its extensive safety and efficacy history, along with its established large-scale manufacturing capacity. We develop an MV-based SARS-CoV-2 vaccine expressing the prefusion-stabilized, membrane-anchored full-length S antigen, which proves to be efficient at eliciting strong Th1-dominant T-cell responses and high neutralizing antibody titers. In both mouse and golden Syrian hamster models, these responses protect the animals from intranasal infectious challenge. Additionally, the elicited antibodies efficiently neutralize in vitro the three currently circulating variants of SARS-CoV-2.
Collapse
|
35
|
Bach S, Demper JC, Klemm P, Schlereth J, Lechner M, Schoen A, Kämper L, Weber F, Becker S, Biedenkopf N, Hartmann RK. Identification and characterization of short leader and trailer RNAs synthesized by the Ebola virus RNA polymerase. PLoS Pathog 2021; 17:e1010002. [PMID: 34699554 PMCID: PMC8547711 DOI: 10.1371/journal.ppat.1010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
Transcription of non-segmented negative sense (NNS) RNA viruses follows a stop-start mechanism and is thought to be initiated at the genome’s very 3’-end. The synthesis of short abortive leader transcripts (leaderRNAs) has been linked to transcription initiation for some NNS viruses. Here, we identified the synthesis of abortive leaderRNAs (as well as trailer RNAs) that are specifically initiated opposite to (anti)genome nt 2; leaderRNAs are predominantly terminated in the region of nt ~ 60–80. LeaderRNA synthesis requires hexamer phasing in the 3’-leader promoter. We determined a steady-state NP mRNA:leaderRNA ratio of ~10 to 30-fold at 48 h after Ebola virus (EBOV) infection, and this ratio was higher (70 to 190-fold) for minigenome-transfected cells. LeaderRNA initiation at nt 2 and the range of termination sites were not affected by structure and length variation between promoter elements 1 and 2, nor the presence or absence of VP30. Synthesis of leaderRNA is suppressed in the presence of VP30 and termination of leaderRNA is not mediated by cryptic gene end (GE) signals in the 3’-leader promoter. We further found different genomic 3’-end nucleotide requirements for transcription versus replication, suggesting that promoter recognition is different in the replication and transcription mode of the EBOV polymerase. We further provide evidence arguing against a potential role of EBOV leaderRNAs as effector molecules in innate immunity. Taken together, our findings are consistent with a model according to which leaderRNAs are abortive replicative RNAs whose synthesis is not linked to transcription initiation. Rather, replication and transcription complexes are proposed to independently initiate RNA synthesis at separate sites in the 3’-leader promoter, i.e., at the second nucleotide of the genome 3’-end and at the more internally positioned transcription start site preceding the first gene, respectively, as reported for Vesicular stomatitis virus. The RNA polymerase (RdRp) of Ebola virus (EBOV) initiates RNA synthesis at the 3’-leader promoter of its encapsidated, non-segmented negative sense (NNS) RNA genome, either at the penultimate 3’-end position of the genome in the replicative mode or more internally (position 56) at the transcription start site (TSS) in its transcription mode. Here we identified the synthesis of abortive replicative RNAs that are specifically initiated opposite to genome nt 2 (termed leaderRNAs) and predominantly terminated in the region of nt ~ 60–80 near the TSS. The functional role of abortive leaderRNA synthesis is still enigmatic; a role in interferon induction could be excluded. Our findings indirectly link leaderRNA termination to nucleoprotein (NP) availability for encapsidation of nascent replicative RNA or to NP removal from the template RNA. Our findings further argue against the model that leaderRNA synthesis is a prerequisite for each transcription initiation event at the TSS. Rather, our findings are in line with the existence of distinct replicase and transcriptase complexes of RdRp that interact differently with the 3’-leader promoter and intiate RNA synthesis independently at different sites (position 2 or 56 of the genome), mechanistically similar to another NNS virus, Vesicular stomatitis virus.
Collapse
Affiliation(s)
- Simone Bach
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Jana-Christin Demper
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Paul Klemm
- Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Julia Schlereth
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Marcus Lechner
- Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Schoen
- Institut für Virologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Lennart Kämper
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
| | - Friedemann Weber
- Institut für Virologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Stephan Becker
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
| | - Nadine Biedenkopf
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
- * E-mail: (NB); (RKH)
| | - Roland K. Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
- * E-mail: (NB); (RKH)
| |
Collapse
|
36
|
Dual Promoters Improve the Rescue of Recombinant Measles Virus in Human Cells. Viruses 2021; 13:v13091723. [PMID: 34578303 PMCID: PMC8471996 DOI: 10.3390/v13091723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Reverse genetics is a technology that allows the production of a virus from its complementary DNA (cDNA). It is a powerful tool for analyzing viral genes, the development of novel vaccines, and gene delivery vectors. The standard reverse genetics protocols are laborious, time-consuming, and inefficient for negative-strand RNA viruses. A new reverse genetics platform was established, which increases the recovery efficiency of the measles virus (MV) in human 293-3-46 cells. The novel features compared with the standard system involving 293-3-46 cells comprise (a) dual promoters containing the RNA polymerase II promoter (CMV) and the bacteriophage T7 promoter placed in uni-direction on the same plasmid to enhance RNA transcription; (b) three G nucleotides added just after the T7 promoter to increase the T7 RNA polymerase activity; and (c) two ribozymes, the hairpin hammerhead ribozyme (HHRz), and the hepatitis delta virus ribozyme (HDVrz), were used to cleavage the exact termini of the antigenome RNA. Full-length antigenome cDNA of MV of the wild type IC323 strain or the vaccine AIK-C strain was inserted into the plasmid backbone. Both virus strains were easily rescued from their respective cloned cDNA. The rescue efficiency increased up to 80% compared with the use of the standard T7 rescue system. We assume that this system might be helpful in the rescue of other human mononegavirales.
Collapse
|
37
|
Generation and Evaluation of Recombinant Thermostable Newcastle Disease Virus Expressing the HA of H9N2 Avian Influenza Virus. Viruses 2021; 13:v13081606. [PMID: 34452473 PMCID: PMC8402907 DOI: 10.3390/v13081606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
H9N2 avian influenza virus (AIV) has become endemic in many countries, causing great economic losses when co-infected with other pathogens. So far, several live vaccines based on Newcastle disease virus (NDV) vectors expressing influenza hemagglutinin (HA) have been developed. However, the thermostable recombinant NDV is rarely reported. In this study, using a thermostable NDV rAHR09 strain as the vector, three recombinant NDVs expressing native HA, chimeric HA ectodomain with transmembrane domain/C-terminal cytoplasmic tail domain from fusion protein of NDV, and HA ectodomain were generated, designated rAHR09-HA, rAHR09-HAF, and rAHR09-HAE. The MDT value of three recombinant NDVs was above 120 h, their ICPI value was about 0.03, and the recombinant NDVs were still infectious when treated for 100 min under 56 °C, which demonstrated that the recombinant NDVs kept the lentogenic and thermostable nature of rAHR09. The immunization data showed that rAHR09-HA and rAHR09-HAF induced a higher HI antibody titer against H9N2 AIV and NDV. After being challenged with H9N2 AIV, the rAHR09-HA and rAHR09-HAF could significantly reduce the virus shedding in cloacal and tracheal swab samples. Our results suggest that rAHR09-HA and rAHR09-HAF might be vaccine candidates against H9N2 AIV.
Collapse
|
38
|
Benfield CTO, Hill S, Shatar M, Shiilegdamba E, Damdinjav B, Fine A, Willett B, Kock R, Bataille A. Molecular epidemiology of peste des petits ruminants virus emergence in critically endangered Mongolian saiga antelope and other wild ungulates. Virus Evol 2021; 7:veab062. [PMID: 34754511 PMCID: PMC8570150 DOI: 10.1093/ve/veab062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 01/06/2023] Open
Abstract
Peste des petits ruminants virus (PPRV) causes disease in domestic and wild ungulates, is the target of a Global Eradication Programme, and threatens biodiversity. Understanding the epidemiology and evolution of PPRV in wildlife is important but hampered by the paucity of wildlife-origin PPRV genomes. In this study, full PPRV genomes were generated from three Mongolian saiga antelope, one Siberian ibex, and one goitered gazelle from the 2016-2017 PPRV outbreak. Phylogenetic analysis showed that for Mongolian and Chinese PPRV since 2013, the wildlife and livestock-origin genomes were closely related and interspersed. There was strong phylogenetic support for a monophyletic group of PPRV from Mongolian wildlife and livestock, belonging to a clade of lineage IV PPRV from livestock and wildlife from China since 2013. Discrete diffusion analysis found strong support for PPRV spread into Mongolia from China, and phylogeographic analysis indicated Xinjiang Province as the most likely origin, although genomic surveillance for PPRV is poor and lack of sampling from other regions could bias this result. Times of most recent common ancestor (TMRCA) were June 2015 (95 per cent highest posterior density (HPD): August 2014 to March 2016) for all Mongolian PPRV genomes and May 2016 (95 per cent HPD: October 2015 to October 2016) for Mongolian wildlife-origin PPRV. This suggests that PPRV was circulating undetected in Mongolia for at least 6 months before the first reported outbreak in August 2016 and that wildlife were likely infected before livestock vaccination began in October 2016. Finally, genetic variation and positively selected sites were identified that might be related to PPRV emergence in Mongolian wildlife. This study is the first to sequence multiple PPRV genomes from a wildlife outbreak, across several host species. Additional full PPRV genomes and associated metadata from the livestock-wildlife interface are needed to enhance the power of molecular epidemiology, support PPRV eradication, and safeguard the health of the whole ungulate community.
Collapse
Affiliation(s)
- Camilla T O Benfield
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, AL9 7TA UK
| | - Sarah Hill
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, AL9 7TA UK
| | - Munkduuren Shatar
- Department of Veterinary Services of Dundgobi province, General Authority for Veterinary Services of Mongolia (GAVS), Mandalgobi, Dundgobi Province 4800 Mongolia
| | - Enkhtuvshin Shiilegdamba
- Wildlife Conservation Society, Mongolia Program, Post Office 20A, PO Box 21 Ulaanbaatar 14200, Mongolia
| | | | - Amanda Fine
- Health Program, Wildlife Conservation Society, Bronx, New York 10460, USA
| | - Brian Willett
- MRC-University of Glasgow Centre for Virus Research, Henry Wellcome Building, Garscube Glasgow, G61 1QH UK
| | - Richard Kock
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, AL9 7TA UK
| | - Arnaud Bataille
- CIRAD, UMR ASTRE, F-34398 Montpellier, France
- ASTRE, University of Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| |
Collapse
|
39
|
Genome Sequence of Ruloma Virus, a Novel Paramyxovirus Clustering Basally to Members of the Genus Jeilongvirus. Microbiol Resour Announc 2021; 10:10/18/e00325-21. [PMID: 33958404 PMCID: PMC8103874 DOI: 10.1128/mra.00325-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We report here the complete genome sequence of ruloma virus, a novel paramyxovirus detected in a Machangu’s brush-furred rat from Tanzania. Ruloma virus has the longest orthoparamyxovirus genome reported to date and forms a sister clade to all currently known members of the genus Jeilongvirus. We report here the complete genome sequence of ruloma virus, a novel paramyxovirus detected in a Machangu’s brush-furred rat from Tanzania. Ruloma virus has the longest orthoparamyxovirus genome reported to date and forms a sister clade to all currently known members of the genus Jeilongvirus.
Collapse
|
40
|
Elbehairy MA, Khattar SK, Samal SK. Recovery of Recombinant Avian Paramyxovirus Type-3 Strain Wisconsin by Reverse Genetics and Its Evaluation as a Vaccine Vector for Chickens. Viruses 2021; 13:v13020316. [PMID: 33669530 PMCID: PMC7922763 DOI: 10.3390/v13020316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 01/22/2023] Open
Abstract
A reverse genetic system for avian paramyxovirus type-3 (APMV-3) strain Wisconsin was created and the infectious virus was recovered from a plasmid-based viral antigenomic cDNA. Green fluorescent protein (GFP) gene was cloned into the recombinant APMV-3 genome as a foreign gene. Stable expression of GFP by the recovered virus was confirmed for at least 10 consecutive passages. APMV-3 strain Wisconsin was evaluated against APMV-3 strain Netherlands and APMV-1 strain LaSota as a vaccine vector. The three viral vectors expressing GFP as a foreign protein were compared for level of GFP expression level, growth rate in chicken embryo fibroblast (DF-1) cells, and tissue distribution and immunogenicity in specific pathogen-free (SPF) day-old chickens. APMV-3 strain Netherlands showed highest growth rate and GFP expression level among the three APMV vectors in vitro. APMV-3 strain Wisconsin and APMV-1 strain LaSota vectors were mainly confined to the trachea after vaccination of day-old SPF chickens without any observable pathogenicity, whereas APMV-3 strain Netherlands showed wide tissue distribution in different body organs (brain, lungs, trachea, and spleen) with mild observable pathogenicity. In terms of immunogenicity, both APMV-3 strain-vaccinated groups showed HI titers two to three fold higher than that induced by APMV-1 strain LaSota vaccinated group. This study offers a novel paramyxovirus vector (APMV-3 strain Wisconsin) which can be used safely for vaccination of young chickens as an alternative for APMV-1 strain LaSota vector.
Collapse
Affiliation(s)
- Mohamed A. Elbehairy
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA; (M.A.E.); (S.K.K.)
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Sunil K. Khattar
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA; (M.A.E.); (S.K.K.)
| | - Siba K. Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA; (M.A.E.); (S.K.K.)
- Correspondence: ; Tel.: +1-(301)314-6813
| |
Collapse
|
41
|
Meignié A, Combredet C, Santolini M, Kovács IA, Douché T, Gianetto QG, Eun H, Matondo M, Jacob Y, Grailhe R, Tangy F, Komarova AV. Proteomic Analysis Uncovers Measles Virus Protein C Interaction With p65-iASPP Protein Complex. Mol Cell Proteomics 2021; 20:100049. [PMID: 33515806 PMCID: PMC7950213 DOI: 10.1016/j.mcpro.2021.100049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/30/2022] Open
Abstract
Viruses manipulate the central machineries of host cells to their advantage. They prevent host cell antiviral responses to create a favorable environment for their survival and propagation. Measles virus (MV) encodes two nonstructural proteins MV-V and MV-C known to counteract the host interferon response and to regulate cell death pathways. Several molecular mechanisms underlining MV-V regulation of innate immunity and cell death pathways have been proposed, whereas MV-C host-interacting proteins are less studied. We suggest that some cellular factors that are controlled by MV-C protein during viral replication could be components of innate immunity and the cell death pathways. To determine which host factors are targeted by MV-C, we captured both direct and indirect host-interacting proteins of MV-C protein. For this, we used a strategy based on recombinant viruses expressing tagged viral proteins followed by affinity purification and a bottom-up mass spectrometry analysis. From the list of host proteins specifically interacting with MV-C protein in different cell lines, we selected the host targets that belong to immunity and cell death pathways for further validation. Direct protein interaction partners of MV-C were determined by applying protein complementation assay and the bioluminescence resonance energy transfer approach. As a result, we found that MV-C protein specifically interacts with p65–iASPP protein complex that controls both cell death and innate immunity pathways and evaluated the significance of these host factors on virus replication. Measles virus controls immune response and cell death pathways to achieve replication. Host proteins interaction network with measles virulence factor C protein. Cellular p65–iASPP complex is targeted by measles virus C protein.
Collapse
Affiliation(s)
- Alice Meignié
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Chantal Combredet
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Marc Santolini
- Center for Research and Interdisciplinarity (CRI), Université de Paris, INSERM U1284, Paris, France; Network Science Institute and Department of Physics, Northeastern University, Boston, Massachusetts, USA
| | - István A Kovács
- Network Science Institute and Department of Physics, Northeastern University, Boston, Massachusetts, USA; Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, USA; Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Thibaut Douché
- Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France
| | - Quentin Giai Gianetto
- Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France; Bioinformatics and Biostatistics Hub, Computational Biology Department, Institut Pasteur, CNRS USR 3756, Paris, France
| | - Hyeju Eun
- Technology Development Platform, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Mariette Matondo
- Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France
| | - Yves Jacob
- Laboratory of Molecular Genetics of RNA Viruses, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Regis Grailhe
- Technology Development Platform, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Frédéric Tangy
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France.
| | - Anastassia V Komarova
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France; Laboratory of Molecular Genetics of RNA Viruses, Institut Pasteur, CNRS UMR-3569, Paris, France.
| |
Collapse
|
42
|
Douglas J, Drummond AJ, Kingston RL. Evolutionary history of cotranscriptional editing in the paramyxoviral phosphoprotein gene. Virus Evol 2021; 7:veab028. [PMID: 34141448 PMCID: PMC8204654 DOI: 10.1093/ve/veab028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The phosphoprotein gene of the paramyxoviruses encodes multiple protein products. The P, V, and W proteins are generated by transcriptional slippage. This process results in the insertion of non-templated guanosine nucleosides into the mRNA at a conserved edit site. The P protein is an essential component of the viral RNA polymerase and is encoded by a faithful copy of the gene in the majority of paramyxoviruses. However, in some cases, the non-essential V protein is encoded by default and guanosines must be inserted into the mRNA in order to encode P. The number of guanosines inserted into the P gene can be described by a probability distribution, which varies between viruses. In this article, we review the nature of these distributions, which can be inferred from mRNA sequencing data, and reconstruct the evolutionary history of cotranscriptional editing in the paramyxovirus family. Our model suggests that, throughout known history of the family, the system has switched from a P default to a V default mode four times; complete loss of the editing system has occurred twice, the canonical zinc finger domain of the V protein has been deleted or heavily mutated a further two times, and the W protein has independently evolved a novel function three times. Finally, we review the physical mechanisms of cotranscriptional editing via slippage of the viral RNA polymerase.
Collapse
Affiliation(s)
- Jordan Douglas
- Centre for Computational Evolution, University of Auckland, Auckland 1010, New Zealand
- School of Computer Science, University of Auckland, Auckland 1010, New Zealand
| | - Alexei J Drummond
- Centre for Computational Evolution, University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Richard L Kingston
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
43
|
Common occurrence of Belerina virus, a novel paramyxovirus found in Belgian hedgehogs. Sci Rep 2020; 10:19341. [PMID: 33168902 PMCID: PMC7653956 DOI: 10.1038/s41598-020-76419-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/14/2020] [Indexed: 11/19/2022] Open
Abstract
Common or European hedgehogs can be found throughout Western Europe. They are known carriers of a variety of parasitic and bacterial pathogens, and have also been shown to carry several viruses, including morbilli-like paramyxoviruses, although the pathogenic and zoonotic potential of some of these viruses has yet to be determined. We report here the discovery of a novel paramyxovirus in Belgian hedgehogs, named Belerina virus. The virus was detected by nanopore sequencing of RNA isolated from hedgehog tissue. Out of 147 animals screened in this study, 57 tested positive for Belerina virus (39%), indicating a high prevalence of this virus in the Belgian hedgehog population. Based on its divergence from other known paramyxovirus species, Belerina virus is thought to represent a new species in the family Paramyxoviridae. Phylogenetic analysis groups Belerina virus together with the bat-borne Shaan virus within the genus Jeilongvirus, although expanding the tree with partial genomes shows Belerina virus forming a separate subclade within this genus, alongside a yet-unnamed paramyxovirus isolated from a greater tube-nosed bat. In summary, we discuss the complete genome sequence of Belerina virus, a putative new paramyxovirus species commonly found in Belgian hedgehogs.
Collapse
|
44
|
Gutsche I, le Mercier P, Kolakofsky D. A paramyxovirus-like model for Ebola virus bipartite promoters. PLoS Pathog 2020; 16:e1008972. [PMID: 33152032 PMCID: PMC7643936 DOI: 10.1371/journal.ppat.1008972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Paramyxo- and filovirus nucleocapsids (NCs) have bipartite promoters at their 3′ ends to initiate RNA synthesis. The 2 elements, promoter element 1 (PE1) and promoter element 2 (PE2), are separated by a spacer region that must be exactly a multiple of 6 nucleotides (nt) long. Paramyxovirus NCs have 13 nucleoprotein (NP) subunits/turn, such that PE1 and PE2 are juxtaposed on the same face of the NC helix, for concerted recognition by the viral polymerase. Ebola virus (EBOV) NCs, in contrast, have 25 to 28 subunits/turn, meaning that PE1 and PE2 cannot be juxtaposed. However, there is evidence that the number of subunits/turn at the 3′ end of the EBOV NC is variable. We propose a paramyxovirus-like model for EBOV explaining why there are 8 contiguous copies of the PE2 repeat when 3 are sufficient, why expanding this run to 13 further improves minigenome performance, and why there is a limit to the number of hexa-nt that can be inserted in the spacer region.
Collapse
Affiliation(s)
- Irina Gutsche
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- * E-mail: (IG); (DK)
| | - Philippe le Mercier
- Swiss-Prot Group, Swiss Institute of Bioinformatics, Centre Médicale Universitaire, Geneva, Switzerland
| | - Daniel Kolakofsky
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
- * E-mail: (IG); (DK)
| |
Collapse
|
45
|
Patterns of RNA Editing in Newcastle Disease Virus Infections. Viruses 2020; 12:v12111249. [PMID: 33147786 PMCID: PMC7693698 DOI: 10.3390/v12111249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
The expression of accessory non-structural proteins V and W in Newcastle disease virus (NDV) infections depends on RNA editing. These proteins are derived from frameshifts of the sequence coding for the P protein via co-transcriptional insertion of one or two guanines in the mRNA. However, a larger number of guanines can be inserted with lower frequencies. We analysed data from deep RNA sequencing of samples from in vitro and in vivo NDV infections to uncover the patterns of mRNA editing in NDV. The distribution of insertions is well described by a simple Markov model of polymerase stuttering, providing strong quantitative confirmation of the molecular process hypothesised by Kolakofsky and collaborators three decades ago. Our results suggest that the probability that the NDV polymerase would stutter is about 0.45 initially, and 0.3 for further subsequent insertions. The latter probability is approximately independent of the number of previous insertions, the host cell, and viral strain. However, in LaSota infections, we also observe deviations from the predicted V/W ratio of about 3:1 according to this model, which could be attributed to deviations from this stuttering model or to further mechanisms downregulating the abundance of W protein.
Collapse
|
46
|
Ikegame S, Beaty SM, Stevens C, Won T, Park A, Sachs D, Hong P, Lee B, Thibault PA. Genome-wide transposon mutagenesis of paramyxoviruses reveals constraints on genomic plasticity. PLoS Pathog 2020; 16:e1008877. [PMID: 33035269 PMCID: PMC7577504 DOI: 10.1371/journal.ppat.1008877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/21/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
The antigenic and genomic stability of paramyxoviruses remains a mystery. Here, we evaluate the genetic plasticity of Sendai virus (SeV) and mumps virus (MuV), sialic acid-using paramyxoviruses that infect mammals from two Paramyxoviridae subfamilies (Orthoparamyxovirinae and Rubulavirinae). We performed saturating whole-genome transposon insertional mutagenesis, and identified important commonalities: disordered regions in the N and P genes near the 3' genomic end were more tolerant to insertional disruptions; but the envelope glycoproteins were not, highlighting structural constraints that contribute to the restricted antigenic drift in paramyxoviruses. Nonetheless, when we applied our strategy to a fusion-defective Newcastle disease virus (Avulavirinae subfamily), we could select for F-revertants and other insertants in the 5' end of the genome. Our genome-wide interrogation of representative paramyxovirus genomes from all three Paramyxoviridae subfamilies provides a family-wide context in which to explore specific variations within and among paramyxovirus genera and species. RNA viruses are known for their genetic variability. They often exhibit significant genetic diversity even within members of a given viral species. Paramyxoviruses are notable exceptions. They show relatively little genomic or antigenic change over time. This is exemplified by mumps and measles viruses, where vaccine strains have not been changed in 40 years and still remain effective. Here, we sought to understand the determinants of this relative stability by probing three different paramyxoviruses: Sendai, mumps, and Newcastle disease viruses. We used a mutagenesis strategy to create 15-nucleotide insertions that were randomly distributed across the entire genome. The insertions were designed to identify regions of the viral genome that can or cannot tolerate. After rescuing each of these libraries, we passaged each virus in cell culture twice, and deep sequenced viral RNA from each step to monitor the enrichment or depletion of insertions throughout the genome. In this way, we found that paramyxoviruses displayed an increased tolerance for insertions in proteins with disordered regions, and in the un-translated regions of highly expressed genes. Importantly, we also determined that paramyxoviral structural proteins, which are the most antigenic proteins, do not tolerate insertions, which provides an explanation for why paramyxoviruses are antigenically stable in the face of adaptive immune pressure. Thus, we here provide evidence that constraints on paramyxoviral protein functions contribute to the viruses’ genetic stability.
Collapse
Affiliation(s)
- Satoshi Ikegame
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Shannon M. Beaty
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Christian Stevens
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Taylor Won
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Arnold Park
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - David Sachs
- Department of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Patrick Hong
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Benhur Lee
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- * E-mail: (BL); (PAT)
| | - Patricia A. Thibault
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- * E-mail: (BL); (PAT)
| |
Collapse
|
47
|
Genoyer E, Kulej K, Hung CT, Thibault PA, Azarm K, Takimoto T, Garcia BA, Lee B, Lakdawala S, Weitzman MD, López CB. The Viral Polymerase Complex Mediates the Interaction of Viral Ribonucleoprotein Complexes with Recycling Endosomes during Sendai Virus Assembly. mBio 2020; 11:e02028-20. [PMID: 32843550 PMCID: PMC7448285 DOI: 10.1128/mbio.02028-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/20/2022] Open
Abstract
Paramyxoviruses are negative-sense single-stranded RNA viruses that comprise many important human and animal pathogens, including human parainfluenza viruses. These viruses bud from the plasma membrane of infected cells after the viral ribonucleoprotein complex (vRNP) is transported from the cytoplasm to the cell membrane via Rab11a-marked recycling endosomes. The viral proteins that are critical for mediating this important initial step in viral assembly are unknown. Here, we used the model paramyxovirus, murine parainfluenza virus 1, or Sendai virus (SeV), to investigate the roles of viral proteins in Rab11a-driven virion assembly. We previously reported that infection with SeV containing high levels of copy-back defective viral genomes (DVGs) (DVG-high SeV) generates heterogenous populations of cells. Cells enriched in full-length (FL) virus produce viral particles containing standard or defective viral genomes, while cells enriched in DVGs do not, despite high levels of defective viral genome replication. Here, we took advantage of this heterogenous cell phenotype to identify proteins that mediate interaction of vRNPs with Rab11a. We examined the roles of matrix protein and nucleoprotein and determined that their presence is not sufficient to drive interaction of vRNPs with recycling endosomes. Using a combination of mass spectrometry and comparative analyses of protein abundance and localization in DVG-high and FL-virus-high (FL-high) cells, we identified viral polymerase complex component protein L and, specifically, its cofactor C as interactors with Rab11a. We found that accumulation of L and C proteins within the cell is the defining feature that differentiates cells that proceed to viral egress from cells containing viruses that remain in replication phases.IMPORTANCE Paramyxoviruses are members of a family of viruses that include a number of pathogens imposing significant burdens on human health. In particular, human parainfluenza viruses are an important cause of pneumonia and bronchiolitis in children for which there are no vaccines or directly acting antivirals. These cytoplasmic replicating viruses bud from the plasma membrane and co-opt cellular endosomal recycling pathways to traffic viral ribonucleoprotein complexes from the cytoplasm to the membrane of infected cells. The viral proteins required for viral engagement with the recycling endosome pathway are still not known. Here, we used the model paramyxovirus Sendai virus, or murine parainfluenza virus 1, to investigate the role of viral proteins in this initial step of viral assembly. We found that the viral polymerase components large protein L and accessory protein C are necessary for engagement with recycling endosomes. These findings are important in identifying viral proteins as potential targets for development of antivirals.
Collapse
Affiliation(s)
- Emmanuelle Genoyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katarzyna Kulej
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chuan Tien Hung
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patricia A Thibault
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristopher Azarm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Seema Lakdawala
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Matthew D Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Pong LY, Rabu A, Ibrahim N. The critical region for viral RNA encapsidation in leader promoter of Nipah virus. Mol Genet Genomics 2020; 295:1501-1516. [PMID: 32767127 DOI: 10.1007/s00438-020-01716-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/25/2020] [Indexed: 01/19/2023]
Abstract
Encapsidation by nucleocapsid (N) protein is crucial for viral RNA to serve as a functional template for virus replication. However, the potential region that is vital for RNA encapsidation of Nipah virus (NiV) is still unknown. Thus, this study was aimed to identify these regions using a NiV minireplicon system. A series of broad range internal deletion mutations was generated in the 5' non-translated region (NTR) of the N gene mRNA region of NiV leader promoter via site-directed overlapping PCR-mediated mutagenesis. The mutation effects on synthesis and encapsidation of antigenome RNA, transcription, and RNA binding affinity of N protein were evaluated. The deletions of nucleotides 73-108, 79-108, and 85-108 from NiV leader promoter inhibited the encapsidation of antigenome RNA, while the deletion of nucleotides 103-108 suppressed the synthesis and encapsidation of antigenome RNA, implying that these regions are required for genome replication. Surprisingly, none of the mutations had detrimental effect on viral transcription. Using isothermal titration calorimetry, the binding of NiV N protein to genome or antigenome RNA transcript lacking of nucleotides 73-108 was found to be suppressed. Additionally, in silico analysis on secondary structure of genome RNA further supported the plausible cause of inefficient encapsidation of antigenome RNA by the loss of encapsidation signal in genome template. In conclusion, this study suggests that the nucleotides 73-90 within 5' NTR of the N gene mRNA region in NiV leader promoter contain cis-acting RNA element that is important for efficient encapsidation of antigenome RNA.
Collapse
Affiliation(s)
- Lian Yih Pong
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia.,Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Amir Rabu
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Nazlina Ibrahim
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
49
|
Wignall-Fleming EB, Vasou A, Young D, Short JAL, Hughes DJ, Goodbourn S, Randall RE. Innate Intracellular Antiviral Responses Restrict the Amplification of Defective Virus Genomes of Parainfluenza Virus 5. J Virol 2020; 94:e00246-20. [PMID: 32295916 PMCID: PMC7307174 DOI: 10.1128/jvi.00246-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
During the replication of parainfluenza virus 5 (PIV5), copyback defective virus genomes (DVGs) are erroneously produced and are packaged into "infectious" virus particles. Copyback DVGs are the primary inducers of innate intracellular responses, including the interferon (IFN) response. While DVGs can interfere with the replication of nondefective (ND) virus genomes and activate the IFN-induction cascade before ND PIV5 can block the production of IFN, we demonstrate that the converse is also true, i.e., high levels of ND virus can block the ability of DVGs to activate the IFN-induction cascade. By following the replication and amplification of DVGs in A549 cells that are deficient in a variety of innate intracellular antiviral responses, we show that DVGs induce an uncharacterized IFN-independent innate response(s) that limits their replication. High-throughput sequencing was used to characterize the molecular structure of copyback DVGs. While there appears to be no sequence-specific break or rejoining points for the generation of copyback DVGs, our findings suggest there are region, size, and/or structural preferences selected for during for their amplification.IMPORTANCE Copyback defective virus genomes (DVGs) are powerful inducers of innate immune responses both in vitro and in vivo They impact the outcome of natural infections, may help drive virus-host coevolution, and promote virus persistence. Due to their potent interfering and immunostimulatory properties, DVGs may also be used therapeutically as antivirals and vaccine adjuvants. However, little is known of the host cell restrictions which limit their amplification. We show here that the generation of copyback DVGs readily occurs during parainfluenza virus 5 (PIV5) replication, but that their subsequent amplification is restricted by the induction of innate intracellular responses. Molecular characterization of PIV5 copyback DVGs suggests that while there are no genome sequence-specific breaks or rejoin points for the generation of copyback DVGs, genome region, size, and structural preferences are selected for during their evolution and amplification.
Collapse
Affiliation(s)
| | - Andri Vasou
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - Dan Young
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - John A L Short
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - David J Hughes
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - Steve Goodbourn
- Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Richard E Randall
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, United Kingdom
| |
Collapse
|
50
|
Rao PL, Gandham RK, Subbiah M. Molecular evolution and genetic variations of V and W proteins derived by RNA editing in Avian Paramyxoviruses. Sci Rep 2020; 10:9532. [PMID: 32533018 PMCID: PMC7293227 DOI: 10.1038/s41598-020-66252-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/06/2020] [Indexed: 11/12/2022] Open
Abstract
The newly assigned subfamily Avulavirinae in the family Paramyxoviridae includes avian paramyxoviruses (APMVs) isolated from a wide variety of avian species across the globe. Till date, 21 species of APMVs are reported and their complete genome sequences are available in GenBank. The APMV genome comprises of a single stranded, negative sense, non-segmented RNA comprising six transcriptional units (except APMV-6 with seven units) each coding for a structural protein. Additionally, by co-transcriptional RNA editing of phosphoprotein (P) gene, two mRNAs coding for accessory viral proteins, V and W, are generated along with unedited P mRNA. However, in APMV-11, the unedited mRNA codes for V protein while +2 edited mRNA translates to P protein, similar to members of subfamily Rubulavirinae in the same family. Such RNA editing in paramyxoviruses enables maximizing the coding capacity of their smaller genome. The three proteins of P gene: P, V and W, share identical N terminal but varied C terminal sequences that contribute to their unique functions. Here, we analyzed the P gene editing site, V and W sequences of all 21 APMV species known so far (55 viruses) by using bioinformatics and report their genetic variations and molecular evolution. The variations observed in the sequence and hexamer phase positions of the P gene editing sites is likely to influence the levels and relative proportions of P, V and W proteins' expressions which could explain the differences in the pathogenicity of APMVs. The V protein sequences of APMVs had conserved motifs similar to V proteins of other paramyxoviruses including the seven cysteine residues involved in MDA5 interference, STAT1 degradation and interferon antagonism. Conversely, W protein sequences of APMVs were distinct. High sequence homology was observed in both V and W proteins between strains of the same species than between species except in APMV-3 which was the most divergent APMV species. The estimates of synonymous and non-synonymous substitution rates suggested negative selection pressure on the V and W proteins within species indicating their low evolution rate. The molecular clock analysis revealed higher conservation of V protein sequence compared to W protein indicating the important role played by V protein in viral replication, pathogenesis and immune evasion. However, we speculate the genetic diversity of W proteins could impact the degree of pathogenesis, variable interferon antagonistic activity and the wide host range exhibited by APMV species. Phylogenetically, V proteins of APMVs clustered into three groups similar to the recent classification of APMVs into three new genera while no such pattern could be deciphered in the analysis of W proteins except that strains of same species grouped together. This is the first comprehensive study describing in detail the genetic variations and the molecular evolution of P gene edited, accessory viral proteins of Avian paramyxoviruses.
Collapse
Affiliation(s)
| | - Ravi Kumar Gandham
- National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India
| | - Madhuri Subbiah
- National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India.
| |
Collapse
|