1
|
Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology 2018; 28:443-467. [PMID: 29579213 PMCID: PMC7108637 DOI: 10.1093/glycob/cwy021] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Enveloped viruses encompass some of the most common human pathogens causing infections of different severity, ranging from no or very few symptoms to lethal disease as seen with the viral hemorrhagic fevers. All enveloped viruses possess an envelope membrane derived from the host cell, modified with often heavily glycosylated virally encoded glycoproteins important for infectivity, viral particle formation and immune evasion. While N-linked glycosylation of viral envelope proteins is well characterized with respect to location, structure and site occupancy, information on mucin-type O-glycosylation of these proteins is less comprehensive. Studies on viral glycosylation are often limited to analysis of recombinant proteins that in most cases are produced in cell lines with a glycosylation capacity different from the capacity of the host cells. The glycosylation pattern of the produced recombinant glycoproteins might therefore be different from the pattern on native viral proteins. In this review, we provide a historical perspective on analysis of viral glycosylation, and summarize known roles of glycans in the biology of enveloped human viruses. In addition, we describe how to overcome the analytical limitations by using a global approach based on mass spectrometry to identify viral O-glycosylation in virus-infected cell lysates using the complex enveloped virus herpes simplex virus type 1 as a model. We underscore that glycans often pay important contributions to overall protein structure, function and immune recognition, and that glycans represent a crucial determinant for vaccine design. High throughput analysis of glycosylation on relevant glycoprotein formulations, as well as data compilation and sharing is therefore important to identify consensus glycosylation patterns for translational applications.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| |
Collapse
|
2
|
Craigie M, Regan P, Otalora YL, Sariyer IK. Molecular interplay between T-Antigen and splicing factor, arginine/serine-rich 1 (SRSF1) controls JC virus gene expression in glial cells. Virol J 2015; 12:196. [PMID: 26596376 PMCID: PMC4657255 DOI: 10.1186/s12985-015-0426-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/15/2015] [Indexed: 01/12/2023] Open
Abstract
Background Human polyomavirus JCV is the etiologic agent of progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease characterized by lytic infection of glial cells in the central nervous system. PML is seen primarily in immunosuppressed patients and is mainly classified as an AIDS-defining disease. In addition to structural capsid proteins, JCV encodes multiple regulatory proteins, including T-antigen and agnoprotein, which are required for functional lytic infection. Previous studies have suggested that molecular interaction between viral proteins and host factors play an important role in reactivation of JCV and progression of the viral life cycle in glial cells. Recently, serine/arginine rich splicing factor 1 (SRSF1), a cellular alternative splicing factor, was identified as a strong negative regulator of JCV in glial cells. SRSF1 inhibits JCV gene expression and viral replication by directly interacting with viral promoter sequences. Here, we have investigated possible impact of JCV regulatory proteins, T-antigen and agnoprotein, on SRSF1-mediated suppression of JCV gene expression in glial cells. Results Reporter gene analysis has suggested that T-antigen rescues viral transcriptional suppression mediated by SRSF1. Further analyses have revealed that T-antigen promotes viral gene expression by suppressing SRSF1 gene transcription in glial cells. A subsequent ChIP analysis revealed that T-antigen associates with the promoter region of SRSF1 to induce the transcriptional suppression. Conclusions These findings have revealed a molecular interplay between cellular SRSF1 and viral T-antigen in controlling JCV gene expression, and may suggest a novel mechanism of JCV reactivation in patients who are at risk of developing PML.
Collapse
Affiliation(s)
- Michael Craigie
- Department of Neuroscience, Center for Neurovirology, Temple University Lewis Katz School of Medicine, 3500 North Broad Street, 7th Floor, Philadelphia, PA, 19140, USA.
| | - Patrick Regan
- Department of Neuroscience, Center for Neurovirology, Temple University Lewis Katz School of Medicine, 3500 North Broad Street, 7th Floor, Philadelphia, PA, 19140, USA.
| | - Yolanda-Lopez Otalora
- Department of Neuroscience, Center for Neurovirology, Temple University Lewis Katz School of Medicine, 3500 North Broad Street, 7th Floor, Philadelphia, PA, 19140, USA.
| | - Ilker Kudret Sariyer
- Department of Neuroscience, Center for Neurovirology, Temple University Lewis Katz School of Medicine, 3500 North Broad Street, 7th Floor, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Zhang A, Hildreth RL, Colberg-Poley AM. Human cytomegalovirus inhibits apoptosis by proteasome-mediated degradation of Bax at endoplasmic reticulum-mitochondrion contacts. J Virol 2013; 87:5657-68. [PMID: 23487455 PMCID: PMC3648137 DOI: 10.1128/jvi.00145-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/22/2013] [Indexed: 12/30/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes the UL37 exon 1 protein (pUL37x1), which is the potent viral mitochondrion-localized inhibitor of apoptosis (vMIA), to increase survival of infected cells. HCMV vMIA traffics from the endoplasmic reticulum (ER) to ER subdomains, which are physically linked to mitochondria known as mitochondrion-associated membranes (MAM), and to mitochondria. The antiapoptotic function of vMIA is thought to primarily result from its ability to inhibit Bax-mediated permeabilization of the outer mitochondrial membrane (OMM). Here, we establish that vMIA retargets Bax to the MAM as well as to the OMM from immediate early through late times of infection. However, MAM localization of Bax results in its increased ubiquitination and proteasome-mediated degradation. Surprisingly, HCMV infection does not increase OMM-associated degradation (OMMAD) of Bax, even though the ER and mitochondria are physically connected at the MAM. It was recently found that lipid rafts at the plasma membrane can connect extrinsic and intrinsic apoptotic pathways and can serve as sites of apoptosome assembly. In transfected permissive human fibroblasts, vMIA mediates, through its cholesterol affinity, association of Bax and apoptosome components with MAM lipid rafts. While Bax association with MAM lipid rafts was detected in HCMV-infected cells, association of apoptosome components was not. These results establish that Bax recruitment to the MAM and its MAM-associated degradation (MAMAD) are a newly described antiapoptotic mechanism used by HCMV infection to increase cell survival for its growth.
Collapse
Affiliation(s)
- Aiping Zhang
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA
| | - Richard L. Hildreth
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA
- Molecular Medicine Program,
| | - Anamaris M. Colberg-Poley
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA
- Molecular Medicine Program,
- Departments of Integrative Systems Biology,
- Biochemistry and Molecular Biology,
- Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
4
|
Hildreth RL, Bullough MD, Zhang A, Chen HL, Schwartz PH, Panchision DM, Colberg-Poley AM. Viral mitochondria-localized inhibitor of apoptosis (UL37 exon 1 protein) does not protect human neural precursor cells from human cytomegalovirus-induced cell death. J Gen Virol 2012; 93:2436-2446. [PMID: 22875256 DOI: 10.1099/vir.0.044784-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection can cause severe brain abnormalities. Apoptotic HCMV-infected brain cells have been detected in a congenitally infected infant. In biologically relevant human neural precursor cells (hNPCs), cultured in physiological oxygen tensions, HCMV infection (m.o.i. of 1 or 3) induced cell death within 3 days post-infection (p.i.) and increased thereafter. Surprisingly, its known anti-apoptotic genes, including the potent UL37 exon 1 protein (pUL37x1) or viral mitochondria-localized inhibitor of apoptosis (vMIA), which protects infected human fibroblasts (HFFs) from apoptosis and from caspase-independent, mitochondrial serine protease-mediated cell death, were expressed by 2 days p.i. Consistent with this finding, an HCMV UL37x1 mutant, BADsubstitutionUL37x1 (BADsubUL37x1) induced cell death in hNPCs (m.o.i. = 1) to level which were indistinguishable from parental virus (BADwild-type)-infected hNPCs. Surprisingly, although BADsubUL37x1 is growth defective in permissive HFFs, it produced infectious progeny in hNPCs with similar kinetics and to levels comparable to BADwild-type-infected hNPCs (m.o.i. = 1). While delayed at a lower multiplicity (m.o.i. = 0.3), the BADsubUL37x1 mutant reached similar levels to revertant within 12 days, in contrast to its phenotype in HFFs. The inability of pUL37x1/vMIA to protect hNPCs from HCMV-induced cell death did not result from impaired trafficking as pUL37x1/vMIA trafficked efficiently to mitochondria in transfected hNPCs and in HCMV-infected hNPCs. These results establish that pUL37x1/vMIA, although protective in permissive HFFs, does not protect HCMV-infected hNPCs from cell death under physiologically relevant oxygen tensions. They further suggest that pUL37x1/vMIA is not essential for HCMV growth in hNPCs and has different cell type-specific roles.
Collapse
Affiliation(s)
- Richard L Hildreth
- Molecular Medicine Program, George Washington University, Washington, DC 20052, USA.,Research Center for Genetic Medicine, Children's Research Institute, Washington, DC 20010, USA
| | - Matthew D Bullough
- Research Center for Genetic Medicine, Children's Research Institute, Washington, DC 20010, USA
| | - Aiping Zhang
- Research Center for Genetic Medicine, Children's Research Institute, Washington, DC 20010, USA
| | - Hui-Ling Chen
- Center for Neuroscience Research, Children's Research Institute; Research Center for Genetic Medicine, Room M5110, Children's National Medical Center, 111 Michigan Ave, NW, Washington, DC 20010, USA
| | - Philip H Schwartz
- National Human Neural Stem Cell Resource, Children's Hospital of Orange County Research Institute, Orange, CA, USA
| | - David M Panchision
- Division of Neuroscience and Basic Behavioral Science, National Institutes of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anamaris M Colberg-Poley
- Molecular Medicine Program, George Washington University, Washington, DC 20052, USA.,Department of Biochemistry and Molecular Biology, George Washington University, USA.,Department of Integrative Systems Biology, George Washington University, USA.,Research Center for Genetic Medicine, Children's Research Institute, Washington, DC 20010, USA
| |
Collapse
|
5
|
Williamson CD, DeBiasi RL, Colberg-Poley AM. Viral product trafficking to mitochondria, mechanisms and roles in pathogenesis. Infect Disord Drug Targets 2012; 12:18-37. [PMID: 22034933 PMCID: PMC4435936 DOI: 10.2174/187152612798994948] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/21/2011] [Accepted: 05/02/2011] [Indexed: 05/31/2023]
Abstract
A wide variety of viruses cause significant morbidity and mortality in humans. However, targeted antiviral therapies have been developed for only a subset of these viruses, with the majority of currently licensed antiviral drugs targeting viral entry, replication or exit steps during the viral life cycle. Due to increasing emergence of antiviral drug resistant viruses, the isolation of multiple viral subtypes, and toxicities of existing therapies, there remains an urgent need for the timely development of novel antiviral agents, including those targeting host factors essential for viral replication. This review summarizes viral products that target mitochondria and their effects on common mitochondria regulated pathways. These viral products and the mitochondrial pathways affected by them provide potential novel targets for the rational design of antiviral drugs. Viral products alter oxidative balance, mitochondrial permeability transition pore, mitochondrial membrane potential, electron transport and energy production. Moreover, viruses may cause the Warburg Effect, in which metabolism is reprogrammed to aerobic glycolysis as the main source of energy. Finally, viral products affect proapoptotic and antiapoptotic signaling, as well as mitochondrial innate immune signaling. Because of their importance for the generation of metabolic intermediates and energy as well as cell survival, mitochondrial pathways are targeted by multiple independent viral products. Structural modifications of existing drugs targeted to mitochondrial pathways may lead to the development of novel antiviral drugs with improved efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Chad D. Williamson
- Center for Cancer and Immunology Research, Children’s National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010
| | - Roberta L. DeBiasi
- Center for Cancer and Immunology Research, Children’s National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010
- Division of Pediatric Infectious Diseases, Children’s National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington DC 20037 Tel. 202-476-3984 FAX 202-476-3929
| | - Anamaris M. Colberg-Poley
- Center for Cancer and Immunology Research, Children’s National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington DC 20037 Tel. 202-476-3984 FAX 202-476-3929
- Department of Biochemistry and Molecular Biology, George Washington University School of Medicine and Health Sciences, Washington DC 20037 Tel. 202-476-3984 FAX 202-476-3929
| |
Collapse
|
6
|
Stolf BS, Smyrnias I, Lopes LR, Vendramin A, Goto H, Laurindo FRM, Shah AM, Santos CXC. Protein disulfide isomerase and host-pathogen interaction. ScientificWorldJournal 2011; 11:1749-61. [PMID: 22125433 PMCID: PMC3201685 DOI: 10.1100/2011/289182] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/07/2011] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) production by immunological cells is known to cause damage to pathogens. Increasing evidence accumulated in the last decade has shown, however, that ROS (and redox signals) functionally regulate different cellular pathways in the host-pathogen interaction. These especially affect (i) pathogen entry through protein redox switches and redox modification (i.e., intra- and interdisulfide and cysteine oxidation) and (ii) phagocytic ROS production via Nox family NADPH oxidase enzyme and the control of phagolysosome function with key implications for antigen processing. The protein disulfide isomerase (PDI) family of redox chaperones is closely involved in both processes and is also implicated in protein unfolding and trafficking across the endoplasmic reticulum (ER) and towards the cytosol, a thiol-based redox locus for antigen processing. Here, we summarise examples of the cellular association of host PDI with different pathogens and explore the possible roles of pathogen PDIs in infection. A better understanding of these complex regulatory steps will provide insightful information on the redox role and coevolutional biological process, and assist the development of more specific therapeutic strategies in pathogen-mediated infections.
Collapse
Affiliation(s)
- Beatriz S Stolf
- Department of Parasitology, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Seo JY, Yaneva R, Hinson ER, Cresswell P. Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity. Science 2011; 332:1093-7. [PMID: 21527675 DOI: 10.1126/science.1202007] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Viperin is an interferon-inducible protein that is directly induced in cells by human cytomegalovirus (HCMV) infection. Why HCMV would induce viperin, which has antiviral activity, is unknown. We show that HCMV-induced viperin disrupts cellular metabolism to enhance the infectious process. Viperin interaction with the viral protein vMIA resulted in viperin relocalization from the endoplasmic reticulum to the mitochondria. There, viperin interacted with the mitochondrial trifunctional protein that mediates β-oxidation of fatty acids to generate adenosine triphosphate (ATP). This interaction with viperin, but not with a mutant lacking the viperin iron-sulfur cluster-binding motif, reduced cellular ATP generation, which resulted in actin cytoskeleton disruption and enhancement of infection. This function of viperin, which was previously attributed to vMIA, suggests that HCMV has coopted viperin to facilitate the infectious process.
Collapse
Affiliation(s)
- Jun-Young Seo
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520-8011, USA
| | | | | | | |
Collapse
|
8
|
The human cytomegalovirus protein UL37 exon 1 associates with internal lipid rafts. J Virol 2010; 85:2100-11. [PMID: 21177823 DOI: 10.1128/jvi.01830-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) protein UL37 exon 1 (pUL37x1), also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), sequentially traffics from the endoplasmic reticulum (ER) through mitochondrion-associated membranes (MAMs) to the outer mitochondrial membrane (OMM), where it robustly inhibits apoptosis. Here, we report the association of pUL37x1/vMIA with internal lipid rafts (LRs) in the ER/MAM. The MAM, which serves as a site for lipid transfer and calcium signaling to mitochondria, is enriched in detergent-resistant membrane (DRM)-forming lipids, including cholesterol and ceramide, which are found in lower concentrations in the bulk ER. Sigma 1 receptor (Sig-1R), a MAM chaperone affecting calcium signaling to mitochondria, is anchored in the MAM by its LR association. Because of its trafficking through the MAM and partial colocalization with Sig-1R, we tested whether pUL37x1/vMIA associates with MAM LRs. Extraction with methyl-β-cyclodextrin (MβCD) removed pUL37x1/vMIA from lysed but not intact cells, indicating its association with internal LRs. Furthermore, the isolation of DRMs from purified intracellular organelles independently verified the localization of pUL37x1/vMIA within ER/MAM LRs. However, pUL37x1/vMIA was not detected in DRMs from mitochondria. pUL37x1/vMIA associated with LRs during all temporal phases of HCMV infection, indicating the likely importance of this location for HCMV growth. Although detected during its sequential trafficking to the OMM, the pUL37x1/vMIA LR association was independent of its mitochondrial targeting signals. Rather, it was dependent upon cholesterol binding. These studies suggest a conserved ability of UL37 proteins to interact with cholesterol and LRs, which is functionally distinguishable from their sequential trafficking to mitochondria.
Collapse
|
9
|
Trafficking of UL37 proteins into mitochondrion-associated membranes during permissive human cytomegalovirus infection. J Virol 2010; 84:7898-903. [PMID: 20504938 DOI: 10.1128/jvi.00885-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.
Collapse
|
10
|
Intracellular sorting signals for sequential trafficking of human cytomegalovirus UL37 proteins to the endoplasmic reticulum and mitochondria. J Virol 2010; 84:6400-9. [PMID: 20410282 DOI: 10.1128/jvi.00556-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human cytomegalovirus UL37 antiapoptotic proteins, including the predominant UL37 exon 1 protein (pUL37x1), traffic sequentially from the endoplasmic reticulum (ER) through the mitochondrion-associated membrane compartment to the mitochondrial outer membrane (OMM), where they inactivate the proapoptotic activity of Bax. We found that widespread mitochondrial distribution occurs within 1 h of pUL37x1 synthesis. The pUL37x1 mitochondrial targeting signal (MTS) spans its first antiapoptotic domain (residues 5 to 34) and consists of a weak hydrophobicity leader (MTSalpha) and proximal downstream residues (MTSbeta). This MTS arrangement of a hydrophobic leader and downstream proximal basic residues is similar to that of the translocase of the OMM 20, Tom20. We examined whether the UL37 MTS functions analogously to Tom20 leader. Surprisingly, lowered hydropathy of the UL37x1 MTSalpha, predicted to block ER translocation, still allowed dual targeting of mutant to the ER and OMM. However, increased hydropathy of the MTS leader caused exclusion of the UL37x1 high-hydropathy mutant from mitochondrial import. Conversely, UL37 MTSalpha replacement with the Tom20 leader did not retarget pUL37x1 exclusively to the OMM; rather, the UL37x1-Tom20 chimera retained dual trafficking. Moreover, replacement of the UL37 MTSbeta basic residues did not reduce OMM import. Ablation of the MTSalpha posttranslational modification site or of the downstream MTS proline-rich domain (PRD) increased mitochondrial import. Our results suggest that pUL37x1 sequential ER to mitochondrial trafficking requires a weakly hydrophobic leader and is regulated by MTSbeta sequences. Thus, HCMV pUL37x1 uses a mitochondrial importation pathway that is genetically distinguishable from that of known OMM proteins.
Collapse
|
11
|
Williamson CD, Colberg-Poley AM. Access of viral proteins to mitochondria via mitochondria-associated membranes. Rev Med Virol 2009; 19:147-64. [PMID: 19367604 DOI: 10.1002/rmv.611] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
By exploiting host cell machineries, viruses provide powerful tools for gaining insight into cellular pathways. Proteins from two unrelated viruses, human CMV (HCMV) and HCV, are documented to traffic sequentially from the ER into mitochondria, probably through the mitochondria-associated membrane (MAM) compartment. The MAM are sites of ER-mitochondrial contact enabling the direct transfer of membrane bound lipids and the generation of high calcium (Ca2+) microdomains for mitochondria signalling and responses to cellular stress. Both HCV core protein and HCMV UL37 proteins are associated with Ca2+ regulation and apoptotic signals. Trafficking of viral proteins to the MAM may allow viruses to manipulate a variety of fundamental cellular processes, which converge at the MAM, including Ca2+ signalling, lipid synthesis and transfer, bioenergetics, metabolic flow, and apoptosis. Because of their distinct topologies and targeted MAM sub-domains, mitochondrial trafficking (albeit it through the MAM) of the HCMV and HCV proteins predictably involves alternative pathways and, hence, distinct targeting signals. Indeed, we found that multiple cellular and viral proteins, which target the MAM, showed no apparent consensus primary targeting sequences. Nonetheless, these viral proteins provide us with valuable tools to access the poorly characterised MAM compartment, to define its cellular constituents and describe how virus infection alters these to its own end. Furthermore, because proper trafficking of viral proteins is necessary for their function, discovering the requirements for MAM to mitochondrial trafficking of essential viral proteins may provide novel targets for the rational design of anti-viral drugs.
Collapse
Affiliation(s)
- Chad D Williamson
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Ave, NW, Washington, DC 20010, USA.
| | | |
Collapse
|
12
|
Mercorelli B, Sinigalia E, Loregian A, Palù G. Human cytomegalovirus DNA replication: antiviral targets and drugs. Rev Med Virol 2008; 18:177-210. [PMID: 18027349 DOI: 10.1002/rmv.558] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe morbidity and mortality in immunocompromised individuals, in particular transplant recipients and AIDS patients, and is the most frequent congenital viral infection in humans. There are currently five drugs approved for HCMV treatment: ganciclovir and its prodrug valganciclovir, foscarnet, cidofovir and fomivirsen. These drugs have provided a major advance in HCMV disease management, but they suffer from poor bioavailability, significant toxicity and limited effectiveness, mainly due to the development of drug resistance. Fortunately, there are several novel and potentially very effective new compounds which are under pre-clinical and clinical evaluation and may address these limitations. This review focuses on HCMV proteins that are directly or indirectly involved in viral DNA replication and represent already established or potential novel antiviral targets, and describes both currently available drugs and new compounds against such protein targets.
Collapse
Affiliation(s)
- Beatrice Mercorelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, 35121 Padua, Italy
| | | | | | | |
Collapse
|
13
|
Bozidis P, Williamson CD, Colberg-Poley AM. Isolation of endoplasmic reticulum, mitochondria, and mitochondria-associated membrane fractions from transfected cells and from human cytomegalovirus-infected primary fibroblasts. ACTA ACUST UNITED AC 2008; Chapter 3:Unit 3.27. [PMID: 18228515 DOI: 10.1002/0471143030.cb0327s37] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Increasingly mechanistic virology studies require dependable and sensitive methods for isolating purified organelles containing functional cellular sub-domains. The mitochondrial network is, in part, closely apposed to the endoplasmic reticulum (ER). The mitochondria-associated membrane (MAM) fraction provides direct physical contact between the ER and mitochondria. Characterization of the dual localization and trafficking of human cytomegalovirus (HCMV) UL37 proteins required establishing protocols in which the ER and mitochondria could be reliably separated. Because of its documented role in lipid and ceramide transfer from the ER to mitochondria, a method to purify MAM from infected cells was also developed. Two robust procedures were developed to efficiently isolate mitochondria, ER, and MAM fractions while providing the substantial protein yields from HCMV-infected primary fibroblasts and from transfected HeLa cells. Moreover, this unit includes a protocol that allows visualization of the mitochondria network disruption that occurs in permissively infected cells by their optimal resolution in Percoll gradients.
Collapse
Affiliation(s)
- Petros Bozidis
- Center for Cancer and Immunology Research, Children's Research Institute, Washington, DC, USA
| | | | | |
Collapse
|
14
|
Mitochondrial and secretory human cytomegalovirus UL37 proteins traffic into mitochondrion-associated membranes of human cells. J Virol 2008; 82:2715-26. [PMID: 18199645 DOI: 10.1128/jvi.02456-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL37 exon 1 protein (pUL37x1), also known as vMIA, is the predominant UL37 isoform during permissive infection. pUL37x1 is a potent antiapoptotic protein, which prevents cytochrome c release from mitochondria. The UL37x1 NH(2)-terminal bipartite localization signal, which remains uncleaved, targets UL37 proteins to the endoplasmic reticulum (ER) and then to mitochondria. Based upon our findings, we hypothesized that pUL37x1 traffics from the ER to mitochondria through direct contacts between the two organelles, provided by mitochondrion-associated membranes (MAMs). To facilitate its identification, we cloned and tagged the human phosphatidylserine synthase 1 (huPSS-1) cDNA, whose mouse homologue localizes almost exclusively in the MAM. Using subcellular fractionation of stable HeLa cell transfectants expressing mEGFP-huPSS-1, we found that HCMV pUL37x1 is present in purified microsomes, mitochondria, and MAM fractions. We further examined the trafficking of the full-length UL37 glycoprotein cleavage products, which divergently traffic either through the secretory apparatus or into mitochondria. Surprisingly, pUL37(NH2) and gpUL37(COOH) were both detected in the ER and MAM fraction, even though only pUL37(NH2) is preferentially imported into mitochondria but gpUL37(COOH) is not. To determine the sequences required for MAM importation, we examined pUL37x1 mutants that were partially defective for mitochondrial importation. Deletion mutants of the NH(2)-terminal UL37x1 mitochondrial localization signal were reduced in trafficking into the MAM, indicating partial overlap of MAM and mitochondrial targeting signals. Taken together, these results suggest that HCMV UL37 proteins traffic from the ER into the MAM, where they are sorted into either the secretory pathway or to mitochondrial importation.
Collapse
|
15
|
Sharon-Friling R, Goodhouse J, Colberg-Poley AM, Shenk T. Human cytomegalovirus pUL37x1 induces the release of endoplasmic reticulum calcium stores. Proc Natl Acad Sci U S A 2006; 103:19117-22. [PMID: 17135350 PMCID: PMC1748185 DOI: 10.1073/pnas.0609353103] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The human CMV UL37x1-encoded protein, also known as the viral mitochondria-localized inhibitor of apoptosis, traffics to the endoplasmic reticulum and mitochondria of infected cells. It induces the fragmentation of mitochondria and blocks apoptosis. We demonstrate that UL37x1 protein mobilizes Ca(2+) from the endoplasmic reticulum into the cytosol. This release is accompanied by cell rounding, cell swelling, and reorganization of the actin cytoskeleton, and these morphological changes can be substantially blocked by a Ca(2+) chelating agent. The UL37x1-mediated release of Ca(2+) from the endoplasmic reticulum likely has multiple consequences, including induction of the unfolded protein response, modulation of mitochondrial function, induction of mitochondrial fission, and protection against apoptotic stimuli.
Collapse
Affiliation(s)
- Ronit Sharon-Friling
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014; and
| | - Joseph Goodhouse
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014; and
| | - Anamaris M. Colberg-Poley
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010
| | - Thomas Shenk
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Mavinakere MS, Williamson CD, Goldmacher VS, Colberg-Poley AM. Processing of human cytomegalovirus UL37 mutant glycoproteins in the endoplasmic reticulum lumen prior to mitochondrial importation. J Virol 2006; 80:6771-83. [PMID: 16809283 PMCID: PMC1489043 DOI: 10.1128/jvi.00492-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL37 glycoprotein (gpUL37) is internally cleaved and its products divergently traffic to mitochondria or are retained in the secretory pathway. To define the requirements for gpUL37 cleavage, residues -1 and -3 of the consensus endoplasmic reticulum (ER) signal peptidase I site within exon 3 (UL37x3) were replaced by bulky tyrosines (gpUL37 cleavage site mutant I). Internal cleavage of this UL37x3 mutant was inhibited, verifying usage of the consensus site at amino acids (aa) 193/194. The full-length mitochondrial species of gpUL37 cleavage site mutant I was N glycosylated and endoglycosidase H sensitive, indicating that ER translocation and processing took place prior to its mitochondrial importation. Moreover, these results suggest that internal cleavage of gpUL37 is not necessary for its N glycosylation. Partial deletion or disruption of the UL37 hydrophobic core immediately upstream of the cleavage site resulted in decreased protein abundance, suggesting that the UL37x3 hydrophobic alpha-helix contributes to either correct folding or stability of gpUL37. Insertion of the UL37x3 hydrophobic core and cleavage site into pUL37(M), a splice variant of gpUL37 which lacks these sequences and is neither proteolytically cleaved nor N glycosylated, resulted in its internal cleavage and N glycosylation. Its NH(2)-terminal fragment, pUL37(M-NH2), was detected more abundantly in mitochondria, while its N-glycosylated C-terminal fragment, gpUL37(M-COOH), was detected predominantly in the ER in a manner analogous to that of gpUL37 cleavage products. These results indicate that UL37x3 aa 178 to 205 are prerequisite for gpUL37 internal cleavage and alter UL37 protein topology allowing N glycosylation of its C-terminal sequences. In contrast, the NH(2)-terminal UL37x1 hydrophobic leader, present in pUL37x1, pUL37(M), and gpUL37, is not cleaved from mature UL37 protein, retaining a membrane anchor for UL37 isoforms during trafficking. Taken together, these results suggest that HCMV gpUL37 undergoes sequential trafficking, during which it is ER translocated, processed, and then mitochondrially imported.
Collapse
Affiliation(s)
- Manohara S Mavinakere
- Center for Cancer and Immunology Research, Children's Research Institute, Room 5720, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | | | | | | |
Collapse
|
17
|
Andoniou CE, Degli-Esposti MA. Insights into the mechanisms of CMV‐mediated interference with cellular apoptosis. Immunol Cell Biol 2006; 84:99-106. [PMID: 16405657 DOI: 10.1111/j.1440-1711.2005.01412.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis has the potential to function as a defence mechanism during viral infection. Identification of CMV mutants that cause the apoptotic death of infected cells confirmed that viral infection activates apoptotic pathways and that this process is counteracted by CMV to ensure efficient viral replication. The recent identification of CMV-encoded proteins that suppress cell death has greatly enhanced our understanding of the mechanisms used by this family of viruses to prevent apoptosis. CMV do not encode homologues of known death-suppressing proteins, suggesting that the CMV family has evolved novel, more sophisticated strategies for the inhibition of apoptosis. The identification and characterization of the human CMV (HCMV)-encoded antiapoptotic proteins UL36 (viral inhibitor of caspase-8 activation [vICA]) and UL37 (viral mitochondria-localized inhibitor of apoptosis [vMIA]) have confirmed that CMV target unique apoptotic control points. For example, vMIA inhibits apoptosis by binding Bax and sequestering it at the mitochondrial membrane as an inactive oligomer. This knowledge not only provides a more complete understanding of the CMV replication process but also allows the identification of previously unrecognized apoptotic checkpoints. Because HCMV is an important cause of birth defects and an increasingly important opportunistic pathogen, a firm grasp of the mechanisms by which it affects cellular apoptosis may provide avenues for the design of improved therapeutic strategies. Here, we review the recent progress made in understanding the role of CMV-encoded proteins in the inhibition of apoptosis.
Collapse
Affiliation(s)
- Christopher E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | | |
Collapse
|
18
|
Abstract
Cytomegaloviruses (CMVs), a subset of betaherpesviruses, employ multiple strategies to suppress apoptosis in infected cells and thus to delay their death. Human cytomegalovirus (HCMV) encodes at least two proteins that directly interfere with the apoptotic signaling pathways, viral inhibitor of caspase-8-induced apoptosis vICA (pUL36), and mitochondria-localized inhibitor of apoptosis vMIA (pUL37 x 1). vICA associates with pro-caspase-8 and appears to block its recruitment to the death-inducing signaling complex (DISC), a step preceding caspase-8 activation. vMIA binds and sequesters Bax at mitochondria, and interferes with BH3-only-death-factor/Bax-complex-mediated permeabilization of mitochondria. vMIA does not seem to either interact with Bak, a close structural and functional homologue of Bax, or to suppress Bak-mediated permeabilization of mitochondria and Bak-mediated apoptosis. All sequenced betaherpesviruses, including CMVs, encode close homologues of vICA, and those vICA homologues that have been tested, were found to be functional cell death suppressors. Overt sequence homologues of vMIA were found only in the genomes of primate CMVs, but recent observations made with murine CMV (MCMV) indicate that non-primate CMVs may also encode a cell death suppressor functionally resembling vMIA. The exact physiological roles and relative contributions of vMIA and vICA in suppressing death of CMV-infected cells in vivo have not been elucidated. There is strong evidence that the cell death suppressing function of vMIA is indispensable, and that vICA is dispensable for replication of HCMV. In addition to suppressed caspase-8 activation and sequestered Bax, CMV-infected cells display several other phenomena, less well characterized, that may diminish, directly or indirectly the extent of cell death.
Collapse
Affiliation(s)
- V S Goldmacher
- ImmunoGen, Inc., 128 Sidney St., Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
Pignatelli S, Dal Monte P, Rossini G, Landini MP. Genetic polymorphisms among human cytomegalovirus (HCMV) wild-type strains. Rev Med Virol 2005; 14:383-410. [PMID: 15386592 DOI: 10.1002/rmv.438] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human cytomegalovirus (HCMV) clinical isolates display genetic polymorphisms in multiple genes. Some authors have suggested that those polymorphisms may be implicated in HCMV-induced immunopathogenesis, as well as in strain-specific behaviours, such as tissue-tropism and ability to establish persistent or latent infections. This review summarises the features of the main clustered HCMV polymorphic open reading frames and also briefly cites other variable loci within the viral genome. The implications of gene polymorphisms are discussed in terms of potentially advantageous higher fitness obtained by the strain, but also taking into account that the published data are often speculative. The last section of this review summarises and critically analyses the main literature reports about the linkage of strain specific genotypes with clinical manifestations of HCMV disease in different patient populations affected by severe cytomegalovirus infections, namely immunocompromised subjects and congenitally infected newborns.
Collapse
Affiliation(s)
- Sara Pignatelli
- Department of Clinical and Experimental Medicine, Division of Microbiology-St Orsola General Hospital, University of Bologna, Italy.
| | | | | | | |
Collapse
|
20
|
Adair R, Liebisch GW, Su Y, Colberg-Poley AM. Alteration of cellular RNA splicing and polyadenylation machineries during productive human cytomegalovirus infection. J Gen Virol 2004; 85:3541-3553. [PMID: 15557227 DOI: 10.1099/vir.0.80450-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alternative processing of human cytomegalovirus (HCMV) UL37 pre-mRNA predominantly produces the unspliced UL37 exon 1 (UL37x1) RNA and multiple, lower abundance, alternatively spliced UL37 RNAs. The relative abundance of UL37x1 unspliced RNA is surprising because it requires the favoured use of a polyadenylation signal within UL37 intron 1, just upstream of the UL37 exon 2 (UL37x2) acceptor. Here, it was shown that a downstream element (DSE) in UL37x2 strongly enhanced processing at the UL37x1 polyadenylation site, but did not influence UL37x1-x2 splicing. There was a potential binding site (UCUU) for polypyrimidine tract-binding protein (PTB) at the UL37x1 polyadenylation/cleavage site and its mutation to UGGG reduced both polyadenylation and splicing of UL37x1-x2 minigene pre-mRNA, suggesting a role in both RNA processing events. To determine whether lytic HCMV infection altered the balance of RNA processing factors, which bind to UL37 pre-mRNA cis elements, these were investigated in permissively infected primary and immortalized human diploid fibroblasts (HFFs) and epithelial cells. Induction of polyadenylation factors in HCMV-infected, serum-starved (G(0)) HFFs was also investigated. Permissive HCMV infection consistently increased, albeit with different kinetics, the abundance of cleavage stimulation factor 64 (CstF-64) and PTB, and altered hypo-phosphorylated SF2 in different cell types. Moreover, the preponderance of UL37x1 RNA increased during infection and correlated with CstF-64 induction, whereas the complexity of the lower abundance UL37 spliced RNAs transiently increased following reduction of hypo-phosphorylated SF2. Collectively, multiple UL37 RNA polyadenylation cis elements and induced cellular factors in HCMV-infected cells strongly favoured the production of UL37x1 unspliced RNA.
Collapse
Affiliation(s)
- Richard Adair
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Room 5720, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Gregory W Liebisch
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Room 5720, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Yan Su
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Room 5720, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Anamaris M Colberg-Poley
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Room 5720, 111 Michigan Avenue NW, Washington, DC 20010, USA
| |
Collapse
|
21
|
Goldmacher VS. Cell death suppressors encoded by cytomegalovirus. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2004; 36:1-18. [PMID: 15171604 DOI: 10.1007/978-3-540-74264-7_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Mavinakere MS, Colberg-Poley AM. Internal cleavage of the human cytomegalovirus UL37 immediate-early glycoprotein and divergent trafficking of its proteolytic fragments. J Gen Virol 2004; 85:1989-1994. [PMID: 15218184 DOI: 10.1099/vir.0.80094-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human cytomegalovirus UL37 gene encodes at least three isoforms, which share N-terminal UL37 exon 1 (UL37x1) sequences. UL37 proteins traffic dually into the endoplasmic reticulum (ER) and to mitochondria. Trafficking of the UL37 glycoprotein (gpUL37) in relation to its post-translational processing was investigated. gpUL37 is internally cleaved in the ER and its products traffic differentially. Its C-terminal fragment (UL37(COOH)) is ER-localized and N-glycosylated. Unlike conventional ER signal sequences, its N-terminal fragment is stable and traffics to mitochondria. Inhibition of N-glycosylation did not block pUL37 cleavage and dramatically decreased the levels of but not of UL37(COOH). pUL37(M), which differs from gpUL37 by the lack of residues 178-262 and hence the UL37x3 consensus signal peptidase cleavage site, traffics into the ER and mitochondria, but is neither cleaved nor N-glycosylated. This finding of a relationship between ER processing and mitochondrial importation of UL37 proteins is unique for herpesvirus proteins.
Collapse
Affiliation(s)
- Manohara S Mavinakere
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, George Washington University, School of Medicine and Health Sciences, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Anamaris M Colberg-Poley
- Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, 111 Michigan Avenue NW, Washington, DC 20010, USA
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, George Washington University, School of Medicine and Health Sciences, 111 Michigan Avenue NW, Washington, DC 20010, USA
| |
Collapse
|
23
|
Mavinakere MS, Colberg-Poley AM. Dual targeting of the human cytomegalovirus UL37 exon 1 protein during permissive infection. J Gen Virol 2004; 85:323-329. [PMID: 14769889 DOI: 10.1099/vir.0.19589-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL37 immediate-early (IE) gene minimally encodes three protein isoforms that share NH(2)-terminal sequences. The predominant UL37 isoform detected during HCMV infection was the UL37 exon 1 protein (pUL37x1), which was produced from IE and, more abundantly, through late times of infection. pUL37x1 was localized in both the endoplasmic reticulum (ER) and mitochondria in infected cells. To determine which UL37x1 NH(2)-terminal residues serve as ER and mitochondrial targeting signals, we examined the subcellular localization of two deletion mutants. pUL37x1Delta2-23, which lacks the hydrophobic leader, is neither translocated into the ER nor imported mitochondrially; conversely, pUL37x1Delta23-34, lacking the juxtaposed basic residues, was translocated into the ER but only imported weakly into mitochondria. These studies show for the first time the temporal production and localization of pUL37x1 during HCMV infection. The trafficking patterns of mutants suggest that the pUL37x1 targeting signal to ER and mitochondria is bipartite.
Collapse
Affiliation(s)
- Manohara S Mavinakere
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Anamaris M Colberg-Poley
- Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, 111 Michigan Avenue NW, Washington, DC 20010, USA
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| |
Collapse
|
24
|
Adair R, Liebisch GW, Colberg-Poley AM. Complex alternative processing of human cytomegalovirus UL37 pre-mRNA. J Gen Virol 2004; 84:3353-3358. [PMID: 14645916 DOI: 10.1099/vir.0.19404-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Differentially processed human cytomegalovirus (HCMV) UL37 RNAs encode biologically significant proteins. Due to the recent discovery of alternative UL37 exon 3 (UL37x3) splice donors, permissively infected cells were thoroughly examined for additional alternatively spliced UL37 RNAs. Newly described donors within UL37 exon 1 (nt 52520) and intron 1 (nt 52209) as well as UL37x3 di (nt 50770) and dii (nt 50782) were differentially spliced to known downstream UL37 acceptors. The alternatively spliced UL37(S), UL37(L), UL37(di) and UL37d(ii) RNAs predictably encode proteins of 83, 163, 217 and 213 residues, respectively, which share UL37x1 N-terminal sequences but differ downstream in their C termini. Moreover, temporal expression of the alternatively spliced UL37 RNAs differs during HCMV infection. The complexity of UL37 pre-mRNA processing is evidenced by the detection of 11 UL37 spliced and unspliced UL37x1 RNAs in HCMV-infected cells. Based upon these data, a revised HCMV UL37 gene map is presented, which incorporates all RNA species detected during permissive infection.
Collapse
Affiliation(s)
- Richard Adair
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | - Gregory W Liebisch
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | - Anamaris M Colberg-Poley
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| |
Collapse
|
25
|
Su Y, Adair R, Davis CN, DiFronzo NL, Colberg-Poley AM. Convergence of RNA cis elements and cellular polyadenylation factors in the regulation of human cytomegalovirus UL37 exon 1 unspliced RNA production. J Virol 2004; 77:12729-41. [PMID: 14610195 PMCID: PMC262569 DOI: 10.1128/jvi.77.23.12729-12741.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL36-38 immediate early (IE) locus encodes proteins required for its growth. The UL37 promoter drives production of an unspliced and several alternatively spliced RNAs. The UL37 exon 1 (UL37x1) unspliced RNA is abundant from IE to late times of HCMV infection, whereas the UL37 spliced RNAs are markedly less abundant. Production of the UL37x1 unspliced RNA requires polyadenylation (PA) at nucleotide 50998, which lies within intron 1, upstream of the UL37 exon 2 (UL37x2) acceptor. The physical proximity of its cis elements suggests steric hindrance between PA and splicing machineries for UL37 pre-mRNA. To test this possibility, we generated site-specific mutants in Target 1 PA and RNA splicing cis elements and compared the PA and splicing efficiencies of mutant RNAs with those of wild-type RNA. The mutually exclusive processing events of UL37x1 PA and UL37x1-UL37x2 splicing have been accurately recapitulated in transfected permissive human fibroblasts (HFFs) expressing a Target 1 minigene RNA, which contains the required splicing and PA cis elements. Two mutants in the invariant PA signal dramatically decreased UL37x1 PA as expected and, concomitantly, increased the efficiency of UL37x1-UL37x2 RNA splicing. Consistent with these results, changes to consensus UL37x1 donor and UL37x2 acceptor sites increased the efficiency of UL37x1-UL37x2 RNA splicing but decreased the efficiency of UL37x1 PA. Moreover, HCMV infection of HFFs increased the abundance of the PA cleavage stimulatory factor CstF-64, the potent splicing suppressor PTB, and the hypophosphorylated form of the splicing factor SF2 at 4 h postinfection. Induction of these factors further favors production of the UL37x1 unspliced RNA over that of the spliced RNAs. Taken together, these results suggest that there is a convergence in UL37 RNA regulation by cis elements and cellular proteins which favors production of the UL37x1 unspliced RNA during HCMV infection at the posttranscriptional level.
Collapse
Affiliation(s)
- Yan Su
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, USA
| | | | | | | | | |
Collapse
|
26
|
Hansen SG, Strelow LI, Franchi DC, Anders DG, Wong SW. Complete sequence and genomic analysis of rhesus cytomegalovirus. J Virol 2003; 77:6620-36. [PMID: 12767982 PMCID: PMC156187 DOI: 10.1128/jvi.77.12.6620-6636.2003] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Accepted: 03/19/2003] [Indexed: 11/20/2022] Open
Abstract
The complete DNA sequence of rhesus cytomegalovirus (RhCMV) strain 68-1 was determined with the whole-genome shotgun approach on virion DNA. The RhCMV genome is 221,459 bp in length and possesses a 49% G+C base composition. The genome contains 230 potential open reading frames (ORFs) of 100 or more codons that are arranged colinearly with counterparts of previously sequenced betaherpesviruses such as human cytomegalovirus (HCMV). Of the 230 RhCMV ORFs, 138 (60%) are homologous to known HCMV proteins. The conserved ORFs include the structural, replicative, and transcriptional regulatory proteins, immune evasion elements, G protein-coupled receptors, and immunoglobulin homologues. Interestingly, the RhCMV genome also contains sequences with homology to cyclooxygenase-2, an enzyme associated with inflammatory processes. Closer examination identified a series of candidate exons with the capacity to encode a full-length cyclooxygenase-2 protein. Counterparts of cyclooxygenase-2 have not been found in other sequenced herpesviruses. The availability of the complete RhCMV sequence along with the ability to grow RhCMV in vitro will facilitate the construction of recombinant viral strains for identifying viral determinants of CMV pathogenicity in the experimentally infected rhesus macaque and to the development of CMV as a vaccine vector.
Collapse
Affiliation(s)
- Scott G Hansen
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | | | |
Collapse
|
27
|
Maisch T, Kropff B, Sinzger C, Mach M. Upregulation of CD40 expression on endothelial cells infected with human cytomegalovirus. J Virol 2002; 76:12803-12. [PMID: 12438605 PMCID: PMC136694 DOI: 10.1128/jvi.76.24.12803-12812.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD40 has been identified as an important molecule for a number of processes, such as immune responses, inflammation, and the activation of endothelia. We investigated CD40 in endothelial cells (EC) following infection with an endotheliotropic strain of human cytomegalovirus (HCMV). Between 8 and 72 h postinfection, we observed a significant increase in CD40 levels on the surface of infected EC, as measured by fluorescence-activated cell sorting analysis. As a consequence of CD40 upregulation, increased levels of E-selectin were found on infected EC after stimulation with CD154-expressing T cells. Enhanced expression of CD40 was specific for EC, since infection of fibroblasts did not result in the upregulation of CD40. The addition of neutralizing antibodies as well as UV inactivation of virus completely prevented the upregulation of CD40 on EC. Also, laboratory-adapted HCMV strain AD169 was not able to induce CD40 on EC. De novo protein synthesis was necessary for the increased surface expression. At early times (4 to 24 h) postinfection, this change was not accompanied by increased levels of CD40 protein or mRNA. At late times (48 to 96 h) postinfection, increased amounts of CD40 protein and mRNA were detected. Immunohistochemical analysis of infected tissues demonstrated elevated levels of CD40 on HCMV-infected EC in vivo. Thus, infection of EC by HCMV may result in the activation of endothelia and in the augmentation of inflammatory processes.
Collapse
Affiliation(s)
- Tim Maisch
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | | | | | | |
Collapse
|
28
|
Xu Y, Colletti KS, Pari GS. Human cytomegalovirus UL84 localizes to the cell nucleus via a nuclear localization signal and is a component of viral replication compartments. J Virol 2002; 76:8931-8. [PMID: 12163612 PMCID: PMC136984 DOI: 10.1128/jvi.76.17.8931-8938.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The UL84 open reading frame encodes a protein that is required for origin-dependent DNA replication and interacts with the immediate-early protein IE2 in lytically infected cells. Transfection of UL84 expression constructs showed that UL84 localized to the nucleus of transfected cells in the absence of any other viral proteins and displayed a punctate speckled fluorescent staining pattern. Cotransfection of all the human cytomegalovirus replication proteins and oriLyt, along with pUL84-EGFP, showed that UL84 colocalized with UL44 (polymerase accessory protein) in replication compartments. Experiments using infected human fibroblasts demonstrated that UL84 also colocalized with UL44 and IE2 in viral replication compartments in infected cells. A nuclear localization signal was identified using plasmid constructs expressing truncation mutants of the UL84 protein in transient transfection assays. Transfection assays showed that UL84 failed to localize to the nucleus when 200 amino acids of the N terminus were deleted. Inspection of the UL84 amino acid sequence revealed a consensus putative nuclear localization signal between amino acids 160 and 171 (PEKKKEKQEKK) of the UL84 protein.
Collapse
Affiliation(s)
- Yiyang Xu
- Department of Microbiology and the Cell and Molecular Biology Program, University of Nevada-Reno, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
29
|
Abstract
Human cytomegalovirus encodes a powerful cell death suppressor vMIA (viral mitochondria-localized inhibitor of apoptosis), also known as pUL37x1. vMIA, a product of the immediate early gene UL37 exon 1, is predominantly localized in mitochondria, where it appears to form a complex with adenine nucleotide translocator, believed to be a component of the mitochondrial transition pore complex. vMIA suppresses apoptosis by blocking permeabilization of the mitochondrial outer membrane. Expression of vMIA protects cells against apoptosis triggered by diverse stimuli, including ligation of death receptors, exposure to certain cytotoxic drugs, and infection with an adenovirus mutant deficient in E1B19K. Deletion mutagenesis of vMIA revealed two domains that are necessary and, together, sufficient for its anti-apoptotic activity. The first domain contains a mitochondrial targeting signal. The function of the second domain is still unknown. vMIA does not share any significant amino acid sequence homology with Bcl-2, and, unlike Bcl-2 or Bcl-x(L), it does not bind BAX or VDAC. These structural and functional differences between vMIA and Bcl-2 suggest that vMIA represents a separate class of cell death suppressors. Experiments with vMIA-deficient CMV (human cytomegalovirus) mutants provide strong evidence that the anti-apoptotic function of vMIA is required to prevent CMV-induced apoptosis, and is necessary for viral replication. In addition to vMIA, UL37 encodes two longer splice-variant proteins, gpUL37 and GP37(M). Biological functions of these proteins have not yet been identified, and may be unrelated to their anti-apoptotic activity. The identification of vMIA and the finding that its anti-apoptotic function is required for CMV replication provides a rationale for the development of anti-CMV pharmaceuticals that would inactivate vMIA and thus restore apoptosis in cells infected with CMV.
Collapse
|
30
|
Hayajneh WA, Contopoulos-Ioannidis DG, Lesperance MM, Venegas AM, Colberg-Poley AM. The carboxyl terminus of the human cytomegalovirus UL37 immediate-early glycoprotein is conserved in primary strains and is important for transactivation. J Gen Virol 2001; 82:1569-1579. [PMID: 11413367 DOI: 10.1099/0022-1317-82-7-1569] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL37 exon 3 (UL37x3) open reading frame (ORF) encodes the carboxyl termini of two immediate-early glycoproteins (gpUL37 and gpUL37(M)). UL37x3 homologous sequences are not required for mouse cytomegalovirus (MCMV) growth in vitro; yet, they are important for MCMV growth and pathogenesis in vivo. Similarly, UL37x3 sequences are dispensable for HCMV growth in culture, but their requirement for HCMV growth in vivo is not known. To determine this requirement, we directly sequenced the complete UL37x3 gene in multiple HCMV primary strains. A total of 63 of the 310 amino acids in the UL37x3 ORF differ non-conservatively in one or more HCMV primary strains. The HCMV UL37x3 genetic diversity is non-random: the N-glycosylation (46/186 aa) and basic (9/15 aa) domains have the highest proportion of non-conservative variant amino acids. Nonetheless, most (15/17 signals) of the N-glycosylation signals are retained in all HCMV primary strains. Moreover, new N-glycosylation signals are encoded by 5/20 primary strains. In sharp contrast, the UL37x3 transmembrane (TM) ORF completely lacks diversity in all 20 HCMV sequenced primary strains, and only 1 of 28 cytosolic tail residues differs non-conservatively. To test the functional significance of the conserved carboxyl terminus, gpUL37 mutants lacking the TM and/or cytosolic tail were tested for transactivating activity. The gpUL37 carboxyl-terminal mutants are partially defective in hsp70 promoter transactivation even though they trafficked similarly to the wild-type protein into the endoplasmic reticulum and to mitochondria. From these results, we conclude that N-glycosylated gpUL37, particularly its TM and cytosolic domains, is important for HCMV growth in humans.
Collapse
Affiliation(s)
- Wail A Hayajneh
- Center for Virology, Immunology and Infectious Disease Research, Children's Research Institute1, Department of Infectious Diseases2 and Department of Otolaryngology3, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | - Despina G Contopoulos-Ioannidis
- Center for Virology, Immunology and Infectious Disease Research, Children's Research Institute1, Department of Infectious Diseases2 and Department of Otolaryngology3, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | - Marci M Lesperance
- Center for Virology, Immunology and Infectious Disease Research, Children's Research Institute1, Department of Infectious Diseases2 and Department of Otolaryngology3, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | - Ana M Venegas
- Center for Virology, Immunology and Infectious Disease Research, Children's Research Institute1, Department of Infectious Diseases2 and Department of Otolaryngology3, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | - Anamaris M Colberg-Poley
- Center for Virology, Immunology and Infectious Disease Research, Children's Research Institute1, Department of Infectious Diseases2 and Department of Otolaryngology3, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| |
Collapse
|
31
|
Bahr U, Darai G. Analysis and characterization of the complete genome of tupaia (tree shrew) herpesvirus. J Virol 2001; 75:4854-70. [PMID: 11312357 PMCID: PMC114240 DOI: 10.1128/jvi.75.10.4854-4870.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2000] [Accepted: 02/26/2001] [Indexed: 11/20/2022] Open
Abstract
The tupaia herpesvirus (THV) was isolated from spontaneously degenerating tissue cultures of malignant lymphoma, lung, and spleen cell cultures of tree shrews (Tupaia spp.). The determination of the complete nucleotide sequence of the THV strain 2 genome resulted in a 195,857-bp-long, linear DNA molecule with a G+C content of 66.5%. The terminal regions of the THV genome and the loci of conserved viral genes were found to be G+C richer. Furthermore, no large repetitive DNA sequences could be identified. This is in agreement with the previous classification of THV as the prototype species of herpesvirus genome group F. The search for potential coding regions resulted in the identification of 158 open reading frames (ORFs) regularly distributed on both DNA strands. Seventy-six out of the 158 ORFs code for proteins that are significantly homologous to known herpesvirus proteins. The highest homologies found were to primate and rodent cytomegaloviruses. Biological properties, protein homologies, the arrangement of conserved viral genes, and phylogenetic analysis revealed that THV is a member of the subfamily Betaherpesvirinae. The evolutionary lineages of THV and the cytomegaloviruses seem to have branched off from a common ancestor. In addition, it was found that the arrangements of conserved genes of THV and murine cytomegalovirus strain Smith, both of which are not able to form genomic isomers, are colinear with two different human cytomegalovirus (HCMV) strain AD169 genomic isomers that differ from each other in the orientation of the long unique region. The biological properties and the high degree of relatedness of THV to the mammalian cytomegaloviruses allow the consideration of THV as a model system for investigation of HCMV pathogenicity.
Collapse
Affiliation(s)
- U Bahr
- Institut für Medizinische Virologie, Universität Heidelberg, D-69120 Heidelberg, Germany
| | | |
Collapse
|
32
|
Hayajneh WA, Colberg-Poley AM, Skaletskaya A, Bartle LM, Lesperance MM, Contopoulos-Ioannidis DG, Kedersha NL, Goldmacher VS. The sequence and antiapoptotic functional domains of the human cytomegalovirus UL37 exon 1 immediate early protein are conserved in multiple primary strains. Virology 2001; 279:233-40. [PMID: 11145905 DOI: 10.1006/viro.2000.0726] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human cytomegalovirus UL37 exon 1 gene encodes the immediate early protein pUL37x1 that has antiapoptotic and regulatory activities. Deletion mutagenesis analysis of the open reading frame of UL37x1 identified two domains that are necessary and sufficient for its antiapoptotic activity. These domains are confined within the segments between amino acids 5 to 34, and 118 to 147, respectively. The first domain provides the targeting of the protein to mitochondria. Direct PCR sequencing of UL37 exon 1 amplified from 26 primary strains of human cytomegalovirus demonstrated that the promoter, polyadenylation signal, and the two segments of pUL37x1 required for its antiapoptotic function were invariant in all sequenced strains and identical to those in AD169 pUL37x1. In total, UL37 exon 1 varies between 0.0 and 1.6% at the nucleotide level from strain AD169. Only 11 amino acids were found to vary in one or more viral strains, and these variations occurred only in the domains of pUL37x1 dispensable for its antiapoptotic function. We infer from this remarkable conservation of pUL37x1 in primary strains that this protein and, probably, its antiapoptotic function are required for productive replication of human cytomegalovirus in humans.
Collapse
Affiliation(s)
- W A Hayajneh
- Department of Infectious Diseases, Center for Virology, Immunology, and Infectious Disease Research, Washington, DC, 20010, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lee M, Xiao J, Haghjoo E, Zhan X, Abenes G, Tuong T, Dunn W, Liu F. Murine cytomegalovirus containing a mutation at open reading frame M37 is severely attenuated in growth and virulence in vivo. J Virol 2000; 74:11099-107. [PMID: 11070005 PMCID: PMC113190 DOI: 10.1128/jvi.74.23.11099-11107.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A pool of murine cytomegalovirus (MCMV) mutants was generated by using a Tn3-based transposon mutagenesis procedure. One of the mutants, RvM37, which contained the transposon sequence at open reading frame M37, was characterized both in tissue culture and in immunocompetent BALB/c and immunodeficient SCID mice. Our results provide the first direct evidence to suggest that M37 is not essential for viral replication in vitro in NIH 3T3 cells. Compared to the wild-type strain and a rescued virus that restored the M37 region, the viral mutant was severely attenuated in growth in both BALB/c and SCID mice after intraperitoneal infection. Specifically, titers of the Smith strain and rescued virus in the salivary glands, lungs, spleens, livers, and kidneys of the SCID mice at 21 days postinfection were about 5 x 10(5), 2 x 10(5), 5 x 10(4), 5 x 10(3), and 1 x 10(4) PFU/ml of organ homogenate, respectively; in contrast, titers of RvM37 in these organs were less than 10(2) PFU/ml of organ homogenate. Moreover, the virulence of the mutant virus appeared to be significantly attenuated because none of the SCID mice infected with RvM37 had died by 120 days postinfection, while all animals infected with the wild-type and rescued viruses had died by 26 days postinfection. Our results suggest that M37 probably encodes a virulence factor and is required for MCMV virulence in SCID mice and for optimal viral growth in vivo.
Collapse
Affiliation(s)
- M Lee
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Colberg-Poley AM, Patel MB, Erezo DP, Slater JE. Human cytomegalovirus UL37 immediate-early regulatory proteins traffic through the secretory apparatus and to mitochondria. J Gen Virol 2000; 81:1779-89. [PMID: 10859384 DOI: 10.1099/0022-1317-81-7-1779] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL36-38 immediate-early (IE) locus encodes the UL37 exon 1 (pUL37x1) and UL37 (gpUL37) regulatory proteins, which have anti-apoptotic activities. pUL37x1 shares its entire sequence, including a hydrophobic leader and an acidic domain, with the exception of one residue, with the amino terminus of gpUL37. gpUL37 has, in addition, unique N-linked glycosylation, transmembrane and cytosolic domains. A rabbit polyvalent antiserum was generated against residues 27-40 in the shared amino-terminal domain and a mouse polyvalent antiserum was generated against the full-length protein to study trafficking of individual UL37 proteins in human cells that transiently expressed gpUL37 or pUL37x1. Co-localization studies by confocal laser scanning microscopy detected trafficking of gpUL37 and pUL37x1 from the endoplasmic reticulum to the Golgi apparatus in permissive U373 cells and in human diploid fibroblasts (HFF). Trafficking of gpUL37 to the cellular plasma membrane was detected in unfixed HFF cells. FLAG-tagged gpUL37 trafficked similarly through the secretory apparatus to the plasma membrane. By using confocal microscopy and immunoblotting of fractionated cells, gpUL37 and pUL37x1 were found to co-localize with mitochondria in human cells. This unconventional dual trafficking pattern through the secretory apparatus and to mitochondria is novel for herpesvirus IE regulatory proteins.
Collapse
Affiliation(s)
- A M Colberg-Poley
- Center for Virology, Immunology, and Infectious Disease Research (Room 5720) and Center for Molecular Mechanisms of Disease Research, Washington, DC 20010, USA
| | | | | | | |
Collapse
|
35
|
Goldmacher VS, Bartle LM, Skaletskaya A, Dionne CA, Kedersha NL, Vater CA, Han JW, Lutz RJ, Watanabe S, Cahir McFarland ED, Kieff ED, Mocarski ES, Chittenden T. A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci U S A 1999; 96:12536-41. [PMID: 10535957 PMCID: PMC22976 DOI: 10.1073/pnas.96.22.12536] [Citation(s) in RCA: 334] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (CMV), a herpesvirus that causes congenital disease and opportunistic infections in immunocompromised individuals, encodes functions that facilitate efficient viral propagation by altering host cell behavior. Here we show that CMV blocks apoptosis mediated by death receptors and encodes a mitochondria-localized inhibitor of apoptosis, denoted vMIA, capable of suppressing apoptosis induced by diverse stimuli. vMIA, a product of the viral UL37 gene, inhibits Fas-mediated apoptosis at a point downstream of caspase-8 activation and Bid cleavage but upstream of cytochrome c release, while residing in mitochondria and associating with adenine nucleotide translocator. These functional properties resemble those ascribed to Bcl-2; however, the absence of sequence similarity to Bcl-2 or any other known cell death suppressors suggests that vMIA defines a previously undescribed class of anti-apoptotic proteins.
Collapse
Affiliation(s)
- V S Goldmacher
- Apoptosis Technology, Inc., 148 Sidney Street, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Borst EM, Hahn G, Koszinowski UH, Messerle M. Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutants. J Virol 1999; 73:8320-9. [PMID: 10482582 PMCID: PMC112849 DOI: 10.1128/jvi.73.10.8320-8329.1999] [Citation(s) in RCA: 314] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently introduced a novel procedure for the construction of herpesvirus mutants that is based on the cloning and mutagenesis of herpesvirus genomes as infectious bacterial artificial chromosomes (BACs) in Escherichia coli (M. Messerle, I. Crnkovic, W. Hammerschmidt, H. Ziegler, and U. H. Koszinowski, Proc. Natl. Acad. Sci. USA 94:14759-14763, 1997). Here we describe the application of this technique to the human cytomegalovirus (HCMV) strain AD169. Since it was not clear whether the terminal and internal repeat sequences of the HCMV genome would give rise to recombination, the stability of the cloned HCMV genome was examined during propagation in E. coli, during mutagenesis, and after transfection in permissive fibroblasts. Interestingly, the HCMV BACs were frozen in defined conformations in E. coli. The transfection of the HCMV BACs into human fibroblasts resulted in the reconstitution of infectious virus and isomerization of the reconstituted genomes. The power of the BAC mutagenesis procedure was exemplarily demonstrated by the disruption of the gpUL37 open reading frame. The transfection of the mutated BAC led to plaque formation, indicating that the gpUL37 gene product is dispensable for growth of HCMV in fibroblasts. The new procedure will considerably speed up the construction of HCMV mutants and facilitate genetic analysis of HCMV functions.
Collapse
Affiliation(s)
- E M Borst
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | | | | | | |
Collapse
|
37
|
Patterson CE, Shenk T. Human cytomegalovirus UL36 protein is dispensable for viral replication in cultured cells. J Virol 1999; 73:7126-31. [PMID: 10438798 PMCID: PMC104234 DOI: 10.1128/jvi.73.9.7126-7131.1999] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Consistent with earlier analyses of human cytomegalovirus UL36 mRNA, we find that the UL36 protein is present throughout infection. In fact, it is delivered to the infected cell as a constituent of the virion. Curiously, much less UL36 protein accumulated in cells infected with the AD169 strain of human cytomegalovirus than in cells infected with the Towne or Toledo strain, and localization of the protein in cells infected with AD169 is strikingly different from that in cell infected with the Towne or Toledo strain. The variation in steady-state level of the proteins results from different stabilities of the proteins. The UL36 proteins from the three viral strains differ by several amino acid substitutions. However, this variability is not responsible for the different half-lives because the AD169 and Towne proteins, which exhibit very different half-lives within infected cells, exhibit the same half-life when introduced into uninfected cells by transfection with expression plasmids. We demonstrate that the UL36 protein is nonessential for growth in cultured cells, and we propose that the ability of the virus to replicate in the absence of UL36 function likely explains the striking strain-specific variation in the half-life and intracellular localization of the protein.
Collapse
Affiliation(s)
- C E Patterson
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | |
Collapse
|
38
|
Colberg-Poley AM, Huang L, Soltero VE, Iskenderian AC, Schumacher RF, Anders DG. The acidic domain of pUL37x1 and gpUL37 plays a key role in transactivation of HCMV DNA replication gene promoter constructions. Virology 1998; 246:400-8. [PMID: 9657958 DOI: 10.1006/viro.1998.9212] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient complementation of human cytomegalovirus (HCMV) oriLyt DNA replication in permissive human diploid cells expressing replication genes under native promoters requires its UL36-38 gene products. Two of the immediate early (IE) proteins encoded by this locus, pUL37x1 and, to a lesser extent, gpUL37, activated expression of HCMV early gene promoter constructions. The other IE protein encoded by the UL36-38 locus, pUL36, and the early product, pUL38, did not transactivate the HCMV early promoter constructions under similar conditions. The acidic domain, common to both pUL37x1 and gpUL37, is required for activation of HCMV early promoter constructions. Conversely, gpUL37 sequences downstream of amino acid 199 are not required for transactivation of viral early promoters. Taken together, these results suggest that the requirement for UL36-38 products for HCMV DNA replication results, at least in part, from the requirement of the transactivation of HCMV early DNA replication promoters by pUL37x1 and, to a lesser extent, by gpUL37 and that the acidic domain is critical for this activity.
Collapse
Affiliation(s)
- A M Colberg-Poley
- Children's Research Institute, Children's National Medical Center, Washington, DC 20010,
| | | | | | | | | | | |
Collapse
|
39
|
Mo C, Holland TC. Determination of the transmembrane topology of herpes simplex virus type 1 glycoprotein K. J Biol Chem 1997; 272:33305-11. [PMID: 9407122 DOI: 10.1074/jbc.272.52.33305] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Herpes simplex virus type 1 glycoprotein K (gK) plays an essential role in viral replication and cell fusion. gK is a very hydrophobic membrane protein that contains a signal sequence and several hydrophobic regions. It has been shown that mutations inducing cell fusion map to two distinct domains of gK, suggesting that these domains are functionally important. To understand the transmembrane topology of gK and the localization of these functional domains, we constructed a set of gK deletion, insertion, and truncation mutants and expressed these by in vitro translation in the presence of microsomal membranes. The transmembrane topology of gK was determined by examination of the post-translational processing and protease sensitivity of the mutant proteins. Our data demonstrate that gK contains three transmembrane domains (amino acids 125-139, 226-239, and 311-325). Another hydrophobic domain (amino acids 241-265), which is relatively less hydrophobic and much longer compared with the transmembrane sequences, is located in the extracellular loop. The analysis showed that the domains containing syncytial mutations are both ectodomains. They may interact with each other to form a complex tertiary structure that is critical for the biological function of gK.
Collapse
Affiliation(s)
- C Mo
- Department of Immunology and Microbiology, Wayne State University Medical School, Detroit, Michigan 48201, USA
| | | |
Collapse
|
40
|
Loiler SA, DiFronzo NL, Holland CA. Gene transfer to human cells using retrovirus vectors produced by a new polytropic packaging cell line. J Virol 1997; 71:4825-8. [PMID: 9151879 PMCID: PMC191707 DOI: 10.1128/jvi.71.6.4825-4828.1997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We report here the construction of a new packaging cell line, called MPAC, that packages defective retroviral vectors in viral particles with envelope proteins derived from a Moloney mink cell focus-inducing (MCF) polytropic virus. We characterized the tropism of MPAC-packaged retroviral vectors and show that some human cell lines can be infected with these vectors while others cannot. In addition, we show that some human cells fully support MCF virus replication while others either partially or fully restrict MCF virus replication.
Collapse
Affiliation(s)
- S A Loiler
- Graduate Program in Immunology and Virology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | |
Collapse
|