1
|
Lin CH, Tam HMH, Yang CY, Hsieh FC, Wang JL, Yang CC, Hsu HW, Liu HP, Wu HY. Evolution of the coronavirus spike protein in the full-length genome and defective viral genome under diverse selection pressures. J Gen Virol 2023; 104:001920. [PMID: 37997889 PMCID: PMC10768696 DOI: 10.1099/jgv.0.001920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023] Open
Abstract
How coronaviruses evolve by altering the structures of their full-length genome and defective viral genome (DVG) under dynamic selection pressures has not been studied. In this study, we aimed to experimentally identify the dynamic evolutionary patterns of the S protein sequence in the full-length genome and DVG under diverse selection pressures, including persistence, innate immunity and antiviral drugs. The evolutionary features of the S protein sequence in the full-length genome and in the DVG under diverse selection pressures are as follows: (i) the number of nucleotide (nt) mutations does not necessarily increase with the number of selection pressures; (ii) certain types of selection pressure(s) can lead to specific nt mutations; (iii) the mutated nt sequence can be reverted to the wild-type nt sequence under the certain type of selection pressure(s); (iv) the DVG can also undergo mutations and evolve independently of the full-length genome; and (v) DVG species are regulated during evolution under diverse selection pressures. The various evolutionary patterns of the S protein sequence in the full-length genome and DVG identified in this study may contribute to coronaviral fitness under diverse selection pressures.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Hon-Man-Herman Tam
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Feng-Cheng Hsieh
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Jiun-Long Wang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan, ROC
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Chun-Chun Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Hsuan-Wei Hsu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Hao-Ping Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| |
Collapse
|
2
|
Lin CH, Chen B, Chao DY, Hsieh FC, Lai CC, Wang WC, Kuo CY, Yang CC, Hsu HW, Tam HMH, Wu HY. Biological characterization of coronavirus noncanonical transcripts in vitro and in vivo. Virol J 2023; 20:232. [PMID: 37828527 PMCID: PMC10571414 DOI: 10.1186/s12985-023-02201-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND In addition to the well-known coronavirus genomes and subgenomic mRNAs, the existence of other coronavirus RNA species, which are collectively referred to as noncanonical transcripts, has been suggested; however, their biological characteristics have not yet been experimentally validated in vitro and in vivo. METHODS To comprehensively determine the amounts, species and structures of noncanonical transcripts for bovine coronavirus in HRT-18 cells and mouse hepatitis virus A59, a mouse coronavirus, in mouse L cells and mice, nanopore direct RNA sequencing was employed. To experimentally validate the synthesis of noncanonical transcripts under regular infection, Northern blotting was performed. Both Northern blotting and nanopore direct RNA sequencing were also applied to examine the reproducibility of noncanonical transcripts. In addition, Northern blotting was also employed to determine the regulatory features of noncanonical transcripts under different infection conditions, including different cells, multiplicities of infection (MOIs) and coronavirus strains. RESULTS In the current study, we (i) experimentally determined that coronavirus noncanonical transcripts were abundantly synthesized, (ii) classified the noncanonical transcripts into seven populations based on their structures and potential synthesis mechanisms, (iii) showed that the species and amounts of the noncanonical transcripts were reproducible during regular infection but regulated in altered infection environments, (iv) revealed that coronaviruses may employ various mechanisms to synthesize noncanonical transcripts, and (v) found that the biological characteristics of coronavirus noncanonical transcripts were similar between in vitro and in vivo conditions. CONCLUSIONS The biological characteristics of noncanonical coronavirus transcripts were experimentally validated for the first time. The identified features of noncanonical transcripts in terms of abundance, reproducibility and variety extend the current model for coronavirus gene expression. The capability of coronaviruses to regulate the species and amounts of noncanonical transcripts may contribute to the pathogenesis of coronaviruses during infection, posing potential challenges in disease control. Thus, the biology of noncanonical transcripts both in vitro and in vivo revealed here can provide a database for biological research, contributing to the development of antiviral strategies.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - BoJia Chen
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, 40227, Taiwan
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, 40227, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Feng-Cheng Hsieh
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, College of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, College of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, College of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chun-Chun Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsuan-Wei Hsu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hon-Man-Herman Tam
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
3
|
Wells HL, Bonavita CM, Navarrete-Macias I, Vilchez B, Rasmussen AL, Anthony SJ. The coronavirus recombination pathway. Cell Host Microbe 2023; 31:874-889. [PMID: 37321171 PMCID: PMC10265781 DOI: 10.1016/j.chom.2023.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Recombination is thought to be a mechanism that facilitates cross-species transmission in coronaviruses, thus acting as a driver of coronavirus spillover and emergence. Despite its significance, the mechanism of recombination is poorly understood, limiting our potential to estimate the risk of novel recombinant coronaviruses emerging in the future. As a tool for understanding recombination, here, we outline a framework of the recombination pathway for coronaviruses. We review existing literature on coronavirus recombination, including comparisons of naturally observed recombinant genomes as well as in vitro experiments, and place the findings into the recombination pathway framework. We highlight gaps in our understanding of coronavirus recombination illustrated by the framework and outline how further experimental research is critical for disentangling the molecular mechanism of recombination from external environmental pressures. Finally, we describe how an increased understanding of the mechanism of recombination can inform pandemic predictive intelligence, with a retrospective emphasis on SARS-CoV-2.
Collapse
Affiliation(s)
- Heather L Wells
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA; Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA.
| | - Cassandra M Bonavita
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Isamara Navarrete-Macias
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Blake Vilchez
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Angela L Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA.
| |
Collapse
|
4
|
Ellis J. All in the family: A comparative look at coronaviruses. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2021; 62:825-833. [PMID: 34341593 PMCID: PMC8281949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coronaviruses, members of the order Nidovirales, the largest and most complex of the positive-stranded RNA viruses, have been recognized as important causes of disease in veterinary medicine for nearly a century. In contrast, in human medicine, especially until the recent SARS-CoV-2 pandemic, they were unimportant viruses associated with the common cold. This is a brief comparative review of the biology of coronaviral infections emphasizing the commonalities among the various members of the family and considering how the veterinary experience with coronaviruses can inform the response to SARS-CoV-2. Coronaviruses are perhaps best viewed as mutation machines whose genetic sequences can readily change through genetic drift, recombination, and deletions from a large genome. However, to be of clinical concern, variants must have the perfect set of amino acids in the S protein receptor binding domain and in their replication-mediating nonstructural proteins. Extensive experience with veterinary coronaviral vaccines suggests that optimal clinical immunity is a tandem of mucosal and systemic responses induced by a combination of mucosal and parenteral vaccines.
Collapse
Affiliation(s)
- John Ellis
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| |
Collapse
|
5
|
Modular Evolution of Coronavirus Genomes. Viruses 2021; 13:v13071270. [PMID: 34209881 PMCID: PMC8310335 DOI: 10.3390/v13071270] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
The viral family Coronaviridae comprises four genera, termed Alpha-, Beta-, Gamma-, and Deltacoronavirus. Recombination events have been described in many coronaviruses infecting humans and other animals. However, formal analysis of the recombination patterns, both in terms of the involved genome regions and the extent of genetic divergence between partners, are scarce. Common methods of recombination detection based on phylogenetic incongruences (e.g., a phylogenetic compatibility matrix) may fail in cases where too many events diminish the phylogenetic signal. Thus, an approach comparing genetic distances in distinct genome regions (pairwise distance deviation matrix) was set up. In alpha, beta, and delta-coronaviruses, a low incidence of recombination between closely related viruses was evident in all genome regions, but it was more extensive between the spike gene and other genome regions. In contrast, avian gammacoronaviruses recombined extensively and exist as a global cloud of genes with poorly corresponding genetic distances in different parts of the genome. Spike, but not other structural proteins, was most commonly exchanged between coronaviruses. Recombination patterns differed between coronavirus genera and corresponded to the modular structure of the spike: recombination traces were more pronounced between spike domains (N-terminal and C-terminal parts of S1 and S2) than within domains. The variability of possible recombination events and their uneven distribution over the genome suggest that compatibility of genes, rather than mechanistic or ecological limitations, shapes recombination patterns in coronaviruses.
Collapse
|
6
|
Wells HL, Letko M, Lasso G, Ssebide B, Nziza J, Byarugaba DK, Navarrete-Macias I, Liang E, Cranfield M, Han BA, Tingley MW, Diuk-Wasser M, Goldstein T, Johnson CK, Mazet JAK, Chandran K, Munster VJ, Gilardi K, Anthony SJ. The evolutionary history of ACE2 usage within the coronavirus subgenus Sarbecovirus. Virus Evol 2021; 7:veab007. [PMID: 33754082 PMCID: PMC7928622 DOI: 10.1093/ve/veab007] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and SARS-CoV-2 are not phylogenetically closely related; however, both use the angiotensin-converting enzyme 2 (ACE2) receptor in humans for cell entry. This is not a universal sarbecovirus trait; for example, many known sarbecoviruses related to SARS-CoV-1 have two deletions in the receptor binding domain of the spike protein that render them incapable of using human ACE2. Here, we report three sequences of a novel sarbecovirus from Rwanda and Uganda that are phylogenetically intermediate to SARS-CoV-1 and SARS-CoV-2 and demonstrate via in vitro studies that they are also unable to utilize human ACE2. Furthermore, we show that the observed pattern of ACE2 usage among sarbecoviruses is best explained by recombination not of SARS-CoV-2, but of SARS-CoV-1 and its relatives. We show that the lineage that includes SARS-CoV-2 is most likely the ancestral ACE2-using lineage, and that recombination with at least one virus from this group conferred ACE2 usage to the lineage including SARS-CoV-1 at some time in the past. We argue that alternative scenarios such as convergent evolution are much less parsimonious; we show that biogeography and patterns of host tropism support the plausibility of a recombination scenario, and we propose a competitive release hypothesis to explain how this recombination event could have occurred and why it is evolutionarily advantageous. The findings provide important insights into the natural history of ACE2 usage for both SARS-CoV-1 and SARS-CoV-2 and a greater understanding of the evolutionary mechanisms that shape zoonotic potential of coronaviruses. This study also underscores the need for increased surveillance for sarbecoviruses in southwestern China, where most ACE2-using viruses have been found to date, as well as other regions such as Africa, where these viruses have only recently been discovered.
Collapse
Affiliation(s)
- H L Wells
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Ave, New York, NY 10027, USA
| | - M Letko
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St, Hamilton, MT 59840, USA.,Paul G. Allen School for Global Animal Health, Washington State University, 1155 College Ave, Pullman, WA 99164, USA
| | - G Lasso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10462, USA
| | - B Ssebide
- Gorilla Doctors, c/o MGVP, Inc., 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - J Nziza
- Gorilla Doctors, c/o MGVP, Inc., 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - D K Byarugaba
- Makerere University Walter Reed Project, Plot 42, Nakasero Road, Kampala, Uganda.,Makerere University, College of Veterinary Medicine, Living Stone Road, Kampala, Uganda
| | - I Navarrete-Macias
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY 10032, USA
| | - E Liang
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY 10032, USA
| | - M Cranfield
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA.,Department of Microbiology and Immunology, University of North Carolina School of Medicine, 125 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - B A Han
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, USA
| | - M W Tingley
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 612 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - M Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Ave, New York, NY 10027, USA
| | - T Goldstein
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - C K Johnson
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - J A K Mazet
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - K Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10462, USA
| | - V J Munster
- Paul G. Allen School for Global Animal Health, Washington State University, 1155 College Ave, Pullman, WA 99164, USA
| | - K Gilardi
- Makerere University Walter Reed Project, Plot 42, Nakasero Road, Kampala, Uganda.,One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - S J Anthony
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
7
|
Wells H, Letko M, Lasso G, Ssebide B, Nziza J, Byarugaba D, Navarrete-Macias I, Liang E, Cranfield M, Han B, Tingley M, Diuk-Wasser M, Goldstein T, Johnson C, Mazet J, Chandran K, Munster V, Gilardi K, Anthony S. The evolutionary history of ACE2 usage within the coronavirus subgenus Sarbecovirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.07.07.190546. [PMID: 32676605 PMCID: PMC7359528 DOI: 10.1101/2020.07.07.190546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SARS-CoV-1 and SARS-CoV-2 are not phylogenetically closely related; however, both use the ACE2 receptor in humans for cell entry. This is not a universal sarbecovirus trait; for example, many known sarbecoviruses related to SARS-CoV-1 have two deletions in the receptor binding domain of the spike protein that render them incapable of using human ACE2. Here, we report three sequences of a novel sarbecovirus from Rwanda and Uganda which are phylogenetically intermediate to SARS-CoV-1 and SARS-CoV-2 and demonstrate via in vitro studies that they are also unable to utilize human ACE2. Furthermore, we show that the observed pattern of ACE2 usage among sarbecoviruses is best explained by recombination not of SARS-CoV-2, but of SARS-CoV-1 and its relatives. We show that the lineage that includes SARS-CoV-2 is most likely the ancestral ACE2-using lineage, and that recombination with at least one virus from this group conferred ACE2 usage to the lineage including SARS-CoV-1 at some time in the past. We argue that alternative scenarios such as convergent evolution are much less parsimonious; we show that biogeography and patterns of host tropism support the plausibility of a recombination scenario; and we propose a competitive release hypothesis to explain how this recombination event could have occurred and why it is evolutionarily advantageous. The findings provide important insights into the natural history of ACE2 usage for both SARS-CoV-1 and SARS-CoV-2, and a greater understanding of the evolutionary mechanisms that shape zoonotic potential of coronaviruses. This study also underscores the need for increased surveillance for sarbecoviruses in southwestern China, where most ACE2-using viruses have been found to date, as well as other regions such as Africa, where these viruses have only recently been discovered.
Collapse
Affiliation(s)
- H.L Wells
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - M Letko
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - G Lasso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - B Ssebide
- Gorilla Doctors, c/o MGVP, Inc., Davis, California, USA
| | - J Nziza
- Gorilla Doctors, c/o MGVP, Inc., Davis, California, USA
| | - D.K Byarugaba
- Makerere University Walter Reed Project, Kampala, Uganda
- Makerere University, College of Veterinary Medicine, Kampala, Uganda
| | - I Navarrete-Macias
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - E Liang
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - M Cranfield
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, California, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - B.A Han
- Cary Institute of Ecosystem Studies, Millbrook, New York, USA
| | - M.W Tingley
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - M Diuk-Wasser
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - T Goldstein
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, California, USA
| | - C.K Johnson
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, California, USA
| | - J Mazet
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, California, USA
| | - K Chandran
- Gorilla Doctors, c/o MGVP, Inc., Davis, California, USA
| | - V.J Munster
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - K Gilardi
- Makerere University Walter Reed Project, Kampala, Uganda
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, California, USA
| | - S.J Anthony
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, California, USA
| |
Collapse
|
8
|
Diversity of Dromedary Camel Coronavirus HKU23 in African Camels Revealed Multiple Recombination Events among Closely Related Betacoronaviruses of the Subgenus Embecovirus. J Virol 2019; 93:JVI.01236-19. [PMID: 31534035 PMCID: PMC6854494 DOI: 10.1128/jvi.01236-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023] Open
Abstract
Genetic recombination is often demonstrated in coronaviruses and can result in host range expansion or alteration in tissue tropism. Here, we showed interspecies events of recombination of an endemic dromedary camel coronavirus, HKU23, with other clade A betacoronaviruses. Our results supported the possibility that the zoonotic pathogen MERS-CoV, which also cocirculates in the same camel species, may have undergone similar recombination events facilitating its emergence or may do so in its future evolution. Genetic recombination has frequently been observed in coronaviruses. Here, we sequenced multiple complete genomes of dromedary camel coronavirus HKU23 (DcCoV-HKU23) from Nigeria, Morocco, and Ethiopia and identified several genomic positions indicative of cross-species virus recombination events among other betacoronaviruses of the subgenus Embecovirus (clade A beta-CoVs). Recombinant fragments of a rabbit coronavirus (RbCoV-HKU14) were identified at the hemagglutinin esterase gene position. Homolog fragments of a rodent CoV were also observed at 8.9-kDa open reading frame 4a at the 3′ end of the spike gene. The patterns of recombination differed geographically across the African region, highlighting a mosaic structure of DcCoV-HKU23 genomes circulating in dromedaries. Our results highlighted active recombination of coronaviruses circulating in dromedaries and are also relevant to the emergence and evolution of other betacoronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV). IMPORTANCE Genetic recombination is often demonstrated in coronaviruses and can result in host range expansion or alteration in tissue tropism. Here, we showed interspecies events of recombination of an endemic dromedary camel coronavirus, HKU23, with other clade A betacoronaviruses. Our results supported the possibility that the zoonotic pathogen MERS-CoV, which also cocirculates in the same camel species, may have undergone similar recombination events facilitating its emergence or may do so in its future evolution.
Collapse
|
9
|
Bentley K, Evans DJ. Mechanisms and consequences of positive-strand RNA virus recombination. J Gen Virol 2018; 99:1345-1356. [PMID: 30156526 DOI: 10.1099/jgv.0.001142] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic recombination in positive-strand RNA viruses is a significant evolutionary mechanism that drives the creation of viral diversity by the formation of novel chimaeric genomes. The process and its consequences, for example the generation of viruses with novel phenotypes, has historically been studied by analysis of the end products. More recently, with an appreciation that there are both replicative and non-replicative mechanisms at work, and with new approaches and techniques to analyse intermediate products, the viral and cellular factors that influence the process are becoming understood. The major influence on replicative recombination is the fidelity of viral polymerase, although RNA structures and sequences may also have an impact. In replicative recombination the viral polymerase is necessary and sufficient, although roles for other viral or cellular proteins may exist. In contrast, non-replicative recombination appears to be mediated solely by cellular components. Despite these insights, the relative importance of replicative and non-replicative mechanisms is not clear. Using single-stranded positive-sense RNA viruses as exemplars, we review the current state of understanding of the processes and consequences of recombination.
Collapse
Affiliation(s)
- Kirsten Bentley
- Biomedical Sciences Research Complex and School of Biology, University of St Andrews, St Andrews, UK
| | - David J Evans
- Biomedical Sciences Research Complex and School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
10
|
Almazán F, Sola I, Zuñiga S, Marquez-Jurado S, Morales L, Becares M, Enjuanes L. Reprint of: Coronavirus reverse genetic systems: infectious clones and replicons. Virus Res 2014; 194:67-75. [PMID: 25261606 PMCID: PMC7114485 DOI: 10.1016/j.virusres.2014.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Coronaviruses (CoVs) infect humans and many animal species, and are associated with respiratory, enteric, hepatic, and central nervous system diseases. The large size of the CoV genome and the instability of some CoV replicase gene sequences during its propagation in bacteria, represent serious obstacles for the development of reverse genetic systems similar to those used for smaller positive sense RNA viruses. To overcome these limitations, several alternatives to more conventional plasmid-based approaches have been established in the last 13 years. In this report, we briefly review and discuss the different reverse genetic systems developed for CoVs, paying special attention to the severe acute respiratory syndrome CoV (SARS-CoV).
Collapse
Affiliation(s)
- Fernando Almazán
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Silvia Marquez-Jurado
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Lucia Morales
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Martina Becares
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
11
|
Almazán F, Sola I, Zuñiga S, Marquez-Jurado S, Morales L, Becares M, Enjuanes L. Coronavirus reverse genetic systems: infectious clones and replicons. Virus Res 2014; 189:262-70. [PMID: 24930446 PMCID: PMC4727449 DOI: 10.1016/j.virusres.2014.05.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 01/09/2023]
Abstract
Coronaviruses (CoVs) infect humans and many animal species, and are associated with respiratory, enteric, hepatic, and central nervous system diseases. The large size of the CoV genome and the instability of some CoV replicase gene sequences during its propagation in bacteria, represent serious obstacles for the development of reverse genetic systems similar to those used for smaller positive sense RNA viruses. To overcome these limitations, several alternatives to more conventional plasmid-based approaches have been established in the last 13 years. In this report, we briefly review and discuss the different reverse genetic systems developed for CoVs, paying special attention to the severe acute respiratory syndrome CoV (SARS-CoV).
Collapse
Affiliation(s)
- Fernando Almazán
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Silvia Marquez-Jurado
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Lucia Morales
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Martina Becares
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
12
|
Identification of cis-acting elements on positive-strand subgenomic mRNA required for the synthesis of negative-strand counterpart in bovine coronavirus. Viruses 2014; 6:2938-59. [PMID: 25080125 PMCID: PMC4147681 DOI: 10.3390/v6082938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 01/06/2023] Open
Abstract
It has been demonstrated that, in addition to genomic RNA, sgmRNA is able to serve as a template for the synthesis of the negative-strand [(−)-strand] complement. However, the cis-acting elements on the positive-strand [(+)-strand] sgmRNA required for (−)-strand sgmRNA synthesis have not yet been systematically identified. In this study, we employed real-time quantitative reverse transcription polymerase chain reaction to analyze the cis-acting elements on bovine coronavirus (BCoV) sgmRNA 7 required for the synthesis of its (−)-strand counterpart by deletion mutagenesis. The major findings are as follows. (1) Deletion of the 5'-terminal leader sequence on sgmRNA 7 decreased the synthesis of the (−)-strand sgmRNA complement. (2) Deletions of the 3' untranslated region (UTR) bulged stem-loop showed no effect on (−)-strand sgmRNA synthesis; however, deletion of the 3' UTR pseudoknot decreased the yield of (−)-strand sgmRNA. (3) Nucleotides positioned from −15 to −34 of the sgmRNA 7 3'-terminal region are required for efficient (−)-strand sgmRNA synthesis. (4) Nucleotide species at the 3'-most position (−1) of sgmRNA 7 is correlated to the efficiency of (−)-strand sgmRNA synthesis. These results together suggest, in principle, that the 5'- and 3'-terminal sequences on sgmRNA 7 harbor cis-acting elements are critical for efficient (−)-strand sgmRNA synthesis in BCoV.
Collapse
|
13
|
The 3'-terminal 55 nucleotides of bovine coronavirus defective interfering RNA harbor cis-acting elements required for both negative- and positive-strand RNA synthesis. PLoS One 2014; 9:e98422. [PMID: 24852421 PMCID: PMC4031142 DOI: 10.1371/journal.pone.0098422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/02/2014] [Indexed: 01/21/2023] Open
Abstract
The synthesis of the negative-strand [(−)-strand] complement of the ∼30 kilobase, positive-strand [(+)-strand] coronaviral genome is a necessary early step for genome replication. The identification of cis-acting elements required for (−)-strand RNA synthesis in coronaviruses, however, has been hampered due to insufficiencies in the techniques used to detect the (−)-strand RNA species. Here, we employed a method of head-to-tail ligation and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) to detect and quantitate the synthesis of bovine coronavirus (BCoV) defective interfering (DI) RNA (−) strands. Furthermore, using the aforementioned techniques along with Northern blot assay, we specifically defined the cis-acting RNA elements within the 3′-terminal 55 nucleotides (nts) which function in the synthesis of (−)- or (+)-strand BCoV DI RNA. The major findings are as follows: (i) nts from -5 to -39 within the 3′-terminal 55 nts are the cis-acting elements responsible for (−)-strand BCoV DI RNA synthesis, (ii) nts from −3 to −34 within the 3′-terminal 55 nts are cis-acting elements required for (+)-strand BCoV DI RNA synthesis, and (iii) the nucleotide species at the 3′-most position (−1) is important, but not critical, for both (−)- and (+)-strand BCoV DI RNA synthesis. These results demonstrate that the 3′-terminal 55 nts in BCoV DI RNA harbor cis-acting RNA elements required for both (−)- and (+)-strand DI RNA synthesis and extend our knowledge on the mechanisms of coronavirus replication. The method of head-to-tail ligation and qRT-PCR employed in the study may also be applied to identify other cis-acting elements required for (−)-strand RNA synthesis in coronaviruses.
Collapse
|
14
|
Ke TY, Liao WY, Wu HY. A leaderless genome identified during persistent bovine coronavirus infection is associated with attenuation of gene expression. PLoS One 2013; 8:e82176. [PMID: 24349214 PMCID: PMC3861326 DOI: 10.1371/journal.pone.0082176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/21/2013] [Indexed: 01/22/2023] Open
Abstract
The establishment of persistent viral infection is often associated with the selection of one or more mutant viruses. For example, it has been found that an intraleader open reading frame (ORF) in genomic and subgenomic mRNA (sgmRNA) molecules is selected during bovine coronavirus (BCoV) persistence which leads to translation attenuation of the downstream ORF. Here, we report the unexpected identification of leaderless genomes, in addition to leader-containing genomes, in a cell culture persistently infected with BCoV. The discovery was made by using a head-to-tail ligation method that examines genomic 5′-terminal sequences at different times postinfection. Functional analyses of the leaderless genomic RNA in a BCoV defective interfering (DI) RNA revealed that (1) the leaderless genome was able to serve as a template for the synthesis of negative-strand genome, although it cannot perform replicative positive-strand genomic RNA synthesis, and (2) the leaderless genome retained its function in translation and transcription, although the efficiency of these processes was impaired. Therefore, this previously unidentified leaderless genome is associated with the attenuation of genome expression. Whether the leaderless genome contributes to the establishment of persistent infection remains to be determined.
Collapse
Affiliation(s)
- Ting-Yung Ke
- Institute of Pathobiology, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan ROC
| | - Wei-Yu Liao
- Institute of Pathobiology, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan ROC
| | - Hung-Yi Wu
- Institute of Pathobiology, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan ROC
- * E-mail:
| |
Collapse
|
15
|
Liu X, Shao Y, Ma H, Sun C, Zhang X, Li C, Han Z, Yan B, Kong X, Liu S. Comparative analysis of four Massachusetts type infectious bronchitis coronavirus genomes reveals a novel Massachusetts type strain and evidence of natural recombination in the genome. INFECTION GENETICS AND EVOLUTION 2012. [PMID: 23178317 PMCID: PMC7106298 DOI: 10.1016/j.meegid.2012.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Four Massachusetts-type (Mass-type) strains of infectious bronchitis coronavirus (IBV) were compared genetically with the pathogenic M41 and H120 vaccine strains using the complete genomic sequences. The results revealed that strains ck/CH/LNM/091017 and ck/CH/LDL/101212 were closely related to the H120 vaccine, which suggests that they might represent re-isolations of vaccine strains or variants of vaccine strains that have resulted from the accumulated point mutations after several passages in chickens. In contrast, strains ck/CH/LHLJ/07VII and ck/CH/LHLJ/100902 had a close genetic relationship with the pathogenic M41 strain. In addition, molecular markers have been identified that distinguish between field and vaccine (or vaccine-like) Mass-type viruses, which may be able to differentiate between field and vaccine strains for diagnostic purposes. Phylogenetic analysis, and pairwise comparison of full-length genomes and the nine genes, identified the occurrence of recombination events in the genome of strain CK/VH/LHLJ/07VII, which suggests that this virus originated from recombination events between M41- and H120-like strains at the switch site located at the 3' end of the nucleocapsid (N) genes. To our knowledge, this is the first time that evidence for the evolution and natural recombination under field conditions between Mass-type pathogenic and vaccinal IBV strains has been documented. These findings provide insights into the emergence and evolution of the Mass-type IB coronaviruses and may help to explain the emergence of Mass-type IBV in chicken flocks all over the world.
Collapse
Affiliation(s)
- Xiaoli Liu
- Division of Avian Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bolles M, Donaldson E, Baric R. SARS-CoV and emergent coronaviruses: viral determinants of interspecies transmission. Curr Opin Virol 2012; 1:624-34. [PMID: 22180768 PMCID: PMC3237677 DOI: 10.1016/j.coviro.2011.10.012] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most new emerging viruses are derived from strains circulating in zoonotic reservoirs. Coronaviruses, which had an established potential for cross-species transmission within domesticated animals, suddenly became relevant with the unexpected emergence of the highly pathogenic human SARS-CoV strain from zoonotic reservoirs in 2002. SARS-CoV infected approximately 8000 people worldwide before public health measures halted the epidemic. Supported by robust time-ordered sequence variation, structural biology, well-characterized patient pools, and biological data, the emergence of SARS-CoV represents one of the best-studied natural models of viral disease emergence from zoonotic sources. This review article summarizes previous and more recent advances into the molecular and structural characteristics, with particular emphasis on host–receptor interactions, that drove this remarkable virus disease outbreak in human populations.
Collapse
Affiliation(s)
- Meagan Bolles
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Eric Donaldson
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Ralph Baric
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
17
|
Chang HW, Egberink HF, Halpin R, Spiro DJ, Rottier PJM. Spike protein fusion peptide and feline coronavirus virulence. Emerg Infect Dis 2012; 18:1089-95. [PMID: 22709821 PMCID: PMC3376813 DOI: 10.3201/eid1807.120143] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations can occur erratically and accompany tropism changes, resulting in unpredictable new diseases. Coronaviruses are well known for their potential to change their host or tissue tropism, resulting in unpredictable new diseases and changes in pathogenicity; severe acute respiratory syndrome and feline coronaviruses, respectively, are the most recognized examples. Feline coronaviruses occur as 2 pathotypes: nonvirulent feline enteric coronaviruses (FECVs), which replicate in intestinal epithelium cells, and lethal feline infectious peritonitis viruses (FIPVs), which replicate in macrophages. Evidence indicates that FIPV originates from FECV by mutation, but consistent distinguishing differences have not been established. We sequenced the full genome of 11 viruses of each pathotype and then focused on the single most distinctive site by additionally sequencing hundreds of viruses in that region. As a result, we identified 2 alternative amino acid differences in the putative fusion peptide of the spike protein that together distinguish FIPV from FECV in >95% of cases. By these and perhaps other mutations, the virus apparently acquires its macrophage tropism and spreads systemically.
Collapse
Affiliation(s)
- Hui-Wen Chang
- Virology Division, Department of Infectious Diseases and Immunology, Veterinary Faculty, Utrecht University, Utrecht, the Netherlands
| | | | | | | | | |
Collapse
|
18
|
Ma H, Shao Y, Sun C, Han Z, Liu X, Guo H, Liu X, Kong X, Liu S. Genetic diversity of avian infectious bronchitis coronavirus in recent years in China. Avian Dis 2012; 56:15-28. [PMID: 22545524 DOI: 10.1637/9804-052011-reg.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fifty-six isolates of avian infectious bronchitis virus (IBV) were obtained from different field outbreaks in China in 2010, and they were genotyped by comparison with 19 reference strains in the present study. The results showed that LX4-type isolates are still the predominant IBVs circulating in chicken flocks in China, and these isolates could be grouped further into two clusters. Viruses in each cluster had favored amino acid residues at different positions in the S1 subunit of the spike protein. In addition, a recombination event was observed to have occurred between LX4- and tl/CH/LDT3/03I-type strains, which contributed to the emergence of a new strain. The most important finding of the study is the isolation and identification of Taiwan II-type (TW II-type) strains of IBV in mainland China in recent years. The genome of TW II-type IBV strains isolated in mainland China has experienced mutations and deletions, as demonstrated by comparison of the entire genome sequence with those of IBV strains isolated in Taiwan. Pathogenicity testing and sequence analysis of the 3' terminal untranslated region revealed that TW II-type IBV strains isolated in mainland China have a close relationship with the embryo-passaged, attenuated TW2296/95.
Collapse
Affiliation(s)
- Huijie Ma
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA. J Virol 2010; 84:10276-88. [PMID: 20660183 DOI: 10.1128/jvi.01287-10] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coronavirus nucleocapsid (N) protein plays an essential role in virion assembly via interactions with the large, positive-strand RNA viral genome and the carboxy-terminal endodomain of the membrane protein (M). To learn about the functions of N protein domains in the coronavirus mouse hepatitis virus (MHV), we replaced the MHV N gene with its counterpart from the closely related bovine coronavirus (BCoV). The resulting viral mutant was severely defective, even though individual domains of the N protein responsible for N-RNA, N-M, or N-N interactions were completely interchangeable between BCoV and MHV. The lesion in the BCoV N substitution mutant could be compensated for by reverting mutations in the central, serine- and arginine-rich (SR) domain of the N protein. Surprisingly, a second class of reverting mutations were mapped to the amino terminus of a replicase subunit, nonstructural protein 3 (nsp3). A similarly defective MHV N mutant bearing an insertion of the SR region from the severe acute respiratory syndrome coronavirus N protein was rescued by the same two classes of reverting mutations. Our genetic results were corroborated by the demonstration that the expressed amino-terminal segment of nsp3 bound selectively to N protein from infected cells, and this interaction was RNA independent. Moreover, we found a direct correlation between the N-nsp3 interaction and the ability of N protein to stimulate the infectivity of transfected MHV genomic RNA (gRNA). Our results suggest a role for this previously unknown N-nsp3 interaction in the localization of genomic RNA to the replicase complex at an early stage of infection.
Collapse
|
20
|
Abstract
Coronaviruses possess the largest known RNA genome, a 27- to 32-kb (+)-strand molecule that replicates in the cytoplasm. During virus replication, a 3' coterminal nested set of five to eight subgenomic (sg) mRNAs are made that are also 5' coterminal with the genome, because they carry the genomic leader as the result of discontinuous transcription at intergenic donor signals during (-)-strand synthesis when templates for sgmRNA synthesis are made. An unanswered question is whether the sgmRNAs, which appear rapidly and abundantly, undergo posttranscriptional amplification. Here, using RT-PCR and sequence analyses of head-to-tail-ligated (-) strands, we show that after transfection of an in vitro-generated marked sgmRNA into virus-infected cells, the sgmRNA, like the genome, can function as a template for (-)-strand synthesis. Furthermore, when the transfected sgmRNA contains an internally placed RNA-dependent RNA polymerase template-switching donor signal, discontinuous transcription occurs at this site, and a shorter, 3' terminally nested leader-containing sgmRNA is made, as evidenced by its leader-body junction and by the expression of a GFP gene. Thus, in principle, the longer-nested sgmRNAs in a natural infection, all of which contain potential internal template-switching donor signals, can function to increase the number of the shorter 3'-nested sgmRNAs. One predicted advantage of this behavior for coronavirus survivability is an increased chance of maintaining genome fitness in the 3' one-third of the genome via a homologous recombination between the (now independently abundant) WT sgmRNA and a defective genome.
Collapse
|
21
|
Woo PCY, Lau SKP, Huang Y, Yuen KY. Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med (Maywood) 2009; 234:1117-27. [PMID: 19546349 DOI: 10.3181/0903-mr-94] [Citation(s) in RCA: 450] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The SARS epidemic has boosted interest in research on coronavirus biodiversity and genomics. Before 2003, there were only 10 coronaviruses with complete genomes available. After the SARS epidemic, up to December 2008, there was an addition of 16 coronaviruses with complete genomes sequenced. These include two human coronaviruses (human coronavirus NL63 and human coronavirus HKU1), 10 other mammalian coronaviruses [bat SARS coronavirus, bat coronavirus (bat-CoV) HKU2, bat-CoV HKU4, bat-CoV HKU5, bat-CoV HKU8, bat-CoV HKU9, bat-CoV 512/2005, bat-CoV 1A, equine coronavirus, and beluga whale coronavirus] and four avian coronaviruses (turkey coronavirus, bulbul coronavirus HKU11, thrush coronavirus HKU12, and munia coronavirus HKU13). Two novel subgroups in group 2 coronavirus (groups 2c and 2d) and two novel subgroups in group 3 coronavirus (groups 3b and 3c) have been proposed. The diversity of coronaviruses is a result of the infidelity of RNA-dependent RNA polymerase, high frequency of homologous RNA recombination, and the large genomes of coronaviruses. Among all hosts, the diversity of coronaviruses is most evidenced in bats and birds, which may be a result of their species diversity, ability to fly, environmental pressures, and habits of roosting and flocking. The present evidence supports that bat coronaviruses are the gene pools of group 1 and 2 coronaviruses, whereas bird coronaviruses are the gene pools of group 3 coronaviruses. With the increasing number of coronaviruses, more and more closely related coronaviruses from distantly related animals have been observed, which were results of recent interspecies jumping and may be the cause of disastrous outbreaks of zoonotic diseases.
Collapse
Affiliation(s)
- Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
22
|
Clementz MA, Kanjanahaluethai A, O'Brien TE, Baker SC. Mutation in murine coronavirus replication protein nsp4 alters assembly of double membrane vesicles. Virology 2008; 375:118-29. [PMID: 18295294 PMCID: PMC2443636 DOI: 10.1016/j.virol.2008.01.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 11/15/2007] [Accepted: 01/12/2008] [Indexed: 02/08/2023]
Abstract
Coronaviruses are positive-strand RNA viruses that replicate in the cytoplasm of infected cells by generating a membrane-associated replicase complex. The replicase complex assembles on double membrane vesicles (DMVs). Here, we studied the role of a putative replicase anchor, nonstructural protein 4 (nsp4), in the assembly of murine coronavirus DMVs. We used reverse genetics to generate infectious clone viruses (icv) with an alanine substitution at nsp4 glycosylation site N176 or N237, or an asparagine to threonine substitution (nsp4-N258T), which is proposed to confer a temperature sensitive phenotype. We found that nsp4-N237A is lethal and nsp4-N258T generated a virus (designated Alb ts6 icv) that is temperature sensitive for viral replication. Analysis of Alb ts6 icv-infected cells revealed that there was a dramatic reduction in DMVs and that both nsp4 and nsp3 partially localized to mitochondria when cells were incubated at the non-permissive temperature. These results reveal a critical role of nsp4 in directing coronavirus DMV assembly.
Collapse
Affiliation(s)
- Mark A Clementz
- Department of Microbiology and Immunology, Loyola University Stritch School of Medicine, Maywood, IL 60153 USA
| | | | | | | |
Collapse
|
23
|
Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. J Virol 2007; 82:1899-907. [PMID: 18077725 DOI: 10.1128/jvi.01085-07] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is caused by the SARS-associated coronavirus (SARS-CoV), which uses angiotensin-converting enzyme 2 (ACE2) as its receptor for cell entry. A group of SARS-like CoVs (SL-CoVs) has been identified in horseshoe bats. SL-CoVs and SARS-CoVs share identical genome organizations and high sequence identities, with the main exception of the N terminus of the spike protein (S), known to be responsible for receptor binding in CoVs. In this study, we investigated the receptor usage of the SL-CoV S by combining a human immunodeficiency virus-based pseudovirus system with cell lines expressing the ACE2 molecules of human, civet, or horseshoe bat. In addition to full-length S of SL-CoV and SARS-CoV, a series of S chimeras was constructed by inserting different sequences of the SARS-CoV S into the SL-CoV S backbone. Several important observations were made from this study. First, the SL-CoV S was unable to use any of the three ACE2 molecules as its receptor. Second, the SARS-CoV S failed to enter cells expressing the bat ACE2. Third, the chimeric S covering the previously defined receptor-binding domain gained its ability to enter cells via human ACE2, albeit with different efficiencies for different constructs. Fourth, a minimal insert region (amino acids 310 to 518) was found to be sufficient to convert the SL-CoV S from non-ACE2 binding to human ACE2 binding, indicating that the SL-CoV S is largely compatible with SARS-CoV S protein both in structure and in function. The significance of these findings in relation to virus origin, virus recombination, and host switching is discussed.
Collapse
|
24
|
Abstract
Coronaviruses are large, enveloped RNA viruses of both medical and veterinary importance. Interest in this viral family has intensified in the past few years as a result of the identification of a newly emerged coronavirus as the causative agent of severe acute respiratory syndrome (SARS). At the molecular level, coronaviruses employ a variety of unusual strategies to accomplish a complex program of gene expression. Coronavirus replication entails ribosome frameshifting during genome translation, the synthesis of both genomic and multiple subgenomic RNA species, and the assembly of progeny virions by a pathway that is unique among enveloped RNA viruses. Progress in the investigation of these processes has been enhanced by the development of reverse genetic systems, an advance that was heretofore obstructed by the enormous size of the coronavirus genome. This review summarizes both classical and contemporary discoveries in the study of the molecular biology of these infectious agents, with particular emphasis on the nature and recognition of viral receptors, viral RNA synthesis, and the molecular interactions governing virion assembly.
Collapse
Affiliation(s)
- Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, 12201, USA
| |
Collapse
|
25
|
Pasternak AO, Spaan WJM, Snijder EJ. Nidovirus transcription: how to make sense...? J Gen Virol 2006; 87:1403-1421. [PMID: 16690906 DOI: 10.1099/vir.0.81611-0] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many positive-stranded RNA viruses use subgenomic mRNAs to express part of their genetic information. To produce structural and accessory proteins, members of the order Nidovirales (corona-, toro-, arteri- and roniviruses) generate a 3' co-terminal nested set of at least three and often seven to nine mRNAs. Coronavirus and arterivirus subgenomic transcripts are not only 3' co-terminal but also contain a common 5' leader sequence, which is derived from the genomic 5' end. Their synthesis involves a process of discontinuous RNA synthesis that resembles similarity-assisted RNA recombination. Most models proposed over the past 25 years assume co-transcriptional fusion of subgenomic RNA leader and body sequences, but there has been controversy over the question of whether this occurs during plus- or minus-strand synthesis. In the latter model, which has now gained considerable support, subgenomic mRNA synthesis takes place from a complementary set of subgenome-size minus-strand RNAs, produced by discontinuous minus-strand synthesis. Sense-antisense base-pairing interactions between short conserved sequences play a key regulatory role in this process. In view of the presumed common ancestry of nidoviruses, the recent finding that ronivirus and torovirus mRNAs do not contain a common 5' leader sequence is surprising. Apparently, major mechanistic differences must exist between nidoviruses, which raises questions about the functions of the common leader sequence and nidovirus transcriptase proteins and the evolution of nidovirus transcription. In this review, nidovirus transcription mechanisms are compared, the experimental systems used are critically assessed and, in particular, the impact of recently developed reverse genetic systems is discussed.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Willy J M Spaan
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
26
|
Abstract
As the largest RNA virus, coronavirus replication employs complex mechanisms and involves various viral and cellular proteins. The first open reading frame of the coronavirus genome encodes a large polyprotein, which is processed into a number of viral proteins required for viral replication directly or indirectly. These proteins include the RNA-dependent RNA polymerase (RdRp), RNA helicase, proteases, metal-binding proteins, and a number of other proteins of unknown function. Genetic studies suggest that most of these proteins are involved in viral RNA replication. In addition to viral proteins, several cellular proteins, such as heterogeneous nuclear ribonucleoprotein (hnRNP) A1, polypyrimidine-tract-binding (PTB) protein, poly(A)-binding protein (PABP), and mitochondrial aconitase (m-aconitase), have been identified to interact with the critical cis-acting elements of coronavirus replication. Like many other RNA viruses, coronavirus may subvert these cellular proteins from cellular RNA processing or translation machineries to play a role in viral replication.
Collapse
Affiliation(s)
- Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Campus Universidad Autónoma, Cantoblanco, 38049 Madrid, Spain
| |
Collapse
|
27
|
Baric RS, Sims AC. Development of mouse hepatitis virus and SARS-CoV infectious cDNA constructs. Curr Top Microbiol Immunol 2005; 287:229-52. [PMID: 15609514 PMCID: PMC7122489 DOI: 10.1007/3-540-26765-4_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The genomes of transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) have been generated with a novel construction strategy that allows for the assembly of very large RNA and DNA genomes from a panel of contiguous cDNA subclones. Recombinant viruses generated from these methods contained the appropriate marker mutations and replicated as efficiently as wild-type virus. The MHV cloning strategy can also be used to generate recombinant viruses that contain foreign genes or mutations at virtually any given nucleotide. MHV molecular viruses were engineered to express green fluorescent protein (GFP), demonstrating the feasibility of the systematic assembly approach to create recombinant viruses expressing foreign genes. The systematic assembly approach was used to develop an infectious clone of the newly identified human coronavirus, the serve acute respiratory syndrome virus (SARS-CoV). Our cloning and assembly strategy generated an infectious clone within 2 months of identification of the causative agent of SARS, providing a critical tool to study coronavirus pathogenesis and replication. The availability of coronavirus infectious cDNAs heralds a new era in coronavirus genetics and genomic applications, especially within the replicase proteins whose functions in replication and pathogenesis are virtually unknown.
Collapse
Affiliation(s)
- R S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7400, USA.
| | | |
Collapse
|
28
|
Abstract
Targeted RNA recombination was the first reverse genetics system devised for coronaviruses at a time when it was not clear whether the construction of full-length infectious cDNA clones would become possible. In its current state targeted RNA recombination offers a versatile and powerful method for the site-directed mutagenesis of the downstream third of the coronavirus genome, which encodes all the viral structural proteins. The development of this system is described, with an emphasis on recent improvements, and multiple applications of this technique to the study of coronavirus molecular biology and pathogenesis are reviewed. Additionally, the relative strengths and limitations of targeted RNA recombination and infectious cDNA systems are contrasted.
Collapse
Affiliation(s)
- P S Masters
- Laboratory of Viral Disease, Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | | |
Collapse
|
29
|
Yuan S, Murtaugh MP, Schumann FA, Mickelson D, Faaberg KS. Characterization of heteroclite subgenomic RNAs associated with PRRSV infection. Virus Res 2004; 105:75-87. [PMID: 15325083 DOI: 10.1016/j.virusres.2004.04.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 04/21/2004] [Accepted: 04/21/2004] [Indexed: 11/30/2022]
Abstract
In this study, porcine reproductive and respiratory syndrome virus (PRRSV) heteroclite (uncommon forms) RNAs were characterized. Nucleotide sequencing of 11 additional defective RNA species verified that heteroclites are formed between the 5' and 3' termini of PRRSV at short stretches of identity, with variability seen between the junction sites utilized. Northern blot and RT-PCR analyses indicated that heteroclite RNA species were likely to be packaged into purified virions. To study whether heteroclite RNAs and viral genomic RNAs could be packaged into the same virions, PRRSV strain VR-2332 was purified by sucrose density gradient centrifugation. RT-PCR amplification of the viral RNAs isolated from three distinct gradient bands, using genomic- and heteroclite-specific primer pairs, demonstrated that heteroclite RNAs could not be readily dissociated from genomic RNA. Partial segregation of full-length and larger heteroclite genomes to the upper two gradient bands was seen, but smaller species could be found in all three fractions. These results strongly suggest that heteroclite RNAs retain the PRRSV RNA packaging signal. In vitro transcription and translation of one heteroclite cDNA clone verified that the RNA could express a predicted 32.6 kDa protein, indicating that these RNA species have the potential to produce abnormal proteins in infected cells.
Collapse
Affiliation(s)
- Shishan Yuan
- Department of Veterinary PathoBiology, University of Minnesota, 205 Veterinary Science Building, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
30
|
Figlerowicz M, Alejska M, Kurzyńska‐Kokorniak A, Figlerowicz M. Genetic variability: the key problem in the prevention and therapy of RNA-based virus infections. Med Res Rev 2003; 23:488-518. [PMID: 12710021 PMCID: PMC7168509 DOI: 10.1002/med.10045] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite extraordinary progress that has recently been made in biomedical sciences, viral infectious diseases still remain one of the most serious world health problems. Among the different types of viruses, those using RNA as their genetic material (RNA viruses and retroviruses) are especially dangerous. At present there is no medicine allowing an effective treatment of RNA-based virus infections. Many RNA viruses and retroviruses need only a few weeks to escape immune response or to produce drug-resistant mutants. This seems to be the obvious consequence of the unusual genetic variability of RNA-based viruses. An individual virus does not form a homogenous population but rather a set of similar but not identical variants. In consequence, RNA-based viruses can easily adapt to environmental changes, also those resulting from immune system response or therapy. The modifications identified within viral genes can be divided into two groups: point mutations and complex genome rearrangements. The former arises mainly during error-prone replication, whereas RNA recombination and generic reassortment are responsible for the latter. This article shortly describes major strategies used to control virus infections. Then, it presents the various mechanisms generating the genetic diversity of RNA-based viruses, which are most probably the main cause of clinical problems.
Collapse
Affiliation(s)
| | - Magdalena Alejska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61‐704 Poznań, Poland
| | - Anna Kurzyńska‐Kokorniak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61‐704 Poznań, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61‐704 Poznań, Poland
| |
Collapse
|
31
|
Siddell S, Sawicki D, Meyer Y, Thiel V, Sawicki S. Identification of the mutations responsible for the phenotype of three MHV RNA-negative ts mutants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:453-8. [PMID: 11774507 DOI: 10.1007/978-1-4615-1325-4_66] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S Siddell
- Institute of Virology and Immunology, University of Würzburg, 97078, Germany
| | | | | | | | | |
Collapse
|
32
|
Molenkamp R, Greve S, Spaan WJ, Snijder EJ. Efficient homologous RNA recombination and requirement for an open reading frame during replication of equine arteritis virus defective interfering RNAs. J Virol 2000; 74:9062-70. [PMID: 10982351 PMCID: PMC102103 DOI: 10.1128/jvi.74.19.9062-9070.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2000] [Accepted: 07/10/2000] [Indexed: 11/20/2022] Open
Abstract
Equine arteritis virus (EAV), the prototype arterivirus, is an enveloped plus-strand RNA virus with a genome of approximately 13 kb. Based on similarities in genome organization and protein expression, the arteriviruses have recently been grouped together with the coronaviruses and toroviruses in the newly established order Nidovirales. Previously, we reported the construction of pEDI, a full-length cDNA copy of EAV DI-b, a natural defective interfering (DI) RNA of 5.6 kb (R. Molenkamp et al., J. Virol. 74:3156-3165, 2000). EDI RNA consists of three noncontiguous parts of the EAV genome fused in frame with respect to the replicase gene. As a result, EDI RNA contains a truncated replicase open reading frame (EDI-ORF) and encodes a truncated replicase polyprotein. Since some coronavirus DI RNAs require the presence of an ORF for their efficient propagation, we have analyzed the importance of the EDI-ORF in EDI RNA replication. The EDI-ORF was disrupted at different positions by the introduction of frameshift mutations. These were found either to block DI RNA replication completely or to be removed within one virus passage, probably due to homologous recombination with the helper virus genome. Using recombination assays based on EDI RNA and full-length EAV genomes containing specific mutations, the rates of homologous RNA recombination in the 3'- and 5'-proximal regions of the EAV genome were studied. Remarkably, the recombination frequency in the 5'-proximal region was found to be approximately 100-fold lower than that in the 3'-proximal part of the genome.
Collapse
Affiliation(s)
- R Molenkamp
- Department of Virology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
33
|
Shi ST, Schiller JJ, Kanjanahaluethai A, Baker SC, Oh JW, Lai MM. Colocalization and membrane association of murine hepatitis virus gene 1 products and De novo-synthesized viral RNA in infected cells. J Virol 1999; 73:5957-69. [PMID: 10364348 PMCID: PMC112657 DOI: 10.1128/jvi.73.7.5957-5969.1999] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1998] [Accepted: 03/29/1999] [Indexed: 11/20/2022] Open
Abstract
Murine hepatitis virus (MHV) gene 1, the 22-kb polymerase (pol) gene, is first translated into a polyprotein and subsequently processed into multiple proteins by viral autoproteases. Genetic complementation analyses suggest that the majority of the gene 1 products are required for viral RNA synthesis. However, there is no physical evidence supporting the association of any of these products with viral RNA synthesis. We have now performed immunofluorescent-staining studies with four polyclonal antisera to localize various MHV-A59 gene 1 products in virus-infected cells. Immunoprecipitation experiments showed that these antisera detected proteins representing the two papain-like proteases and the 3C-like protease encoded by open reading frame (ORF) 1a, the putative polymerase (p100) and a p35 encoded by ORF 1b, and their precursors. De novo-synthesized viral RNA was labeled with bromouridine triphosphate in lysolecithin-permeabilized MHV-infected cells. Confocal microscopy revealed that all of the viral proteins detected by these antisera colocalized with newly synthesized viral RNA in the cytoplasm, particularly in the perinuclear region of infected cells. Several cysteine and serine protease inhibitors, i.e., E64d, leupeptin, and zinc chloride, inhibited viral RNA synthesis without affecting the localization of viral proteins, suggesting that the processing of the MHV gene 1 polyprotein is tightly associated with viral RNA synthesis. Dual labeling with antibodies specific for cytoplasmic membrane structures showed that MHV gene 1 products and RNA colocalized with the Golgi apparatus in HeLa cells. However, in murine 17CL-1 cells, the viral proteins and viral RNA did not colocalize with the Golgi apparatus but, instead, partially colocalized with the endoplasmic reticulum. Our results provide clear physical evidence that several MHV gene 1 products, including the proteases and the polymerase, are associated with the viral RNA replication-transcription machinery, which may localize to different membrane structures in different cell lines.
Collapse
Affiliation(s)
- S T Shi
- Howard Hughes Medical Institute and Department of Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles, California 90033-1054, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.
Collapse
Affiliation(s)
- M M Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|
35
|
Baric RS, Yount B, Hensley L, Peel SA, Chen W. Episodic evolution mediates interspecies transfer of a murine coronavirus. J Virol 1997; 71:1946-55. [PMID: 9032326 PMCID: PMC191277 DOI: 10.1128/jvi.71.3.1946-1955.1997] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Molecular mechanisms permitting the establishment and dissemination of a virus within a newly adopted host species are poorly understood. Mouse hepatitis virus (MHV) strains (MHV-A59, MHV-JHM, and MHV-A59/MHV-JHM) were passaged in mixed cultures containing progressively increasing concentrations of nonpermissive Syrian baby hamster kidney (BHK) cells and decreasing concentrations of permissive murine DBT cells. From MHV-A59/MHV-JHM mixed infection, variant viruses (MHV-H1 and MHV-H2) which replicated efficiently in BHK cells were isolated. Under identical treatment conditions, the parental MHV-A59 or MHV-JHM strains failed to produce infectious virus or transcribe detectable levels of viral RNA or protein. The MHV-H isolates were polytrophic, replicating efficiently in normally nonpermissive Syrian hamster smooth muscle (DDT-1), Chinese hamster ovary (CHO), human adenocarcinoma (HRT), primate kidney (Vero), and murine 17Cl-1 cell lines. Little if any virus replication was detected in feline kidney (CRFK) and porcine testicular (ST) cell lines. The variant virus, MHV-H2, transcribed seven mRNAs equivalent in relative abundance and size to those synthesized by the parental virus strains. MHV-H2 was an RNA recombinant virus containing a crossover site in the S glycoprotein gene. At the molecular level, episodic evolution and positive Darwinian natural selection were apparent within the MHV-H2 S and HE glycoprotein genes. These findings differ from the hypothesis that neutral changes are the predominant feature of molecular evolution and argue that changing ecologies actuate episodic evolution in the MHV spike glycoprotein genes that govern interspecies transfer and spread into alternative hosts.
Collapse
Affiliation(s)
- R S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, 27599-7400, USA
| | | | | | | | | |
Collapse
|
36
|
Luytjes W, Gerritsma H, Bos E, Spaan W. Characterization of two temperature-sensitive mutants of coronavirus mouse hepatitis virus strain A59 with maturation defects in the spike protein. J Virol 1997; 71:949-55. [PMID: 8995612 PMCID: PMC191143 DOI: 10.1128/jvi.71.2.949-955.1997] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two temperature-sensitive (ts) mutants of mouse hepatitis virus strain A59, ts43 and ts379, have been described previously to be ts in infectivity but unaffected in RNA synthesis (M. J. M. Koolen, A. D. M. E. Osterhaus, G. van Steenis, M. C. Horzinek, and B. A. M. van der Zeijst, Virology 125:393-402, 1983). We present a detailed analysis of the protein synthesis of the mutant viruses at the permissive (31 degrees C) and nonpermissive (39.5 degrees C) temperatures. It was found that synthesis of the nucleocapsid protein N and the membrane protein M of both viruses was insensitive to temperature. However, the surface protein S of both viruses was retained in the endoplasmic reticulum at the nonpermissive temperature. This was shown first by analysis of endoglycosidase H-treated and immunoprecipitated labeled S proteins. The mature Golgi form of S was not present at the nonpermissive temperature for the ts viruses, in contrast to wild-type (wt) virus. Second, gradient purification of immunoprecipitated S after pulse-chase labeling showed that only wt virus S was oligomerized. We conclude that the lack of oligomerization causes the retention of the ts S proteins in the endoplasmic reticulum. As a result, ts virus particles that were devoid of S were produced at the nonpermissive temperature. This result could be confirmed by biochemical analysis of purified virus particles and by electron microscopy.
Collapse
Affiliation(s)
- W Luytjes
- Department of Virology, Leiden University, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res 1997; 48:1-100. [PMID: 9233431 PMCID: PMC7130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.
Collapse
Affiliation(s)
- M M Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|
38
|
Affiliation(s)
- J Herold
- Institute of Virology, University of Würzburg, Germany
| | | | | |
Collapse
|
39
|
Ricard CS, Koetzner CA, Sturman LS, Masters PS. A conditional-lethal murine coronavirus mutant that fails to incorporate the spike glycoprotein into assembled virions. Virus Res 1995; 39:261-76. [PMID: 8837889 PMCID: PMC7134215 DOI: 10.1016/0168-1702(95)00100-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/1995] [Revised: 09/11/1995] [Accepted: 09/12/1995] [Indexed: 02/02/2023]
Abstract
The coronavirus spike glycoprotein (S) mediates both the attachment of virus to the host cell receptor and membrane fusion. We describe here the characterization of a temperature-sensitive mutant of the coronavirus mouse hepatitis virus A59 (MHV-A59) having multiple S protein-related defects. The most remarkable of these was that the mutant, designated Albany 18 (Alb18), assembled virions devoid of the S glycoprotein at the nonpermissive temperature. Alb18 also failed to bring about syncytia formation in cells infected at the nonpermissive temperature. Virions of the mutant assembled at the permissive temperature were much more thermolabile than wild type. Moreover, mutant S protein that was incorporated into virions at the permissive temperature showed enhanced pH-dependent thermolability in its ability to bind to the MHV receptor. Alb18 was found to have a single point mutation in S resulting in a change of serine 287 to isoleucine, and it was shown by revertant analysis that this was the lesion responsible for the phenotype of the mutant.
Collapse
Affiliation(s)
- C S Ricard
- Department of Microbiology, Immunology, and Molecular Genetics, Albany Medical College, NY 12208, USA
| | | | | | | |
Collapse
|
40
|
Chen W, Baric RS. Function of a 5'-end genomic RNA mutation that evolves during persistent mouse hepatitis virus infection in vitro. J Virol 1995; 69:7529-40. [PMID: 7494259 PMCID: PMC189691 DOI: 10.1128/jvi.69.12.7529-7540.1995] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Persistently infected cultures of DBT cells were established with mouse hepatitis virus strain A59 (MHV-A59), and the evolution of the MHV leader RNA and 5' end of the genome was studied through 119 days postinfection. Sequence analysis of independent clones demonstrated an overall mutation frequency approaching 1.2 x 10(-3) to 6.7 x 10(-3). The rate of fixation of mutations was about 1.2 x 10(-5) to 7.6 x 10(-5) per nucleotide (nt) per day. In contrast to finding in bovine coronavirus, the MHV leader RNA sequences were extremely stable and did not evolve significantly during persistent infection. Rather, a 5' untranslated region (UTR) A-to-G mutation at nt 77 in the genomic RNA emerged by day 56 and accumulated until 50 to 80% of the genome-length molecules retained the mutation by 119 days postinfection. Although other 5'-end mutations were noted, only the nt 77 mutation was significantly associated with viral persistence in vitro. Mutations were also found in the 5' end of the p28 coding region, but no specific alterations accumulated in genome-length molecules through 119 days postinfection. The 5' UTR nt 77 mutation resulted in an 18-amino-acid open reading frame (ORF) upstream of the ORF 1a AUG start site. By in vitro translation assays, the small ORF was not translated into detectable product but the mutation significantly enhanced translation of the downstream p28 ORF about 2.5-fold. Variant viruses, containing either the nt 77 A-to-G mutation (V16-ATG+) or wild-type sequences at this locus (V1-ATG-), were isolated at 119 days postinfection. The variant viruses replicated more efficiently than wild-type virus and were extremely cytolytic in DBT cells, suggesting that the A-to-G mutation did not encode a nonlytic or attenuated phenotype. Consistent with the in vitro translation results, a significant increase (approximately 3.5-fold) in p28 expression was also observed with the mutant virus (V16-ATG+) in DBT cells compared with that in wild-type controls. These data indicate that MHV persistence was significantly associated with mutation and evolution in the 5'-end UTR which enhanced the translation of the ORF 1a and potentially ORF 1b polyproteins which function in virus transcription and replication.
Collapse
Affiliation(s)
- W Chen
- Department of Epidemiology, University of North Carolina at Chapel Hill 27599-7400, USA
| | | |
Collapse
|
41
|
Peng D, Koetzner CA, McMahon T, Zhu Y, Masters PS. Construction of murine coronavirus mutants containing interspecies chimeric nucleocapsid proteins. J Virol 1995; 69:5475-84. [PMID: 7636993 PMCID: PMC189397 DOI: 10.1128/jvi.69.9.5475-5484.1995] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Targeted RNA recombination was used to construct mouse hepatitis virus (MHV) mutants containing chimeric nucleocapsid (N) protein genes in which segments of the bovine coronavirus N gene were substituted in place of their corresponding MHV sequences. This defined portions of the two N proteins that, despite evolutionary divergence, have remained functionally equivalent. These regions included most of the centrally located RNA-binding domain and two putative spacers that link the three domains of the N protein. By contrast, the amino terminus of N, the acidic carboxy-terminal domain, and a serine- and arginine-rich segment of the central domain could not be transferred from bovine coronavirus to MHV, presumably because these parts of the molecule participate in protein-protein interactions that are specific for each virus (or, possibly, each host). Our results demonstrate that targeted recombination can be used to make extensive substitutions in the coronavirus genome and can generate recombinants that could not otherwise be made between two viruses separated by a species barrier. The implications of these findings for N protein structure and function as well as for coronavirus RNA recombination are discussed.
Collapse
Affiliation(s)
- D Peng
- Department of Biomedical Sciences, State University of New York at Albany, New York, USA
| | | | | | | | | |
Collapse
|
42
|
Ziebuhr J, Herold J, Siddell SG. Characterization of a human coronavirus (strain 229E) 3C-like proteinase activity. J Virol 1995; 69:4331-8. [PMID: 7769694 PMCID: PMC189173 DOI: 10.1128/jvi.69.7.4331-4338.1995] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The RNA polymerase gene of human coronavirus (HCV) 229E encodes a large polyprotein that contains domains with motifs characteristic of both papain-like cysteine proteinases and proteinases with homology to the 3C proteinase of picornaviruses. In this study, we have, first, expressed the putative HCV 229E 3C-like proteinase domain as part of a beta-galactosidase fusion protein in Escherichia coli and have shown that the expressed protein has proteolytic activity. The substitution of one amino acid within the predicted proteinase domain (His-3006-->Asp-3006) abolishes, or at least significantly reduces, this activity. Amino-terminal sequence analysis of a purified, 34-kDa cleavage product shows that the bacterial fusion protein is cleaved at the dipeptide Gln-2965-Ala-2966, which is the predicted amino-terminal end of the putative 3C-like proteinase domain. Second, we have confirmed the proteolytic activity of a bacterially expressed polypeptide with the amino acid sequence of the predicted HCV 229E 3C-like proteinase by trans cleavage of an in vitro translated polypeptide encoded within open reading frame 1b of the RNA polymerase gene. Finally, using fusion protein-specific antiserum, we have identified a 34-kDa, 3C-like proteinase polypeptide in HCV 229E-infected MRC-5 cells. This polypeptide can be detected as early as 3 to 5 h postinfection but is present in the infected cell in very low amounts. These data contribute to the characterization of the 3C-like proteinase activity of HCV 229E.
Collapse
Affiliation(s)
- J Ziebuhr
- Institute of Virology, University of Würzburg, Germany
| | | | | |
Collapse
|