1
|
Dong J, Paszkowski P, Kocincova D, Ingham RJ. Complete deletion of Ectromelia virus p28 impairs virus genome replication in a mouse strain, cell type, and multiplicity of infection-dependent manner. Virus Res 2023; 323:198968. [PMID: 36244618 PMCID: PMC10194247 DOI: 10.1016/j.virusres.2022.198968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
p28 is a poxvirus-encoded E3 ubiquitin ligase that possesses an N-terminal KilA-N domain and a C-terminal RING domain. In Ectromelia virus (ECTV), disruption of the p28 RING domain severely attenuated virulence in A strain mice, which normally succumb to ECTV infection. Moreover, this mutant virus exhibited dramatically reduced genome replication and impaired factory formation in A strain mice peritoneal macrophages (PMs) infected at high multiplicity of infection (MOI) These defects were not observed in PMs isolated from C57BL/6 mice which survive ECTV infection, demonstrating that p28 functions in a context-specific manner. To further investigate p28 function, we completely deleted the p28 gene from ECTV (ECTV-Δp28). In contrast to previous findings, we found that the ECTV-Δp28 virus exhibited severely compromised virus production and genome replication in PMs isolated from A strain mice only when infected at low MOI. This defect was minimal in bone marrow-derived macrophages and two cell lines derived from A strain mice. Furthermore, this low MOI defect in virus production was also observed in PMs isolated from the susceptible BALB/c mouse strain, but not PMs isolated from C57BL/6 mice. Taken together, our data demonstrate that the requirement for ECTV p28 to establish a productive infection depends on the MOI, the cell type, as well as the mouse strain.
Collapse
Affiliation(s)
- Jianing Dong
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Patrick Paszkowski
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Robert J Ingham
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
2
|
Bourquain D, Schrick L, Tischer BK, Osterrieder K, Schaade L, Nitsche A. Replication of cowpox virus in macrophages is dependent on the host range factor p28/N1R. Virol J 2021; 18:173. [PMID: 34425838 PMCID: PMC8381512 DOI: 10.1186/s12985-021-01640-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022] Open
Abstract
Zoonotic orthopoxvirus infections continue to represent a threat to human health. The disease caused by distinct orthopoxviruses differs in terms of symptoms and severity, which may be explained by the unique repertoire of virus factors that modulate the host’s immune response and cellular machinery. We report here on the construction of recombinant cowpox viruses (CPXV) which either lack the host range factor p28 completely or express truncated variants of p28. We show that p28 is essential for CPXV replication in macrophages of human or mouse origin and that the C-terminal RING finger domain of p28 is necessary to allow CPXV replication in macrophages.
Collapse
Affiliation(s)
- Daniel Bourquain
- Centre for Biological Threats and Special Pathogens 1, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
| | - Livia Schrick
- Centre for Biological Threats and Special Pathogens 1, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Bernd Karsten Tischer
- Institute of Virology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Klaus Osterrieder
- Institute of Virology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Lars Schaade
- Centre for Biological Threats and Special Pathogens 1, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens 1, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| |
Collapse
|
3
|
Lant S, Maluquer de Motes C. Poxvirus Interactions with the Host Ubiquitin System. Pathogens 2021; 10:pathogens10081034. [PMID: 34451498 PMCID: PMC8399815 DOI: 10.3390/pathogens10081034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
The ubiquitin system has emerged as a master regulator of many, if not all, cellular functions. With its large repertoire of conjugating and ligating enzymes, the ubiquitin system holds a unique mechanism to provide selectivity and specificity in manipulating protein function. As intracellular parasites viruses have evolved to modulate the cellular environment to facilitate replication and subvert antiviral responses. Poxviruses are a large family of dsDNA viruses with large coding capacity that is used to synthetise proteins and enzymes needed for replication and morphogenesis as well as suppression of host responses. This review summarises our current knowledge on how poxvirus functions rely on the cellular ubiquitin system, and how poxviruses exploit this system to their own advantage, either facilitating uncoating and genome release and replication or rewiring ubiquitin ligases to downregulate critical antiviral factors. Whilst much remains to be known about the intricate interactions established between poxviruses and the host ubiquitin system, our knowledge has revealed crucial viral processes and important restriction factors that open novel avenues for antiviral treatment and provide fundamental insights on the biology of poxviruses and other virus families.
Collapse
|
4
|
Bratke KA, McLysaght A, Rothenburg S. A survey of host range genes in poxvirus genomes. INFECTION GENETICS AND EVOLUTION 2012; 14:406-25. [PMID: 23268114 DOI: 10.1016/j.meegid.2012.12.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/01/2012] [Accepted: 12/06/2012] [Indexed: 12/17/2022]
Abstract
Poxviruses are widespread pathogens, which display extremely different host ranges. Whereas some poxviruses, including variola virus, display narrow host ranges, others such as cowpox viruses naturally infect a wide range of mammals. The molecular basis for differences in host range are poorly understood but apparently depend on the successful manipulation of the host antiviral response. Some poxvirus genes have been shown to confer host tropism in experimental settings and are thus called host range factors. Identified host range genes include vaccinia virus K1L, K3L, E3L, B5R, C7L and SPI-1, cowpox virus CP77/CHOhr, ectromelia virus p28 and 022, and myxoma virus T2, T4, T5, 11L, 13L, 062R and 063R. These genes encode for ankyrin repeat-containing proteins, tumor necrosis factor receptor II homologs, apoptosis inhibitor T4-related proteins, Bcl-2-related proteins, pyrin domain-containing proteins, cellular serine protease inhibitors (serpins), short complement-like repeats containing proteins, KilA-N/RING domain-containing proteins, as well as inhibitors of the double-stranded RNA-activated protein kinase PKR. We conducted a systematic survey for the presence of known host range genes and closely related family members in poxvirus genomes, classified them into subgroups based on their phylogenetic relationship and correlated their presence with the poxvirus phylogeny. Common themes in the evolution of poxvirus host range genes are lineage-specific duplications and multiple independent inactivation events. Our analyses yield new insights into the evolution of poxvirus host range genes. Implications of our findings for poxvirus host range and virulence are discussed.
Collapse
Affiliation(s)
- Kirsten A Bratke
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
5
|
Disruption of Bombyx mori nucleopolyhedrovirus ORF71 (Bm71) results in inefficient budded virus production and decreased virulence in host larvae. Virus Genes 2012; 45:161-8. [DOI: 10.1007/s11262-012-0757-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/12/2012] [Indexed: 11/26/2022]
|
6
|
Zinc Binding Properties of Engineered RING Finger Domain of Arkadia E3 Ubiquitin Ligase. Bioinorg Chem Appl 2010. [PMID: 20689703 PMCID: PMC2905715 DOI: 10.1155/2010/323152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 05/12/2010] [Indexed: 11/17/2022] Open
Abstract
Human Arkadia is a nuclear protein consisted of 989 amino acid residues, with a characteristic RING domain in its C-terminus. The RING domain harbours the E3 ubiquitin ligase activity needed by Arkadia to ubiquitinate its substrates such as negative regulators of TGF-β signaling. The RING finger domain of Arkadia is a RING-H2 type and its structure and stability is strongly dependent on the presence of two bound Zn(II) ions attached to the protein frame through a defined Cys3-His2-Cys3 motif. In the present paper we transform the RING-H2 type of Arkadia finger domain to nonnative RING sequence, substituting the zinc-binding residues Cys955 or His960 to Arginine, through site-directed mutagenesis. The recombinant expression, in Escherichia coli, of the mutants C955R and H960R reveal significant lower yield in respect with the native polypeptide of Arkadia RING-H2 finger domain. In particular, only the C955R mutant exhibits expression yield sufficient for recombinant protein isolation and preliminary studies. Atomic absorption measurements and preliminary NMR data analysis reveal that the C955R point mutation in the RING Finger domain of Arkadia diminishes dramatically the zinc binding affinity, leading to the breakdown of the global structural integrity of the RING construct.
Collapse
|
7
|
Interplay between poxviruses and the cellular ubiquitin/ubiquitin-like pathways. FEBS Lett 2009; 583:607-14. [PMID: 19174161 DOI: 10.1016/j.febslet.2009.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/15/2009] [Accepted: 01/18/2009] [Indexed: 02/06/2023]
Abstract
Post-translational polypeptide tagging by conjugation with ubiquitin and ubiquitin-like (Ub/Ubl) molecules is a potent way to alter protein functions and/or sort specific protein targets to the proteasome for degradation. Many poxviruses interfere with the host Ub/Ubl system by encoding viral proteins that can usurp this pathway. Some of these include viral proteins of the membrane-associated RING-CH (MARCH) domain, p28/Really Interesting New Gene (RING) finger, ankyrin-repeat/F-box and Broad-complex, Tramtrack and Bric-a-Brac (BTB)/Kelch subgroups of the E3 Ub ligase superfamily. Here we describe and discuss the various strategies used by poxviruses to target and subvert the host cell Ub/Ubl systems.
Collapse
|
8
|
Abstract
As a family of viruses, poxviruses collectively exhibit a broad host range and most of the individual members are capable of replicating in a wide array of cell types from various host species, at least in vitro. At the cellular level, poxvirus tropism is dependent not upon specific cell surface receptors, but rather upon: (1) the ability of the cell to provide intracellular complementing factors needed for productive virus replication, and (2) the ability of the specific virus to successfully manipulate intracellular signaling networks that regulate cellular antiviral processes downstream of virus entry. The large genomic coding capacity of poxviruses enables the virus to express a unique collection of viral proteins that function as host range factors, which specifically target and manipulate host signaling pathways to establish optimal cellular conditions for viral replication. Functionally, the known host range factors from poxviruses have been associated with manipulation of a diverse array of cellular targets, which includes cellular kinases and phosphatases, apoptosis, and various antiviral pathways. To date, only a small number of poxvirus host range genes have been identified and studied, and only a handful of these have been functionally characterized. For this reason, poxvirus host range factors represent a potential gold mine for the discovery of novel pathogen-host protein interactions. This review summarizes our current understanding of the mechanisms by which the known poxvirus host range genes, and their encoded factors, expand tropism through the manipulation of host cell intracellular signaling pathways.
Collapse
Affiliation(s)
- Steven J Werden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
9
|
Tulman ER, Delhon G, Afonso CL, Lu Z, Zsak L, Sandybaev NT, Kerembekova UZ, Zaitsev VL, Kutish GF, Rock DL. Genome of horsepox virus. J Virol 2006; 80:9244-58. [PMID: 16940536 PMCID: PMC1563943 DOI: 10.1128/jvi.00945-06] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we present the genomic sequence of horsepox virus (HSPV) isolate MNR-76, an orthopoxvirus (OPV) isolated in 1976 from diseased Mongolian horses. The 212-kbp genome contained 7.5-kbp inverted terminal repeats and lacked extensive terminal tandem repetition. HSPV contained 236 open reading frames (ORFs) with similarity to those in other OPVs, with those in the central 100-kbp region most conserved relative to other OPVs. Phylogenetic analysis of the conserved region indicated that HSPV is closely related to sequenced isolates of vaccinia virus (VACV) and rabbitpox virus, clearly grouping together these VACV-like viruses. Fifty-four HSPV ORFs likely represented fragments of 25 orthologous OPV genes, including in the central region the only known fragmented form of an OPV ribonucleotide reductase large subunit gene. In terminal genomic regions, HSPV lacked full-length homologues of genes variably fragmented in other VACV-like viruses but was unique in fragmentation of the homologue of VACV strain Copenhagen B6R, a gene intact in other known VACV-like viruses. Notably, HSPV contained in terminal genomic regions 17 kbp of OPV-like sequence absent in known VACV-like viruses, including fragments of genes intact in other OPVs and approximately 1.4 kb of sequence present only in cowpox virus (CPXV). HSPV also contained seven full-length genes fragmented or missing in other VACV-like viruses, including intact homologues of the CPXV strain GRI-90 D2L/I4R CrmB and D13L CD30-like tumor necrosis factor receptors, D3L/I3R and C1L ankyrin repeat proteins, B19R kelch-like protein, D7L BTB/POZ domain protein, and B22R variola virus B22R-like protein. These results indicated that HSPV contains unique genomic features likely contributing to a unique virulence/host range phenotype. They also indicated that while closely related to known VACV-like viruses, HSPV contains additional, potentially ancestral sequences absent in other VACV-like viruses.
Collapse
Affiliation(s)
- E R Tulman
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Taylor JM, Barry M. Near death experiences: poxvirus regulation of apoptotic death. Virology 2006; 344:139-50. [PMID: 16364745 DOI: 10.1016/j.virol.2005.09.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 09/10/2005] [Indexed: 12/25/2022]
Abstract
Apoptosis, or programmed cell death, plays a critical role in the elimination of virus-infected cells. As a result, a growing number of viruses encode numerous potent anti-apoptotic proteins to counteract apoptosis in an effort to prolong their own survival. This review describes the numerous mechanisms by which poxviruses inhibit apoptosis thereby modulating life and death of the cell.
Collapse
Affiliation(s)
- John M Taylor
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | |
Collapse
|
11
|
Li G, Chen N, Roper RL, Feng Z, Hunter A, Danila M, Lefkowitz EJ, Buller RML, Upton C. Complete coding sequences of the rabbitpox virus genome. J Gen Virol 2006; 86:2969-2977. [PMID: 16227218 DOI: 10.1099/vir.0.81331-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Rabbitpox virus (RPXV) is highly virulent for rabbits and it has long been suspected to be a close relative of vaccinia virus. To explore these questions, the complete coding region of the rabbitpox virus genome was sequenced to permit comparison with sequenced strains of vaccinia virus and other orthopoxviruses. The genome of RPXV strain Utrecht (RPXV-UTR) is 197 731 nucleotides long, excluding the terminal hairpin structures at each end of the genome. The RPXV-UTR genome has 66.5 % A + T content, 184 putative functional genes and 12 fragmented ORF regions that are intact in other orthopoxviruses. The sequence of the RPXV-UTR genome reveals that two RPXV-UTR genes have orthologues in variola virus (VARV; the causative agent of smallpox), but not in vaccinia virus (VACV) strains. These genes are a zinc RING finger protein gene (RPXV-UTR-008) and an ankyrin repeat family protein gene (RPXV-UTR-180). A third gene, encoding a chemokine-binding protein (RPXV-UTR-001/184), is complete in VARV but functional only in some VACV strains. Examination of the evolutionary relationship between RPXV and other orthopoxviruses was carried out using the central 143 kb DNA sequence conserved among all completely sequenced orthopoxviruses and also the protein sequences of 49 gene products present in all completely sequenced chordopoxviruses. The results of these analyses both confirm that RPXV-UTR is most closely related to VACV and suggest that RPXV has not evolved directly from any of the sequenced VACV strains, since RPXV contains a 719 bp region not previously identified in any VACV.
Collapse
Affiliation(s)
- G Li
- Department of Biochemistry and Microbiology, University of Victoria, Ring Road, Petch Bldg, Rm 150, Victoria, BC, Canada V8W 3P6
| | - N Chen
- Department of Biochemistry and Microbiology, University of Victoria, Ring Road, Petch Bldg, Rm 150, Victoria, BC, Canada V8W 3P6
| | - R L Roper
- Department of Biochemistry and Microbiology, University of Victoria, Ring Road, Petch Bldg, Rm 150, Victoria, BC, Canada V8W 3P6
| | - Z Feng
- Department of Molecular Microbiology and Immunology, St Louis University School of Medicine, St Louis, MO 63104, USA
| | - A Hunter
- Department of Biochemistry and Microbiology, University of Victoria, Ring Road, Petch Bldg, Rm 150, Victoria, BC, Canada V8W 3P6
| | - M Danila
- Department of Biochemistry and Microbiology, University of Victoria, Ring Road, Petch Bldg, Rm 150, Victoria, BC, Canada V8W 3P6
| | - E J Lefkowitz
- Department of Microbiology, University of Alabama (Birmingham), Birmingham, AL 35294-2170, USA
| | - R M L Buller
- Department of Molecular Microbiology and Immunology, St Louis University School of Medicine, St Louis, MO 63104, USA
| | - C Upton
- Department of Biochemistry and Microbiology, University of Victoria, Ring Road, Petch Bldg, Rm 150, Victoria, BC, Canada V8W 3P6
| |
Collapse
|
12
|
Abstract
Ectromelia virus (ECTV) is an orthopoxvirus whose natural host is the mouse; it is related closely to Variola virus, the causative agent of smallpox, and Monkeypox virus, the cause of an emerging zoonosis. The recent sequencing of its genome, along with an effective animal model, makes ECTV an attractive model for the study of poxvirus pathogenesis, antiviral and vaccine testing and viral immune and inflammatory responses. This review discusses the pathogenesis of mousepox, modulation of the immune response by the virus and the cytokine and cellular components of the skin and systemic immune system that are critical to recovery from infection.
Collapse
Affiliation(s)
- David J Esteban
- University of Victoria, Department of Biochemistry and Microbiology, PO Box 3055 STN CSC, Victoria BC, Canada V8W 3P6
| | - R Mark L Buller
- St Louis University Health Sciences Center, Department of Molecular Microbiology and Immunology, 1402 S. Grand Blvd, St Louis, MO 63104, USA
| |
Collapse
|
13
|
Abstract
Full-length poxvirus N1R/p28 orthologous proteins feature a prominent C-terminal RING zinc-finger motif. The RING moiety is conspicuously mutated in a number of vaccinia virus strains relative to variola virus. This, together with empirical data, suggests that N1R/p28 proteins promote virulence by suppressing apoptosis. Poxvirus N1R/p28 orthologues are strikingly similar to the RING motif of the cellular Makorin family of zinc-finger proteins, suggesting a homologous relationship connecting the viral and cellular genes. Recently identified avipox N1R/p28 orthologues further encode additional Makorin-like zinc-finger motifs, consistent with this suggestion. Phylogenetic analysis supports a model of poxviral capture of a MKRN cDNA and fusion with an existing viral gene. Establishing an evolutionary link between the viral and cellular genes will facilitate the elucidation of their respective cellular functions, and of how they interact in modulating virulence.
Collapse
Affiliation(s)
- Robert D Nicholls
- Center for Neurobiology and Behavior, Department of Psychiatry, CRB528, University of Pennsylvania, 415 Curie Blvd, PA 19104-6140, USA
| | | |
Collapse
|
14
|
Nerenberg BTH, Taylor J, Bartee E, Gouveia K, Barry M, Früh K. The poxviral RING protein p28 is a ubiquitin ligase that targets ubiquitin to viral replication factories. J Virol 2005; 79:597-601. [PMID: 15596852 PMCID: PMC538746 DOI: 10.1128/jvi.79.1.597-601.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The poxviral RING protein p28 is a virulence factor whose molecular function is unknown. Many cellular RING-containing proteins act as ubiquitin ligases (RING-E3s) connecting selected substrate proteins to the ubiquitination machinery. Here we demonstrate that vaccinia virus p28 and its homologue in myxoma virus, M143R, can mediate the formation of polyubiquitin conjugates, while RING mutants of both p28 and M143R cannot. Furthermore, p28 is ubiquitinated in vivo and ubiquitin colocalizes with p28 to virus factories independently of an intact RING domain. These results implicate the ubiquitin system in poxviral virulence.
Collapse
Affiliation(s)
- Bianca T Hovey Nerenberg
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | | | | | | | | | |
Collapse
|
15
|
Sanfilippo CM, Lombardozzi RC, Chirimuuta FNW, Blaho JA. Herpes simplex virus 1 infection is required to produce ICP27 immunoreactive triplet forms when ribosomal aminoacyl-tRNA translocation is blocked by cycloheximide. Virology 2004; 324:554-66. [PMID: 15207640 DOI: 10.1016/j.virol.2004.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 03/11/2004] [Accepted: 04/09/2004] [Indexed: 10/26/2022]
Abstract
Infected cell protein (ICP) 27 is an essential herpes simplex virus type 1 (HSV-1) phosphoprotein required for optimal viral DNA and early or late gene synthesis. Three slow-migrating immunoreactive species were detected using multiple anti-ICP27 antibodies following HSV-1 infection of HEp-2 and Vero cells in the presence of cycloheximide (CHX). Generation of the protein triplet moieties required transcription of the alpha27 gene. These forms were observed following infection with a series of recombinant viruses that produce truncated ICP27 polypeptides, suggesting that alternative splicing is not involved in the process. These ICP27 species were not observed following translation inhibition by puromycin (PUR). Synthesis of the triplet occurred by 6 hpi and CHX addition as late as 3 hpi still enabled their production. That the ICP27 species were detected in uninfected ICP27-expressing cells without CHX, but not in its presence, suggests a mechanism in which virus infection is required to produce the forms when ribosomal aminoacyl-transfer RNA (tRNA) translocation is blocked.
Collapse
Affiliation(s)
- Christine M Sanfilippo
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
16
|
Chen N, Danila MI, Feng Z, Buller RML, Wang C, Han X, Lefkowitz EJ, Upton C. The genomic sequence of ectromelia virus, the causative agent of mousepox. Virology 2004; 317:165-86. [PMID: 14675635 DOI: 10.1016/s0042-6822(03)00520-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ectromelia virus is the causative agent of mousepox, an acute exanthematous disease of mouse colonies in Europe, Japan, China, and the U.S. The Moscow, Hampstead, and NIH79 strains are the most thoroughly studied with the Moscow strain being the most infectious and virulent for the mouse. In the late 1940s mousepox was proposed as a model for the study of the pathogenesis of smallpox and generalized vaccinia in humans. Studies in the last five decades from a succession of investigators have resulted in a detailed description of the virologic and pathologic disease course in genetically susceptible and resistant inbred and out-bred mice. We report the DNA sequence of the left-hand end, the predicted right-hand terminal repeat, and central regions of the genome of the Moscow strain of ectromelia virus (approximately 177,500 bp), which together with the previously sequenced right-hand end, yields a genome of 209,771 bp. We identified 175 potential genes specifying proteins of between 53 and 1924 amino acids, and 29 regions containing sequences related to genes predicted in other poxviruses, but unlikely to encode for functional proteins in ectromelia virus. The translated protein sequences were compared with the protein database for structure/function relationships, and these analyses were used to investigate poxvirus evolution and to attempt to explain at the cellular and molecular level the well-characterized features of the ectromelia virus natural life cycle.
Collapse
Affiliation(s)
- Nanhai Chen
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Shchelkunov SN, Totmenin AV, Safronov PF, Mikheev MV, Gutorov VV, Ryazankina OI, Petrov NA, Babkin IV, Uvarova EA, Sandakhchiev LS, Sisler JR, Esposito JJ, Damon IK, Jahrling PB, Moss B. Analysis of the monkeypox virus genome. Virology 2002; 297:172-94. [PMID: 12083817 PMCID: PMC9534300 DOI: 10.1006/viro.2002.1446] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Monkeypox virus (MPV) belongs to the orthopoxvirus genus of the family Poxviridae, is endemic in parts of Africa, and causes a human disease that resembles smallpox. The 196,858-bp MPV genome was analyzed with regard to structural features and open reading frames. Each end of the genome contains an identical but oppositely oriented 6379-bp terminal inverted repetition, which similar to that of other orthopoxviruses, includes a putative telomere resolution sequence and short tandem repeats. Computer-assisted analysis was used to identify 190 open reading frames containing >/=60 amino acid residues. Of these, four were present within the inverted terminal repetition. MPV contained the known essential orthopoxvirus genes but only a subset of the putative immunomodulatory and host range genes. Sequence comparisons confirmed the assignment of MPV as a distinct species of orthopoxvirus that is not a direct ancestor or a direct descendent of variola virus, the causative agent of smallpox.
Collapse
Affiliation(s)
- S N Shchelkunov
- State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk Region, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shchelkunov SN, Totmenin AV, Loparev VN, Safronov PF, Gutorov VV, Chizhikov VE, Knight JC, Parsons JM, Massung RF, Esposito JJ. Alastrim smallpox variola minor virus genome DNA sequences. Virology 2000; 266:361-86. [PMID: 10639322 DOI: 10.1006/viro.1999.0086] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alastrim variola minor virus, which causes mild smallpox, was first recognized in Florida and South America in the late 19th century. Genome linear double-stranded DNA sequences (186,986 bp) of the alastrim virus Garcia-1966, a laboratory reference strain from an outbreak associated with 0.8% case fatalities in Brazil in 1966, were determined except for a 530-bp fragment of hairpin-loop sequences at each terminus. The DNA sequences (EMBL Accession No. Y16780) showed 206 potential open reading frames for proteins containing >/=60 amino acids. The amino acid sequences of the putative proteins were compared with those reported for vaccinia virus strain Copenhagen and the Asian variola major strains India-1967 and Bangladesh-1975. About one-third of the alastrim viral proteins were 100% identical to correlates in the variola major strains and the remainder were >/=95% identical. Compared with variola major virus DNA, alastrim virus DNA has additional segments of 898 and 627 bp, respectively, within the left and right terminal regions. The former segment aligns well with sequences in other orthopoxviruses, particularly cowpox and vaccinia viruses, and the latter is apparently alastrim-specific.
Collapse
Affiliation(s)
- S N Shchelkunov
- Department of Molecular Biology of Genomes, State Research Center of Virology and Biotechnology (Vector), Koltsovo, Novosibirsk Region, 633159, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
We have determined the complete DNA sequence of the Leporipoxvirus Shope fibroma virus (SFV). The SFV genome spans 159.8 kb and encodes 165 putative genes of which 13 are duplicated in the 12.4-kb terminal inverted repeats. Although most SFV genes have homologs encoded by other Chordopoxvirinae, the SFV genome lacks a key gene required for the production of extracellular enveloped virus. SFV also encodes only the smaller ribonucleotide reductase subunit and has a limited nucleotide biosynthetic capacity. SFV preserves the Chordopoxvirinae gene order from S012L near the left end of the chromosome through to S142R (homologs of vaccinia F2L and B1R, respectively). The unique right end of SFV appears to be genetically unstable because when the sequence is compared with that of myxoma virus, five myxoma homologs have been deleted (C. Cameron, S. Hota-Mitchell, L. Chen, J. Barrett, J.-X. Cao, C. Macaulay, D. Willer, D. Evans, and G. McFadden, 1999, Virology 264, 298-318). Most other differences between these two Leporipoxviruses are located in the telomeres. Leporipoxviruses encode several genes not found in other poxviruses including four small hydrophobic proteins of unknown function (S023R, S119L, S125R, and S132L), an alpha 2, 3-sialyltransferase (S143R), a protein belonging to the Ig-like protein superfamily (S141R), and a protein resembling the DNA-binding domain of proteins belonging to the HIN-200 protein family S013L). SFV also encodes a type II DNA photolyase (S127L). Melanoplus sanguinipes entomopoxvirus encodes a similar protein, but SFV is the first mammalian virus potentially capable of photoreactivating ultraviolet DNA damage.
Collapse
Affiliation(s)
- D O Willer
- Department of Molecular Biology, The University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | |
Collapse
|
20
|
Jong MT, Gray TA, Ji Y, Glenn CC, Saitoh S, Driscoll DJ, Nicholls RD. A novel imprinted gene, encoding a RING zinc-finger protein, and overlapping antisense transcript in the Prader-Willi syndrome critical region. Hum Mol Genet 1999; 8:783-93. [PMID: 10196367 DOI: 10.1093/hmg/8.5.783] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe a complex imprinted locus in chromosome 15q11-q13 that encodes two genes, ZNF127 and ZNF127AS. The ZNF127 gene encodes a protein with a RING (C3HC4) zinc-finger and multiple C3H zinc-finger motifs, the former being closely related to a protein from variola major virus, the smallpox etiological agent. These motifs allow prediction of ZNF127 function as a ribonucleoprotein. The intronless ZNF127 gene is expressed ubiquitously, but the entire coding sequence and 5' CpG island overlaps a second gene, ZNF127AS, that is transcribed from the antisense strand with a different transcript size and pattern of expression. Allele-specific analysis shows that ZNF127 is expressed only from the paternal allele. Consistent with this expression pattern, in the brain the ZNF127 5' CpG island is completely unmethylated on the paternal allele but methylated on the maternal allele. Analyses of adult testis, sperm and fetal oocytes demonstrates a gametic methylation imprint with unmethylated paternal germ cells. Recent findings indicate that ZNF127 is part of the coordinately regulated imprinted domain affected in Prader-Willi syndrome patients with imprinting mutations. Therefore, ZNF127 and ZNF127AS are novel imprinted genes that may be associated with some of the clinical features of the polygenic Prader-Willi syndrome.
Collapse
Affiliation(s)
- M T Jong
- Department of Genetics and Center for Human Genetics, Case Western Reserve University School of Medicine, University Hospitals of Cleveland, 10900 Euclid Avenue, Cleveland, OH 44106-4955, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Jackson RJ, Hall DF, Kerr PJ. Myxoma virus encodes an alpha2,3-sialyltransferase that enhances virulence. J Virol 1999; 73:2376-84. [PMID: 9971821 PMCID: PMC104483 DOI: 10.1128/jvi.73.3.2376-2384.1999] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/1998] [Accepted: 12/08/1998] [Indexed: 11/20/2022] Open
Abstract
A 4.7-kb region of DNA sequence contained at the right end of the myxoma virus EcoRI-G2 fragment located 24 kb from the right end of the 163-kb genome has been determined. This region of the myxoma virus genome encodes homologs of the vaccinia virus genes A51R, A52R, A55R, A56R, and B1R; the myxoma virus gene equivalents have been given the prefix M. The MA55 gene encodes a protein belonging to the kelch family of actin-binding proteins, while the MA56 gene encodes a member of the immunoglobulin superfamily related to a variety of cellular receptors and adhesion molecules. A novel myxoma virus early gene, MST3N, is a member of the eukaryotic sialyltransferase gene family located between genes MA51 and MA52. Detergent lysates prepared from myxoma virus-infected cell cultures contained a virally encoded sialyltransferase activity that catalyzed the transfer of sialic acid (Sia) from CMP-Sia to an asialofetuin glycoprotein acceptor. Analysis of the in vitro-sialylated glycoprotein acceptor by digestion with N-glycosidase F and by lectin binding suggested that the MST3N gene encodes an enzyme with Galbeta1,3(4)GlcNAc alpha2,3-sialyltransferase specificity for the N-linked oligosaccharide of glycoprotein. Lectin binding assays demonstrated that alpha2,3-sialyltransferase activity is expressed by several known leporipoxviruses that naturally infect Sylvilagus rabbits. The sialyltransferase is nonessential for myxoma virus replication in cell culture; however, disruption of the MST3N gene caused attenuation in vivo. The possible implications of the myxoma virus-expressed sialyltransferase in terms of the host's defenses against infection are discussed.
Collapse
Affiliation(s)
- R J Jackson
- Vertebrate Biocontrol CRC, CSIRO Wildlife and Ecology, Canberra, Australia.
| | | | | |
Collapse
|
22
|
Brick DJ, Burke RD, Schiff L, Upton C. Shope fibroma virus RING finger protein N1R binds DNA and inhibits apoptosis. Virology 1998; 249:42-51. [PMID: 9740775 DOI: 10.1006/viro.1998.9304] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Shope fibroma virus (SFV) N1R gene encodes a RING finger protein that localizes to virus factories within the cytoplasm of infected cells. Altered proteins, with deletions and site-specific mutations, were transiently expressed in vaccinia virus-infected cells to discern regions of the protein that are required for localization. We have determined that at least part of the RING finger region is necessary for localization but that the RING motif alone is not sufficient. A chimeric protein, however, in which the RING finger region of the herpes simplex virus-1 ICP0 protein replaces the SFV N1R RING motif does localize to virus factories. A region of five highly conserved amino acids at the amino terminus of SFV N1R is also critical for localization. We report that the SFV N1R protein binds double- and single-stranded DNA, suggesting a mechanism for localization, and that overexpression of this protein in vaccinia virus-infected cells reduces apoptosis-associated fragmentation of nuclear DNA.
Collapse
Affiliation(s)
- D J Brick
- Departments of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| | | | | | | |
Collapse
|
23
|
Shchelkunov SN, Safronov PF, Totmenin AV, Petrov NA, Ryazankina OI, Gutorov VV, Kotwal GJ. The genomic sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins. Virology 1998; 243:432-60. [PMID: 9568042 DOI: 10.1006/viro.1998.9039] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sequencing and computer analysis of the left (52,283 bp) and right (49,649 bp) variable DNA regions of the cowpox virus strain GRI-90 (CPV-GRI) has revealed 51 and 37 potential open reading frames (ORFs), respectively. Comparison of the structure-function organization of these DNA regions of CPV-GRI with those previously published for corresponding regions of genomes of vaccinia virus, strains Copenhagen (VAC-COP) and Western Reserve (VAC-WR); and variola major virus, strains India-1967 (VAR-IND), Bangladesh-1975 (VAR-BSH); and alastrim variola minor virus, strain Garcia-1966 (VAR-GAR), was performed. Within the left terminal region under study, an extended DNA sequence (14,171 bp), unique to CPV, has been found. Within the right region of the CPV-GRI genome two segments, which are unique to CPV DNA (1579 and 3585 bp) have been found. Numerous differences have been revealed in the genetic structure of CPV-GRI DNA regions, homologous to fragments of the genomes of the above-mentioned orthopoxvirus strains. A cluster of ORFs with structural similarity ot immunomodulatory and host range function of other poxviruses have also been detected. A comparison of the sequences of ORF B, crmA, crmB, crmC, IMP, and CHO hr genes of CPV Brighton strain (CPV-BRI) with the corresponding genes in strain GRI-90 have revealed an identity at the amino acid level ranging from 82 to 96% between the two strains. The findings are significant in light of the recent demonstration of CPV as an important poxvirus model system to probe the precise in vivo role(s) of the unique virally encoded immunomodulatory proteins. Also, the presence of a complete and intact repertoire of immunomodulatory proteins, ring canal proteins family, and host range genes indicates that CPV may have been the most ancient of all studied orthopoxviruses.
Collapse
Affiliation(s)
- S N Shchelkunov
- Department of Molecular Biology of Genomes, State Research Center of Virology and Biotechnology Vector Koitsovo, Novosibirsk Region, Russia
| | | | | | | | | | | | | |
Collapse
|
24
|
Lium EK, Silverstein S. Mutational analysis of the herpes simplex virus type 1 ICP0 C3HC4 zinc ring finger reveals a requirement for ICP0 in the expression of the essential alpha27 gene. J Virol 1997; 71:8602-14. [PMID: 9343218 PMCID: PMC192324 DOI: 10.1128/jvi.71.11.8602-8614.1997] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) immediate-early (IE) protein ICP0 has been implicated in the regulation of viral gene expression and the reactivation of latent HSV-1. Evidence demonstrates that ICP0 is an activator of viral gene expression yet does not distinguish between a direct or indirect role in this process. To further our understanding of the function of ICP0 in the context of the virus life cycle, site-directed mutagenesis of the consensus C3HC4 zinc finger domain was performed, and the effects of these mutations on the growth and replication of HSV-1 were assessed. We demonstrate that alteration of any of the consensus C3HC4 cysteine or histidine residues within this domain abolishes ICP0-mediated transactivation, alters the intranuclear localization of ICP0, and significantly increases its stability. These mutations result in severe defects in the growth and DNA replication of recombinant herpesviruses and in their ability to initiate lytic infections at low multiplicities of infection. These viruses, at low multiplicities of infection, synthesize wild-type levels of the IE proteins ICP0 and ICP4 at early times postinfection yet exhibit significant decreases in the synthesis of the essential IE protein ICP27. These findings reveal a role for ICP0 in the expression of ICP27 and suggest that the multiplicity-dependent growth of alpha0 mutant viruses results partially from reduced levels of ICP27.
Collapse
Affiliation(s)
- E K Lium
- Integrated Program in Cellular, Molecular and Biophysical Studies, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
25
|
Abstract
Analysis of the amino acid sequence encoded by the familial breast and ovarian cancer susceptibility gene, BRCA1 [Miki et al. (1994) Science 266, 66-71], revealed the presence of an amino-terminal RING finger domain, a zinc binding motif found in a variety of proteins. Previously determined structures of two RING finger peptides from other proteins revealed that each RING finger sequence forms a single domain that includes two interleaved metal binding sites. One is a four-cysteine site comprised of metal binding residues 1, 2, 5, and 6 (in terms of position along the amino acid sequence) (site 1) and the other is a three-cysteine, one-histidine site involving metal binding residues 3, 4, 7, and 8 (site 2). We have characterized the metal binding and metal-dependent folding properties of peptides encompassing the BRCA1 RING finger. Using cobalt(II) as a spectroscopic probe, we have found that metal binding is sequential, with site 1 becoming nearly fully occupied prior to metal binding to site 2. More detailed thermodynamic analysis as well as studies of a variant peptide revealed that metal binding appears to be anticooperative with dissociation constants of 3 x 10(-8) M for site 1, 5 x 10(-7) M for site 2 with site 1 unoccupied, and 8 x 10(-6) M for site 2 when site 1 is occupied. Circular dichroism spectroscopic studies revealed that the BRCA1 RING finger peptide is somewhat structured at pH 7 in the absence of metal ions, with further structural changes occurring after the metal binding.
Collapse
Affiliation(s)
- P C Roehm
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
26
|
Senkevich TG, Bugert JJ, Sisler JR, Koonin EV, Darai G, Moss B. Genome sequence of a human tumorigenic poxvirus: prediction of specific host response-evasion genes. Science 1996; 273:813-6. [PMID: 8670425 DOI: 10.1126/science.273.5276.813] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Molluscum contagiosum virus (MCV) commonly causes asymptomatic cutaneous neoplasms in children and sexually active adults as well as persistent opportunistic acquired immunodeficiency syndrome (AIDS)-associated disease. Sequencing the 190-kilobase pair genome of MCV has now revealed that the virus potentially encodes 163 proteins, of which 103 have homologs in the smallpox virus. MCV lacks counterparts to 83 genes of the smallpox virus, including those important in suppression of host responses to infection, nucleotide biosynthesis, and cell proliferation. MCV possesses 59 genes that are predicted to encode previously uncharacterized proteins, including major histocompatibility complex class I, chemokine, and glutathione peroxidase homologs, which suggests that there are MCV-specific strategies for coexistence with the human host.
Collapse
Affiliation(s)
- T G Senkevich
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0455, USA
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Shchelkunov SN, Totmenin AV, Sandakhchiev LS. Analysis of the nucleotide sequence of 23.8 kbp from the left terminus of the genome of variola major virus strain India-1967. Virus Res 1996; 40:169-83. [PMID: 8725113 DOI: 10.1016/0168-1702(95)01269-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sequencing and computer analysis of the nucleotide sequence of variola major virus strain India-1967 (VAR-IND) DNA segment (23 786 bp) covering the left variable region of the viral genome has been carried out. Twenty-nine potential open reading frames were identified. Structure-function organization of the VAR-IND DNA segment was compared with previously reported sequences from analogous genome regions of vaccinia virus strains Copenhagen (VAC-COP) and Western Reserve (VAC-WR). Multiple structural differences between the VAR-IND and genome regions were analysed and both VAC-COP and VAC-WR have been found. Possible molecular factors of virulence, virus host range genes as well as differences revealed in the structure of these genes of VAR and VAC will be discussed.
Collapse
Affiliation(s)
- S N Shchelkunov
- Institute of Molecular Biology, State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk region, Russia
| | | | | |
Collapse
|
29
|
Senkevich TG, Wolffe EJ, Buller RM. Ectromelia virus RING finger protein is localized in virus factories and is required for virus replication in macrophages. J Virol 1995; 69:4103-11. [PMID: 7769668 PMCID: PMC189145 DOI: 10.1128/jvi.69.7.4103-4111.1995] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously described a gene of ectromelia virus (EV) that codes for a 28-kDa RING zinc finger-containing protein (p28) that is nonessential for virus growth in cell culture but is critical for EV pathogenicity in mice (T. G. Senkevich, E. V. Koonin, and R. M. L. Buller, Virology 198:118-128; 1994). Here, we show that, unlike all tested cell cultures, the expression of p28 is required for in vitro replication of EV in murine resident peritoneal macrophages. In macrophages infected with the p28- mutant, viral DNA replication was not detected, whereas the synthesis of at least two early proteins was observed. Immunofluorescence and biochemical analyses showed that in EV-infected macrophages or BSC-1 cells, p28 is associated with virus factories. By use of a vaccinia virus expression system to examine different truncated versions of p28, it was shown that the disruption of the specific structure of the RING domain had no influence on the intracellular localization of this protein. When viral DNA replication was inhibited with cytosine arabinoside, p28 was found in distinct, focal structures that may be precursors to the factories. We hypothesize that in macrophages, which are highly specialized, nondividing cells, p28 substitutes for an unknown cellular factor(s) that may be required for viral DNA replication or a stage of virus reproduction between the expression of early genes and the onset of DNA synthesis. In the absence of p28, the attenuation of EV pathogenicity can be explained by a failure of the virus to replicate in macrophage lineage cells at all successive steps in the spread of virus from the skin to its target organ, the liver.
Collapse
Affiliation(s)
- T G Senkevich
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
30
|
Abstract
Comparison of the genomic organization of variola and vaccinia viruses has been carried out. Molecular factors of virulence of these viruses is the focus of this review. Possible roles of the genes of soluble cytokine receptors, complement control proteins, factors of virus replication, and dissemination in vivo for variola virus pathogenesis are discussed. The existence of "buffer" genes in the vaccinia virus genome is proposed.
Collapse
Affiliation(s)
- S N Shchelkunov
- Institute of Molecular Biology, State Research Center of Virology and Biotechnology, Vector, Koltsovo, Russia
| |
Collapse
|
31
|
Mears WE, Lam V, Rice SA. Identification of nuclear and nucleolar localization signals in the herpes simplex virus regulatory protein ICP27. J Virol 1995; 69:935-47. [PMID: 7529337 PMCID: PMC188662 DOI: 10.1128/jvi.69.2.935-947.1995] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Previous work has shown that the herpes simplex virus type 1 (HSV-1) regulatory protein ICP27 localizes to the cell nucleus and that certain mutant ICP27 polypeptides localize preferentially in nucleoli. To map the signals in ICP27 which mediate its nuclear localization, we identified the portions of ICP27 which can direct a cytoplasmic protein, pyruvate kinase (PK), to nuclei. Our results demonstrate that ICP27 contains multiple nuclear localization signals (NLSs) that function with differing efficiencies. First, ICP27 possesses a strong NLS, mapping to residues 110 to 137, which bears similarity to the bipartite NLSs found in Xenopus laevis nucleoplasmin and other proteins. Second, ICP27 possesses one or more weak NLSs which map to a carboxyl-terminal portion of the protein between residues 140 and 512. Our PK-targeting experiments also demonstrate that ICP27 contains a relatively short sequence, mapping to residues 110 to 152, that can function as a nucleolar localization signal (NuLS). This signal includes ICP27's strong NLS as well as 15 contiguous residues which consist entirely of arginine and glycine. This latter sequence is very similar to an RGG box, a putative RNA-binding motif found in a number of cellular proteins which are involved in nuclear RNA processing. To confirm the results of the PK-targeting experiments, we mutated the ICP27 gene by deleting sequences encoding either the strong NLS or the RGG box. Deletion of the strong NLS (residues 109 to 138) resulted in an ICP27 molecule that was only partially defective for nuclear localization, while deletion of the RGG box (residues 139 to 153) resulted in a molecule that was nuclear localized but excluded from nucleoli. Recombinant HSV-1s bearing either of these deletions were unable to replicate efficiently in Vero cells, suggesting that ICP27's strong NLS and RGG box carry out important in vivo functions.
Collapse
Affiliation(s)
- W E Mears
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|