1
|
Guzman Ruiz L, Zollner AM, Hoxie I, Küchler J, Hausjell C, Mesurado T, Krammer F, Jungbauer A, Pereira Aguilar P, Klausberger M, Grabherr R. Enhancing NA immunogenicity through novel VLP designs. Vaccine 2024; 42:126270. [PMID: 39197219 DOI: 10.1016/j.vaccine.2024.126270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Current influenza virus vaccines poorly display key neuraminidase (NA) epitopes and do not robustly induce NA-reactive antibodies; instead, they focus on the induction of hemagglutinin (HA)-reactive antibodies. Next-generation influenza vaccines should be optimized in order to activate NA-reactive B cells and to induce a broadly cross-reactive and protective antibody response. We aimed at enhancing the immunogenicity of the NA on vaccines by two strategies: (i) modifying the HA:NA ratio of the vaccine preparation and (ii) exposing epitopes on the lateral surface or beneath the head of the NA by extending the NA stalk. The H1N1 glycoproteins from the influenza virus A/California/04/2009 strain were displayed on human immunodeficiency virus 1 (HIV-1) gag-based virus-like particles (VLP). Using the baculovirus insect cell expression system, we biased the quantity of surface glycoproteins employing two different promoters, the very late baculovirus p10 promoter and the early and late gp64 promoter. This led to a 1:1 to 2:1 HA:NA ratio, which was approximately double or triple the amount of NA as present on the wild-type influenza A virus (HA:NA ratio 3:1 to 5:1). Furthermore, by insertion of 15 amino acids from the A-New York/61/2012 strain (NY12) which prolongates the NA stalk (NA long stalk; NA-LS), we intended to improve the accessibility of the NA. Six different types of VLPs were produced and purified using a platform downstream process based on Capto-Core 700™ followed by Capto-Heparin™ affinity chromatography combined with ultracentrifugation. These VLPs were then tested in a mouse model. Robust titers of antibodies that inhibit the neuraminidase activity were elicited even after vaccination with two low doses (0.3 μg) of the H1N1 VLPs without compromising the anti-HA responses. In conclusion, our results demonstrate the feasibility of the two developed strategies to retain HA immunogenicity and improve NA immunogenicity as a future influenza vaccine candidate.
Collapse
Affiliation(s)
- Leticia Guzman Ruiz
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria; University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Alexander M Zollner
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Irene Hoxie
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, Gustave L. Levy Place, 10029-5674 New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jan Küchler
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Christina Hausjell
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria
| | - Tomas Mesurado
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Florian Krammer
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, Gustave L. Levy Place, 10029-5674 New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Alois Jungbauer
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria
| | - Patricia Pereira Aguilar
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria
| | - Miriam Klausberger
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria
| | - Reingard Grabherr
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
2
|
Partlow EA, Jaeggi-Wong A, Planitzer SD, Berg N, Li Z, Ivanovic T. Influenza A Virus Infections Sense Host Membrane Tension to Dynamically Tune Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555166. [PMID: 37693449 PMCID: PMC10491151 DOI: 10.1101/2023.08.28.555166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Enveloped viruses often exhibit a pleomorphic morphology, ranging in size from 100nm spheres to tens-of-micron long filaments. For influenza A virus (IAV), spheres enable rapid replication and minimize metabolic cost, while filaments resist effects of antibodies or other cell-entry pressures. The current paradigm is that virion shape changes require genetic adaptation; however, a virus evolved to alter its shape phenotypically would outperform one that relies on genetic selection. Using a novel quantitative flow virometry assay to characterize virion shape dynamics we find that IAV rapidly tunes its shape distribution to favor spheres under optimal, and filaments under attenuating conditions including the presence of antibodies. We identify membrane tension as a key cue sensed by IAV determining shape distributions. This phenotypic shift outpaces genetic change and serves to enable additional life cycles under pressure. Our work expands knowledge of the complex host-virus interplay to include viral responses to the local environment by optimizing its structure to maximize replication and ultimately host-host transmission.
Collapse
|
3
|
The Contribution of Viral Proteins to the Synergy of Influenza and Bacterial Co-Infection. Viruses 2022; 14:v14051064. [PMID: 35632805 PMCID: PMC9143653 DOI: 10.3390/v14051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
A severe course of acute respiratory disease caused by influenza A virus (IAV) infection is often linked with subsequent bacterial superinfection, which is difficult to cure. Thus, synergistic influenza-bacterial co-infection represents a serious medical problem. The pathogenic changes in the infected host are accelerated as a consequence of IAV infection, reflecting its impact on the host immune response. IAV infection triggers a complex process linked with the blocking of innate and adaptive immune mechanisms required for effective antiviral defense. Such disbalance of the immune system allows for easier initiation of bacterial superinfection. Therefore, many new studies have emerged that aim to explain why viral-bacterial co-infection can lead to severe respiratory disease with possible fatal outcomes. In this review, we discuss the key role of several IAV proteins-namely, PB1-F2, hemagglutinin (HA), neuraminidase (NA), and NS1-known to play a role in modulating the immune defense of the host, which consequently escalates the development of secondary bacterial infection, most often caused by Streptococcus pneumoniae. Understanding the mechanisms leading to pathological disorders caused by bacterial superinfection after the previous viral infection is important for the development of more effective means of prevention; for example, by vaccination or through therapy using antiviral drugs targeted at critical viral proteins.
Collapse
|
4
|
Moreira EA, Yamauchi Y, Matthias P. How Influenza Virus Uses Host Cell Pathways during Uncoating. Cells 2021; 10:1722. [PMID: 34359892 PMCID: PMC8305448 DOI: 10.3390/cells10071722] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza is a zoonotic respiratory disease of major public health interest due to its pandemic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry.
Collapse
Affiliation(s)
| | - Yohei Yamauchi
- Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK;
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland;
- Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
5
|
Gao J, Wan H, Li X, Rakic Martinez M, Klenow L, Gao Y, Ye Z, Daniels R. Balancing the influenza neuraminidase and hemagglutinin responses by exchanging the vaccine virus backbone. PLoS Pathog 2021; 17:e1009171. [PMID: 33872324 PMCID: PMC8084346 DOI: 10.1371/journal.ppat.1009171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/29/2021] [Accepted: 04/05/2021] [Indexed: 01/14/2023] Open
Abstract
Virions are a common antigen source for many viral vaccines. One limitation to using virions is that the antigen abundance is determined by the content of each protein in the virus. This caveat especially applies to viral-based influenza vaccines where the low abundance of the neuraminidase (NA) surface antigen remains a bottleneck for improving the NA antibody response. Our systematic analysis using recent H1N1 vaccine antigens demonstrates that the NA to hemagglutinin (HA) ratio in virions can be improved by exchanging the viral backbone internal genes, especially the segment encoding the polymerase PB1 subunit. The purified inactivated virions with higher NA content show a more spherical morphology, a shift in the balance between the HA receptor binding and NA receptor release functions, and induce a better NA inhibitory antibody response in mice. These results indicate that influenza viruses support a range of ratios for a given NA and HA pair which can be used to produce viral-based influenza vaccines with higher NA content that can elicit more balanced neutralizing antibody responses to NA and HA. Influenza vaccines are produced on a large scale to meet the annual U.S. and global demand. To efficiently produce the required number of influenza vaccine doses, virions are commonly used as the antigen source due to their high viral protein content. A draw-back to using virions is that the final antigen composition of the vaccine is determined by the inherent properties of the vaccine virus. While this approach for influenza vaccines is beneficial for the more abundant HA antigen, it likely limits the protective response generated by the less abundant NA antigen. Our results demonstrate that the NA and HA content in vaccine viruses can be optimized by changing the internal genes of the vaccine virus, thereby preserving the surface antigens. The increase in the virion NA content that was achieved elicited higher NA antibody titres and generated more balanced neutralizing antibody responses to HA and NA. Since HA and NA neutralizing antibodies are both protective, this approach could help to improve the suboptimal efficacy of current influenza vaccines and to generate vaccines that provide broader coverage against circulating strains.
Collapse
Affiliation(s)
- Jin Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hongquan Wan
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Xing Li
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Mira Rakic Martinez
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Laura Klenow
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Yamei Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Zhiping Ye
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Robert Daniels
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
6
|
Effect of N-linked glycosylation at position 162 of hemagglutinin in influenza A virus A(H1N1)pdm09. Meta Gene 2021. [DOI: 10.1016/j.mgene.2020.100828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
7
|
A Replication-Defective Influenza Virus Harboring H5 and H7 Hemagglutinins Provides Protection against H5N1 and H7N9 Infection in Mice. J Virol 2021; 95:JVI.02154-20. [PMID: 33177192 DOI: 10.1128/jvi.02154-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
The recent highly pathogenic avian influenza (HPAI) H5N1 and H7N9 viruses have caused hundreds of human infections with high mortality rates. Although H5N1 and H7N9 viruses have been limited mainly to avian species, there is high potential for these viruses to acquire human-to-human transmission and initiate a pandemic. A highly safe and effective vaccine is needed to protect against a potential H5N1 or H7N9 influenza pandemic. Here, we report the generation and evaluation of two reassortant influenza viruses, PR8-H5-H7NA and PR8-H7-H5NA These viruses contain six internal segments from A/Puerto Rico/8/1934 (PR8), the HA segment from either A/Alberta/01/2014 (H5N1) [AB14 (H5N1)] or A/British Columbia/01/2015 (H7N9) [BC15 (H7N9)], and a chimeric NA segment with either the BC15 (H7N9) HA gene or the AB14 (H5N1) HA gene flanked by the NA packaging signals of PR8. These viruses expressed both H5 and H7 HAs in infected cells, replicated to high titers when exogenous NA was added to the culture medium in vitro, and were replication defective and nonvirulent when administered intranasally in mice. Moreover, intranasal vaccination with PR8-H5-H7NA elicited robust immune responses to both H5 and H7 viruses, conferring complete protection against both AB14 (H5N1) and BC15 (H7N9) challenges in mice. Conversely, vaccination with PR8-H7-H5NA only elicited robust immune responses toward the H7 virus, which conferred complete protection against BC15 (H7N9) but not against AB14 (H5N1) in mice. Therefore, PR8-H5-H7NA has strong potential to serve as a vaccine candidate against both H5 and H7 subtypes of influenza viruses.IMPORTANCE Avian influenza H5N1 and H7N9 viruses infected humans with high mortality rates. A highly safe and effective vaccine is needed to protect against a potential pandemic. We generated and evaluated two reassortant influenza viruses, PR8-H5-H7NA and PR8-H7-H5NA, as vaccine candidates. Each virus contains one type of HA in segment 4 and the other subtype of HA in segment 6, thereby expressing both H5 and H7 subtypes of the HA molecule. The replication of viruses is dependent on the addition of exogenous NA in cell culture and is replication defective in vivo Vaccination of PR8-H5-H7NA virus confers protection to both H5N1 and H7N9 virus challenge; conversely, vaccination of PR8-H7-H5NA provides protection only to H7N9 virus challenge. Our data revealed that when engineering such a virus, the H5 or H7 HA in segment 6 affects the immunogenicity. PR8-H5-H7NA has strong potential to serve as a vaccine candidate against both H5 and H7 subtypes of influenza viruses.
Collapse
|
8
|
Buonvino S, Melino S. New Consensus pattern in Spike CoV-2: potential implications in coagulation process and cell-cell fusion. Cell Death Discov 2020; 6:134. [PMID: 33262894 PMCID: PMC7691694 DOI: 10.1038/s41420-020-00372-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/28/2022] Open
Abstract
Coagulopathy and syncytial formation are relevant effects of the SARS-CoV-2 infection, but the underlying molecular mechanisms triggering these processes are not fully elucidated. Here, we identified a potential consensus pattern in the Spike S glycoprotein present within the cytoplasmic domain; this consensus pattern was detected in only 79 out of 561,000 proteins (UniProt bank). Interestingly, the pattern was present in both human and bat the coronaviruses S proteins, in many proteins involved in coagulation process, cell-cell interaction, protein aggregation and regulation of cell fate, such as von Willebrand factor, coagulation factor X, fibronectin and Notch, characterized by the presence of the cysteine-rich EGF-like domain. This finding may suggest functional similarities between the matched proteins and the CoV-2 S protein, implying a new possible involvement of the S protein in the molecular mechanism that leads to the coagulopathy and cell fusion in COVID-19 disease.
Collapse
Affiliation(s)
- Silvia Buonvino
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
9
|
Kordyukova LV, Mintaev RR, Rtishchev AA, Kunda MS, Ryzhova NN, Abramchuk SS, Serebryakova MV, Khrustalev VV, Khrustaleva TA, Poboinev VV, Markushin SG, Voronina OL. Filamentous versus Spherical Morphology: A Case Study of the Recombinant A/WSN/33 (H1N1) Virus. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:297-309. [PMID: 32036809 DOI: 10.1017/s1431927620000069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Influenza A virus is a serious human pathogen that assembles enveloped virions on the plasma membrane of the host cell. The pleiomorphic morphology of influenza A virus, represented by spherical, elongated, or filamentous particles, is important for the spread of the virus in nature. Using fixative protocols for sample preparation and negative staining electron microscopy, we found that the recombinant A/WSN/33 (H1N1) (rWSN) virus, a strain considered to be strictly spherical, may produce filamentous particles when amplified in the allantoic cavity of chicken embryos. In contrast, the laboratory WSN strain and the rWSN virus amplified in Madin-Darby canine kidney cells exhibited a spherical morphology. Next-generation sequencing (NGS) suggested a rare Ser126Cys substitution in the M1 protein of rWSN, which was confirmed by the mass spectrometric analysis. No structurally relevant substitutions were found by NGS in other proteins of rWSN. Bioinformatics algorithms predicted a neutral structural effect of the Ser126Cys mutation. The mrWSN_M1_126S virus generated after the introduction of the reverse Cys126Ser substitution exhibited a similar host-dependent partially filamentous phenotype. We hypothesize that a shortage of some as-yet-undefined cellular components involved in virion budding and membrane scission may result in the appearance of filamentous particles in the case of usually "nonfilamentous" virus strains.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991Moscow, Russia
| | - Ramil R Mintaev
- Mechnikov Research Institute of Vaccine and Sera, 105064Moscow, Russia
- Federal State Budgetary Institution «Center for Strategic Planning and Management for Medical and Biological Health Risks», Ministry of Health, 119121Moscow, Russia
| | | | - Marina S Kunda
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health, 123098Moscow, Russia
| | - Natalia N Ryzhova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health, 123098Moscow, Russia
| | - Sergei S Abramchuk
- Department of Chemistry, Lomonosov Moscow State University, 119234Moscow, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991Moscow, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991Moscow, Russia
| | - Vladislav V Khrustalev
- Department of General Chemistry, Belarusian State Medical University, 220116Minsk, Belarus
| | - Tatyana A Khrustaleva
- Biochemical Group of the Multidisciplinary Diagnostic Laboratory, Institute of Physiology of the National Academy of Sciences of Belarus, 220072Minsk, Belarus
| | - Victor V Poboinev
- Department of General Chemistry, Belarusian State Medical University, 220116Minsk, Belarus
| | | | - Olga L Voronina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health, 123098Moscow, Russia
| |
Collapse
|
10
|
Qin T, Ma R, Yin Y, Miao X, Chen S, Fan K, Xi J, Liu Q, Gu Y, Yin Y, Hu J, Liu X, Peng D, Gao L. Catalytic inactivation of influenza virus by iron oxide nanozyme. Am J Cancer Res 2019; 9:6920-6935. [PMID: 31660077 PMCID: PMC6815955 DOI: 10.7150/thno.35826] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022] Open
Abstract
Influenza poses a severe threat to human health in the world. However, developing a universal anti-viral strategy has remained challenging due to the presence of diverse subtypes as well as its high mutation rate, resulting in antigenic shift and drift. Here we developed an antiviral strategy using iron oxide nanozymes (IONzymes) to target the lipid envelope of the influenza virus. Methods: We evaluated the antiviral activities of our IONzymes using a hemagglutination assay, together with a 50% tissue culture infectious doses (TCID50) method. Lipid peroxidation of the viral envelope was analyzed using a maleic dialdehyde (MDA) assay and transmission electron microscopy (TEM). The neighboring viral proteins were detected by western blotting. Results: We show that IONzymes induce envelope lipid peroxidation and destroy the integrity of neighboring proteins, including hemagglutinin, neuraminidase, and matrix protein 1, causing the inactivation of influenza A viruses (IAVs). Furthermore, we show that our IONzymes possess a broad-spectrum antiviral activity on 12 subtypes of IAVs (H1~H12). Lastly, we demonstrate that applying IONzymes to a facemask improves the ability of virus protection against 3 important subtypes that pose a threat to human, including H1N1, H5N1, and H7N9 subtype. Conclusion: Together, our results clearly demonstrate that IONzymes can catalyze lipid peroxidation of the viral lipid envelope to inactivate enveloped viruses and provide protection from viral transmission and infection.
Collapse
|
11
|
Biuso F, Palladino L, Manenti A, Stanzani V, Lapini G, Gao J, Couzens L, Eichelberger MC, Montomoli E. Use of lentiviral pseudotypes as an alternative to reassortant or Triton X-100-treated wild-type Influenza viruses in the neuraminidase inhibition enzyme-linked lectin assay. Influenza Other Respir Viruses 2019; 13:504-516. [PMID: 31411006 PMCID: PMC6692537 DOI: 10.1111/irv.12669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Formulation of neuraminidase (NA) within influenza vaccines is gaining importance in light of recent human studies. The enzyme-linked lectin assay (ELLA) is considered a reliable assay to evaluate human anti-NA antibodies. OBJECTIVES To overcome interference by hemagglutinin (HA)-specific antibodies and detect neuraminidase inhibitory (NI) antibodies only, two different sources of antigen have been studied in ELLA: reassortant viruses with a mismatched avian origin-HA or Triton X-100 (Tx)-treated wild-type viruses. Pseudotypes or pseudovirus (PV), characterized by a lentivirus core bearing human influenza NA and avian influenza HA, were investigated as an alternative source of antigen and compared to HA-mismatched and Tx-treated viruses, since represent a safer product to be handled. METHODS Two independent panels of sera were analyzed by ELLA to evaluate the anti-NA response against N1 (A/California/07/2009 (H1N1pdm)) and N2 (A/Hong Kong/4801/2014 (H3N2)). The NA inhibition (NI) antibody titers measured as either the 50% end point or 50% inhibitory concentration (IC50 ) were compared for every source of antigen. RESULTS The ELLA assay performed well with all three sources of antigen. NI titers measured using each antigen type correlated well when reported either as end point titers or as the IC50 . CONCLUSIONS This study suggests that HA-mismatched whole virus, Triton-treated wild-type virus or PV can be used to measure NI antibody titers of human sera, but further comparability/validation assays should be performed to assess statistical differences. The data support the use of PV as an attractive alternative source of antigen and justify further investigation to improve stability of this antigen source.
Collapse
Affiliation(s)
- Fabrizio Biuso
- VisMederi s.r.l., Strada del Petriccio e BelriguardoSienaItaly
- VisMederi Research s.r.l., Strada del Petriccio e BelriguardoSienaItaly
| | - Laura Palladino
- VisMederi s.r.l., Strada del Petriccio e BelriguardoSienaItaly
| | - Alessandro Manenti
- VisMederi s.r.l., Strada del Petriccio e BelriguardoSienaItaly
- VisMederi Research s.r.l., Strada del Petriccio e BelriguardoSienaItaly
| | | | - Giulia Lapini
- VisMederi s.r.l., Strada del Petriccio e BelriguardoSienaItaly
| | - Jin Gao
- Center for Biologics Evaluation and Research, Food and Drug AdministrationSilver SpringMDUSA
| | - Laura Couzens
- Center for Biologics Evaluation and Research, Food and Drug AdministrationSilver SpringMDUSA
| | - Maryna C. Eichelberger
- Center for Biologics Evaluation and Research, Food and Drug AdministrationSilver SpringMDUSA
| | - Emanuele Montomoli
- VisMederi s.r.l., Strada del Petriccio e BelriguardoSienaItaly
- VisMederi Research s.r.l., Strada del Petriccio e BelriguardoSienaItaly
- Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly
| |
Collapse
|
12
|
McAuley JL, Gilbertson BP, Trifkovic S, Brown LE, McKimm-Breschkin JL. Influenza Virus Neuraminidase Structure and Functions. Front Microbiol 2019; 10:39. [PMID: 30761095 PMCID: PMC6362415 DOI: 10.3389/fmicb.2019.00039] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
With the constant threat of emergence of a novel influenza virus pandemic, there must be continued evaluation of the molecular mechanisms that contribute to virulence. Although the influenza A virus surface glycoprotein neuraminidase (NA) has been studied mainly in the context of its role in viral release from cells, accumulating evidence suggests it plays an important, multifunctional role in virus infection and fitness. This review investigates the various structural features of NA, linking these with functional outcomes in viral replication. The contribution of evolving NA activity to viral attachment, entry and release of virions from infected cells, and maintenance of functional balance with the viral hemagglutinin are also discussed. Greater insight into the role of this important antiviral drug target is warranted.
Collapse
Affiliation(s)
- Julie L McAuley
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Brad P Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sanja Trifkovic
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Lorena E Brown
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Kordyukova LV, Shtykova EV, Baratova LA, Svergun DI, Batishchev OV. Matrix proteins of enveloped viruses: a case study of Influenza A virus M1 protein. J Biomol Struct Dyn 2018; 37:671-690. [PMID: 29388479 DOI: 10.1080/07391102.2018.1436089] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Influenza A virus, a member of the Orthomyxoviridae family of enveloped viruses, is one of the human and animal top killers, and its structure and components are therefore extensively studied during the last decades. The most abundant component, M1 matrix protein, forms a matrix layer (scaffold) under the viral lipid envelope, and the functional roles as well as structural peculiarities of the M1 protein are still under heavy debate. Despite multiple attempts of crystallization, no high resolution structure is available for the full length M1 of Influenza A virus. The likely reason for the difficulties lies in the intrinsic disorder of the M1 C-terminal part preventing diffraction quality crystals to be grown. Alternative structural methods including synchrotron small-angle X-ray scattering (SAXS), atomic force microscopy, cryo-electron microscopy/tomography are therefore widely applied to understand the structure of M1, its self-association and interactions with the lipid membrane and the viral nucleocapsid. These methods reveal striking similarities in the behavior of M1 and matrix proteins of other enveloped RNA viruses, with the differences accompanied by the specific features of the viral lifecycles, thus suggesting common interaction principles and, possibly, common evolutional ancestors. The structural information on the Influenza A virus M1 protein obtained to the date strongly suggests that the intrinsic disorder in the C-terminal domain has important functional implications.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- a Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Eleonora V Shtykova
- b Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences , Moscow , Russian Federation.,c Semenov Institute of Chemical Physics , Russian Academy of Sciences , Moscow , Russian Federation
| | - Lyudmila A Baratova
- a Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | | | - Oleg V Batishchev
- e Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Moscow , Russian Federation.,f Moscow Institute of Physics and Technology , Dolgoprudniy , Russian Federation
| |
Collapse
|
14
|
Wu NC, Wilson IA. A Perspective on the Structural and Functional Constraints for Immune Evasion: Insights from Influenza Virus. J Mol Biol 2017. [PMID: 28648617 DOI: 10.1016/j.jmb.2017.06.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Influenza virus evolves rapidly to constantly escape from natural immunity. Most humoral immune responses to influenza virus target the hemagglutinin (HA) glycoprotein, which is the major antigen on the surface of the virus. The HA is composed of a globular head domain for receptor binding and a stem domain for membrane fusion. The major antigenic sites of HA are located in the globular head subdomain, which is highly tolerant of amino acid substitutions and continual addition of glycosylation sites. Nonetheless, the evolution of the receptor-binding site and the stem region on HA is severely constrained by their functional roles in engaging the host receptor and in mediating membrane fusion, respectively. Here, we review how broadly neutralizing antibodies (bnAbs) exploit these evolutionary constraints to protect against diverse influenza strains. We also discuss the emerging role of other epitopes that are conserved only in subsets of viruses. This rapidly increasing knowledge of the evolutionary biology, immunology, structural biology, and virology of influenza virus is invaluable for development and design of more universal influenza vaccines and novel therapeutics.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
Lateral Organization of Influenza Virus Proteins in the Budozone Region of the Plasma Membrane. J Virol 2017; 91:JVI.02104-16. [PMID: 28202765 DOI: 10.1128/jvi.02104-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/12/2017] [Indexed: 12/24/2022] Open
Abstract
Influenza virus assembles and buds at the plasma membrane of virus-infected cells. The viral proteins assemble at the same site on the plasma membrane for budding to occur. This involves a complex web of interactions among viral proteins. Some proteins, like hemagglutinin (HA), NA, and M2, are integral membrane proteins. M1 is peripherally membrane associated, whereas NP associates with viral RNA to form an RNP complex that associates with the cytoplasmic face of the plasma membrane. Furthermore, HA and NP have been shown to be concentrated in cholesterol-rich membrane raft domains, whereas M2, although containing a cholesterol binding motif, is not raft associated. Here we identify viral proteins in planar sheets of plasma membrane using immunogold staining. The distribution of these proteins was examined individually and pairwise by using the Ripley K function, a type of nearest-neighbor analysis. Individually, HA, NA, M1, M2, and NP were shown to self-associate in or on the plasma membrane. HA and M2 are strongly coclustered in the plasma membrane; however, in the case of NA and M2, clustering depends upon the expression system used. Despite both proteins being raft resident, HA and NA occupy distinct but adjacent membrane domains. M2 and M1 strongly cocluster, but the association of M1 with HA or NA is dependent upon the means of expression. The presence of HA and NP at the site of budding depends upon the coexpression of other viral proteins. Similarly, M2 and NP occupy separate compartments, but an association can be bridged by the coexpression of M1.IMPORTANCE The complement of influenza virus proteins necessary for the budding of progeny virions needs to accumulate at budozones. This is complicated by HA and NA residing in lipid raft-like domains, whereas M2, although an integral membrane protein, is not raft associated. Other necessary protein components such as M1 and NP are peripherally associated with the membrane. Our data define spatial relationships between viral proteins in the plasma membrane. Some proteins, such as HA and M2, inherently cocluster within the membrane, although M2 is found mostly at the periphery of regions of HA, consistent with the proposed role of M2 in scission at the end of budding. The association between some pairs of influenza virus proteins, such as M2 and NP, appears to be brokered by additional influenza virus proteins, in this case M1. HA and NA, while raft associated, reside in distinct domains, reflecting their distributions in the viral membrane.
Collapse
|
16
|
Mandal RS, Panda S, Das S. In silico prediction of drug resistance due to S247R mutation of Influenza H1N1 neuraminidase protein. J Biomol Struct Dyn 2017; 36:966-980. [DOI: 10.1080/07391102.2017.1305295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rahul Shubhra Mandal
- Biomedical Informatics Centre, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beleghata, Kolkata 700 010, India
| | - Samiran Panda
- Division of Epidemiology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700 010, India
| | - Santasabuj Das
- Biomedical Informatics Centre, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beleghata, Kolkata 700 010, India
| |
Collapse
|
17
|
Dadonaite B, Vijayakrishnan S, Fodor E, Bhella D, Hutchinson EC. Filamentous influenza viruses. J Gen Virol 2016; 97:1755-1764. [PMID: 27365089 DOI: 10.1099/jgv.0.000535] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Clinical isolates of influenza virus produce pleomorphic virus particles, including extremely long filamentous virions. In contrast, strains of influenza that have adapted to laboratory growth typically produce only spherical virions. As a result, the filamentous phenotype has been overlooked in most influenza virus research. Recent advances in imaging and improved animal models have highlighted the distinct structure and functional relevance of filamentous virions. In this review we summarize what is currently known about these strikingly elongated virus particles and discuss their possible roles in clinical infections.
Collapse
Affiliation(s)
- Bernadeta Dadonaite
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Swetha Vijayakrishnan
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Rd, Bearsden, Glasgow, Lanarkshire G61 1QH, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Rd, Bearsden, Glasgow, Lanarkshire G61 1QH, UK
| | - Edward C Hutchinson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Rd, Bearsden, Glasgow, Lanarkshire G61 1QH, UK.,Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| |
Collapse
|
18
|
Suzuki Y. Selecting vaccine strains for H3N2 human influenza A virus. Meta Gene 2015; 4:64-72. [PMID: 25893173 PMCID: PMC4392175 DOI: 10.1016/j.mgene.2015.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/17/2015] [Accepted: 03/20/2015] [Indexed: 12/23/2022] Open
Abstract
H3N2 human influenza A virus causes epidemics of influenza mainly in the winter season in temperate regions. Since the antigenicity of this virus evolves rapidly, several attempts have been made to predict the major amino acid sequence of hemagglutinin 1 (HA1) in the target season of vaccination. However, the usefulness of predicted sequence was unclear because its relationship to the antigenicity was unknown. Here the antigenic model for estimating the degree of antigenic difference (antigenic distance) between amino acid sequences of HA1 was integrated into the process of selecting vaccine strains for H3N2 human influenza A virus. When the effectiveness of a potential vaccine strain for a target season was evaluated retrospectively using the average antigenic distance between the strain and the epidemic viruses sampled in the target season, the most effective vaccine strain was identified mostly in the season one year before the target season (pre-target season). Effectiveness of actual vaccines appeared to be lower than that of the strains randomly chosen in the pre-target season on average. It was recommended to replace the vaccine strain for every target season with the strain having the smallest average antigenic distance to the others in the pre-target season. The procedure of selecting vaccine strains for future epidemic seasons described in the present study was implemented in the influenza virus forecasting system (INFLUCAST) (http://www.nsc.nagoya-cu.ac.jp/~yossuzuk/influcast.html).
Collapse
Affiliation(s)
- Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
19
|
Somasundaram B, Fee CJ, Fredericks R, Watson AJA, Fairbanks AJ, Hall RJ. A surface plasmon resonance assay for measurement of neuraminidase inhibition, sensitivity of wild-type influenza neuraminidase and its H274Y mutant to the antiviral drugs zanamivir and oseltamivir. J Mol Recognit 2015; 28:521-7. [PMID: 25727669 DOI: 10.1002/jmr.2467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/18/2014] [Accepted: 01/10/2015] [Indexed: 11/09/2022]
Abstract
Antiviral resistance is currently monitored by a labelled enzymatic assay, which can give inconsistent results because of the short half-life of the labelled product, and variations in assay conditions. In this paper, we describe a competitive surface plasmon resonance (SPR) inhibition assay for measuring the sensitivities of wild-type neuraminidase (WT NA) and the H274Y (histidine 274 tyrosine) NA mutant to antiviral drugs. The two NA isoforms were expressed in High-five™ (Trichoplusia ni) insect cells. A spacer molecule (1,6-hexanediamine (HDA)) was conjugated to the 7-hydroxyl group of zanamivir, and the construct (HDA-zanamivir) was immobilized onto a SPR sensor chip to obtain a final immobilization response of 431 response units. The immobilized HDA-zanamivir comprised a bio-specific ligand for the WT and mutant proteins. The effects of the natural substrate (sialic acid) and two inhibitors (zanamivir and oseltamivir) on NA binding to the immobilized ligand were studied. The processed SPR data was analysed to determine 50% inhibitory concentrations (IC50-spr ), using a log dose-response curve fit. Although both NA isoforms had almost identical IC50-spr values for sialic acid (WT = 5.5 nM; H274Y mutant = 3.25 nM) and zanamivir (WT = 2.16 nM; H274Y mutant = 2.42 nM), there were significant differences between the IC50-spr values obtained for the WT (7.7 nM) and H274Y mutant (256 nM) NA in the presence of oseltamivir, indicating that oseltamivir has a reduced affinity for the H274Y mutant. The SPR inhibition assay strategy presented in this work could be applied for the rapid screening of newly emerging variants of NA for their sensitivity to antiviral drugs.
Collapse
Affiliation(s)
- Balaji Somasundaram
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.,Chemical and Process Engineering, University of Canterbury, Private Bag 4800, 8140, Christchurch, Canterbury, New Zealand
| | - Conan J Fee
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.,Chemical and Process Engineering, University of Canterbury, Private Bag 4800, 8140, Christchurch, Canterbury, New Zealand
| | - Rayleen Fredericks
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.,Chemical and Process Engineering, University of Canterbury, Private Bag 4800, 8140, Christchurch, Canterbury, New Zealand
| | - Andrew J A Watson
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.,Department of Chemistry, University of Canterbury, Private Bag 4800, 8140, Christchurch, New Zealand
| | - Antony J Fairbanks
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.,Department of Chemistry, University of Canterbury, Private Bag 4800, 8140, Christchurch, New Zealand
| | - Richard J Hall
- National Centre for Biosecurity and Infectious Disease (NCBID), Institute of Environmental Science and Research (ESR), 66 Ward Street, 5018, Upper Hutt, New Zealand
| |
Collapse
|
20
|
The amino-terminal region of the neuraminidase protein from avian H5N1 influenza virus is important for its biosynthetic transport to the host cell surface. Vet J 2014; 202:612-7. [PMID: 25458889 DOI: 10.1016/j.tvjl.2014.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 09/30/2014] [Accepted: 10/09/2014] [Indexed: 11/21/2022]
Abstract
Influenza virus neuraminidase (NA) is a major viral envelope glycoprotein, which plays a critical role in viral infection. Although NA functional domains have been determined previously, the precise role of the amino acids located at the N-terminus of avian H5N1 NA for protein expression and intracellular transport to the host plasma membrane is not fully understood. In the present study, a series of N-terminal truncation or deletion mutants of H5N1 NA were generated and their expression and intracellular trafficking were investigated. Protein expression from mutants NAΔ20, NAΔ35, NAΔ40, NAΔ7-20 and NAΔ7-35 was undetectable by immunoblotting and by performing NA activity assays. Mutants NAΔ6, NAΔ11 and NAΔ15-20 showed a marked decreased in protein expression, whereas mutants NAΔ7-15 and NAΔ15 displayed a slight increase in protein expression, compared with that of the native NA protein. These data suggest that amino acid residues 16-20 are vital for NA protein expression, while amino acids 7-15 might suppress NA protein expression. In deletion mutants NAΔ7-15 and NAΔ15 there was an accumulation of NA protein at the juxta-nuclear region, with reduced expression of NA at the cell surface. Although active Cdc42 could promote transport of wild-type NA to the host cell surface, this member of the Rho family of GTPases failed to regulate transport of mutants NAΔ7-15 and NAΔ15. The results of the study reveal that amino acid residues 7-15 of H5N1 NA are critical for its biosynthetic transport to the host cell surface.
Collapse
|
21
|
Filament-producing mutants of influenza A/Puerto Rico/8/1934 (H1N1) virus have higher neuraminidase activities than the spherical wild-type. PLoS One 2014; 9:e112462. [PMID: 25383873 PMCID: PMC4226562 DOI: 10.1371/journal.pone.0112462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/10/2014] [Indexed: 11/19/2022] Open
Abstract
Influenza virus exhibits two morphologies - spherical and filamentous. Strains that have been grown extensively in laboratory substrates are comprised predominantly of spherical virions while clinical or low passage isolates produce a mixture of spheres and filamentous virions of varying lengths. The filamentous morphology can be lost upon continued passage in embryonated chicken eggs, a common laboratory substrate for influenza viruses. The fact that the filamentous morphology is maintained in nature but lost in favor of a spherical morphology in ovo suggests that filaments confer a selective advantage within the infected host that is not necessary for growth in laboratory substrates. Indeed, we have recently shown that filament-producing variant viruses are selected upon passage of the spherical laboratory strain A/Puerto Rico/8/1934 (H1N1) [PR8] in guinea pigs. Toward determining the nature of the selective advantage conferred by filaments, we sought to identify functional differences between spherical and filamentous particles. We compared the wild-type PR8 virus to two previously characterized recombinant PR8 viruses in which single point mutations within M1 confer a filamentous morphology. Our results indicate that these filamentous PR8 mutants have higher neuraminidase activities than the spherical PR8 virus. Conversely, no differences were observed in HAU:PFU or HAU:RNA ratios, binding avidity, sensitivity to immune serum in hemagglutination inhibition assays, or virion stability at elevated temperatures. Based on these results, we propose that the pleomorphic nature of influenza virus particles is important for the optimization of neuraminidase functions in vivo.
Collapse
|
22
|
Suzuki Y. Predictability of antigenic evolution for H3N2 human influenza A virus. Genes Genet Syst 2014; 88:225-32. [PMID: 24463525 DOI: 10.1266/ggs.88.225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Influenza A virus continues to pose a threat to public health. Since this virus can evolve escape mutants rapidly, it is desirable to predict the antigenic evolution for developing effective vaccines. Although empirical methods have been proposed and reported to predict the antigenic evolution more or less accurately, they did not provide much insight into the effects of unobserved mutations and the mechanisms of antigenic evolution. Here a theoretical method was introduced to predict the antigenic evolution of H3N2 human influenza A virus by evaluating de novo mutations through estimating the antigenic distance. The antigenic distance defined with the hemagglutination inhibition (HI) titer was estimated with antigenic models taking into account the volume, isoelectric point, relative solvent accessibility, and distances from receptor-binding sites (RBS) and N-linked glycosylation sites (NGS) for amino acids in hemagglutinin 1 (HA1). When the best model with the optimized parameter values was used to predict the antigenic evolution for the dominant strains, the prediction accuracy was relatively low. However, there appeared to be an overall tendency that the amino acid sites with larger potential net effect on antigenicity were more likely to evolve and the amino acid changes with larger potential effect were more likely to take place, suggesting that natural selection may operate to enhance the antigenic evolution of H3N2 human influenza A virus.
Collapse
|
23
|
Dou D, da Silva DV, Nordholm J, Wang H, Daniels R. Type II transmembrane domain hydrophobicity dictates the cotranslational dependence for inversion. Mol Biol Cell 2014; 25:3363-74. [PMID: 25165139 PMCID: PMC4214783 DOI: 10.1091/mbc.e14-04-0874] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The cellular hydrophobicity threshold for the inversion of Sec-dependent Nin-Cout (type II) transmembrane domains is dictated by whether their membrane integration occurs cotranslationally or posttranslationally. Membrane insertion by the Sec61 translocon in the endoplasmic reticulum (ER) is highly dependent on hydrophobicity. This places stringent hydrophobicity requirements on transmembrane domains (TMDs) from single-spanning membrane proteins. On examining the single-spanning influenza A membrane proteins, we found that the strict hydrophobicity requirement applies to the Nout-Cin HA and M2 TMDs but not the Nin-Cout TMDs from the type II membrane protein neuraminidase (NA). To investigate this discrepancy, we analyzed NA TMDs of varying hydrophobicity, followed by increasing polypeptide lengths, in mammalian cells and ER microsomes. Our results show that the marginally hydrophobic NA TMDs (ΔGapp > 0 kcal/mol) require the cotranslational insertion process for facilitating their inversion during translocation and a positively charged N-terminal flanking residue and that NA inversion enhances its plasma membrane localization. Overall the cotranslational inversion of marginally hydrophobic NA TMDs initiates once ∼70 amino acids past the TMD are synthesized, and the efficiency reaches 50% by ∼100 amino acids, consistent with the positioning of this TMD class in type II human membrane proteins. Inversion of the M2 TMD, achieved by elongating its C-terminus, underscores the contribution of cotranslational synthesis to TMD inversion.
Collapse
Affiliation(s)
- Dan Dou
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| | - Diogo V da Silva
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| | - Johan Nordholm
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| | - Hao Wang
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| | - Robert Daniels
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| |
Collapse
|
24
|
Protective efficacy of intranasally administered bivalent live influenza vaccine and immunological mechanisms underlying the protection. Vaccine 2014; 32:3835-42. [DOI: 10.1016/j.vaccine.2014.04.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/04/2014] [Accepted: 04/21/2014] [Indexed: 02/03/2023]
|
25
|
Liu X, Yang N, Tang J, Liu S, Luo D, Duan Q, Wang X. Downregulation of angiotensin-converting enzyme 2 by the neuraminidase protein of influenza A (H1N1) virus. Virus Res 2014; 185:64-71. [PMID: 24662240 PMCID: PMC7114376 DOI: 10.1016/j.virusres.2014.03.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 11/26/2022]
Abstract
We investigated the ACE2 levels after infection with influenza A (H1N1) virus. Influenza infection results in downregulation of ACE2 protein levels that was dispensable for viral replication. ACE2 downregulation was most likely related to ACE2 protein degradation by proteasome pathway rather than ACE2 shedding. The neuraminidase of influenza virion results in ACE2 cleavage.
Influenza A (H1N1) virus, a high-risk infectious pathogen, can cause severe acute lung injury leading to significant morbidity and mortality. Angiotensin-converting enzyme 2 (ACE2), a negative regulator of the renin-angiotensin system (RAS), plays a protective role in pathogenesis of acute lung injury. Here, we showed that ACE2 protein levels were significantly downregulated after infection with H1N1 viruses but was dispensable for viral replication. ACE2 protein downregulation was most likely related to ACE2 protein degradation by proteasome pathway rather than ACE2 shedding. Finally, we found that ACE2 cleavage could be regulated by influenza neuraminidase (NA), which was fundamentally different from the classically sheddase-induced proteolytic cleavage of ACE2.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Ning Yang
- Laboratory of Viral Diseases, NIAID, Bethesda, MD 20892, USA
| | - Jun Tang
- Institute of Basic Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Song Liu
- Institute of Basic Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Deyan Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qing Duan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
26
|
The M segment of the 2009 pandemic influenza virus confers increased neuraminidase activity, filamentous morphology, and efficient contact transmissibility to A/Puerto Rico/8/1934-based reassortant viruses. J Virol 2014; 88:3802-14. [PMID: 24429367 DOI: 10.1128/jvi.03607-13] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The 2009 H1N1 lineage represented the first detection of a novel, highly transmissible influenza A virus genotype: six gene segments originated from the North American triple-reassortant swine lineage, and two segments, NA and M, derived from the Eurasian avian-like swine lineage. As neither parental lineage transmits efficiently between humans, the adaptations and mechanisms underlying the pandemic spread of the swine-origin 2009 strain are not clear. To help identify determinants of transmission, we used reverse genetics to introduce gene segments of an early pandemic isolate, A/Netherlands/602/2009 [H1N1] (NL602), into the background of A/Puerto Rico/8/1934 [H1N1] (PR8) and evaluated the resultant viruses in a guinea pig transmission model. Whereas the NL602 virus spread efficiently, the PR8 virus did not transmit. Swapping of the HA, NA, and M segments of NL602 into the PR8 background yielded a virus with indistinguishable contact transmissibility to the wild-type pandemic strain. Consistent with earlier reports, the pandemic M segment alone accounted for much of the improvement in transmission. To aid in understanding how the M segment might affect transmission, we evaluated neuraminidase activity and virion morphology of reassortant viruses. Transmission was found to correlate with higher neuraminidase activity and a more filamentous morphology. Importantly, we found that introduction of the pandemic M segment alone resulted in an increase in the neuraminidase activity of two pairs of otherwise isogenic PR8-based viruses. Thus, our data demonstrate the surprising result that functions encoded by the influenza A virus M segment impact neuraminidase activity and, perhaps through this mechanism, have a potent effect on transmissibility. IMPORTANCE Our work uncovers a previously unappreciated mechanism through which the influenza A virus M segment can alter the receptor-destroying activity of an influenza virus. Concomitant with changes to neuraminidase activity, the M segment impacts the morphology of the influenza A virion and transmissibility of the virus in the guinea pig model. We suggest that changes in NA activity underlie the ability of the influenza M segment to influence virus transmissibility. Furthermore, we show that coadapted M, NA, and HA segments are required to provide optimal transmissibility to an influenza virus. The M-NA functional interaction we describe appears to underlie the prominent role of the 2009 pandemic M segment in supporting efficient transmission and may be a highly important means by which influenza A viruses restore HA/NA balance following reassortment or transfer to new host environments.
Collapse
|
27
|
Evolutionarily conserved residues at an oligomerization interface of the influenza A virus neuraminidase are essential for viral survival. Virology 2013; 447:32-44. [DOI: 10.1016/j.virol.2013.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 07/22/2013] [Accepted: 08/13/2013] [Indexed: 11/23/2022]
|
28
|
An eight-segment swine influenza virus harboring H1 and H3 hemagglutinins is attenuated and protective against H1N1 and H3N2 subtypes in pigs. J Virol 2013; 87:10114-25. [PMID: 23843633 DOI: 10.1128/jvi.01348-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Swine influenza virus (SIV) infections continue to cause production losses in the agricultural industry in addition to being a human public health concern. The primary method of controlling SIV is through vaccination. The killed SIV vaccines currently in use must be closely matched to the challenge virus, and their protective efficacy is limited. Live attenuated influenza vaccines (LAIV) provide strong, long-lived cell-mediated and humoral immunity against different influenza virus subtypes with no need for antigen matching. Here we report the generation of a new potential LAIV, an eight-segment SIV harboring two different SIV hemagglutinins (HAs), H1 and H3, in the genetic background of H1N1 SIV. This mutant SIV was generated by fusing the H3 HA ectodomain from A/Swine/Texas/4199-2/98 (H3N2) to the cytoplasmic tail, transmembrane domain, and stalk region of neuraminidase (NA) from A/Swine/Saskatchewan/18789/02 (H1N1) SIV. While this H1-H3 chimeric SIV, when propagated in vitro in the presence of exogenous neuraminidase, showed kinetics and growth properties similar to those of the parental wild-type virus, in vivo it was highly attenuated in pigs, demonstrating a great potential for serving as a dual LAIV. Furthermore, vaccination with the H1-H3 virus elicited robust immune responses, which conferred complete protection against infections with both H1 and H3 SIV subtypes in pigs.
Collapse
|
29
|
da Silva DV, Nordholm J, Madjo U, Pfeiffer A, Daniels R. Assembly of subtype 1 influenza neuraminidase is driven by both the transmembrane and head domains. J Biol Chem 2012; 288:644-53. [PMID: 23150659 DOI: 10.1074/jbc.m112.424150] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuraminidase (NA) is one of the two major influenza surface antigens and the main influenza drug target. Although NA has been well characterized and thought to function as a tetramer, the role of the transmembrane domain (TMD) in promoting proper NA assembly has not been systematically studied. Here, we demonstrate that in the absence of the TMD, NA is synthesized and transported in a predominantly inactive state. Substantial activity was rescued by progressive truncations of the stalk domain, suggesting the TMD contributes to NA maturation by tethering the stalk to the membrane. To analyze how the TMD supports NA assembly, the TMD was examined by itself. The NA TMD formed a homotetramer and efficiently trafficked to the plasma membrane, indicating the TMD and enzymatic head domain drive assembly together through matching oligomeric states. In support of this, an unrelated strong oligomeric TMD rescued almost full NA activity, whereas the weak oligomeric mutant of this TMD restored only half of wild type activity. These data illustrate that a large soluble domain can force assembly with a poorly compatible TMD; however, optimal assembly requires coordinated oligomerization between the TMD and the soluble domain.
Collapse
Affiliation(s)
- Diogo V da Silva
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
30
|
Takano R, Kiso M, Igarashi M, Le QM, Sekijima M, Ito K, Takada A, Kawaoka Y. Molecular mechanisms underlying oseltamivir resistance mediated by an I117V substitution in the neuraminidase of subtype H5N1 avian influenza A viruses. J Infect Dis 2012; 207:89-97. [PMID: 23053629 DOI: 10.1093/infdis/jis633] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The neuraminidase (NA) inhibitor oseltamivir is widely used to treat patients infected with influenza viruses. An Ile-to-Val change at position 117 in influenza A virus subtype H5N1 NA (NA-I117V) confers a reduction in susceptibility to oseltamivir carboxylate. However, the in vivo relevance and molecular basis of the decreased sensitivity mediated by this mutation are poorly understood. METHODS We created single-point-mutant viruses with 3 genetically different backgrounds (ie, 1 belonging to clade 1 and 2 belonging to clade 2.3.4) and evaluated the effects of the I117V mutation on oseltamivir susceptibility in vitro, in vivo, and in silico. RESULTS The NA-I117V mutation conferred a slight reduction in susceptibility to oseltamivir in vitro (1.3- to 6.3-fold changes), although it did not substantially compromise NA enzymatic activity. Mice infected with I117V virus exhibited reduced susceptibility to oseltamivir and decreased survival in 2 of 3 virus pairs tested. Molecular dynamics simulations revealed that I117V caused the loss of hydrogen bonds between an arginine at position 118 and the carboxyl group of oseltamivir, leading to a lower binding affinity for oseltamivir. CONCLUSIONS Our findings provide new insight into the mechanism of NA-I117V-mediated oseltamivir resistance in highly pathogenic H5N1 avian influenza viruses.
Collapse
Affiliation(s)
- Ryo Takano
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
The cytoplasmic tail domain of influenza B virus hemagglutinin is important for its incorporation into virions but is not essential for virus replication in cell culture in the presence of compensatory mutations. J Virol 2012; 86:11633-44. [PMID: 22896616 DOI: 10.1128/jvi.01479-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza B virus hemagglutinin (BHA) contains a predicted cytoplasmic tail of 10 amino acids that are highly conserved among influenza B viruses. To understand the role of this cytoplasmic tail in infectious virus production, we used reverse genetics to generate a recombinant influenza B virus lacking the BHA cytoplasmic tail domain. The resulting virus, designated BHATail(-), had a titer approximately 5 log units lower than that of wild-type virus but grew normally when BHA was supplemented in trans by BHA-expressing cells. Although the levels of BHA cell surface expression were indistinguishable between truncated and wild-type BHA, the BHATail(-) virus produced particles containing dramatically less BHA. Moreover, removal of the cytoplasmic tail abrogated the association of BHA with Triton X-100-insoluble lipid rafts. Interestingly, long-term culture of a virus lacking the BHA cytoplasmic tail in Madin-Darby canine kidney (MDCK) cells yielded a mutant with infectivities somewhat similar to that of wild-type virus. Sequencing revealed that the mutant virus retained the original cytoplasmic tail deletion but acquired additional mutations in its BHA, neuraminidase (NA), and M1 proteins. Viral growth kinetic analysis showed that replication of BHA cytoplasmic tailless viruses could be improved by compensatory mutations in the NA and M1 proteins. These findings indicate that the cytoplasmic tail domain of BHA is important for efficient incorporation of BHA into virions and tight lipid raft association. They also demonstrate that the domain is not absolutely required for virus viability in cell culture in the presence of compensatory mutations.
Collapse
|
32
|
The cytoplasmic domain of Marburg virus GP modulates early steps of viral infection. J Virol 2011; 85:8188-96. [PMID: 21680524 DOI: 10.1128/jvi.00453-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marburg virus infection is mediated by the only viral surface protein, GP, a trimeric type I transmembrane protein. While its ectodomain mediates receptor binding and fusion of viral and cellular membranes and its transmembrane domain is essential for the recruitment of GP into budding particles by the matrix protein VP40, the role of the short cytoplasmic domain has remained enigmatic. Here we show that a missing cytoplasmic domain did not impair trimerization, intracellular transport, or incorporation of GP into infectious Marburg virus-like particles (iVLPs) but altered the glycosylation pattern as well as the recognition of GP by neutralizing antibodies. These results suggest that subtle conformational changes took place in the ectodomain. To investigate the function of the cytoplasmic domain during viral entry, a novel entry assay was established to monitor the uptake of filamentous VLPs by measuring the occurrence of luciferase-labeled viral nucleocapsids in the cytosol of target cells. This quantitative assay showed that the entry process of VLPs incorporating GP missing its cytoplasmic domain (GPΔCD) was impaired. Supporting these results, iVLPs incorporating a mutant GP missing its cytoplasmic domain were significantly less infectious than iVLPs containing wild-type GP. Taken together, the data indicate that the absence of the short cytoplasmic domain of Marburg virus GP may induce conformational changes in the ectodomain which impact the filoviral entry process.
Collapse
|
33
|
Budding capability of the influenza virus neuraminidase can be modulated by tetherin. J Virol 2011; 85:2480-91. [PMID: 21209114 DOI: 10.1128/jvi.02188-10] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have determined that, in addition to its receptor-destroying activity, the influenza virus neuraminidase is capable of efficiently forming virus-like particles (VLPs) when expressed individually from plasmid DNA. This observation applies to both human subtypes of neuraminidase, N1 and N2. However, it is not found with every strain of influenza virus. Through gain-of-function and loss-of-function analyses, a critical determinant within the neuraminidase ectodomain was identified that contributes to VLP formation but is not sufficient to accomplish release of plasmid-derived VLPs. This sequence lies on the plasma membrane-proximal side of the neuraminidase globular head. Most importantly, we demonstrate that the antiviral restriction factor tetherin plays a role in determining the strain-specific limitations of release competency. If tetherin is counteracted by small interfering RNA knockdown or expression of the HIV anti-tetherin factor vpu, budding and release capability is bestowed upon an otherwise budding-deficient neuraminidase. These data suggest that budding-competent neuraminidase proteins possess an as-yet-unidentified means of counteracting the antiviral restriction factor tetherin and identify a novel way in which the influenza virus neuraminidase can contribute to virus release.
Collapse
|
34
|
NP body domain and PB2 contribute to increased virulence of H5N1 highly pathogenic avian influenza viruses in chickens. J Virol 2010; 85:1834-46. [PMID: 21123376 DOI: 10.1128/jvi.01648-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular basis of pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in chickens remains largely unknown. H5N1 A/chicken/Yamaguchi/7/2004 virus (CkYM7) replicates rapidly in macrophages and vascular endothelial cells in chickens, causing sudden death without fever or gross lesions, while H5N1 A/duck/Yokohama/aq10/2003 virus (DkYK10) induces high fever, severe gross lesions, and a prolonged time to death, despite the 98% amino acid identity between the two viruses. To explore the molecular basis of this difference in pathogenicity, a series of eight single-gene reassortant viruses from these HPAI viruses were compared for pathogenicity in chickens. Two reassortants possessing the NP or PB2 gene from DkYK10 in the CkYM7 background reduced pathogenicity compared to other reassortants or CkYM7. Inversely, reassortants possessing the NP or PB2 gene of CkYM7 in the DkYK10 background (rgDkYK-PB2(Ck), rgDkYK-NP(Ck)) replicated quickly and reached higher titers than DkYK10, accompanied by more rapid and frequent apoptosis of macrophages. The rgDkYK-NP(Ck) and rgDkYK-PB2(Ck) reassortants also replicated more rapidly in chicken embryo fibroblasts (CEFs) than did rgDkYK10, but replication of these viruses was similar to that of CkYM7 and DkYK10 in duck embryo fibroblasts. A comparison of pathogenicities of seven rgDkYK10 mutants with a single amino acid substitution in NP(Dk) demonstrated that valine at position 105 in the NP(Ck) was responsible for the increased pathogenicity in chickens. NP(Ck), NP(105V), and PB2(Ck) enhanced the polymerase activity of DkYK10 in CEFs. These results indicate that both NP and PB2 contribute to the high pathogenicity of the H5N1 HPAI viruses in chickens, and valine at position 105 of NP may be one of the determinants for adaptation of avian influenza viruses from ducks to chickens.
Collapse
|
35
|
The lack of an inherent membrane targeting signal is responsible for the failure of the matrix (M1) protein of influenza A virus to bud into virus-like particles. J Virol 2010; 84:4673-81. [PMID: 20181696 DOI: 10.1128/jvi.02306-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The matrix protein (M1) of influenza A virus is generally viewed as a key orchestrator in the release of influenza virions from the plasma membrane during infection. In contrast to this model, recent studies have indicated that influenza virus requires expression of the envelope proteins for budding of intracellular M1 into virus particles. Here we explored the mechanisms that control M1 budding. Similarly to previous studies, we found that M1 by itself fails to form virus-like-particles (VLPs). We further demonstrated that M1, in the absence of other viral proteins, was preferentially targeted to the nucleus/perinuclear region rather than to the plasma membrane, where influenza virions bud. Remarkably, we showed that a 10-residue membrane targeting peptide from either the Fyn or Lck oncoprotein appended to M1 at the N terminus redirected M1 to the plasma membrane and allowed M1 particle budding without additional viral envelope proteins. To further identify a functional link between plasma membrane targeting and VLP formation, we took advantage of the fact that M1 can interact with M2, unless the cytoplasmic tail is absent. Notably, native M2 but not mutant M2 effectively targeted M1 to the plasma membrane and produced extracellular M1 VLPs. Our results suggest that influenza virus M1 may not possess an inherent membrane targeting signal. Thus, the lack of efficient plasma membrane targeting is responsible for the failure of M1 in budding. This study highlights the fact that interactions of M1 with viral envelope proteins are essential to direct M1 to the plasma membrane for influenza virus particle release.
Collapse
|
36
|
Bruce EA, Medcalf L, Crump CM, Noton SL, Stuart AD, Wise HM, Elton D, Bowers K, Digard P. Budding of filamentous and non-filamentous influenza A virus occurs via a VPS4 and VPS28-independent pathway. Virology 2009; 390:268-78. [PMID: 19524996 DOI: 10.1016/j.virol.2009.05.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/02/2009] [Accepted: 05/08/2009] [Indexed: 12/18/2022]
Abstract
The mechanism of membrane scission during influenza A virus budding has been the subject of controversy. We confirm that influenza M1 binds VPS28, a subunit of the ESCRT-1 complex. However, confocal microscopy of infected cells showed no marked colocalisation between M1 and VPS28 or VPS4 ESCRT proteins, or relocalisation of the cellular proteins. Trafficking of HA and M1 appeared normal when endosomal sorting was impaired by expression of inactive VPS4. Overexpression of either isoform of VPS28 or wildtype or dominant negative VPS4 proteins did not alter production of filamentous virions. SiRNA depletion of endogenous VPS28 had no significant effect on influenza virus replication. Furthermore, cells expressing wildtype or dominant-negative VPS4 replicated filamentous and non-filamentous strains of influenza to similar titres, indicating that influenza release is VPS4-independent. Overall, we see no role for the ESCRT pathway in influenza virus budding and the significance of the M1-VPS28 interaction remains to be determined.
Collapse
Affiliation(s)
- Emily A Bruce
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mapping the sequence mutations of the 2009 H1N1 influenza A virus neuraminidase relative to drug and antibody binding sites. Biol Direct 2009; 4:18; discussion 18. [PMID: 19457254 PMCID: PMC2691737 DOI: 10.1186/1745-6150-4-18] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/20/2009] [Indexed: 11/30/2022] Open
Abstract
In this work, we study the consequences of sequence variations of the "2009 H1N1" (swine or Mexican flu) influenza A virus strain neuraminidase for drug treatment and vaccination. We find that it is phylogenetically more closely related to European H1N1 swine flu and H5N1 avian flu rather than to the H1N1 counterparts in the Americas. Homology-based 3D structure modeling reveals that the novel mutations are preferentially located at the protein surface and do not interfere with the active site. The latter is the binding cavity for 3 currently used neuraminidase inhibitors: oseltamivir (Tamiflu®), zanamivir (Relenza®) and peramivir; thus, the drugs should remain effective for treatment. However, the antigenic regions of the neuraminidase relevant for vaccine development, serological typing and passive antibody treatment can differ from those of previous strains and already vary among patients. This article was reviewed by Sandor Pongor and L. Aravind.
Collapse
|
38
|
The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding. J Virol 2008; 82:10059-70. [PMID: 18701586 DOI: 10.1128/jvi.01184-08] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cytoplasmic tail of the influenza A virus M2 proton-selective ion channel has been shown to be important for virus replication. Previous analysis of M2 cytoplasmic tail truncation mutants demonstrated a defect in incorporation of viral RNA (vRNA) into virions, suggesting a role for M2 in the recruitment of M1-vRNA complexes. To further characterize the effect of the M2 cytoplasmic tail mutations on virus assembly and budding, we constructed a series of alanine substitution mutants of M2 with mutations in the cytoplasmic tail, from residues 71 to 97. Mutant proteins M2-Mut1 and M2-Mut2, with mutations of residues 71 to 73 and 74 to 76, respectively, appeared to have the greatest effect on virus-like particle and virus budding, showing a defect in M1 incorporation. Mutant viruses containing M2-Mut1 and M2-Mut2 failed to replicate in multistep growth analyses on wild-type (wt) MDCK cells and were able to form plaques only on MDCK cells stably expressing wt M2 protein. Compared to wt M2 protein, M2-Mut1 and M2-Mut2 were unable to efficiently coimmunoprecipitate with M1. Furthermore, statistical analysis of planar sheets of membrane from cells infected by virus containing M2-Mut1 revealed a reduction in M1-hemagglutinin (HA) and M2-HA clustering as well as a severe loss of clustering between M1 and M2. These results suggest an essential, direct interaction between the cytoplasmic tail of M2 and M1 that promotes the recruitment of the internal viral proteins and vRNA to the plasma membrane for efficient virus assembly to occur.
Collapse
|
39
|
Loss of the N-linked glycan at residue 173 of human parainfluenza virus type 1 hemagglutinin-neuraminidase exposes a second receptor-binding site. J Virol 2008; 82:8400-10. [PMID: 18579600 DOI: 10.1128/jvi.00474-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BCX 2798 (4-azido-5-isobutyrylamino-2,3-didehydro-2,3,4,5-tetradeoxy-d-glycero-d-galacto-2-nonulopyranosic acid) effectively inhibited the activities of the hemagglutinin-neuraminidase (HN) of human parainfluenza viruses (hPIV) in vitro and protected mice from lethal infection with a recombinant Sendai virus whose HN was replaced with that of hPIV-1 (rSeV[hPIV-1HN]) (I. V. Alymova, G. Taylor, T. Takimoto, T. H. Lin., P. Chand, Y. S. Babu, C. Li, X. Xiong, and A. Portner, Antimicrob. Agents Chemother. 48:1495-1502, 2004). The ability of BCX 2798 to select drug-resistant variants in vivo was examined. A variant with an Asn-to-Ser mutation at residue 173 (N173S) in HN was recovered from mice after a second passage of rSeV(hPIV-1HN) in the presence of BCX 2798 (10 mg/kg of body weight daily). The N173S mutant remained sensitive to BCX 2798 in neuraminidase inhibition assays but was more than 10,000-fold less sensitive to the compound in hemagglutination inhibition tests than rSeV(hPIV-1HN). Its susceptibility to BCX 2798 in plaque reduction assays was reduced fivefold and did not differ from that of rSeV(hPIV-1HN) in mice. The N173S mutant failed to be efficiently eluted from erythrocytes and released from cells. It demonstrated reduced growth in cell culture and superior growth in mice. The results for gel electrophoresis analysis were consistent with the loss of the N-linked glycan at residue 173 in the mutant. Sequence and structural comparisons revealed that residue 173 on hPIV-1 HN is located close to the region of the second receptor-binding site identified in Newcastle disease virus HN. Our study suggests that the N-linked glycan at residue 173 masks a second receptor-binding site on hPIV-1 HN.
Collapse
|
40
|
Jaber Hossain M, Mori I, Liu B, Kimura Y. Influenza A virus derived from persistently virus-infected cells shows attenuated cytotoxicity in cultured cells but virulent pathogenicity in mice. Microb Pathog 2007; 44:417-25. [PMID: 18162362 DOI: 10.1016/j.micpath.2007.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 11/01/2007] [Indexed: 12/18/2022]
Abstract
The IVpi-43 strain of influenza A virus, a progeny virus derived from persistently virus-infected Madin-Darby canine kidney (MDCK) cells, showed a more attenuated nature in cytopathology in cultured cells than the parental wild-type influenza virus (IVwt) that was used for establishment of the virus carrier culture. Upon infection of MDCK cells, growth of the IVpi-43 virus was restrained with an impaired synthesis of virus structural proteins in the cells. Apoptosis induced by IVpi-43 virus was confined at a low level. The IVpi-43 virus was able to easily cause persistent infection in fresh MDCK cells. In contrast to the in vitro phenotype, the IVpi-43 virus proved highly virulent in mice, with massive and broadly disseminated virus multiplication in the lungs. It was suggested that impaired activity of the neuraminidase molecule of the IVpi-43 virus was responsible for the delayed and faint appearance of apoptosis in the IVpi-43 virus-infected respiratory cells, which made it possible for the virus to replicate for a longer period and to spread to a broader area of the lungs and that abundant numbers of the virus-infected lung cells were killed within a short period by the subsequently established virus-specific immune responses, leading to unrecoverable serious pneumonia.
Collapse
Affiliation(s)
- Md Jaber Hossain
- Department of Microbiology, Fukui University School of Medicine, Fukui 910-1193, Japan
| | | | | | | |
Collapse
|
41
|
Cytoplasmic domain of influenza B virus BM2 protein plays critical roles in production of infectious virus. J Virol 2007; 82:728-39. [PMID: 17989175 DOI: 10.1128/jvi.01752-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Influenza B virus BM2 is a type III integral membrane protein that displays H(+) ion channel activity. Analysis of BM2 knockout mutants has suggested that this protein is a necessary component for the capture of M1-viral ribonucleoprotein (vRNP) complex at the plasma membrane and for incorporation of vRNP complex into the virion during the assembly process. BM2 comprises 109 amino acid residues and possesses a longer cytoplasmic domain than the other 3 integral membrane proteins (hemagglutinin, neuraminidase, and NB). To explore whether the cytoplasmic domain of BM2 is important for infectious virus production, a series of BM2 deletion mutants lacking three to nine amino acid residues at the carboxyl terminus, BM2Delta107-109, BM2Delta104-109, and BM2Delta101-109, was generated by reverse genetics. Intracellular transport and incorporation into virions were indistinguishable between truncated BM2 proteins and wild-type BM2. The BM2Delta107-109 mutant produced levels of infectious virus similar to those of wild-type virus and displayed a spherical shape. However, the BM2Delta104-109 and BM2Delta101-109 mutants produced viruses containing dramatically reduced vRNP complex, as with BM2 knockout mutants, and formed enlarged, irregularly shaped virions. Moreover, gradient separation of membranes indicated that membrane association of M1 from mutants was greatly affected by carboxyl-terminal truncations of BM2. Studies of alanine substitution mutants further suggested that amino acid sequences in the 98-109 region are variable while those in the 86-97 region are a prerequisite for innate BM2 function. These results indicate that the cytoplasmic domain of the BM2 protein is required for firm association of the M1 protein with lipid membranes, vRNP complex incorporation into virions, and virion morphology.
Collapse
|
42
|
Muraki Y, Murata T, Takashita E, Matsuzaki Y, Sugawara K, Hongo S. A mutation on influenza C virus M1 protein affects virion morphology by altering the membrane affinity of the protein. J Virol 2007; 81:8766-73. [PMID: 17537859 PMCID: PMC1951361 DOI: 10.1128/jvi.00075-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 05/16/2007] [Indexed: 12/20/2022] Open
Abstract
Reverse genetics has been documented for influenza A, B, and Thogoto viruses belonging to the family Orthomyxoviridae. We report here the reverse genetics of influenza C virus, another member of this family. The seven viral RNA (vRNA) segments of C/Ann Arbor/1/50 were expressed in 293T cells from cloned cDNAs, together with nine influenza C virus proteins. At 48 h posttransfection, the infectious titer of the culture supernatant was determined to be 2.51 x 10(3) 50% egg infectious doses/ml, which is lower than the number of influenza C virus-like particles (VLPs) (10(6)/ml) generated using the same system. By generating influenza C VLPs containing a given vRNA segment, we showed that each of the vRNA segments was similarly synthesized in the plasmid-transfected cells but that some segments were less efficiently incorporated into the VLPs. This finding leads us to speculate that the differences in incorporation efficiency into VLPs between segments might be a reason for the inefficient production of infectious viruses. Second, we generated a mutant recombinant virus, rMG96A, which possesses an Ala-->Thr mutation at residue 24 of the M1 protein, a substitution demonstrated to be involved in the morphology (filamentous or spherical) of the influenza C VLPs. As expected, rMG96A exhibited a spherical morphology, whereas recombinant wild-type of C/Ann Arbor/1/50, rWT, exhibited a mainly filamentous morphology. Membrane flotation analysis of the cells infected with rWT or rMG96A revealed a difference in the ratio of membrane-associated M1 proteins, suggesting that the affinity of M1 protein to the cell membrane is a determinant for virion morphology.
Collapse
Affiliation(s)
- Yasushi Muraki
- Department of Infectious Diseases, Yamagata University School of Medicine, Iida-Nishi, 990-9585, Yamagata, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Iwatsuki-Horimoto K, Horimoto T, Noda T, Kiso M, Maeda J, Watanabe S, Muramoto Y, Fujii K, Kawaoka Y. The cytoplasmic tail of the influenza A virus M2 protein plays a role in viral assembly. J Virol 2007; 80:5233-40. [PMID: 16699003 PMCID: PMC1472145 DOI: 10.1128/jvi.00049-06] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The viral replication cycle concludes with the assembly of viral components to form progeny virions. For influenza A viruses, the matrix M1 protein and two membrane integral glycoproteins, hemagglutinin and neuraminidase, function cooperatively in this process. Here, we asked whether another membrane protein, the M2 protein, plays a role in virus assembly. The M2 protein, comprising 97 amino acids, possesses the longest cytoplasmic tail (54 residues) of the three transmembrane proteins of influenza A viruses. We therefore generated a series of deletion mutants of the M2 cytoplasmic tail by reverse genetics. We found that mutants in which more than 22 amino acids were deleted from the carboxyl terminus of the M2 tail were viable but grew less efficiently than did the wild-type virus. An analysis of the virions suggested that viruses with M2 tail deletions of more than 22 carboxy-terminal residues apparently contained less viral ribonucleoprotein complex than did the wild-type virus. These M2 tail mutants also differ from the wild-type virus in their morphology: while the wild-type virus is spherical, some of the mutants were filamentous. Alanine-scanning experiments further indicated that amino acids at positions 74 to 79 of the M2 tail play a role in virion morphogenesis and affect viral infectivity. We conclude that the M2 cytoplasmic domain of influenza A viruses plays an important role in viral assembly and morphogenesis.
Collapse
Affiliation(s)
- Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The outbreaks of avian influenza A virus in poultry and humans over the last decade posed a pandemic threat to human. Here, we discuss the basic classification and the structure of influenza A virus. The viral genome contains eight RNA viral segments and the functions of viral proteins encoded by this genome are described. In addition, the RNA transcription and replication of this virus are reviewed.
Collapse
Affiliation(s)
- Timothy K W Cheung
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | | |
Collapse
|
45
|
Chen BJ, Leser GP, Morita E, Lamb RA. Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. J Virol 2007; 81:7111-23. [PMID: 17475660 PMCID: PMC1933269 DOI: 10.1128/jvi.00361-07] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
For influenza virus, we developed an efficient, noncytotoxic, plasmid-based virus-like particle (VLP) system to reflect authentic virus particles. This system was characterized biochemically by analysis of VLP protein composition, morphologically by electron microscopy, and functionally with a VLP infectivity assay. The VLP system was used to address the identity of the minimal set of viral proteins required for budding. Combinations of viral proteins were expressed in cells, and the polypeptide composition of the particles released into the culture media was analyzed. Contrary to previous findings in which matrix (M1) protein was considered to be the driving force of budding because M1 was found to be released copiously into the culture medium when M1 was expressed by using the vaccinia virus T7 RNA polymerase-driven overexpression system, in our noncytotoxic VLP system M1 was not released efficiently into the culture medium. Additionally, hemagglutinin (HA), when treated with exogenous neuraminidase (NA) or coexpressed with viral NA, could be released from cells independently of M1. Incorporation of M1 into VLPs required HA expression, although when M1 was omitted from VLPs, particles with morphologies similar to those of wild-type VLPs or viruses were observed. Furthermore, when HA and NA cytoplasmic tail mutants were included in the VLPs, M1 failed to be efficiently incorporated into VLPs, consistent with a model in which the glycoproteins control virus budding by sorting to lipid raft microdomains and recruiting the internal viral core components. VLP formation also occurred independently of the function of Vps4 in the multivesicular body pathway, as dominant-negative Vps4 proteins failed to inhibit influenza VLP budding.
Collapse
Affiliation(s)
- Benjamin J Chen
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA
| | | | | | | |
Collapse
|
46
|
Tahara M, Takeda M, Yanagi Y. Altered interaction of the matrix protein with the cytoplasmic tail of hemagglutinin modulates measles virus growth by affecting virus assembly and cell-cell fusion. J Virol 2007; 81:6827-36. [PMID: 17442724 PMCID: PMC1933271 DOI: 10.1128/jvi.00248-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical isolates of measles virus (MV) use signaling lymphocyte activation molecule (SLAM) as a cellular receptor, whereas vaccine and laboratory strains may utilize the ubiquitously expressed CD46 as an additional receptor. MVs also infect, albeit inefficiently, SLAM(-) cells, via a SLAM- and CD46-independent pathway. Our previous study with recombinant chimeric viruses revealed that not only the receptor-binding hemagglutinin (H) but also the matrix (M) protein of the Edmonston vaccine strain can confer on an MV clinical isolate the ability to grow well in SLAM(-) Vero cells. Two substitutions (P64S and E89K) in the M protein which are present in many vaccine strains were found to be responsible for the efficient growth of recombinant virus in Vero cells. Here we show that the P64S and E89K substitutions allow a strong interaction of the M protein with the cytoplasmic tail of the H protein, thereby enhancing the assembly of infectious particles in Vero cells. These substitutions, however, are not necessarily advantageous for MVs, as they inhibit SLAM-dependent cell-cell fusion, thus reducing virus growth in SLAM(+) B-lymphoblastoid B95a cells. When the cytoplasmic tail of the H protein is deleted, a virus with an M protein possessing the P64S and E89K substitutions no longer grows well in Vero cells yet causes cell-cell fusion and replicates efficiently in B95a cells. These results reveal a novel mechanism of adaptation and attenuation of MV in which the altered interaction of the M protein with the cytoplasmic tail of the H protein modulates MV growth in different cell types.
Collapse
Affiliation(s)
- Maino Tahara
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
47
|
Mittler E, Kolesnikova L, Strecker T, Garten W, Becker S. Role of the transmembrane domain of marburg virus surface protein GP in assembly of the viral envelope. J Virol 2007; 81:3942-8. [PMID: 17267489 PMCID: PMC1866152 DOI: 10.1128/jvi.02263-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major protein constituents of the filoviral envelope are the matrix protein VP40 and the surface transmembrane protein GP. While VP40 is recruited to the sites of budding via the late retrograde endosomal transport route, GP is suggested to be transported via the classical secretory pathway involving the endoplasmic reticulum, Golgi apparatus, and trans-Golgi network until it reaches the plasma membrane where most filoviral budding takes place. Since both transport routes target the plasma membrane, it was thought that GP and VP40 join there to form the viral envelope. However, it was recently shown that, upon coexpression of both proteins, GP is partially recruited into peripheral VP40-enriched multivesicular bodies, which contained markers of the late endosome. Accumulation of GP and VP40 in this compartment was presumed to play an important role in the formation of the filoviral envelope. Using a domain-swapping approach, we were able to show that the transmembrane domain of GP was essential and sufficient for (i) partial recruitment of chimeric glycoproteins into VP40-enriched multivesicular bodies and (ii) incorporation into virus-like particles (VLPs) that were released upon expression of VP40. Only those chimeric glycoproteins which were targeted to VP40-enriched endosomal multivesicular bodies were subsequently recruited into VLPs. These data show that the transmembrane domain of GP is critical for the mixing of VP40 and GP in multivesicular bodies and incorporation of GP into the viral envelope. Results further suggest that trapping of GP in the VP40-enriched late endosomal compartment is important for the formation of the viral envelope.
Collapse
Affiliation(s)
- Eva Mittler
- Institute of Virology, Philipps University Marburg, and Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | | | | | | | | |
Collapse
|
48
|
Walton FJ, Heitman J, Idnurm A. Conserved elements of the RAM signaling pathway establish cell polarity in the basidiomycete Cryptococcus neoformans in a divergent fashion from other fungi. Mol Biol Cell 2006; 17:3768-80. [PMID: 16775005 PMCID: PMC1556378 DOI: 10.1091/mbc.e06-02-0125] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 05/16/2006] [Accepted: 06/07/2006] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes the complex processes of development, differentiation, and proliferation require carefully orchestrated changes in cellular morphology. Single-celled eukaryotes provide tractable models for the elucidation of signaling pathways involved in morphogenesis. Here we describe a pathway regulating cell polarization and separation in the human pathogenic fungus Cryptococcus neoformans. An insertional mutagenesis screen identified roles for the ARF1, CAP60, NDH1, KIC1, CBK1, SOG2, and TAO3 genes in establishing normal colony morphology. ARF1 and CAP60 are also required for capsule production, a virulence factor, and ARF1 confers resistance to the antifungal fluconazole. KIC1, CBK1, SOG2, and TAO3 are homologues of genes conserved in other eukaryotes; in Saccharomyces cerevisiae they constitute components of the RAM (regulation of Ace2p activity and cellular morphogenesis) signaling pathway. A targeted deletion of a fifth component of RAM (MOB2) conferred identical phenotypes to kic1, cbk1, sog2, or tao3 mutations. Characterization of these genes in C. neoformans revealed unique features of the RAM pathway in this organism. Loss of any of these genes caused constitutive hyperpolarization instead of the loss of polarity seen in S. cerevisiae. Furthermore, sensitivity to the drugs FK506 and cyclosporin A demonstrates that the RAM pathway acts in parallel with the protein phosphatase calcineurin in C. neoformans but not in S. cerevisiae. These results indicate that conserved signaling pathways serve both similar and divergent cellular roles in morphogenesis in these divergent organisms.
Collapse
Affiliation(s)
- Felicia J. Walton
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Alexander Idnurm
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
49
|
|
50
|
Sieczkarski SB, Whittaker GR. Characterization of the host cell entry of filamentous influenza virus. Arch Virol 2005; 150:1783-96. [PMID: 15959836 DOI: 10.1007/s00705-005-0558-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
Most laboratory-adapted strains of influenza virus exist as spheres of approximately 100 nm in diameter, which are well established to enter cells by endocytosis in a pH-dependent manner. However, influenza virus isolated from the lungs of infected individuals is believed to exist as predominantly filamentous particles, up to several micrometers in length. Here, we have attempted an initial characterization of the entry of purified influenza virus filaments into host cells--in comparison to more commonly studied spherical forms of the virus. We demonstrate that the internalization of filamentous influenza virus particles is delayed, relative to spherical particles, and that this delay is a result of morphological rather than strain differences. The filamentous influenza particles appear to retain their dependence on low-pH for entry, as demonstrated by a vacuolar-ATPase inhibitor, and viral trafficking to late endosomes, as demonstrated by the requirement for protein kinase C function. However, our data suggest that the endocytic uptake of the filamentous virus particles may be dynamin-independent, unlike spherical virions. Overall, these data provide a view of the entry of influenza virus in its filamentous morphology, demonstrating potential differences between the endocytosis of spherical virions in vitro and filamentous virions in vivo.
Collapse
Affiliation(s)
- S B Sieczkarski
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|