1
|
Wang N, Chen W, Zhu L, Zhu D, Feng R, Wang J, Zhu B, Zhang X, Chen X, Liu X, Yan R, Ni D, Zhou GG, Liu H, Rao Z, Wang X. Structures of the portal vertex reveal essential protein-protein interactions for Herpesvirus assembly and maturation. Protein Cell 2020; 11:366-373. [PMID: 32285350 PMCID: PMC7196605 DOI: 10.1007/s13238-020-00711-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Nan Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenyuan Chen
- Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Ling Zhu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongjie Zhu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rui Feng
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jialing Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Zhu
- Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Xinzheng Zhang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoqing Chen
- ImmVira Co., Ltd, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen, 518116, China
| | - Xianjie Liu
- ImmVira Co., Ltd, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen, 518116, China
| | - Runbin Yan
- ImmVira Co., Ltd, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen, 518116, China
| | - Dongyao Ni
- ImmVira Co., Ltd, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen, 518116, China
| | - Grace Guoying Zhou
- ImmVira Co., Ltd, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen, 518116, China
| | - Hongrong Liu
- Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China.
| | - Zihe Rao
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Laboratory of Structural Biology, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, China.
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Translation of the long-term fundamental studies on viral DNA packaging motors into nanotechnology and nanomedicine. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1103-1129. [DOI: 10.1007/s11427-020-1752-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
|
3
|
Dedeo CL, Cingolani G, Teschke CM. Portal Protein: The Orchestrator of Capsid Assembly for the dsDNA Tailed Bacteriophages and Herpesviruses. Annu Rev Virol 2019; 6:141-160. [PMID: 31337287 PMCID: PMC6947915 DOI: 10.1146/annurev-virology-092818-015819] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tailed, double-stranded DNA bacteriophages provide a well-characterized model system for the study of viral assembly, especially for herpesviruses and adenoviruses. A wealth of genetic, structural, and biochemical work has allowed for the development of assembly models and an understanding of the DNA packaging process. The portal complex is an essential player in all aspects of bacteriophage and herpesvirus assembly. Despite having low sequence similarity, portal structures across bacteriophages share the portal fold and maintain a conserved function. Due to their dynamic role, portal proteins are surprisingly plastic, and their conformations change for each stage of assembly. Because the maturation process is dependent on the portal protein, researchers have been working to validate this protein as a potential antiviral drug target. Here we review recent work on the role of portal complexes in capsid assembly, including DNA packaging, as well as portal ring assembly and incorporation and analysis of portal structures.
Collapse
Affiliation(s)
- Corynne L Dedeo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA;
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA;
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
4
|
Whitehead RD, Teschke CM, Alexandrescu AT. NMR Mapping of Disordered Segments from a Viral Scaffolding Protein Enclosed in a 23 MDa Procapsid. Biophys J 2019; 117:1387-1392. [PMID: 31585705 DOI: 10.1016/j.bpj.2019.08.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 01/10/2023] Open
Abstract
Scaffolding proteins (SPs) are required for the capsid shell assembly of many tailed double-stranded DNA bacteriophages, some archaeal viruses, herpesviruses, and adenoviruses. Despite their importance, only one high-resolution structure is available for SPs within procapsids. Here, we use the inherent size limit of NMR to identify mobile segments of the 303-residue phage P22 SP free in solution and when incorporated into a ∼23 MDa procapsid complex. Free SP gives NMR signals from its acidic N-terminus (residues 1-40) and basic C-terminus (residues 264-303), whereas NMR signals from the middle segment (residues 41-263) are missing because of intermediate conformational exchange on the NMR chemical shift timescale. When SP is incorporated into P22 procapsids, NMR signals from the C-terminal helix-turn-helix domain disappear because of binding to the procapsid interior. Signals from the N-terminal domain persist, indicating that this segment retains flexibility when bound to procapsids. The unstructured character of the N-terminus, coupled with its high content of negative charges, is likely important for dissociation and release of SP during the double-stranded DNA genome packaging step accompanying phage maturation.
Collapse
Affiliation(s)
- Richard D Whitehead
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut; Department of Chemistry, University of Connecticut, Storrs, Connecticut.
| | - Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut.
| |
Collapse
|
5
|
Architect of Virus Assembly: the Portal Protein Nucleates Procapsid Assembly in Bacteriophage P22. J Virol 2019; 93:JVI.00187-19. [PMID: 30787152 DOI: 10.1128/jvi.00187-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022] Open
Abstract
Tailed double-stranded DNA (dsDNA) bacteriophages, herpesviruses, and adenoviruses package their genetic material into a precursor capsid through a dodecameric ring complex called the portal protein, which is located at a unique 5-fold vertex. In several phages and viruses, including T4, Φ29, and herpes simplex virus 1 (HSV-1), the portal forms a nucleation complex with scaffolding proteins (SPs) to initiate procapsid (PC) assembly, thereby ensuring incorporation of only one portal ring per capsid. However, for bacteriophage P22, the role of its portal protein in initiation of procapsid assembly is unclear. We have developed an in vitro P22 assembly assay where portal protein is coassembled into procapsid-like particles (PLPs). Scaffolding protein also catalyzes oligomerization of monomeric portal protein into dodecameric rings, possibly forming a scaffolding protein-portal protein nucleation complex that results in one portal ring per P22 procapsid. Here, we present evidence substantiating that the P22 portal protein, similarly to those of other dsDNA viruses, can act as an assembly nucleator. The presence of the P22 portal protein is shown to increase the rate of particle assembly and contribute to proper morphology of the assembled particles. Our results highlight a key function of portal protein as an assembly initiator, a feature that is likely conserved among these classes of dsDNA viruses.IMPORTANCE The existence of a single portal ring is essential to the formation of infectious virions in the tailed double-stranded DNA (dsDNA) phages, herpesviruses, and adenoviruses and, as such, is a viable antiviral therapeutic target. How only one portal is selectively incorporated at a unique vertex is unclear. In many dsDNA viruses and phages, the portal protein acts as an assembly nucleator. However, early work on phage P22 assembly in vivo indicated that the portal protein did not function as a nucleator for procapsid (PC) assembly, leading to the suggestion that P22 uses a unique mechanism for portal incorporation. Here, we show that portal protein nucleates assembly of P22 procapsid-like particles (PLPs). Addition of portal rings to an assembly reaction increases the rate of formation and yield of particles and corrects improper particle morphology. Our data suggest that procapsid assembly may universally initiate with a nucleation complex composed minimally of portal and scaffolding proteins (SPs).
Collapse
|
6
|
Schwarz B, Uchida M, Douglas T. Biomedical and Catalytic Opportunities of Virus-Like Particles in Nanotechnology. Adv Virus Res 2016; 97:1-60. [PMID: 28057256 DOI: 10.1016/bs.aivir.2016.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Within biology, molecules are arranged in hierarchical structures that coordinate and control the many processes that allow for complex organisms to exist. Proteins and other functional macromolecules are often studied outside their natural nanostructural context because it remains difficult to create controlled arrangements of proteins at this size scale. Viruses are elegantly simple nanosystems that exist at the interface of living organisms and nonliving biological machines. Studied and viewed primarily as pathogens to be combatted, viruses have emerged as models of structural efficiency at the nanoscale and have spurred the development of biomimetic nanoparticle systems. Virus-like particles (VLPs) are noninfectious protein cages derived from viruses or other cage-forming systems. VLPs provide incredibly regular scaffolds for building at the nanoscale. Composed of self-assembling protein subunits, VLPs provide both a model for studying materials' assembly at the nanoscale and useful building blocks for materials design. The robustness and degree of understanding of many VLP structures allow for the ready use of these systems as versatile nanoparticle platforms for the conjugation of active molecules or as scaffolds for the structural organization of chemical processes. Lastly the prevalence of viruses in all domains of life has led to unique activities of VLPs in biological systems most notably the immune system. Here we discuss recent efforts to apply VLPs in a wide variety of applications with the aim of highlighting how the common structural elements of VLPs have led to their emergence as paradigms for the understanding and design of biological nanomaterials.
Collapse
Affiliation(s)
- B Schwarz
- Indiana University, Bloomington, IN, United States
| | - M Uchida
- Indiana University, Bloomington, IN, United States
| | - T Douglas
- Indiana University, Bloomington, IN, United States.
| |
Collapse
|
7
|
Pi F, Zhao Z, Chelikani V, Yoder K, Kvaratskhelia M, Guo P. Development of Potent Antiviral Drugs Inspired by Viral Hexameric DNA-Packaging Motors with Revolving Mechanism. J Virol 2016; 90:8036-46. [PMID: 27356896 PMCID: PMC5008075 DOI: 10.1128/jvi.00508-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular parasitic nature of viruses and the emergence of antiviral drug resistance necessitate the development of new potent antiviral drugs. Recently, a method for developing potent inhibitory drugs by targeting biological machines with high stoichiometry and a sequential-action mechanism was described. Inspired by this finding, we reviewed the development of antiviral drugs targeting viral DNA-packaging motors. Inhibiting multisubunit targets with sequential actions resembles breaking one bulb in a series of Christmas lights, which turns off the entire string. Indeed, studies on viral DNA packaging might lead to the development of new antiviral drugs. Recent elucidation of the mechanism of the viral double-stranded DNA (dsDNA)-packaging motor with sequential one-way revolving motion will promote the development of potent antiviral drugs with high specificity and efficiency. Traditionally, biomotors have been classified into two categories: linear and rotation motors. Recently discovered was a third type of biomotor, including the viral DNA-packaging motor, beside the bacterial DNA translocases, that uses a revolving mechanism without rotation. By analogy, rotation resembles the Earth's rotation on its own axis, while revolving resembles the Earth's revolving around the Sun (see animations at http://rnanano.osu.edu/movie.html). Herein, we review the structures of viral dsDNA-packaging motors, the stoichiometries of motor components, and the motion mechanisms of the motors. All viral dsDNA-packaging motors, including those of dsDNA/dsRNA bacteriophages, adenoviruses, poxviruses, herpesviruses, mimiviruses, megaviruses, pandoraviruses, and pithoviruses, contain a high-stoichiometry machine composed of multiple components that work cooperatively and sequentially. Thus, it is an ideal target for potent drug development based on the power function of the stoichiometries of target complexes that work sequentially.
Collapse
Affiliation(s)
- Fengmei Pi
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Zhengyi Zhao
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Venkata Chelikani
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Kristine Yoder
- Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mamuka Kvaratskhelia
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Peixuan Guo
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Shu D, Pi F, Wang C, Zhang P, Guo P. New approach to develop ultra-high inhibitory drug using the power function of the stoichiometry of the targeted nanomachine or biocomplex. Nanomedicine (Lond) 2016; 10:1881-97. [PMID: 26139124 DOI: 10.2217/nnm.15.37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS To find methods for potent drug development by targeting to biocomplex with high copy number. METHODS Phi29 DNA packaging motor components with different stoichiometries were used as model to assay virion assembly with Yang Hui's Triangle [Formula: see text], where Z = stoichiometry, M = drugged subunits per biocomplex, p and q are the fraction of drugged and undrugged subunits in the population. RESULTS Inhibition efficiency follows a power function. When number of drugged subunits to block the function of the complex K = 1, the uninhibited biocomplex equals q(z), demonstrating the multiplicative effect of stoichiometry on inhibition with stoichiometry 1000 > 6 > 1. Complete inhibition of virus replication was found when Z = 6. CONCLUSION Drug inhibition potency depends on the stoichiometry of the targeted components of the biocomplex or nanomachine. The inhibition effect follows a power function of the stoichiometry of the target biocomplex.
Collapse
Affiliation(s)
- Dan Shu
- Department of Pharmaceutical Sciences, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Fengmei Pi
- Department of Pharmaceutical Sciences, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Department of Biostatistics & Nanobiotechnology Center, University of Kentucky, Lexington, KY 40536, USA
| | - Peng Zhang
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Peixuan Guo
- Department of Pharmaceutical Sciences, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
9
|
Pi F, Vieweger M, Zhao Z, Wang S, Guo P. Discovery of a new method for potent drug development using power function of stoichiometry of homomeric biocomplexes or biological nanomotors. Expert Opin Drug Deliv 2015; 13:23-36. [PMID: 26307193 DOI: 10.1517/17425247.2015.1082544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Multidrug resistance and the appearance of incurable diseases inspire the quest for potent therapeutics. AREAS COVERED We review a new methodology in designing potent drugs by targeting multi-subunit homomeric biological motors, machines or complexes with Z > 1 and K = 1, where Z is the stoichiometry of the target, and K is the number of drugged subunits required to block the function of the complex. The condition is similar to a series electrical circuit of Christmas decorations: failure of one light bulb causes the entire lighting system to lose power. In most multi-subunit, homomeric biological systems, a sequential coordination or cooperative action mechanism is utilized, thus K equals 1. Drug inhibition depends on the ratio of drugged to non-drugged complexes. When K = 1, and Z > 1, the inhibition effect follows a power law with respect to Z, leading to enhanced drug potency. The hypothesis that the potency of drug inhibition depends on the stoichiometry of the targeted biological complexes was recently quantified by Yang-Hui's Triangle (or binomial distribution), and proved using a highly sensitive in vitro phi29 viral DNA packaging system. Examples of targeting homomeric bio-complexes with high stoichiometry for potent drug discovery are discussed. EXPERT OPINION Biomotors with multiple subunits are widespread in viruses, bacteria and cells, making this approach generally applicable in the development of inhibition drugs with high efficiency.
Collapse
Affiliation(s)
- Fengmei Pi
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| | - Mario Vieweger
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| | - Zhengyi Zhao
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| | - Shaoying Wang
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| | - Peixuan Guo
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| |
Collapse
|
10
|
Geng J, Wang S, Fang H, Guo P. Channel size conversion of Phi29 DNA-packaging nanomotor for discrimination of single- and double-stranded nucleic acids. ACS NANO 2013; 7:3315-23. [PMID: 23488809 PMCID: PMC3663147 DOI: 10.1021/nn400020z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanopores have been utilized to detect the conformation and dynamics of polymers, including DNA and RNA. Biological pores are extremely reproducible at the atomic level with uniform channel sizes. The channel of the bacterial virus phi29 DNA-packaging motor is a natural conduit for the transportation of double-stranded DNA (dsDNA) and has the largest diameter among the well-studied biological channels. The larger channel facilitates translocation of dsDNA and offers more space for further channel modification and conjugation. Interestingly, the relatively large wild-type channel, which translocates dsDNA, cannot detect single-stranded nucleic acids (ssDNA or ssRNA) under the current experimental conditions. Herein, we reengineered this motor channel by removing the internal loop segment of the channel. The modification resulted in two classes of channels. One class was the same size as the wild-type channel, while the other class had a cross-sectional area about 60% of the wild-type. This smaller channel was able to detect the real-time translocation of single-stranded nucleic acids at single-molecule level. While the wild-type connector exhibited a one-way traffic property with respect to dsDNA translocation, the loop-deleted connector was able to translocate ssDNA and ssRNA with equal competencies from both termini. This finding of size alterations in reengineered motor channels expands the potential application of the phi29 DNA-packaging motor in nanomedicine, nanobiotechnology, and high-throughput single-pore DNA sequencing.
Collapse
Affiliation(s)
- Jia Geng
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | - Shaoying Wang
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | - Huaming Fang
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | - Peixuan Guo
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536, USA
- Address correspondence to: Peixuan Guo, University of Kentucky, Department of Pharmaceutical Sciences, 789 S. Limestone Avenue, Room # 565, Lexington, KY, USA 40536-0596, , Phone:859-218-0128, Fax:859-257-1307
| |
Collapse
|
11
|
Haque F, Li J, Wu HC, Liang XJ, Guo P. Solid-State and Biological Nanopore for Real-Time Sensing of Single Chemical and Sequencing of DNA. NANO TODAY 2013; 8:56-74. [PMID: 23504223 PMCID: PMC3596169 DOI: 10.1016/j.nantod.2012.12.008] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sensitivity and specificity are two most important factors to take into account for molecule sensing, chemical detection and disease diagnosis. A perfect sensitivity is to reach the level where a single molecule can be detected. An ideal specificity is to reach the level where the substance can be detected in the presence of many contaminants. The rapidly progressing nanopore technology is approaching this threshold. A wide assortment of biomotors and cellular pores in living organisms perform diverse biological functions. The elegant design of these transportation machineries has inspired the development of single molecule detection based on modulations of the individual current blockage events. The dynamic growth of nanotechnology and nanobiotechnology has stimulated rapid advances in the study of nanopore based instrumentation over the last decade, and inspired great interest in sensing of single molecules including ions, nucleotides, enantiomers, drugs, and polymers such as PEG, RNA, DNA, and polypeptides. This sensing technology has been extended to medical diagnostics and third generation high throughput DNA sequencing. This review covers current nanopore detection platforms including both biological pores and solid state counterparts. Several biological nanopores have been studied over the years, but this review will focus on the three best characterized systems including α-hemolysin and MspA, both containing a smaller channel for the detection of single-strand DNA, as well as bacteriophage phi29 DNA packaging motor connector that contains a larger channel for the passing of double stranded DNA. The advantage and disadvantage of each system are compared; their current and potential applications in nanomedicine, biotechnology, and nanotechnology are discussed.
Collapse
Affiliation(s)
- Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Jinghong Li
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Beijing 100084, China
| | - Hai-Chen Wu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Jie Liang
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
12
|
Incorporation of a viral DNA-packaging motor channel in lipid bilayers for real-time, single-molecule sensing of chemicals and double-stranded DNA. Nat Protoc 2013; 8:373-92. [PMID: 23348364 DOI: 10.1038/nprot.2013.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the past decade, nanopores have rapidly emerged as stochastic biosensors. This protocol describes the cloning, expression and purification of the channel of the bacteriophage phi29 DNA-packaging nanomotor and its subsequent incorporation into lipid membranes for single-pore sensing of double-stranded DNA (dsDNA) and chemicals. The membrane-embedded phi29 nanochannel remains functional and structurally intact under a range of conditions. When ions and macromolecules translocate through this nanochannel, reliable fingerprint changes in conductance are observed. Compared with other well-studied biological pores, the phi29 nanochannel has a larger cross-sectional area, which enables the translocation of dsDNA. Furthermore, specific amino acids can be introduced by site-directed mutagenesis within the large cavity of the channel to conjugate receptors that are able to bind specific ligands or analytes for desired applications. The lipid membrane-embedded nanochannel system has immense potential nanotechnological and biomedical applications in bioreactors, environmental sensing, drug monitoring, controlled drug delivery, early disease diagnosis and high-throughput DNA sequencing. The total time required for completing one round of this protocol is around 1 month.
Collapse
|
13
|
Zhang H, Schwartz C, De Donatis GM, Guo P. "Push through one-way valve" mechanism of viral DNA packaging. Adv Virus Res 2012; 83:415-65. [PMID: 22748815 DOI: 10.1016/b978-0-12-394438-2.00009-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Double-stranded (ds)DNA viruses package their genomic DNA into a procapsid using a force-generating nanomotor powered by ATP hydrolysis. Viral DNA packaging motors are mainly composed of the connector channel and two DNA packaging enzymes. In 1998, it was proposed that viral DNA packaging motors exercise a mechanism similar to the action of AAA+ ATPases that assemble into ring-shaped oligomers, often hexamers, with a central channel (Guo et al. Molecular Cell, 2:149). This chapter focuses on the most recent findings in the bacteriophage ϕ29 DNA packaging nanomotor to address this intriguing notion. Almost all dsDNA viruses are composed entirely of protein, but in the unique case of ϕ29, packaging RNA (pRNA) plays an intermediate role in the packaging process. Evidence revealed that DNA packaging is accomplished via a "push through one-way valve" mechanism. The ATPase gp16 pushes dsDNA through the connector channel section by section into the procapsid. The dodecameric connector channel functions as a one-way valve that only allows dsDNA to enter but not exit the procapsid during DNA packaging. Although the roles of the ATPase gp16 and the motor connector channel are separate and independent, pRNA bridges these two components to ensure the coordination of an integrated motor. ATP induces a conformational change in gp16, leading to its stronger binding to dsDNA. Furthermore, ATP hydrolysis led to the departure of dsDNA from the ATPase/dsDNA complex, an action used to push dsDNA through the connector channel. It was found unexpectedly that by mutating the basic lysine rings of the connector channel or by changing the pH did not measurably impair DNA translocation or affect the one-way traffic property of the channel, suggesting that the positive charges in the lysine ring are not essential in gearing the dsDNA. The motor channel exercises three discrete, reversible, and controllable steps of gating, with each step altering the channel size by 31% to control the direction of translocation of dsDNA. Many DNA packaging models have been contingent upon the number of base pairs packaged per ATP relative to helical turns for B-type DNA. Both 2 and 2.5 bp per ATP have been used to argue for four, five, or six discrete steps of DNA translocation. The "push through one-way valve" mechanism renews the perception of dsDNA packaging energy calculations and provides insight into the discrepancy between 2 and 2.5 bp per ATP. Application of the DNA packaging motor in nanotechnology and nanomedicine is also addressed. Comparison with nine other DNA packaging models revealed that the "push through one-way valve" is the most agreeable mechanism to interpret most of the findings that led to historical models. The application of viral DNA packaging motors is also discussed.
Collapse
Affiliation(s)
- Hui Zhang
- Nanobiotechnology Center, Department of Pharmaceutical Sciences, and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|
14
|
Ye X, Hemida M, Zhang HM, Hanson P, Ye Q, Yang D. Current advances in Phi29 pRNA biology and its application in drug delivery. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:469-81. [PMID: 22362726 DOI: 10.1002/wrna.1111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bacteriophage 29 (Phi29) packaging RNA (pRNA) is one of the key components in the viral DNA-packaging motor. It contains two functional domains facilitating the translocation of DNA into the viral capsid by interacting with other elements in the motor and promoting adenosine triphosphates hydrolysis. Through the connection between interlocking loops in adjacent pRNA monomers, pRNA functions in the form of multimer ring in the motor. Previous studies have addressed the unique structure and conformation of pRNA. However, there are different DNA-packaging models proposed for the viral genome transportation mechanism. The DNA-packaging ability and the unique features of pRNA have been attracting efforts to study its potential applications in nanotechnology. The pRNA has been proved to be a promising tool for delivering nucleic acid-based therapeutic molecules by covalent linkage with ribozymes, small interfering RNAs, aptamers, and artificial microRNAs. The flexibility in constructing dimers, trimers, and hexamers enables the assembly of polyvalent nanoparticles to carry drug molecules for therapeutic purposes, cell ligands for target delivery, image detector for drug entry monitoring, and endosome disrupter for drug release. Besides these fascinating pharmacological advantages, pRNA-based drug delivery has also been demonstrated to prolong the drug half life with minimal induction of immune response and toxicity.
Collapse
Affiliation(s)
- Xin Ye
- The Institute for Heart and Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Role of channel lysines and the "push through a one-way valve" mechanism of the viral DNA packaging motor. Biophys J 2012; 102:127-35. [PMID: 22225806 PMCID: PMC3250684 DOI: 10.1016/j.bpj.2011.11.4013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/27/2011] [Accepted: 11/14/2011] [Indexed: 11/22/2022] Open
Abstract
Linear double-stranded DNA (dsDNA) viruses package their genomes into preformed protein shells via nanomotors using ATP as an energy source. The central hub of the bacteriophage φ29 DNA-packaging motor contains a 3.6-nm channel for dsDNA to enter during packaging and to exit during infection. The negatively charged interior channel wall is decorated with a total of 48 positively charged lysine residues displayed as four 12-lysine rings from the 12 gp10 subunits that enclose the channel. The standard notion derived from many models is that these uniquely arranged, positively charged rings play active roles in DNA translocation through the channel. In this study, we tested this prevailing view by examining the effect of mutating these basic lysines to alanines, and assessing the impact of altering the pH environment. Unexpectedly, mutating these basic lysine residues or changing the pH to 4 or 10, which could alter the charge of lysines, did not measurably impair DNA translocation or affect the one-way traffic property of the channel. The results support our recent findings regarding the dsDNA packaging mechanism known as the "push through a one-way valve".
Collapse
|
16
|
Häuser R, Blasche S, Dokland T, Haggård-Ljungquist E, von Brunn A, Salas M, Casjens S, Molineux I, Uetz P. Bacteriophage protein-protein interactions. Adv Virus Res 2012; 83:219-98. [PMID: 22748812 PMCID: PMC3461333 DOI: 10.1016/b978-0-12-394438-2.00006-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology.
Collapse
Affiliation(s)
- Roman Häuser
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sonja Blasche
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Albrecht von Brunn
- Max-von-Pettenkofer-Institut, Lehrstuhl Virologie, Ludwig-Maximilians-Universität, München, Germany
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Sherwood Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ian Molineux
- Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas–Austin, Austin, Texas, USA
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
17
|
Medina EM, Andrews BT, Nakatani E, Catalano CE. The bacteriophage lambda gpNu3 scaffolding protein is an intrinsically disordered and biologically functional procapsid assembly catalyst. J Mol Biol 2011; 412:723-36. [PMID: 21821043 PMCID: PMC3247018 DOI: 10.1016/j.jmb.2011.07.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/19/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
Abstract
Procapsid assembly is a process whereby hundreds of copies of a major capsid protein assemble into an icosahedral protein shell into which the viral genome is packaged. The essential features of procapsid assembly are conserved in both eukaryotic and prokaryotic complex double-stranded DNA viruses. Typically, a portal protein nucleates the co-polymerization of an internal scaffolding protein and the major capsid protein into an icosahedral capsid shell. The scaffolding proteins are essential to procapsid assembly. Here, we describe the solution-based biophysical and functional characterization of the bacteriophage lambda (λ) scaffolding protein gpNu3. The purified protein possesses significant α-helical structure and appears to be partially disordered. Thermally induced denaturation studies indicate that secondary structures are lost in a cooperative, apparent two-state transition (T(m)=40.6±0.3 °C) and that unfolding is, at least in part, reversible. Analysis of the purified protein by size-exclusion chromatography suggests that gpNu3 is highly asymmetric, which contributes to an abnormally large Stokes radius. The size-exclusion chromatography data further indicate that the protein self-associates in a concentration-dependent manner. This was confirmed by analytical ultracentrifugation studies, which reveal a monomer-dimer equilibrium (K(d,app)~50 μM) and an asymmetric protein structure at biologically relevant concentrations. Purified gpNu3 promotes the polymerization of gpE, the λ major capsid protein, into virus-like particles that possess a native-like procapsid morphology. The relevance of this work with respect to procapsid assembly in the complex double-stranded DNA viruses is discussed.
Collapse
Affiliation(s)
| | | | - Eri Nakatani
- Department of Medicinal Chemistry, University of Washington, H172 Health Science Building, Seattle, WA 98195, USA
| | - Carlos Enrique Catalano
- Department of Medicinal Chemistry, University of Washington, H172 Health Science Building, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Abstract
Mass spectrometry analysis of Streptococcus pneumoniae bacteriophage Cp-1 identified a total of 12 proteins, and proteome-wide yeast two-hybrid screens revealed 17 binary interactions mainly among these structural proteins. On the basis of the resulting linkage map, we suggest an improved structural model of the Cp-1 virion.
Collapse
|
19
|
Liu J, Guo S, Cinier M, Shu Y, Chen C, Shen G, Guo P. Fabrication of stable and RNase-resistant RNA nanoparticles active in gearing the nanomotors for viral DNA packaging. ACS NANO 2011; 5:237-46. [PMID: 21155596 PMCID: PMC3026857 DOI: 10.1021/nn1024658] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Both DNA and RNA can serve as powerful building blocks for bottom-up fabrication of nanostructures. A pioneering concept proposed by Ned Seeman 30 years ago has led to an explosion of knowledge in DNA nanotechnology. RNA can be manipulated with simplicity characteristic of DNA, while possessing noncanonical base-pairing, versatile function, and catalytic activity similar to proteins. However, standing in awe of the sensitivity of RNA to RNase degradation has made many scientists flinch away from RNA nanotechnology. Here we report the construction of stable RNA nanoparticles resistant to RNase digestion. The 2'-F (2'-fluoro) RNA retained its property for correct folding in dimer formation, appropriate structure in procapsid binding, and biological activity in gearing the phi29 nanomotor to package viral DNA and producing infectious viral particles. Our results demonstrate that it is practical to produce RNase-resistant, biologically active, and stable RNA for application in nanotechnology.
Collapse
Affiliation(s)
- Jing Liu
- Department of Biomedical Engineering, College of Engineering & College of Medicine, University of Cincinnati, Cincinnati, OH 45267
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology
| | | | - Mathieu Cinier
- Department of Biomedical Engineering, College of Engineering & College of Medicine, University of Cincinnati, Cincinnati, OH 45267
| | - Yi Shu
- Department of Biomedical Engineering, College of Engineering & College of Medicine, University of Cincinnati, Cincinnati, OH 45267
| | - Chaoping Chen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Guanxin Shen
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology
| | - Peixuan Guo
- Department of Biomedical Engineering, College of Engineering & College of Medicine, University of Cincinnati, Cincinnati, OH 45267
- Address correspondence to: Peixuan Guo, 3125 Eden Ave. Rm#1436, Vontz Center for Molecular Studies, University of Cincinnati, Cincinnati, OH 45267, Phone: (513)558-0041, Fax: (513)558-6079,
| |
Collapse
|
20
|
Jing P, Haque F, Shu D, Montemagno C, Guo P. One-way traffic of a viral motor channel for double-stranded DNA translocation. NANO LETTERS 2010; 10:3620-7. [PMID: 20722407 PMCID: PMC2935672 DOI: 10.1021/nl101939e] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/23/2010] [Indexed: 05/20/2023]
Abstract
Linear double-stranded DNA (dsDNA) viruses package their genome into a procapsid using an ATP-driven nanomotor. Here we report that bacteriophage phi29 DNA packaging motor exercises a one-way traffic property for dsDNA translocation from N-terminal entrance to C-terminal exit with a valve mechanism in DNA packaging, as demonstrated by voltage ramping, electrode polarity switching, and sedimentation force assessment. Without the use of gating control as found in other biological channels, the observed single direction dsDNA transportation provides a novel system with a natural valve to control dsDNA loading and gene delivery in bioreactors, liposomes, or high throughput DNA sequencing apparatus.
Collapse
Affiliation(s)
| | | | | | | | - Peixuan Guo
- Address correspondence to: Peixuan Guo Vontz Center for Molecular Studies, ML#0508, 3125 Eden Avenue, Room 2308, University of Cincinnati Cincinnati, OH 45267. Phone: (513)558-0041. Fax: (513)558-0024. E-mail: ,
| |
Collapse
|
21
|
Fu CY, Prevelige PE. In vitro incorporation of the phage Phi29 connector complex. Virology 2009; 394:149-53. [PMID: 19744688 DOI: 10.1016/j.virol.2009.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/17/2009] [Accepted: 08/07/2009] [Indexed: 10/20/2022]
Abstract
The incorporation of the DNA packaging connector complex during lambdoid phage assembly in vivo is strictly controlled-one and only one of the twelve identical icosahedral vertices is differentiated by the inclusion of a portal or connector dodecamer. Proposed control mechanisms include obligate nucleation from a connector containing complex, addition of the connector as the final step during assembly, and a connector-mediated increase in the growth rate. The inability to recapitulate connector incorporation in vitro has made it difficult to obtain direct biochemical evidence in support of one model over another. Here we report the development an in vitro assembly system for the well characterized dsDNA phage Phi29 which results in the co-assembly of connector with capsid and scaffolding proteins to form procapsid-like particles (PLPs). Immuno-electron microscopy demonstrates the specific incorporation of connector vertex in PLPs. The connector protein increases both the yield and the rate of capsid assembly suggesting that the incorporation of the connector in Phi29 likely promotes nucleation of assembly.
Collapse
Affiliation(s)
- Chi-Yu Fu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
22
|
Construction of bacteriophage phi29 DNA packaging motor and its applications in nanotechnology and therapy. Ann Biomed Eng 2009; 37:2064-81. [PMID: 19495981 DOI: 10.1007/s10439-009-9723-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 05/20/2009] [Indexed: 01/16/2023]
Abstract
Nanobiotechnology involves the creation, characterization, and modification of organized nanomaterials to serve as building blocks for constructing nanoscale devices in technology and medicine. Living systems contain a wide variety of nanomachines and highly ordered structures of macromolecules. The novelty and ingenious design of the bacterial virus phi29 DNA packaging motor and its parts inspired the synthesis of this motor and its components as biomimetics. This 30-nm nanomotor uses six copies of an ATP-binding pRNA to gear the motor. The structural versatility of pRNA has been utilized to construct dimers, trimers, hexamers, and patterned superstructures via the interaction of two interlocking loops. The approach, based on bottom-up assembly, has also been applied to nanomachine fabrication, pathogen detection and the delivery of drugs, siRNA, ribozymes, and genes to specific cells in vitro and in vivo. Another essential component of the motor is the connector, which contains 12 copies of a protein gp10 to form a 3.6-nm central channel as a path for DNA. This article will review current studies of the structure and function of the phi29 DNA packaging motor, as well as the mechanism of motion, the principle of in vitro construction, and its potential nanotechnological and medical applications.
Collapse
|
23
|
Whateley TL. Literature Alerts. Drug Deliv 2008. [DOI: 10.3109/10717549609031381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Poh SL, el Khadali F, Berrier C, Lurz R, Melki R, Tavares P. Oligomerization of the SPP1 scaffolding protein. J Mol Biol 2008; 378:551-64. [PMID: 18377930 DOI: 10.1016/j.jmb.2008.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/11/2008] [Accepted: 02/12/2008] [Indexed: 11/29/2022]
Abstract
Viral scaffolding proteins direct polymerization of major capsid protein subunits into icosahedral procapsid structures. The scaffolding protein of bacteriophage SPP1 was engineered with a C-terminal hexahistidine tag (gp11-His(6)) and purified. The protein is an alpha-helical-rich molecule with a very elongated shape as found for internal scaffolding proteins from other phages. It is a 3.3 S tetramer of 93.6 kDa at micromolar concentrations. Intersubunit cross-linking of these tetramers generated preferentially covalently bound dimers, revealing that gp11-His(6) is structurally a dimer of dimers. Incubation at temperatures above 37 degrees C correlated with a reduction of its alpha-helical content and a less effective intersubunit cross-linking. Complete loss of secondary structure was observed at temperatures above 60 degrees C. Refolding of gp11-His(6) thermally denatured at 65 degrees C led to reacquisition of the protein native ellipticity spectrum but the resulting population of molecules was heterogeneous. Its hydrodynamic behavior was compatible with a mix of 3.3 S elongated tetramers (approximately 90%) and a smaller fraction of 2.4 S dimers (approximately 10%). This population of gp11-His(6) was competent to direct polymerization of the SPP1 major capsid protein gp13 into procapsid-like structures in a newly developed assembly assay in vitro. Although native tetramers were active in assembly, refolded gp11-His(6) showed enhanced binding to gp13 revealing a more active species for interaction with the major capsid protein than native gp11-His(6).
Collapse
Affiliation(s)
- Siew Lay Poh
- Unité de Virologie Moléculaire et Structurale, UMR CNRS 2472, UMR INRA 1157 and IFR 115, Bât. 14B, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
25
|
Fu CY, Morais MC, Battisti AJ, Rossmann MG, Prevelige PE. Molecular dissection of ø29 scaffolding protein function in an in vitro assembly system. J Mol Biol 2006; 366:1161-73. [PMID: 17198713 PMCID: PMC1851909 DOI: 10.1016/j.jmb.2006.11.091] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 11/29/2006] [Accepted: 11/30/2006] [Indexed: 11/21/2022]
Abstract
An in vitro assembly system was developed to study prolate capsid assembly of phage ø29 biochemically, and to identify regions of scaffolding protein required for its functions. The crowding agent polyethylene glycol can induce bacteriophage ø29 monomeric capsid protein and dimeric scaffolding protein to co-assemble to form particles which have the same geometry as either prolate T=3 Q=5 procapsids formed in vivo or previously observed isometric particles. The formation of particles is a scaffolding-dependent reaction. The balance between the fidelity and efficiency of assembly is controlled by the concentration of crowding agent and temperature. The assembly process is salt sensitive, suggesting that the interactions between the scaffolding and coat proteins are electrostatic. Three N-terminal ø29 scaffolding protein deletion mutants, Delta 1-9, Delta 1-15 and Delta 1-22, abolish the assembly activity. Circular dichroism spectra indicate that these N-terminal deletions are accompanied by a loss of helicity. The inability of these proteins to dimerize suggests that the N-terminal region of the scaffolding protein contributes to the dimer interface and maintains the structural integrity of the dimeric protein. Two C-terminal scaffolding protein deletion mutants, Delta 79-97 and Delta 62-97, also fail to promote assembly. However, the secondary structure and the dimerization ability of these mutants are unchanged relative to wild-type, which suggests that the C terminus is the likely site of interaction with the capsid protein.
Collapse
Affiliation(s)
- Chi-yu Fu
- Dept. of Biochemistry & Molecular Genetics, Univ. of Alabama at Birmingham, Alabama 35294, USA
| | - Marc C. Morais
- Dept. of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Anthony J. Battisti
- Dept. of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Michael G. Rossmann
- Dept. of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Peter E. Prevelige
- Dept. of Microbiology, Univ. of Alabama at Birmingham, Alabama 35294, USA
| |
Collapse
|
26
|
Fu CY, Prevelige PE. Dynamic motions of free and bound O29 scaffolding protein identified by hydrogen deuterium exchange mass spectrometry. Protein Sci 2006; 15:731-43. [PMID: 16522798 PMCID: PMC2242489 DOI: 10.1110/ps.051921606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the double-stranded DNA containing bacteriophages, hundreds of copies of capsid protein subunits polymerize to form icosahedral shells, called procapsids, into which the viral genome is subsequently packaged to form infectious virions. High assembly fidelity requires the assistance of scaffolding protein molecules, which interact with the capsid proteins to insure proper geometrical incorporation of subunits into the growing icosahedral lattices. The interactions between the scaffolding and capsid proteins are transient and are subsequently disrupted during DNA packaging. Removal of scaffolding protein is achieved either by proteolysis or alternatively by some form of conformational switch that allows it to dissociate from the capsid. To identify the switch controlling scaffolding protein association and release, hydrogen deuterium exchange was applied to Bacillus subtilis phage Ø29 scaffolding protein gp7 in both free and procapsid-bound forms. The H/D exchange experiments revealed highly dynamic and cooperative opening motions of scaffolding molecules in the N-terminal helix-loop-helix (H-L-H) region. The motions can be promoted by destabilizing the hydrophobic contact between two helices. At low temperature where high energy motions were damped, or in a mutant in which the helices were tethered through the introduction of a disulfide bond, this region displayed restricted cooperative opening motions as demonstrated by a switch in the exchange kinetics from correlated EX1 exchange to uncorrelated EX2 exchange. The cooperative opening rate was increased in the procapsid-bound form, suggesting this region might interact with the capsid protein. Its dynamic nature might play a role in the assembly and release mechanism.
Collapse
Affiliation(s)
- Chi-Yu Fu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 35294, USA
| | | |
Collapse
|
27
|
Wang S, Chang JR, Dokland T. Assembly of bacteriophage P2 and P4 procapsids with internal scaffolding protein. Virology 2006; 348:133-40. [PMID: 16457867 DOI: 10.1016/j.virol.2005.12.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 10/17/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
Assembly of the E. coli bacteriophage P2 into an icosahedral capsid with T = 7 symmetry is dependent on the gpN capsid protein, the gpQ connector protein and the gpO internal scaffolding protein. In the presence of the P4-encoded protein Sid, the same proteins are assembled into a smaller capsid with T = 4 symmetry. Although gpO has long been expected to act as an internal scaffolding protein, it has not been possible to produce P2 procapsids efficiently in vitro or in vivo due to a failure to express gpO at high levels. In this study, we find that full-length gpO undergoes proteolytic degradation within 1 h of induction of expression. However, a truncated version of gpO lacking the N-terminal 25 amino acids (Odelta25) is stably expressed at high levels and is able to direct the formation of P2 size procapsids. In the presence of Sid, Odelta25 is incorporated into P4 procapsids, showing that Sid overrides the effect of gpO on capsid size determination.
Collapse
Affiliation(s)
- Sifang Wang
- Department of Microbiology, University of Alabama at Birmingham, 845 19th St South, BBRB 311, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
28
|
Newcomb WW, Homa FL, Brown JC. Involvement of the portal at an early step in herpes simplex virus capsid assembly. J Virol 2005; 79:10540-6. [PMID: 16051846 PMCID: PMC1182615 DOI: 10.1128/jvi.79.16.10540-10546.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA enters the herpes simplex virus capsid by way of a ring-shaped structure called the portal. Each capsid contains a single portal, located at a unique capsid vertex, that is composed of 12 UL6 protein molecules. The position of the portal requires that capsid formation take place in such a way that a portal is incorporated into one of the 12 capsid vertices and excluded from all other locations, including the remaining 11 vertices. Since initiation or nucleation of capsid formation is a unique step in the overall assembly process, involvement of the portal in initiation has the potential to cause its incorporation into a unique vertex. In such a mode of assembly, the portal would need to be involved in initiation but not able to be inserted in subsequent assembly steps. We have used an in vitro capsid assembly system to test whether the portal is involved selectively in initiation. Portal incorporation was compared in capsids assembled from reactions in which (i) portals were present at the beginning of the assembly process and (ii) portals were added after assembly was under way. The results showed that portal-containing capsids were formed only if portals were present at the outset of assembly. A delay caused formation of capsids lacking portals. The findings indicate that if portals are present in reaction mixtures, a portal is incorporated during initiation or another early step in assembly. If no portals are present, assembly is initiated in another, possibly related, way that does not involve a portal.
Collapse
Affiliation(s)
- William W Newcomb
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
29
|
Badasso MO, Anderson DL. Crystallization and initial X-ray diffraction studies of scaffolding protein (gp7) of bacteriophage phi29. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:424-6. [PMID: 16511059 PMCID: PMC1952437 DOI: 10.1107/s1744309105008511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 03/16/2005] [Indexed: 05/06/2023]
Abstract
The Bacillus subtilis bacteriophage phi29 scaffolding protein (gp7) has been crystallized by the hanging-drop vapour-diffusion method at 293 K. Two new distinct crystal forms that both differed from a previously crystallized and solved scaffolding protein were grown under the same conditions. Form I belongs to the primitive tetragonal space group P4(1)2(1)2, with unit-cell parameters a = b = 77.13, c = 37.12 A. Form II crystals exhibit an orthorhombic crystal form, with space group C222 and unit-cell parameters a = 107.50, b = 107. 80, c = 37.34 A. Complete data sets have been collected to 1.78 and 1.80 A for forms I and II, respectively, at 100 K using Cu Kalpha X-rays from a rotating-anode generator. Calculation of a VM value of 2.46 A3 Da(-1) for form I suggests the presence of one molecule in the asymmetric unit, corresponding to a solvent content of 50.90%, whereas form II has a VM of 4.80 A3 Da(-1) with a solvent content of 48.76% and two molecules in the asymmetric unit. The structures of both crystal forms are being determined by the molecular-replacement method using the coordinates of the published crystal structure of gp7.
Collapse
Affiliation(s)
- Mohammed O Badasso
- Department of Oral Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
30
|
Affiliation(s)
- Bentley A Fane
- Department of Veterinary Sciences and Microbiology, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
31
|
Shu D, Huang L, Guo P. A simple mathematical formula for stoichiometry quantification of viral and nanobiological assemblage using slopes of log/log plot curves. J Virol Methods 2004; 115:19-30. [PMID: 14656457 DOI: 10.1016/j.jviromet.2003.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In nanotechnology, biomolecular assemblies serve not only as model systems for the construction of nanodevices, but they can also be used directly as templates for the formation of nanostructures. Biological nano-building blocks can either be isolated as complete functional units from living cells or viruses (biological "Top down" approach) or formed by biomolecular assembly from recombinant or synthetic components ("Bottom up" approach). In both cases, rational design of nanostructures requires knowledge of the stoichiometry of the biological structures, which frequently occur as multimers, i.e., the morphological complex is composed of multiple copies of one or more macromolecules. In this paper, a method is described for the stoichiometric quantification of molecules in bio-nanostructures. The method is based on using dilution factors and relative concentrations rather than absolute quantities, which are often difficult to determine, especially in short-lived assembly intermediates. The approach exploits the fact that the larger the stoichiometry of the component is, the more dramatic is the influence of the dilution factor (decrease in concentration) on the reaction. We established and used the method to determine the stoichiometry of components of bacterial virus phi29. The log of dilution factors was plotted against the log of reaction yield. The stoichiometry Z was determined with the equation Z=-1.58+2.4193T-0.001746T(2) [T in (0,1000), or 90 degree angle alpha in (0 degrees, 89.9 degrees )], where T is the slope of the curve (tangent of 90 degree angle alpha, which is the angle between the x-axis and the concentration dependent curve). Z can also be determined from a standard table given in this report. With the bacteriophage phi29 in vitro assembly system, up to 5x10(8) infectious virions per ml can be assembled from 11 purified components, giving our method a sensitivity of nine orders of magnitude. We confirmed the stoichiometries of phi29 components that were determined previously with microscopic approaches. The described method also responded to programmed stoichiometry changes, which were generated by assembling the phi29 DNA packaging motor from modified pRNA (DNA-packaging RNA) molecules forming a trimer of dimers or a dimer of trimers, instead of the wild-type hexamer.
Collapse
Affiliation(s)
- Dan Shu
- Department of Pathobiology and Purdue Cancer Research Center, B-36 Hansen Life Science Research Building, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
32
|
Newcomb WW, Thomsen DR, Homa FL, Brown JC. Assembly of the herpes simplex virus capsid: identification of soluble scaffold-portal complexes and their role in formation of portal-containing capsids. J Virol 2003; 77:9862-71. [PMID: 12941896 PMCID: PMC224603 DOI: 10.1128/jvi.77.18.9862-9871.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) portal complex is a ring-shaped structure located at a single vertex in the viral capsid. Composed of 12 U(L)6 protein molecules, the portal functions as a channel through which DNA passes as it enters the capsid. The studies described here were undertaken to clarify how the portal becomes incorporated as the capsid is assembled. We tested the idea that an intact portal may be donated to the growing capsid by way of a complex with the major scaffolding protein, U(L)26.5. Soluble U(L)26.5-portal complexes were found to assemble when purified portals were mixed in vitro with U(L)26.5. The complexes, called scaffold-portal particles, were stable during purification by agarose gel electrophoresis or sucrose density gradient ultracentrifugation. Examination of the scaffold-portal particles by electron microscopy showed that they resemble the 50- to 60-nm-diameter "scaffold particles" formed from purified U(L)26.5. They differed, however, in that intact portals were observed on the surface. Analysis of the protein composition by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that portals and U(L)26.5 combine in various proportions, with the highest observed U(L)6 content corresponding to two or three portals per scaffold particle. Association between the portal and U(L)26.5 was antagonized by WAY-150138, a small-molecule inhibitor of HSV-1 replication. Soluble scaffold-portal particles were found to function in an in vitro capsid assembly system that also contained the major capsid (VP5) and triplex (VP19C and VP23) proteins. Capsids that formed in this system had the structure and protein composition expected of mature HSV-1 capsids, including U(L)6, at a level corresponding to approximately 1 portal complex per capsid. The results support the view that U(L)6 becomes incorporated into nascent HSV-1 capsids by way of a complex with U(L)26.5 and suggest further that U(L)6 may be introduced into the growing capsid as an intact portal.
Collapse
Affiliation(s)
- William W Newcomb
- Department of Microbiology and Cancer Center, University of Virginia Health System, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
33
|
Morais MC, Kanamaru S, Badasso MO, Koti JS, Owen BAL, McMurray CT, Anderson DL, Rossmann MG. Bacteriophage phi29 scaffolding protein gp7 before and after prohead assembly. Nat Struct Mol Biol 2003; 10:572-6. [PMID: 12778115 DOI: 10.1038/nsb939] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Accepted: 05/09/2003] [Indexed: 11/09/2022]
Abstract
Three-dimensional structures of the double-stranded DNA bacteriophage phi29 scaffolding protein (gp7) before and after prohead assembly have been determined at resolutions of 2.2 and 2.8 A, respectively. Both structures are dimers that resemble arrows, with a four-helix bundle composing the arrowhead and a coiled coil forming the tail. The structural resemblance of gp7 to the yeast transcription factor GCN4 suggests a DNA-binding function that was confirmed by native gel electrophoresis. DNA binding to gp7 may have a role in mediating the structural transition from prohead to mature virus and scaffold release. A cryo-EM analysis indicates that gp7 is arranged inside the capsid as a series of concentric shells. The position of the higher density features in these shells correlates with the positions of hexamers in the equatorial region of the capsid, suggesting that gp7 may regulate formation of the prolate head through interactions with these hexamers.
Collapse
Affiliation(s)
- Marc C Morais
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, Indiana 47907-2054, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Moore SD, Prevelige PE. A P22 scaffold protein mutation increases the robustness of head assembly in the presence of excess portal protein. J Virol 2002; 76:10245-55. [PMID: 12239300 PMCID: PMC136566 DOI: 10.1128/jvi.76.20.10245-10255.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage with linear, double-stranded DNA genomes package DNA into preassembled protein shells called procapsids. Located at one vertex in the procapsid is a portal complex composed of a ring of 12 subunits of portal protein. The portal complex serves as a docking site for the DNA packaging enzymes, a conduit for the passage of DNA, and a binding site for the phage tail. An excess of the P22 portal protein alters the assembly pathway of the procapsid, giving rise to defective procapsid-like particles and aberrant heads. In the present study, we report the isolation of escape mutant phage that are able to replicate more efficiently than wild-type phage in the presence of excess portal protein. The escape mutations all mapped to the same phage genome segment spanning the portal, scaffold, coat, and open reading frame 69 genes. The mutations present in five of the escape mutants were determined by DNA sequencing. Interestingly, each mutant contained the same mutation in the scaffold gene, which changes the glycine at position 287 to glutamate. This mutation alone conferred an escape phenotype, and the heads assembled by phage harboring only this mutation had reduced levels of portal protein and exhibited increased head assembly fidelity in the presence of excess portal protein. Because this mutation resides in a region of scaffold protein necessary for coat protein binding, these findings suggest that the P22 scaffold protein may define the portal vertices in an indirect manner, possibly by regulating the fidelity of coat protein polymerization.
Collapse
Affiliation(s)
- Sean D Moore
- Department of Microbiology, University of Alabama at Birmingham, 845 South 19th Street, Birmingham, AL 35295, USA
| | | |
Collapse
|
35
|
Abstract
Bacteriophage with double-stranded, linear DNA genomes package DNA into pre-assembled icosahedral procapsids through a unique vertex. The packaging vertex contains an oligomeric ring of a portal protein that serves as a recognition site for the packaging enzymes, a conduit for DNA translocation, and the site of tail attachment. Previous studies have suggested that the portal protein of bacteriophage P22 is not essential for shell assembly; however, when assembled in the absence of functional portal protein, the assembled heads are not active in vitro packaging assays. In terms of head assembly, this raises an interesting question: how are portal vertices defined during morphogenesis if their incorporation is not a requirement for head assembly? To address this, the P22 portal gene was cloned into an inducible expression vector and transformed into the P22 host Salmonella typhimurium to allow control of the dosage of portal protein during infections. Using pulse-chase radiolabeling, it was determined that the portal protein is recruited into virion during head assembly. Surprisingly, over-expression of the portal protein during wild-type P22 infection caused a dramatic reduction in the yield of infectious virus. The cause of this reduction was traced to two potentially related phenomena. First, excess portal protein caused aberrant head assembly resulting in the formation of T=7 procapsid-like particles (PLPs) with twice the normal amount of portal protein. Second, maturation of the PLPs was blocked during DNA packaging resulting in the accumulation of empty PLPs within the host. In addition to PLPs with normal morphology, smaller heads (apparently T=4) and aberrant spirals were also produced. Interestingly, maturation of the small heads was relatively efficient resulting in the formation of small mature particles that were tailed and contained a head full of DNA. These data suggest that incorporation of portal vertices into heads occurs during growth of the coat lattice at decision points that dictate head assembly fidelity.
Collapse
Affiliation(s)
- Sean D Moore
- Department of Microbiology BBRB 416/6, University of Alabama at Birmingham, 845 19th St. South, Birmingham, AL 35294, USA
| | | |
Collapse
|
36
|
Wang S, Palasingam P, Nøkling RH, Lindqvist BH, Dokland T. In vitro assembly of bacteriophage P4 procapsids from purified capsid and scaffolding proteins. Virology 2000; 275:133-44. [PMID: 11017795 DOI: 10.1006/viro.2000.0521] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage P4 is a satellite virus of bacteriophage P2, which has acquired the ability to utilize the structural gene products of P2 to assemble its own capsid. The normal P2 capsid has a T = 7 icosahedral structure comprised of the gpN-derived capsid protein, whereas the capsid produced under the control of P4 has a smaller, T = 4 structure. The protein responsible for this size determination is the P4-coded gene product Sid, which forms an external scaffold on the P4 procapsid. Using an in vitro assembly system, we show that gpN and Sid can coassemble into procapsid-like particles, indistinguishable from those produced in vivo, in the absence of any other gene products. The fidelity of the assembly reaction is enhanced by the inclusion of PEG and has a pH optimum between 8.0 and 8.5. Analysis of the assembly properties of truncated versions of Sid and gpN suggests that the amino-terminal part of Sid is involved in gpN binding, while the carboxyl-terminal part forms trimeric Sid-Sid interactions, and that the first 31 amino acids of gpN are required for binding to Sid as well as for size determination.
Collapse
Affiliation(s)
- S Wang
- Institute of Molecular Agrobiology, The National University off Singapore, 117604 Singapore
| | | | | | | | | |
Collapse
|
37
|
Garver K, Guo P. Mapping the inter-RNA interaction of bacterial virus phi29 packaging RNA by site-specific photoaffinity cross-linking. J Biol Chem 2000; 275:2817-24. [PMID: 10644747 DOI: 10.1074/jbc.275.4.2817] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During replication, the lengthy genome of double-stranded DNA viruses is translocated with remarkable velocity into a limited space within the procapsid. The question of how this fascinating task is accomplished has long been a puzzle. Our recent investigation suggests that phi29 DNA packaging is accomplished by a mechanism similar to the driving of a bolt with a hex nut and that six packaging RNAs (pRNAs) form a hexagonal complex to gear the DNA-translocating machine (Chen, C., and Guo, P. (1997) J. Virol. 71, 3864-3871; Zhang, F., Lemieux, S., Wu, X., St.-Arnaud, S., McMurray, C. T., Major, F., and Anderson, D. (1998) Mol. Cell 2, 141-147; Guo, P., Zhang, C., Chen, C., Garver, K., and Trottier, M., (1998) Mol. Cell 2, 149-155). In the current study, circularly permuted pRNAs were used to position an azidophenacyl photoreactive cross-linking agent specifically at a strategic site that was predicted to be involved in pRNA-pRNA interaction. Cross-linked pRNA dimers were isolated, and the sites of cross-link were mapped by primer extension. The cross-linked pRNA dimer retained full activity in phi29 procapsid binding and genomic DNA translocation, indicating that the cross-link distance constraints identified in dimer formation reflect the native pRNA complex. Both cross-linked dimers either containing or not containing the interlocking loops for programmed hexamer formation bound procapsid equally well; however, only the one containing the interlocking loops programmed for hexamer formation was active in phi29 DNA packaging. The cross-linked pRNA dimers were also identified as the minimum binding unit necessary for procapsid binding. Primer extension of the purified cross-linked pRNA dimers revealed that base G(82) was cross-linked to bases G(39), G(40), A(41), C(49), G(62), C(63), and C(64), which contribute to the formation of the three-way junction, suggesting that these bases are proximate in the formation of pRNA tertiary structure. Interestingly, the photoaffinity agent in the left interacting loop did not cross-link directly to the right loop as expected but cross-linked to bases adjacent to the right loop. These data provide a background for future modeling of pRNA tertiary structure.
Collapse
Affiliation(s)
- K Garver
- Department of Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
38
|
Greene B, King J. In vitro unfolding/refolding of wild type phage P22 scaffolding protein reveals capsid-binding domain. J Biol Chem 1999; 274:16135-40. [PMID: 10347165 DOI: 10.1074/jbc.274.23.16135] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The scaffolding proteins of double-stranded DNA viruses are required for the polymerization of capsid subunits into properly sized closed shells but are absent from the mature virions. Phage P22 scaffolding subunits are elongated 33-kDa molecules that copolymerize with coat subunits into icosahedral precursor shells and subsequently exit from the precursor shell through channels in the procapsid lattice to participate in further rounds of polymerization and dissociation. Purified scaffolding subunits could be refolded in vitro after denaturation by high temperature or guanidine hydrochloride solutions. The lack of coincidence of fluorescence and circular dichroism signals indicated the presence of at least one partially folded intermediate, suggesting that the protein consisted of multiple domains. Proteolytic fragments containing the C terminus were competent for copolymerization with capsid subunits into procapsid shells in vitro, whereas the N terminus was not needed for this function. Proteolysis of partially denatured scaffolding subunits indicated that it was the capsid-binding C-terminal domain that unfolded at low temperatures and guanidinium concentrations. The minimal stability of the coat-binding domain may reflect its role in the conformational switching needed for icosahedral shell assembly.
Collapse
Affiliation(s)
- B Greene
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
39
|
Chen C, Zhang C, Guo P. Sequence requirement for hand-in-hand interaction in formation of RNA dimers and hexamers to gear phi29 DNA translocation motor. RNA (NEW YORK, N.Y.) 1999; 5:805-18. [PMID: 10376879 PMCID: PMC1369806 DOI: 10.1017/s1355838299990350] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Translocation of DNA or RNA is a ubiquitous phenomenon. One intricate translocation process is viral DNA packaging. During maturation, the lengthy genome of dsDNA viruses is translocated with remarkable velocity into a limited space within the procapsid. We have revealed that phi29 DNA packaging is accomplished by a mechanism similar to driving a bolt with a hex nut, which consists of six DNA-packaging pRNAs. Four bases in each of the two pRNA loops are involved in RNA/RNA interactions to form a hexagonal complex that gears the DNA translocating machine. Without considering the tertiary interaction, in some cases only two G/C pairs between the interacting loops could provide certain pRNAs with activity. When all four bases were paired, at least one G/C pair was required for DNA packaging. The maximum number of base pairings between the two loops to allow pRNA to retain wild-type activity was five, whereas the minimum number was five for one loop and three for the other. The findings were supported by phylogenetic analysis of seven pRNAs from different phages. A 75-base RNA segment, bases 23-97, was able to form dimer, to interlock into the hexamer, to compete with full-length pRNA for procapsid binding, and therefore to inhibit phi29 assembly in vitro. Our result suggests that segment 23-97 is a self-folded, independent domain involved in procapsid binding and RNA/RNA interaction in dimer and hexamer formation, whereas bases 1-22 and 98-120 are involved in DNA translocation but dispensable for RNA/RNA interaction. Therefore, this 75-base RNA could be a model for structural studies in RNA dimerization.
Collapse
Affiliation(s)
- C Chen
- Department of Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
40
|
Affiliation(s)
- R W Hendrix
- Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
41
|
Becker B, de la Fuente N, Gassel M, Günther D, Tavares P, Lurz R, Trautner TA, Alonso JC. Head morphogenesis genes of the Bacillus subtilis bacteriophage SPP1. J Mol Biol 1997; 268:822-39. [PMID: 9180375 DOI: 10.1006/jmbi.1997.0997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have identified and characterized the phage cistrons required for assembly of SPP1 heads. A DNA fragment containing most of the head morphogenesis genes was cloned and sequenced. The 3'-end of a previously identified gene (gene 6) and eight complete open reading frames (7 to 15) were predicted. We have assigned genes 7, 8, 9, 11, 12, 13, 14 and 15 to these orfs by correlating genetic and immunological data with DNA and protein sequence information. G7P was identified as a minor structural component of proheads and heads, G11P as the scaffold protein, G12P and G15P as head minor proteins and G13P as the coat protein. Characterization of intermediates in head assembly, which accumulate during infection with mutants deficient in DNA packaging or in morphogenetic genes, allowed the definition of the head assembly pathway. No proteolytic processing of any of the head components was detected. Removal of G11P by mutation leads to the accumulation of prohead-related structures and aberrant particles which are similar to the assemblies formed by purified G13P in the absence of other phage-encoded proteins. The native molecular masses of G11P and G13P are about 350 kDa and larger than 5000 kDa, respectively (predicted molecular masses 23.4 kDa and 35.3 kDa, respectively). G13P, upon denaturation and renaturation, assembles from protomers into some prohead-related structures. The organization of the DNA packaging and head genes of SPP1 resembles the organization of genes in the analogous regions of phage lambda and P22.
Collapse
Affiliation(s)
- B Becker
- Max-Planck-Institut für molekulare Genetik, Berlin, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen C, Guo P. Sequential action of six virus-encoded DNA-packaging RNAs during phage phi29 genomic DNA translocation. J Virol 1997; 71:3864-71. [PMID: 9094662 PMCID: PMC191537 DOI: 10.1128/jvi.71.5.3864-3871.1997] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A 120-base pRNA encoded by bacteriophage b29 has a novel and essential role in genomic DNA packaging. Six DNA-packaging RNAs (pRNAs) were bound to the sixfold symmetrical portal vertex of procapsids during the DNA translocation process and left the procapsid after the DNA-packaging reaction was completed, suggesting that the pRNA participated in the translocation of genomic DNA into procapsids. To further investigate the mechanism of DNA packaging, it is crucial to determine whether these six pRNA molecules work as an integrated entity or each pRNA acts as a functional individual. If pRNAs work individually, then do they work in sequence with communication or in random order without interaction? Results from compensation and complementation analysis did not support the integrated model. Computation of the probability of combination between wild-type and mutant pRNAs and experimental data of competitive inhibition excluded the random model while favoring the proposal that the six pRNAs functioned sequentially. Sequential action of the pRNA also explains why the pRNA is so sensitive to mutation, since the effect of a pRNA mutation will be amplified by 6 orders of magnitude after six consecutive steps, resulting in the observed complete loss of DNA-packaging activity caused by small alterations. When any one of the six pRNAs was replaced with an inactive one, complete blockage of DNA packaging resulted, strongly supporting the speculation that individual pRNAs, presumably together with other components such as the packaging ATPase gp16, take turns mediating successive steps of packaging. Although the data provided here could not exclude the integrated model completely, there is no evidence so far to argue against the model of sequential action.
Collapse
Affiliation(s)
- C Chen
- Cancer Research Center, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
43
|
Abstract
Due to the rapidity of biological reactions, it is difficult to isolate intermediates or to determine the stoichiometry of participants in intermediate reactions. Instead of determining the absolute amount of each component, this study involved the use of relative parameters, such as dilution factors, percentages probabilities, and slopes of titration curves, that can be more accurately quantified to determine the stoichiometry of components involved in bacteriophage phi29 assembly. This work takes advantage of the sensitive in vitro phage phi29 assembly system, in which 10(8) infectious virions per ml without background can be assembled from eight purified components. It provides a convenient assay for quantification of the stoichiometry of packaging components, including the viral procapsid, genomic DNA, DNA-packaging pRNA, and other structural proteins and enzymes. The presence of a procapsid binding domain and another essential functional domain within the pRNA makes it an ideal component for constructing lethal mutants for competitive procapsid binding. Two methods were used for stoichiometry determination. Method 1 was to determine the combination probability of mutant and wild-type pRNAs bound to procapsids. The probability of procapsids that possess a certain amount of mutant and a certain amount of wild-type pRNA, both with an equal binding affinity, was predicted with the binomial equation [EQUATION IN TEXT] where Z is the total number of pRNAs per procapsid, M is the number of mutant pRNAs bound to one procapsid, and (ZM) is equal to [FORMULA IN TEXT]. With various ratios of mutant to wild-type pRNA in in vitro viral assembly, the percent mutant pRNA versus the yield of virions was plotted and compared to a series of predicted curves to find a best fit. It was determined that five or six copies of pRNA were required for one DNA-packaging event, while only one mutant pRNA per procapsid was sufficient to block packaging. Method 2 involved the comparison of slopes of curves of dilution factors versus the yield of virions. Components with known stoichiometries served as standard controls. The larger the stoichiometry of the component, the more dramatic the influence of the dilution factor on the reaction. A slope of 1 indicates that one copy of the component is involved in the assembly of one virion. A slope larger than 1 would indicate multiple-copy involvement. By this method, the stoichiometry of gp11 in phi29 particles was determined to be approximately 12. These approaches are useful for the determination of the stoichiometry of functional units involved in viral assembly, be they single molecules or oligomers. However, these approaches are not suitable for the determination of exact copy numbers of individual molecules involved if the functional unit is composed of multiple subunits prior to assembly.
Collapse
Affiliation(s)
- M Trottier
- Department of Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
44
|
Chen C, Guo P. Magnesium-induced conformational change of packaging RNA for procapsid recognition and binding during phage phi29 DNA encapsidation. J Virol 1997; 71:495-500. [PMID: 8985376 PMCID: PMC191077 DOI: 10.1128/jvi.71.1.495-500.1997] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bacteriophage phi29 is typical of double-stranded DNA viruses in that its genome is packaged into a preformed procapsid during maturation. An intriguing feature of phi29 assembly is that a virus-encoded RNA (pRNA) is required for the packaging of its genomic DNA. Psoralen cross-linking, primer extension, and T1 RNase partial digestion revealed that pRNA had at least two conformations; one was able to bind procapsids, and the other was not. In the presence of Mg2+, one stretch of pRNA, consisting of bases 31 to 35, was confirmed to be proximal to base 69, as revealed by its efficient cross-linking by psoralen. Two cross-linking sites in the helical region were identified. Mg2+ induced a conformational change of pRNA that exposes the portal protein binding site by promoting the refolding of two strands of the procapsid binding region, resulting in the formation of pRNA-procapsid complexes. The procapsid binding region in this binding-competent conformation could not be cross-linked with psoralen. When the two strands of the procapsid binding region were fastened by cross-linking, pRNA could neither bind procapsids nor package phi29 DNA. A pRNA conformational change was also discernible by comparison of migration rates in native EDTA and Mg2+ polyacrylamide gel electrophoresis and was revealed by T1 RNase probing. The Mg2+ concentration required for the detection of a change in pRNA cross-linking patterns was 1 mM, which was the same as that required for pRNA-procapsid complex formation and DNA packaging and was also close to that in normal host cells.
Collapse
Affiliation(s)
- C Chen
- Department of Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
45
|
Roy P, Jones I. Assembly of macromolecular complexes in bacterial and baculovirus expression systems. Curr Opin Struct Biol 1996; 6:157-61. [PMID: 8728647 DOI: 10.1016/s0959-440x(96)80069-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Many proteins exist normally as oligomers or complexes with other proteins. Recent advances in vector design have allowed this aspect of protein function to be mimicked in recombinant expression systems. Examples of the ordered oligomerization of a single protein through to the assembly of eight different proteins have been documented in recombinant Escherichia coli and recombinant baculovirus systems.
Collapse
Affiliation(s)
- P Roy
- Institute of Virology, Oxford, UK.
| | | |
Collapse
|
46
|
Trottier M, Zhang C, Guo P. Complete inhibition of virion assembly in vivo with mutant procapsid RNA essential for phage phi 29 DNA packaging. J Virol 1996; 70:55-61. [PMID: 8523569 PMCID: PMC189787 DOI: 10.1128/jvi.70.1.55-61.1996] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A highly efficient method for the inhibition of bacteriophage phi 29 assembly was developed with the use of mutant forms of the viral procapsid (or packaging) RNA (pRNA) indispensable for phi 29 DNA packaging. Phage phi 29 assembly was severely reduced in vitro in the presence of mutant pRNA and completely blocked in vivo when the host cell expressed mutant pRNA. Addition of 45% mutant pRNA resulted in a reduction of infectious virion production by 4 orders of magnitude, indicating that factors involved in viral assembly can be targets for efficient and specific antiviral treatment. The mechanism leading to the high efficiency of inhibition was attributed to two pivotal features. First, the pRNA contains two separate, essential functional domains, one for procapsid binding and the other for a DNA-packaging role other than procapsid binding. Mutation of the DNA-packaging domain resulted in a pRNA with no DNA-packaging activity but intact procapsid binding competence. Second, multiple copies of the pRNA were involved in the packaging of one genome. This higher-order dependence of pRNA in viral replication concomitantly resulted in its higher-order inhibitory effect. This finding suggested that the collective DNA-packaging activity of multiple copies of pRNA could be disrupted by the incorporation of perhaps an individual mutant pRNA into the group. Although this mutant pRNA could not be used for the inhibition of the replication of other viruses directly, the principle of using molecules with two functional domains and multiple-copy involvement as targets for antiviral agents could be applied to certain viral structural proteins, enzymes, and other factors or RNAs involved in the viral life cycle. This principle also implies a strategy for gene therapy, intracellular immunization, or construction of transgenic plants resistant to viral infection.
Collapse
Affiliation(s)
- M Trottier
- Department of Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
47
|
Lee CS, Guo P. In vitro assembly of infectious virions of double-stranded DNA phage phi 29 from cloned gene products and synthetic nucleic acids. J Virol 1995; 69:5018-23. [PMID: 7609071 PMCID: PMC189318 DOI: 10.1128/jvi.69.8.5018-5023.1995] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Up to 6 x 10(7) PFU of infectious virions of the double-stranded DNA bacteriophage phi 29 per ml were assembled in vitro, with 11 proteins derived from cloned genes and nucleic acids synthesized separately. The genomic DNA-gp3 protein conjugate was efficiently packaged into a purified recombinant procapsid with the aid of a small viral RNA (pRNA) transcript, a DNA-packaging ATPase (gp16), and ATP. The DNA-filled capsids were subsequently converted into infectious virions after the addition of four more recombinant proteins for neck and tail assembly. Electron microscopy and genome restriction mapping confirmed the identity of the infectious phi 29 virions synthesized in this system. A nonstructural protein, gp13, was indispensable for the assembly of infectious virions. The overproduced tail protein gp9 was present in solution in mostly dimeric form and was purified to homogeneity. The purified gp9 was biologically active for in vitro phi 29 assembly. Higher-order concentration dependence of in vitro phi 29 assembly on gp9 suggests that a complete tail did not form before attaching to the DNA-filled capsid, a result contrary to earlier findings for phages T4 and lambda. The work described here constitutes an extremely sensitive assay system for the analysis of components in phi 29 assembly and dissection of functional domains of structural components, enzymes, and pRNA (C.-S. Lee and P. Guo, Virology 202:1039-1042, 1995). Efficient packaging of foreign DNA in vitro and synthesis of viral particles from recombinant proteins facilitate the development of phi 29 as an in vivo gene delivery system. The finding that purified tail protein was able to incorporate into infectious virions might allow the construction of chimeric phi 29 carrying a tail fused to ligands for specific receptor of human cells.
Collapse
Affiliation(s)
- C S Lee
- Department of Pathobiology and Purdue Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|