1
|
Molecular Docking and Virtual Screening of an Influenza Virus Inhibitor That Disrupts Protein-Protein Interactions. Viruses 2021; 13:v13112229. [PMID: 34835035 PMCID: PMC8620322 DOI: 10.3390/v13112229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 02/02/2023] Open
Abstract
Influenza is an acute respiratory infection caused by the influenza virus, but few drugs are available for its treatment. Consequently, researchers have been engaged in efforts to discover new antiviral mechanisms that can lay the foundation for novel anti-influenza drugs. The viral RNA-dependent RNA polymerase (RdRp) is an enzyme that plays an indispensable role in the viral infection process, which is directly linked to the survival of the virus. Methods of inhibiting PB1-PB2 (basic polymerase 1-basic polymerase 2) interactions, which are a key part of RdRp enzyme activity, are integral in the design of novel antiviral drugs, a specific PB1-PB2 interactions inhibitor has not been reported. We have screened Enamine's database and conducted a parallel screening of multiple docking schemes, followed by simulations of molecular dynamics to determine the structure of a stable ligand-PB1 complex. We also calculated the free energy of binding between the screened compounds and PB1 protein. Ultimately, we screened and identified a potential PB1-PB2 inhibitor using the ADMET prediction model.
Collapse
|
2
|
Barberis A, Boudaoud A, Gorrill A, Loupias J, Ghram A, Lachheb J, Alloui N, Ducatez MF. Full-length genome sequences of the first H9N2 avian influenza viruses isolated in the Northeast of Algeria. Virol J 2020; 17:108. [PMID: 32680533 PMCID: PMC7366561 DOI: 10.1186/s12985-020-01377-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022] Open
Abstract
Background H9N2 avian influenza viruses (AIV) has a worldwide geographic distribution and affects poultry of different types of production. H9N2 AIV was first reported in the Northeast of Algeria in April 2017, following an outbreak associated with high mortality, in broiler flocks. In the present study, we report full-length genome sequences of AIV H9N2, and the detailed phylogeny and molecular genetic analyses. Methods Ten AIV H9N2 strains, collected in broiler flocks, were amplified in 9-day-old embryonated specific pathogen free (SPF) chicken eggs. Their full-length genomes were successfully sequenced and phylogenetic and molecular characterizations were conducted. Results Phylogenetic analysis showed that the isolates were monophyletic, grouped within the G-1 lineage and were very close to Moroccan and Algerian strains identified in 2016 and 2017, respectively. The low pathogenicity of the strains was confirmed by the sequence motif (335RSSR/GLF341) at the hemagglutinin (HA) cleavage site. An exclusive substitution (T197A) that had not been previously reported for H9N2 viruses; but, conserved in some pandemic H1N1 viruses, was observed. When compared to the G1-like H9N2 prototype, the studied strains showed one less glycosylation site in HA, but 2–3 additional ones in the stalk of the neuraminidase (NA). The HA protein harbored the substitution 234 L, suggesting binding preference to human-like receptors. The NA protein harbored S372A and R403W substitutions, previously detected in H9N2 from Asia and the Middle East, and especially in H2N2 and H3N2 strains that caused human pandemics. Different molecular markers associated with virulence and mammalian infections have been detected in the viral internal proteins. The matrix M2 protein possessed the S31N substitution associated with drug resistance. The non-structural 1 (NS1) protein showed the “GSEV” PDZ ligand (PL) C-terminal motif and no 80–84 deletion. Conclusion Characterized Algerian AIV isolates showed mutations that suggest increased zoonotic potential. Additional studies in animal models are required to investigate the pathogenicity of these H9N2 AIV strains. Monitoring their evolution in both migratory and domestic birds is crucial to prevent transmission to humans. Implementation of adequate biosecurity measures that limit the introduction and the propagation of AIV H9N2 in Algerian poultry farm is crucial.
Collapse
Affiliation(s)
- Abdelheq Barberis
- Centre de Recherche en Biotechnologie, Nouvelle Ville Ali Mendjeli, El Khroub, Algeria. .,LESPA, Département vétérinaire, ISVSA, Université de Batna, Batna, Algeria.
| | - Amine Boudaoud
- LESPA, Département vétérinaire, ISVSA, Université de Batna, Batna, Algeria
| | - Angelina Gorrill
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31076, Toulouse cedex, France
| | - Josianne Loupias
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31076, Toulouse cedex, France
| | - Abdeljelil Ghram
- Laboratoire d'Epidémiologie et de Microbiologie Vétérinaire, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Jihene Lachheb
- Laboratoire d'Epidémiologie et de Microbiologie Vétérinaire, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Nadir Alloui
- LESPA, Département vétérinaire, ISVSA, Université de Batna, Batna, Algeria
| | - Mariette F Ducatez
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31076, Toulouse cedex, France.
| |
Collapse
|
3
|
Pham T, Nguyen HL, Phan-Toai T, Nguyen H. Investigation of Binding Affinity between Potential Antiviral Agents and PB2 Protein of Influenza A: Non-equilibrium Molecular Dynamics Simulation Approach. Int J Med Sci 2020; 17:2031-2039. [PMID: 32788882 PMCID: PMC7415388 DOI: 10.7150/ijms.46231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/09/2020] [Indexed: 11/30/2022] Open
Abstract
The PB2 protein of the influenza virus RNA polymerase is a major virulence determinant of influenza viruses. It binds to the cap structure at the 5' end of host mRNA to generate short capped RNA fragments that are used as primers for viral transcription named cap-snatching. A large number of the compounds were shown to bind the minimal cap-binding domain of PB2 to inhibit the cap-snatching machinery. However, their binding in the context of an extended form of the PB2 protein has remained elusive. A previous study reported some promising compounds including azaindole and hydroxymethyl azaindole, which were analyzed here to predict binding affinity to PB2 protein using the steered molecular dynamics (SMD) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods. The results show that the rupture force (Fmax) value of three complexes is in agreement with the binding free energy value (ΔGbind) estimated by the MM-PBSA method, whereas for the non-equilibrium pulling work (Wpull) value a small difference between A_PB2-4 and A_PB2-12 was observed. The binding affinity results indicate the A_PB2-12 complex is more favorable than the A_PB2-4 and A_PB2-16 complexes, which means the inhibitor (12) has the potential to be further developed as anti-influenza agents in the treatment of influenza A.
Collapse
Affiliation(s)
- Tri Pham
- Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam.,VNUHCM-University of Technology, Ho Chi Minh City, Vietnam
| | - Hoang Linh Nguyen
- Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam.,VNUHCM-University of Technology, Ho Chi Minh City, Vietnam
| | - Tuyn Phan-Toai
- Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
| | - Hung Nguyen
- Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Mosaad Z, Arafa A, Hussein HA, Shalaby MA. In silico thermodynamic stability of mammalian adaptation and virulence determinants in polymerase complex proteins of H9N2 virus. J Genet Eng Biotechnol 2018; 16:757-767. [PMID: 30733797 PMCID: PMC6353722 DOI: 10.1016/j.jgeb.2018.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/01/2018] [Accepted: 02/17/2018] [Indexed: 11/16/2022]
Abstract
The polymerase complex proteins (PB2, PB1, and PA) are responsible primarily for the replication of avian influenza virus and play an important role in virus virulence, mammalian adaptation, and interspecies transmission. In this study; eight Egyptian LPAI-H9N2 viruses isolated from apparent healthy chickens and quails from 2014 to 2016. Characterization of complete nucleotide sequences, phylogenetic and mutation analysis were carried out. The measurement of thermodynamic stability of the H9N2 polymerase protein in comparison to human H3N2 and H1N1 proteins was carried out using in silico method. Phylogenetic analysis of these viruses revealed a close relationship to viruses isolated from neighboring Middle Eastern countries with an average of 96-99% homology. They are sharing the common ancestor A/quail/Hong Kong/G1/1997 (G1-Like) without any evidence for genetic reassortment. In addition, eight markers related to virulence were identified, including the combination of 627V and 391E in the PB2 gene with full-length PB1-F2 and PA-X proteins were observed in all viruses and the substitution N66S in PB1-F2 which suggest increasing virus virulence. Moreover, six markers that may affect the virus replication and transmission in mammalian hosts were identified. Five mutations related to mammalian adaptation show a structural stabilizing effect on LPAI-H9N2 polymerase complex protein according to the free-energy change (ΔΔG). Three out of those six adaptive mutations shown to increase polymerase complex protein stability were found in Egyptian LPAI-H9N2 viruses similar to Human H3N2 and H1N1 (661 in PB2, 225 and 409 in PA genes). Our results suggested that the stabilizing mutations in the polymerase complex protein have likely affected the protein structure and induced favorable conditions for avian virus replication and transmission in mammalian hosts. Indeed, the study reports the mutational analysis of the circulating LPAI-H9N2 strains in Egypt.
Collapse
Affiliation(s)
- Zienab Mosaad
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - Abdelsatar Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - Hussein A. Hussein
- VirologyDept, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohamed A. Shalaby
- VirologyDept, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
5
|
Reduced accumulation of defective viral genomes contributes to severe outcome in influenza virus infected patients. PLoS Pathog 2017; 13:e1006650. [PMID: 29023600 PMCID: PMC5638565 DOI: 10.1371/journal.ppat.1006650] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV) infection can be severe or even lethal in toddlers, the elderly and patients with certain medical conditions. Infection of apparently healthy individuals nonetheless accounts for many severe disease cases and deaths, suggesting that viruses with increased pathogenicity co-circulate with pandemic or epidemic viruses. Looking for potential virulence factors, we have identified a polymerase PA D529N mutation detected in a fatal IAV case, whose introduction into two different recombinant virus backbones, led to reduced defective viral genomes (DVGs) production. This mutation conferred low induction of antiviral response in infected cells and increased pathogenesis in mice. To analyze the association between low DVGs production and pathogenesis in humans, we performed a genomic analysis of viruses isolated from a cohort of previously healthy individuals who suffered highly severe IAV infection requiring admission to Intensive Care Unit and patients with fatal outcome who additionally showed underlying medical conditions. These viruses were compared with those isolated from a cohort of mild IAV patients. Viruses with fewer DVGs accumulation were observed in patients with highly severe/fatal outcome than in those with mild disease, suggesting that low DVGs abundance constitutes a new virulence pathogenic marker in humans. Influenza A viruses are the causative agents of annual epidemics, sporadic zoonotic outbreaks and occasionally pandemics. Worldwide, acute respiratory infections caused by influenza A viruses continue to be one of the main causes of acute illness and death. The appearance in 2009 of a new H1N1 pandemic influenza strain reinforced the search to identify viral pathogenicity determinants for evaluation of the consequences of virus epidemics and potential pandemics for human health. Here we identify a new general virulence determinant found in a cohort of severe/fatal influenza virus-infected patients, a reduced accumulation of viral defective genomes. These molecules are incomplete viral genome segments that activate the innate immune response. This data will contribute to the prediction of influenza disease severity, to improved guidance of patient treatment and will enable the development of risk-based prevention strategies and policies.
Collapse
|
6
|
Yamayoshi S, Watanabe M, Goto H, Kawaoka Y. Identification of a Novel Viral Protein Expressed from the PB2 Segment of Influenza A Virus. J Virol 2016; 90:444-56. [PMID: 26491155 PMCID: PMC4702538 DOI: 10.1128/jvi.02175-15] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/13/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Over the past 2 decades, several novel influenza virus proteins have been identified that modulate viral infections in vitro and/or in vivo. The PB2 segment, which is one of the longest influenza A virus segments, is known to encode only one viral protein, PB2. In the present study, we used reverse transcription-PCR (RT-PCR) targeting viral mRNAs transcribed from the PB2 segment to look for novel viral proteins encoded by spliced mRNAs. We identified a new viral protein, PB2-S1, encoded by a novel spliced mRNA in which the region corresponding to nucleotides 1513 to 1894 of the PB2 mRNA is deleted. PB2-S1 was detected in virus-infected cells and in cells transfected with a protein expression plasmid encoding PB2. PB2-S1 localized to mitochondria, inhibited the RIG-I-dependent interferon signaling pathway, and interfered with viral polymerase activity (dependent on its PB1-binding capability). The nucleotide sequences around the splicing donor and acceptor sites for PB2-S1 were highly conserved among pre-2009 human H1N1 viruses but not among human H1N1pdm and H3N2 viruses. PB2-S1-deficient viruses, however, showed growth kinetics in MDCK cells and virulence in mice similar to those of wild-type virus. The biological significance of PB2-S1 to the replication and pathogenicity of seasonal H1N1 influenza A viruses warrants further investigation. IMPORTANCE Transcriptome analysis of cells infected with influenza A virus has improved our understanding of the host response to viral infection, because such analysis yields considerable information about both in vitro and in vivo viral infections. However, little attention has been paid to transcriptomes derived from the viral genome. Here we focused on the splicing of mRNA expressed from the PB2 segment and identified a spliced viral mRNA encoding a novel viral protein. This result suggests that other, as yet unidentified viral proteins encoded by spliced mRNAs could be expressed in virus-infected cells. A viral transcriptome including the viral spliceosome should be evaluated to gain new insights into influenza virus infection.
Collapse
Affiliation(s)
- Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Mariko Watanabe
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hideo Goto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
7
|
Briese T, Chowdhary R, Travassos da Rosa A, Hutchison SK, Popov V, Street C, Tesh RB, Lipkin WI. Upolu virus and Aransas Bay virus, two presumptive bunyaviruses, are novel members of the family Orthomyxoviridae. J Virol 2014; 88:5298-309. [PMID: 24574415 PMCID: PMC4019087 DOI: 10.1128/jvi.03391-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/21/2014] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Emerging and zoonotic pathogens pose continuing threats to human health and ongoing challenges to diagnostics. As nucleic acid tests are playing increasingly prominent roles in diagnostics, the genetic characterization of molecularly uncharacterized agents is expected to significantly enhance detection and surveillance capabilities. We report the identification of two previously unrecognized members of the family Orthomyxoviridae, which includes the influenza viruses and the tick-transmitted Thogoto and Dhori viruses. We provide morphological, serologic, and genetic evidence that Upolu virus (UPOV) from Australia and Aransas Bay virus (ABV) from North America, both previously considered potential bunyaviruses based on electron microscopy and physicochemical features, are orthomyxoviruses instead. Their genomes show up to 68% nucleotide sequence identity to Thogoto virus (segment 2; ∼74% at the amino acid level) and a more distant relationship to Dhori virus, the two prototype viruses of the recognized species of the genus Thogotovirus. Despite sequence similarity, the coding potentials of UPOV and ABV differed from that of Thogoto virus, instead being like that of Dhori virus. Our findings suggest that the tick-transmitted viruses UPOV and ABV represent geographically distinct viruses in the genus Thogotovirus of the family Orthomyxoviridae that do not fit in the two currently recognized species of this genus. IMPORTANCE Upolu virus (UPOV) and Aransas Bay virus (ABV) are shown to be orthomyxoviruses instead of bunyaviruses, as previously thought. Genetic characterization and adequate classification of agents are paramount in this molecular age to devise appropriate surveillance and diagnostics. Although more closely related to Thogoto virus by sequence, UPOV and ABV differ in their coding potentials by lacking a proposed pathogenicity factor. In this respect, they are similar to Dhori virus, which, despite the lack of a pathogenicity factor, can cause disease. These findings enable further studies into the evolution and pathogenicity of orthomyxoviruses.
Collapse
Affiliation(s)
- Thomas Briese
- Center for Infection and Immunity, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Rashmi Chowdhary
- Center for Infection and Immunity, Columbia University, New York, New York, USA
| | | | | | - Vsevolod Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Craig Street
- Center for Infection and Immunity, Columbia University, New York, New York, USA
| | - Robert B. Tesh
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - W. Ian Lipkin
- Center for Infection and Immunity, Columbia University, New York, New York, USA
- Department of Pathology and Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
8
|
Conserved features of the PB2 627 domain impact influenza virus polymerase function and replication. J Virol 2014; 88:5977-86. [PMID: 24623411 DOI: 10.1128/jvi.00508-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Successful replication of influenza virus requires the coordinated expression of viral genes and replication of the genome by the viral polymerase, composed of the subunits PA, PB1, and PB2. Polymerase activity is regulated by both viral and host factors, yet the mechanisms of regulation and how they contribute to viral pathogenicity and tropism are poorly understood. To characterize these processes, we created a series of mutants in the 627 domain of the PB2 subunit. This domain contains a conserved "P[F/P]AAAPP" sequence motif and the well-described amino acid 627, whose identity regulates host range. A lysine present at position 627 in most mammalian viral isolates creates a basic face on the domain surface and confers high-level activity in humans compared to the glutamic acid found at this position in avian isolates. Mutation of the basic face or the P[F/P]AAAPP motif impaired polymerase activity, assembly of replication complexes, and viral replication. Most of these residues are required for general polymerase activity, whereas PB2 K586 and R589 were preferentially required for function in human versus avian cells. Thus, these data identify residues in the 627 domain and other viral proteins that regulate polymerase activity, highlighting the importance of the surface charge and structure of this domain for virus replication and host adaptation. IMPORTANCE Influenza virus faces barriers to transmission across species as it emerges from its natural reservoir in birds to infect mammals. The viral polymerase is an important regulator of this process and undergoes discrete changes to adapt to replication in mammals. Many of these changes occur in the polymerase subunit PB2. Here we describe the systematic analysis of a key region in PB2 that controls species-specific polymerase activity. We report the importance of conserved residues that contribute to the overall charge of the protein as well as those that likely affect protein structure. These findings provide further insight into the molecular events dictating species-specific polymerase function and viral replication.
Collapse
|
9
|
Abstract
The influenza A viruses cause yearly epidemics and occasional pandemics of respiratory disease, which constitute a serious health and economic burden. Their genome consists of eight single-stranded, negative-polarity RNAs that associate to the RNA polymerase and many nucleoprotein monomers to form ribonucleoprotein complexes (RNPs). Here, we focus on the organization of these RNPs, as well as on the structure and interactions of its constitutive elements and we discuss the mechanisms by which the RNPs transcribe and replicate the viral genome.
Collapse
|
10
|
Rodriguez A, Falcon A, Cuevas MT, Pozo F, Guerra S, García-Barreno B, Martinez-Orellana P, Pérez-Breña P, Montoya M, Melero JA, Pizarro M, Ortin J, Casas I, Nieto A. Characterization in vitro and in vivo of a pandemic H1N1 influenza virus from a fatal case. PLoS One 2013; 8:e53515. [PMID: 23326447 PMCID: PMC3542358 DOI: 10.1371/journal.pone.0053515] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/30/2012] [Indexed: 02/02/2023] Open
Abstract
Pandemic 2009 H1N1 (pH1N1) influenza viruses caused mild symptoms in most infected patients. However, a greater rate of severe disease was observed in healthy young adults and children without co-morbid conditions. Here we tested whether influenza strains displaying differential virulence could be present among circulating pH1N1 viruses. The biological properties and the genotype of viruses isolated from a patient showing mild disease (M) or from a fatal case (F), both without known co-morbid conditions were compared in vitro and in vivo. The F virus presented faster growth kinetics and stronger induction of cytokines than M virus in human alveolar lung epithelial cells. In the murine model in vivo, the F virus showed a stronger morbidity and mortality than M virus. Remarkably, a higher proportion of mice presenting infectious virus in the hearts, was found in F virus-infected animals. Altogether, the data indicate that strains of pH1N1 virus with enhanced pathogenicity circulated during the 2009 pandemic. In addition, examination of chemokine receptor 5 (CCR5) genotype, recently reported as involved in severe influenza virus disease, revealed that the F virus-infected patient was homozygous for the deleted form of CCR5 receptor (CCR5Δ32).
Collapse
Affiliation(s)
- Ariel Rodriguez
- Centro Nacional de Biotecnología, C.S.I.C. Darwin 3, Cantoblanco, Madrid, Spain
- Ciber de Enfermedades Respiratorias, Mallorca, Illes Balears, Spain
| | - Ana Falcon
- Centro Nacional de Biotecnología, C.S.I.C. Darwin 3, Cantoblanco, Madrid, Spain
- Ciber de Enfermedades Respiratorias, Mallorca, Illes Balears, Spain
| | - Maria Teresa Cuevas
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Francisco Pozo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Susana Guerra
- Dpto. de Medicina Preventiva, Salud Pública y Microbiología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Blanca García-Barreno
- Ciber de Enfermedades Respiratorias, Mallorca, Illes Balears, Spain
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Pamela Martinez-Orellana
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Pilar Pérez-Breña
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Maria Montoya
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentarias (IRTA), Barcelona, Spain
| | - Jose Antonio Melero
- Ciber de Enfermedades Respiratorias, Mallorca, Illes Balears, Spain
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Manuel Pizarro
- Servicio de Anatomia Patologica, Hospital Clínico Veterinario, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Juan Ortin
- Centro Nacional de Biotecnología, C.S.I.C. Darwin 3, Cantoblanco, Madrid, Spain
- Ciber de Enfermedades Respiratorias, Mallorca, Illes Balears, Spain
| | - Inmaculada Casas
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Amelia Nieto
- Centro Nacional de Biotecnología, C.S.I.C. Darwin 3, Cantoblanco, Madrid, Spain
- Ciber de Enfermedades Respiratorias, Mallorca, Illes Balears, Spain
- * E-mail:
| |
Collapse
|
11
|
Abstract
Influenza virus is a major human and animal pathogen causing seasonal epidemics and occasional pandemics in the human population that are associated with significant morbidity and mortality. Influenza A virus, a member of the orthomyxovirus family, contains an RNA genome with a coding capacity for a limited number of proteins. In addition to ensuring the structural integrity of virions, these viral proteins facilitate the replication of virus in the host cell. Consequently, viral proteins often evolve to perform multiple functions, the influenza A virus nuclear export protein (NEP) (also referred to as non-structural protein 2, or NS2) being an emerging example. NEP was originally implicated in mediating the nuclear export of viral ribonucleoprotein (RNP) complexes, which are synthesized in the infected cell nucleus and are assembled into progeny virions at the cell membrane. However, since then, new and unexpected roles for NEP during the influenza virus life cycle have started to emerge. These recent studies have shown NEP to be involved in regulating the accumulation of viral genomic vRNA and antigenomic cRNA as well as viral mRNA synthesized by the viral RNA-dependent RNA polymerase. Subsequently, this regulation of viral RNA transcription and replication by NEP was shown to be an important factor in the adaptation of highly pathogenic avian H5N1 influenza viruses to the mammalian host. Unexpectedly, NEP has also been implicated in recruiting a cellular ATPase to the cell membrane to aid the efficient release of budding virions. Accordingly, NEP is proposed to play multiple biologically important roles during the influenza virus life cycle.
Collapse
Affiliation(s)
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Interferon-inducible protein Mx1 inhibits influenza virus by interfering with functional viral ribonucleoprotein complex assembly. J Virol 2012; 86:13445-55. [PMID: 23015724 DOI: 10.1128/jvi.01682-12] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mx1 is a GTPase that is part of the antiviral response induced by type I and type III interferons in the infected host. It inhibits influenza virus infection by blocking viral transcription and replication, but the molecular mechanism is not known. Polymerase basic protein 2 (PB2) and nucleoprotein (NP) were suggested to be the possible target of Mx1, but a direct interaction between Mx1 and any of the viral proteins has not been reported. We investigated the interplay between Mx1, NP, and PB2 to identify the mechanism of Mx1's antiviral activity. We found that Mx1 inhibits the PB2-NP interaction, and the strength of this inhibition correlated with a decrease in viral polymerase activity. Inhibition of the PB2-NP interaction is an active process requiring enzymatically active Mx1. We also demonstrate that Mx1 interacts with the viral proteins NP and PB2, which indicates that Mx1 protein has a direct effect on the viral ribonucleoprotein complex. In a minireplicon system, avian-like NP from swine virus isolates was more sensitive to inhibition by murine Mx1 than NP from human influenza A virus isolates. Likewise, murine Mx1 displaced avian NP from the viral ribonucleoprotein complex more easily than human NP. The stronger resistance of the A/H1N1 pandemic 2009 virus against Mx1 also correlated with reduced inhibition of the PB2-NP interaction. Our findings support a model in which Mx1 interacts with the influenza ribonucleoprotein complex and interferes with its assembly by disturbing the PB2-NP interaction.
Collapse
|
13
|
Isolation and mutation trend analysis of influenza A virus subtype H9N2 in Egypt. Virol J 2012; 9:173. [PMID: 22925485 PMCID: PMC3492205 DOI: 10.1186/1743-422x-9-173] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 08/14/2012] [Indexed: 11/23/2022] Open
Abstract
Background Avian influenza virus H9N2 is a panzootic pathogen that affects poultry causing mild to moderate respiratory distress but has been associated with high morbidity and considerable mortality. Interspecies transmission of H9N2 from avian species to mammalian hosts does occur. The virus possesses human virus-like receptor specificity and it can infect humans producing flu-like illness. Methods Recently, mild influenza like symptoms were detected in H5N1 vaccinated flocks. Influenza A subtype H9N2 was isolated from the infected flock. The virus evolution was investigated by sequencing the viral genes to screen the possible virus recombination. The viral amino acid sequences from the isolated H9N2 strains were compared to other related sequences from the flu data base that were used to assess the robustness of the mutation trend. Changes in the species-associated amino acid residues or those that enabled virulence to mammals were allocated. Results Phylogenetic analyses of haemagglutinin and neuraminidase genes showed that the recently isolated Egyptian strain belonged to the H9N2 sub-lineage that prevails in Israel. The six internal segments of the isolated virus were found to be derived from the same sub-lineage with no new evidence of reassortment. The results demonstrated conserved genetic and biological constitution of H9N2 viruses in the Middle East. The recently isolated H9N2 virus from chicken in Egypt possessed amino acids that could enable the virus to replicate in mammals and caused severe disease in domestic chickens. Conclusion The study highlights the importance of continuous monitoring of the mutations evolved in avian influenza viruses and its impact on virulence to avian species in addition to its importance in the emergence of new strains with the capacity to be a pandemic candidate.
Collapse
|
14
|
Bussetti AV, Palacios G, Travassos da Rosa A, Savji N, Jain K, Guzman H, Hutchison S, Popov VL, Tesh RB, Lipkin WI. Genomic and antigenic characterization of Jos virus. J Gen Virol 2012; 93:293-298. [PMID: 21994326 PMCID: PMC3352346 DOI: 10.1099/vir.0.035121-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/07/2011] [Indexed: 11/18/2022] Open
Abstract
Jos virus (JOSV), originally isolated in Jos, Nigeria in 1967, has remained unclassified despite cultivation in tissue culture, development of animal models of infection and implementation of seroprevalence surveys for infection. Here, we report genetic, ultrastructural and serological evidence that JOSV is an orthomyxovirus distinct from but phylogenetically related to viruses of the genus Thogotovirus.
Collapse
Affiliation(s)
- Ana Valeria Bussetti
- Center for Infection and Immunity and WHO Collaborating Centre for Diagnostics, Surveillance and Immunotherapeutics for Emerging Infectious and Zoonotic Diseases, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Gustavo Palacios
- Center for Infection and Immunity and WHO Collaborating Centre for Diagnostics, Surveillance and Immunotherapeutics for Emerging Infectious and Zoonotic Diseases, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Amelia Travassos da Rosa
- Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nazir Savji
- Center for Infection and Immunity and WHO Collaborating Centre for Diagnostics, Surveillance and Immunotherapeutics for Emerging Infectious and Zoonotic Diseases, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Komal Jain
- Center for Infection and Immunity and WHO Collaborating Centre for Diagnostics, Surveillance and Immunotherapeutics for Emerging Infectious and Zoonotic Diseases, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Hilda Guzman
- Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Vsevolod L. Popov
- Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert B. Tesh
- Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - W. Ian Lipkin
- Center for Infection and Immunity and WHO Collaborating Centre for Diagnostics, Surveillance and Immunotherapeutics for Emerging Infectious and Zoonotic Diseases, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Landeras-Bueno S, Jorba N, Pérez-Cidoncha M, Ortín J. The splicing factor proline-glutamine rich (SFPQ/PSF) is involved in influenza virus transcription. PLoS Pathog 2011; 7:e1002397. [PMID: 22114566 PMCID: PMC3219729 DOI: 10.1371/journal.ppat.1002397] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 10/10/2011] [Indexed: 01/15/2023] Open
Abstract
The influenza A virus RNA polymerase is a heterotrimeric complex responsible for viral genome transcription and replication in the nucleus of infected cells. We recently carried out a proteomic analysis of purified polymerase expressed in human cells and identified a number of polymerase-associated cellular proteins. Here we characterise the role of one such host factors, SFPQ/PSF, during virus infection. Down-regulation of SFPQ/PSF by silencing with two independent siRNAs reduced the virus yield by 2–5 log in low-multiplicity infections, while the replication of unrelated viruses as VSV or Adenovirus was almost unaffected. As the SFPQ/PSF protein is frequently associated to NonO/p54, we tested the potential implication of the latter in influenza virus replication. However, down-regulation of NonO/p54 by silencing with two independent siRNAs did not affect virus yields. Down-regulation of SFPQ/PSF by siRNA silencing led to a reduction and delay of influenza virus gene expression. Immunofluorescence analyses showed a good correlation between SFPQ/PSF and NP levels in infected cells. Analysis of virus RNA accumulation in silenced cells showed that production of mRNA, cRNA and vRNA is reduced by more than 5-fold but splicing is not affected. Likewise, the accumulation of viral mRNA in cicloheximide-treated cells was reduced by 3-fold. In contrast, down-regulation of SFPQ/PSF in a recombinant virus replicon system indicated that, while the accumulation of viral mRNA is reduced by 5-fold, vRNA levels are slightly increased. In vitro transcription of recombinant RNPs generated in SFPQ/PSF-silenced cells indicated a 4–5-fold reduction in polyadenylation but no alteration in cap snatching. These results indicate that SFPQ/PSF is a host factor essential for influenza virus transcription that increases the efficiency of viral mRNA polyadenylation and open the possibility to develop new antivirals targeting the accumulation of primary transcripts, a very early step during infection. The influenza A viruses cause annual epidemics and occasional pandemics of respiratory infections that may be life threatening. The viral genome contains 8 RNA molecules forming ribonucleoproteins that replicate and transcribe in the nucleus of infected cells. Influenza viruses are intracellular parasites that need the host cell machinery to replicate. To better understand this virus-cell interplay we purified the viral RNA polymerase expressed in human cells and identified several specifically associated cellular proteins. Here we characterise the role of one of them, the proline-glutamine rich splicing factor (SFPQ/PSF). Down-regulation of SFPQ/PSF indicated that it is essential for virus multiplication. Specifically, the accumulation of messenger and genomic virus-specific RNAs was reduced by SFPQ/PSF silencing in infected cells. Furthermore, transcription of parental ribonucleoproteins was affected by SFPQ/PSF down-regulation. The consequences of silencing SFPQ/PSF on the transcription and replication of a viral recombinant replicon indicated that it is required for virus transcription but not for virus RNA replication. In vitro transcription experiments indicated that SFPQ/PSF increases the efficiency of virus mRNA polyadenylation. This is the first description of a cellular factor essential for influenza virus transcription and opens the possibility to identify inhibitors that target this host-virus interaction and block virus gene expression.
Collapse
Affiliation(s)
- Sara Landeras-Bueno
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Madrid, Spain
- CIBER de Enfermedades Respiratorias, ISCIII, Bunyola, Mallorca, Spain
| | - Núria Jorba
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Madrid, Spain
- CIBER de Enfermedades Respiratorias, ISCIII, Bunyola, Mallorca, Spain
| | - Maite Pérez-Cidoncha
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Madrid, Spain
- CIBER de Enfermedades Respiratorias, ISCIII, Bunyola, Mallorca, Spain
| | - Juan Ortín
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Madrid, Spain
- CIBER de Enfermedades Respiratorias, ISCIII, Bunyola, Mallorca, Spain
- * E-mail:
| |
Collapse
|
16
|
Tombari W, Nsiri J, Larbi I, Guerin JL, Ghram A. Genetic evolution of low pathogenecity H9N2 avian influenza viruses in Tunisia: acquisition of new mutations. Virol J 2011; 8:467. [PMID: 21992186 PMCID: PMC3223530 DOI: 10.1186/1743-422x-8-467] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/12/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since the end of 2009, H9N2 has emerged in Tunisia causing several epidemics in poultry industry resulting in major economic losses. To monitor variations of Influenza viruses during the outbreaks, Tunisian H9N2 virus isolates were identified and genetically characterized. METHODS The genomic RNA segments of Tunisian H9N2 strains were subjected to RT-PCR amplifications followed by sequencing analysis. RESULTS Phylogenetic analysis demonstrated that A/Ck/TUN/12/10 and A/Migratory Bird/TUN/51/10 viruses represent multiple reassortant lineages, with genes coming from Middle East strains, and share the common ancestor Qa/HK/G1/97 isolate which has contributed internal genes of H5N1 virus circulating in Asia. Some of the internal genes seemed to have undergone broad reassortments with other influenza subtypes. Deduced amino acid sequences of the hemagglutinin (HA) gene showed the presence of additional glycosylation site and Leu at position 234 indicating to binding preference to α (2, 6) sialic acid receptors, indicating their potential to directly infect humans. The Hemagglutinin cleavage site motif sequence is 333 PARSSR*GLF341 which indicates the low pathogenicity nature of the Tunisian H9N2 strains and the potential to acquire the basic amino acids required for the highly pathogenic strains. Their neuraminidase protein (NA) carried substitutions in the hemadsorption (HB) site, similar to those of other avian H9N2 viruses from Asia, Middle Eastern and human pandemic H2N2 and H3N2 that bind to α -2, 6 -linked receptors. Two avian virus-like aa at positions 661 (A) and 702 (K), similar to H5N1 strains, were identified in the polymerase (PB2) protein. Likewise, matrix (M) protein carried some substitutions which are linked with increasing replication in mammals. In addition, H9N2 strain recently circulating carried new polymorphism, "GSEV" PDZ ligand (PL) C-terminal motif in its non structural (NS) protein.Two new aa substitutions (I) and (V), that haven't been previously reported, were identified in the polymerase and matrix proteins, respectively. Nucleoprotein and non-structural protein carried some substitutions similar to H5N1 strains. CONCLUSION Considering these new mutations, the molecular basis of tropism, host responses and enhanced virulence will be defined and studied. Otherwise, Continuous monitoring of viral genetic changes throughout the year is warranted to monitor variations of Influenza viruses in the field.
Collapse
Affiliation(s)
- Wafa Tombari
- Veterinary Microbiology laboratory, Pasteur Institute of Tunis, 1002 Tunis-Belvédère, Tunisia
| | - Jihene Nsiri
- Veterinary Microbiology laboratory, Pasteur Institute of Tunis, 1002 Tunis-Belvédère, Tunisia
| | - Imen Larbi
- Veterinary Microbiology laboratory, Pasteur Institute of Tunis, 1002 Tunis-Belvédère, Tunisia
| | - Jean Luc Guerin
- INRA, UMR 1225, Ecole nationale vétérinaire de Toulouse, F-31076 Toulouse, France
| | - Abdeljelil Ghram
- Veterinary Microbiology laboratory, Pasteur Institute of Tunis, 1002 Tunis-Belvédère, Tunisia
| |
Collapse
|
17
|
Targeting of the influenza A virus polymerase PB1-PB2 interface indicates strain-specific assembly differences. J Virol 2011; 85:13298-309. [PMID: 21957294 DOI: 10.1128/jvi.00868-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Assembly of the heterotrimeric influenza virus polymerase complex from the individual subunits PB1, PA, and PB2 is a prerequisite for viral replication. The conserved protein-protein interaction sites have been suggested as potential drug targets. To characterize the PB1-PB2 interface, we fused the PB1-binding domain of PB2 to green fluorescent protein (PB2(1-37)-GFP) and determined its competitive inhibitory effect on the polymerase activity of influenza A virus strains. Coexpression of PB2(1-37)-GFP in a polymerase reconstitution system led to substantial inhibition of the polymerase of A/WSN/33 (H1N1). Surprisingly, polymerases of other strains, including A/SC35M (H7N7), A/Puerto Rico/8/34 (H1N1), A/Hamburg/4/2009 (H1N1), and A/Thailand/1(KAN-1)/2004 (H5N1), showed various degrees of resistance. Individual exchange of polymerase subunits and the nucleoprotein between the sensitive WSN polymerase and the insensitive SC35M polymerase mapped the resistance to both PB1 and PA of SC35M polymerase. While PB2(1-37)-GFP bound equally well to the PB1 subunits of both virus strains, PB1-PA dimers of SC35M polymerase showed impaired binding compared to PB1-PA dimers of WSN polymerase. The use of PA(SC35M/WSN) chimeras revealed that the reduced affinity of the SC35M PB1-PA dimer was mediated by the N-terminal 277 amino acids of PA. Based on these observations, we speculate that the PB1-PA dimer formation of resistant polymerases shields the PB2(1-37) binding site, whereas sensitive polymerases allow this interaction, suggesting different assembly strategies of the trimeric polymerase complex between different influenza A virus strains.
Collapse
|
18
|
Abdel-Moneim AS, Shehab GM, Abu-Elsaad AAS. Molecular evolution of the six internal genes of H5N1 equine influenza A virus. Arch Virol 2011; 156:1257-62. [PMID: 21431346 DOI: 10.1007/s00705-011-0966-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 02/28/2011] [Indexed: 11/24/2022]
Abstract
Phylogenetic and evolutionary patterns of the six internal genes of an equine H5N1 influenza A virus isolated in Egypt on 2009 were analyzed using direct sequencing. All of the internal genes of the equine H5N1 strain showed a genetic pattern potentially related to Eurasian lineages. Variable dendrogram topologies revealed an absence of reassortment in the equine strain while confirming its close relatedness to other Egyptian H5N1 strains from human and avian species. The equine strain is characterized by a variety of amino acid substitutions in six internal proteins compared to the available Egyptian H5N1 strains. Interestingly, the equine strain displayed amino acids in the PB2, PA, M2 and NS2 proteins that are unique among the available H5N1 sequences in the flu database, and their potential effect on virulence needs to be further investigated.
Collapse
Affiliation(s)
- Ahmed S Abdel-Moneim
- Virology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | | | | |
Collapse
|
19
|
NP body domain and PB2 contribute to increased virulence of H5N1 highly pathogenic avian influenza viruses in chickens. J Virol 2010; 85:1834-46. [PMID: 21123376 DOI: 10.1128/jvi.01648-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular basis of pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in chickens remains largely unknown. H5N1 A/chicken/Yamaguchi/7/2004 virus (CkYM7) replicates rapidly in macrophages and vascular endothelial cells in chickens, causing sudden death without fever or gross lesions, while H5N1 A/duck/Yokohama/aq10/2003 virus (DkYK10) induces high fever, severe gross lesions, and a prolonged time to death, despite the 98% amino acid identity between the two viruses. To explore the molecular basis of this difference in pathogenicity, a series of eight single-gene reassortant viruses from these HPAI viruses were compared for pathogenicity in chickens. Two reassortants possessing the NP or PB2 gene from DkYK10 in the CkYM7 background reduced pathogenicity compared to other reassortants or CkYM7. Inversely, reassortants possessing the NP or PB2 gene of CkYM7 in the DkYK10 background (rgDkYK-PB2(Ck), rgDkYK-NP(Ck)) replicated quickly and reached higher titers than DkYK10, accompanied by more rapid and frequent apoptosis of macrophages. The rgDkYK-NP(Ck) and rgDkYK-PB2(Ck) reassortants also replicated more rapidly in chicken embryo fibroblasts (CEFs) than did rgDkYK10, but replication of these viruses was similar to that of CkYM7 and DkYK10 in duck embryo fibroblasts. A comparison of pathogenicities of seven rgDkYK10 mutants with a single amino acid substitution in NP(Dk) demonstrated that valine at position 105 in the NP(Ck) was responsible for the increased pathogenicity in chickens. NP(Ck), NP(105V), and PB2(Ck) enhanced the polymerase activity of DkYK10 in CEFs. These results indicate that both NP and PB2 contribute to the high pathogenicity of the H5N1 HPAI viruses in chickens, and valine at position 105 of NP may be one of the determinants for adaptation of avian influenza viruses from ducks to chickens.
Collapse
|
20
|
[Function of influenza virus RNA polymerase based on structure]. Uirusu 2009; 59:1-11. [PMID: 19927983 DOI: 10.2222/jsv.59.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Studies using cell-free RNA synthesis systems and reverse genetics have been contributing to understanding of the molecular mechanism of replication and transcription of the influenza virus genome, which is the most essential process through the virus life cycle. Recently, it is noted that this mechanism is also involved in host range determination of the virus. In the light of the fact that viruses resistant to previously developed anti-influenza virus drugs emerge, establishment of a rational screening strategy of drugs for novel molecular targets is highly required. Further to clarify the detailed function of viral factors involved in replication and transcription of the virus genome and to devise anti-viral methods, determination of the 3D structures of viral factors should give a breakthrough. In this review, we summarize the recent accumulating information on the 3D structures of viral factors and discuss their function based on their structures.
Collapse
|
21
|
Structural insight into the essential PB1-PB2 subunit contact of the influenza virus RNA polymerase. EMBO J 2009; 28:1803-11. [PMID: 19461581 DOI: 10.1038/emboj.2009.138] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 04/22/2009] [Indexed: 12/19/2022] Open
Abstract
Influenza virus RNA-dependent RNA polymerase is a multi-functional heterotrimer, which uses a 'cap-snatching' mechanism to produce viral mRNA. Host cell mRNA is cleaved to yield a cap-bearing oligonucleotide, which can be extended using viral genomic RNA as a template. The cap-binding and endonuclease activities are only activated once viral genomic RNA is bound. This requires signalling from the RNA-binding PB1 subunit to the cap-binding PB2 subunit, and the interface between these two subunits is essential for the polymerase activity. We have defined this interaction surface by protein crystallography and tested the effects of mutating contact residues on the function of the holo-enzyme. This novel interface is surprisingly small, yet, it has a crucial function in regulating the 250 kDa polymerase complex and is completely conserved among avian and human influenza viruses.
Collapse
|
22
|
Complete genome analysis of a highly pathogenic H5N1 influenza A virus isolated from a tiger in China. Arch Virol 2008; 153:1569-74. [PMID: 18592132 DOI: 10.1007/s00705-008-0145-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 05/22/2008] [Indexed: 10/21/2022]
Abstract
An influenza A virus (A/Tig/SH/01/2005 (H5N1) was isolated from lung tissue samples of a dead zoo tiger with respiratory disease in China in July 2005. Complete genome analysis indicated that the isolate was highly identical to an H5N1 virus isolated from a migratory duck at Poyang lake in China in that year. The genotype of the isolate was K,G,D,5J,F,1J,F,1E, and phylogenetically it was a clade 2.2 virus. Molecular characterization of all of the gene segments revealed characteristics of highly pathogenic influenza A viruses. These results may help to identify molecular determinants of virulence and highlight the necessity for continuous surveillance.
Collapse
|
23
|
Guilligay D, Tarendeau F, Resa-Infante P, Coloma R, Crepin T, Sehr P, Lewis J, Ruigrok RWH, Ortin J, Hart DJ, Cusack S. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol 2008; 15:500-6. [PMID: 18454157 DOI: 10.1038/nsmb.1421] [Citation(s) in RCA: 400] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Accepted: 03/25/2008] [Indexed: 12/20/2022]
Abstract
Influenza virus mRNAs are synthesized by the trimeric viral polymerase using short capped primers obtained by a 'cap-snatching' mechanism. The polymerase PB2 subunit binds the 5' cap of host pre-mRNAs, which are cleaved after 10-13 nucleotides by the PB1 subunit. Using a library-screening method, we identified an independently folded domain of PB2 that has specific cap binding activity. The X-ray structure of the domain with bound cap analog m(7)GTP at 2.3-A resolution reveals a previously unknown fold and a mode of ligand binding that is similar to, but distinct from, other cap binding proteins. Binding and functional studies with point mutants confirm that the identified site is essential for cap binding in vitro and cap-dependent transcription in vivo by the trimeric polymerase complex. These findings clarify the nature of the cap binding site in PB2 and will allow efficient structure-based design of new anti-influenza compounds inhibiting viral transcription.
Collapse
Affiliation(s)
- Delphine Guilligay
- Grenoble Outstation, European Molecular Biology Laboratory, 6 rue Jules Horowitz, BP181, 38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The outbreaks of avian influenza A virus in poultry and humans over the last decade posed a pandemic threat to human. Here, we discuss the basic classification and the structure of influenza A virus. The viral genome contains eight RNA viral segments and the functions of viral proteins encoded by this genome are described. In addition, the RNA transcription and replication of this virus are reviewed.
Collapse
Affiliation(s)
- Timothy K W Cheung
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | | |
Collapse
|
25
|
Tarendeau F, Boudet J, Guilligay D, Mas PJ, Bougault CM, Boulo S, Baudin F, Ruigrok RWH, Daigle N, Ellenberg J, Cusack S, Simorre JP, Hart DJ. Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nat Struct Mol Biol 2007; 14:229-33. [PMID: 17310249 DOI: 10.1038/nsmb1212] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 01/31/2007] [Indexed: 11/08/2022]
Abstract
The trimeric influenza virus polymerase, comprising subunits PA, PB1 and PB2, is responsible for transcription and replication of the segmented viral RNA genome. Using a novel library-based screening technique called expression of soluble proteins by random incremental truncation (ESPRIT), we identified an independently folded C-terminal domain from PB2 and determined its solution structure by NMR. Using green fluorescent protein fusions, we show that both the domain and the full-length PB2 subunit are efficiently imported into the nucleus dependent on a previously overlooked bipartite nuclear localization sequence (NLS). The crystal structure of the domain complexed with human importin alpha5 shows how the last 20 residues unfold to permit binding to the import factor. The domain contains three surface residues implicated in adaptation from avian to mammalian hosts. One of these tethers the NLS-containing peptide to the core of the domain in the unbound state.
Collapse
Affiliation(s)
- Franck Tarendeau
- European Molecular Biology Laboratory (EMBL) Grenoble Outstation, 6 rue Jules Horowitz, BP181, 38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Amonsin A, Payungporn S, Theamboonlers A, Thanawongnuwech R, Suradhat S, Pariyothorn N, Tantilertcharoen R, Damrongwantanapokin S, Buranathai C, Chaisingh A, Songserm T, Poovorawan Y. Genetic characterization of H5N1 influenza A viruses isolated from zoo tigers in Thailand. Virology 2005; 344:480-91. [PMID: 16194557 DOI: 10.1016/j.virol.2005.08.032] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 07/14/2005] [Accepted: 08/22/2005] [Indexed: 12/09/2022]
Abstract
The H5N1 avian influenza virus outbreak among zoo tigers in mid-October 2004, with 45 animals dead, indicated that the avian influenza virus could cause lethal infection in a large mammalian species apart from humans. In this outbreak investigation, six H5N1 isolates were identified and two isolates (A/Tiger/Thailand/CU-T3/04 and A/Tiger/Thailand/CU-T7/04) were selected for whole genome analysis. Phylogenetic analysis of the 8 gene segments showed that the viruses clustered within the lineage of H5N1 avian isolates from Thailand and Vietnam. The hemagglutinin (HA) gene of the viruses displayed polybasic amino acids at the cleavage site, identical to those of the 2004 H5N1 isolates, which by definition are highly pathogenic avian influenza (HPAI). In addition, sequence analyses revealed that the viruses isolated from tigers harbored few genetic changes compared with the viruses having infected chicken, humans, tigers and a leopard isolated from the early 2004 H5N1 outbreaks. Sequence analyses also showed that the tiger H5N1 isolated in October 2004 was more closely related to the chicken H5N1 isolated in July than that from January. Interestingly, all the 6 tiger H5N1 isolates contained a lysine substitution at position 627 of the PB2 protein similar to the human, but distinct from the original avian isolates.
Collapse
Affiliation(s)
- Alongkorn Amonsin
- Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Poole E, Elton D, Medcalf L, Digard P. Functional domains of the influenza A virus PB2 protein: identification of NP- and PB1-binding sites. Virology 2004; 321:120-33. [PMID: 15033571 DOI: 10.1016/j.virol.2003.12.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 12/12/2003] [Accepted: 12/18/2003] [Indexed: 10/26/2022]
Abstract
Influenza virus genomic RNA segments are packaged into ribonucleoprotein (RNP) structures by the PB1, PB2, and PA subunits of an RNA polymerase and a single-strand RNA-binding nucleoprotein (NP). Assembly and function of these ribonucleoproteins depend on a complex set of protein-protein and protein-RNA interactions. Here, we identify new functional domains of PB2. We show that PB2 contains two regions that bind NP and also identify a novel PB1 binding site. The regions of PB2 responsible for binding NP and PB1 show considerable overlap, and binding of NP to the PB2 fragments could be outcompeted by PB1. The binding domains of PB2 acted as trans-dominant inhibitors of viral gene expression, and consistent with the in vitro binding data, their inhibitory activity depended on the concentration of wild-type PB2, NP, and PB1. This provides evidence for functionally significant and potentially regulatory interactions between PB2 and NP.
Collapse
Affiliation(s)
- Emma Poole
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | | | | | | |
Collapse
|
28
|
Shinya K, Hamm S, Hatta M, Ito H, Ito T, Kawaoka Y. PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology 2004; 320:258-66. [PMID: 15016548 DOI: 10.1016/j.virol.2003.11.030] [Citation(s) in RCA: 305] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 11/19/2003] [Accepted: 11/24/2003] [Indexed: 11/21/2022]
Abstract
A single amino acid substitution, from glutamic acid to lysine at position 627 of the PB2 protein, converts a nonlethal H5N1 influenza A virus isolated from a human to a lethal virus in mice. In contrast to the nonlethal virus, which replicates only in respiratory organs, the lethal isolate replicates in a variety of organs, producing systemic infection. Despite a clear difference in virulence and organ tropism between the two viruses, it remains unknown whether the dissimilarity is a result of differences in cell tropism or the reduced replicative ability of the nonlethal virus in mouse cells in general. To determine how this single amino acid change affects virulence and organ tropism in mice, we investigated the growth kinetics of the two H5N1 viruses both in vitro and in vivo. The identity of the PB2 amino acid at position 627 did not appreciably affect viral replicative efficiency in chicken embryo fibroblasts and a quail cell line; however, viruses with lysine at this position instead of glutamic acid grew better in the different mouse cells tested. When the effect of this substitution was investigated in mice, all of the test viruses showed the same cell tropism, but infection by viruses containing lysine at position 627 spread more rapidly than those viruses containing glutamic acid at this position. Further analysis showed a difference in local immune responses: neutrophil infiltration in lungs infected with viruses containing lysine at position 627 persisted longer than that associated with viruses lacking a glutamic acid substitution. Our data indicate that the amino acid at position 627 of the PB2 protein determines the efficiency of viral replication in mouse (not avian) cells, but not tropism among cells in different mouse organs. The presence of lysine leads to more aggressive viral replication, overwhelming the host's defense mechanisms and resulting in high mortality rates in mice.
Collapse
Affiliation(s)
- Kyoko Shinya
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
29
|
Gastaminza P, Perales B, Falcón AM, Ortín J. Mutations in the N-terminal region of influenza virus PB2 protein affect virus RNA replication but not transcription. J Virol 2003; 77:5098-108. [PMID: 12692212 PMCID: PMC153989 DOI: 10.1128/jvi.77.9.5098-5108.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PB2 mutants of influenza virus were prepared by altering conserved positions in the N-terminal region of the protein that aligned with the amino acids of the eIF4E protein, involved in cap recognition. These mutant genes were used to reconstitute in vivo viral ribonucleoproteins (RNPs) whose biological activity was determined by (i) assay of viral RNA, cRNA, and mRNA accumulation in vivo, (ii) cap-dependent transcription in vitro, and (iii) cap snatching with purified recombinant RNPs. The results indicated that the W49A, F130A, and R142A mutations of PB2 reduced or abolished the capacity of mutant RNPs to synthesize RNA in vivo but did not substantially alter their ability to transcribe or carry out cap snatching in vitro. Some of the mutations (F130Y, R142A, and R142K) were rescued into infectious virus. While the F130Y mutant virus replicated faster than the wild type, mutant viruses R142A and R142K showed a delayed accumulation of cRNA and viral RNA during the infection cycle but normal kinetics of primary transcription, as determined by the accumulation of viral mRNA in cells infected in the presence of cycloheximide. These results indicate that the N-terminal region of PB2 plays a role in viral RNA replication.
Collapse
Affiliation(s)
- Pablo Gastaminza
- Centro Nacional de Biotecnología, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
30
|
Snow M, Ritchie R, Arnaud O, Villoing S, Aspehaug V, Cunningham CO. Isolation and characterisation of segment 1 of the infectious salmon anaemia virus genome. Virus Res 2003; 92:99-105. [PMID: 12606081 DOI: 10.1016/s0168-1702(02)00322-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The isolation and characterisation of the largest genomic segment of infectious salmon anaemia virus (ISAV) is reported. Following identification of ISAV-specific clones from a cDNA library, a rapid amplification of cDNA ends-PCR strategy was designed to obtain the sequence of the full length mRNA transcript. The full length open reading frame (ORF) of this gene was shown to be 2169 nucleotides in length, encoding a putative protein of 722 aa. This sequence was demonstrated by RT-PCR to be specific to ISAV-infected cell cultures. The start codon of this ORF was preceded by the ISAV consensus sequence 5' GCTAAGA 3' indicating the full 5' end of the gene to have been obtained. Based on protein size and amino acid composition, this protein was shown to be similar to the PB2 protein of other orthomyxoviruses. Furthermore, a bipartite nuclear localisation signal was identified in the C-terminus of the protein as is found on all of the influenza virus P proteins. Expression of the putative PB2 as a green fluorescent marker protein-fusion protein confirmed that this protein exhibited nuclear localisation in a fish cell line. Sequences of the ISAV segment 1 gene were obtained from Scottish, Norwegian and Canadian ISAV isolates. Analyses confirmed the close genetic relationship between Norwegian and Scottish ISAV and indicated that this segment was among the most conserved of the ISAV genes identified to date. Thus, this evidence strongly suggests that the genomic segment 1 of ISAV encodes a polymerase protein which is thought to be analagous in function to the PB2 protein of influenza viruses.
Collapse
Affiliation(s)
- M Snow
- FRS Marine Laboratory, PO Box 101, Victoria Road, Aberdeen AB11 9DB, Scotland, UK
| | | | | | | | | | | |
Collapse
|
31
|
Fodor E, Crow M, Mingay LJ, Deng T, Sharps J, Fechter P, Brownlee GG. A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J Virol 2002; 76:8989-9001. [PMID: 12186883 PMCID: PMC136441 DOI: 10.1128/jvi.76.18.8989-9001.2002] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus RNA-dependent RNA polymerase consists of three subunits-PB1, PB2, and PA. The PB1 subunit is the catalytically active polymerase, catalyzing the sequential addition of nucleotides to the growing RNA chain. The PB2 subunit is a cap-binding protein that plays a role in initiation of viral mRNA synthesis by recruiting capped RNA primers. The function of PA is unknown, but previous studies of temperature-sensitive viruses with mutations in PA have implied a role in viral RNA replication. In this report we demonstrate that the PA subunit is required not only for replication but also for transcription of viral RNA. We mutated evolutionarily conserved amino acids to alanines in the C-terminal region of the PA protein, since the C-terminal region shows the highest degree of conservation between PA proteins of influenza A, B, and C viruses. We tested the effects of these mutations on the ability of RNA polymerase to transcribe and replicate viral RNA. We also tested the compatibility of these mutations with viral viability by using reverse-genetics techniques. A mutant with a histidine-to-alanine change at position 510 (H510A) in the PA protein of influenza A/WSN/33 virus showed a differential effect on transcription and replication. This mutant was able to perform replication (vRNA-->cRNA-->vRNA), but its transcriptional activity (vRNA-->mRNA) was negligible. In vitro analyses of the H510A recombinant polymerase, by using transcription initiation, vRNA-binding, capped-RNA-binding, and endonuclease assays, suggest that the primary defect of this mutant polymerase is in its endonuclease activity.
Collapse
Affiliation(s)
- Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
32
|
Influenza virus replication. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0168-7069(02)07002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Mase M, Imada T, Sanada Y, Etoh M, Sanada N, Tsukamoto K, Kawaoka Y, Yamaguchi S. Imported parakeets harbor H9N2 influenza A viruses that are genetically closely related to those transmitted to humans in Hong Kong. J Virol 2001; 75:3490-4. [PMID: 11238878 PMCID: PMC114145 DOI: 10.1128/jvi.75.7.3490-3494.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In 1997 and 1998, H9N2 influenza A viruses were isolated from the respiratory organs of Indian ring-necked parakeets (Psittacula Krameri manillensis) that had been imported from Pakistan to Japan. The two isolates were closely related to each other (>99% as determined by nucleotide analysis of eight RNA segments), indicating that H9N2 viruses of the same lineage were maintained in these birds for at least 1 year. The hemagglutinins and neuraminidases of both isolates showed >97% nucleotide identity with those of H9N2 viruses isolated from humans in Hong Kong in 1999, while the six genes encoding internal proteins were >99% identical to the corresponding genes of H5N1 viruses recovered during the 1997 outbreak in Hong Kong. These results suggest that the H9N2 parakeet viruses originating in Pakistan share an immediate ancestor with the H9N2 human viruses. Thus, influenza A viruses with the potential to be transmitted directly to humans may be circulating in captive birds worldwide.
Collapse
Affiliation(s)
- M Mase
- Department of Virology, National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hwang JS, Yamada K, Honda A, Nakade K, Ishihama A. Expression of functional influenza virus RNA polymerase in the methylotrophic yeast Pichia pastoris. J Virol 2000; 74:4074-84. [PMID: 10756019 PMCID: PMC111921 DOI: 10.1128/jvi.74.9.4074-4084.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza virus RNA polymerase with the subunit composition PB1-PB2-PA is a multifunctional enzyme with the activities of both synthesis and cleavage of RNA and is involved in both transcription and replication of the viral genome. In order to produce large amounts of the functional viral RNA polymerase sufficient for analysis of its structure-function relationships, the cDNAs for RNA segments 1, 2, and 3 of influenza virus A/PR/8, each under independent control of the alcohol oxidase gene promoter, were integrated into the chromosome of the methylotrophic yeast Pichia pastoris. Simultaneous expression of all three P proteins in the yeast P. pastoris was achieved by the addition of methanol. To purify the P protein complexes, a sequence coding for a histidine tag was added to the PB2 protein gene at its N terminus. Starting from the induced P. pastoris cell lysate, we partially purified a 3P complex by Ni(2+)-agarose affinity column chromatography. The 3P complex showed influenza virus model RNA-directed and ApG-primed RNA synthesis in vitro but was virtually inactive without addition of template or primer. The kinetic properties of model template-directed RNA synthesis and the requirements for template sequence were analyzed using the 3P complex. Furthermore, the 3P complex showed capped RNA-primed RNA synthesis. Thus, we conclude that functional influenza virus RNA polymerase with the catalytic properties of a transcriptase is formed in the methylotrophic yeast P. pastoris.
Collapse
Affiliation(s)
- J S Hwang
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | |
Collapse
|
35
|
Perales B, Sanz-Ezquerro JJ, Gastaminza P, Ortega J, Santarén JF, Ortín J, Nieto A. The replication activity of influenza virus polymerase is linked to the capacity of the PA subunit to induce proteolysis. J Virol 2000; 74:1307-12. [PMID: 10627541 PMCID: PMC111465 DOI: 10.1128/jvi.74.3.1307-1312.2000] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PA subunit of the influenza virus polymerase complex is a phosphorylated protein that induces a proteolytic process that decreases its own accumulation levels and those of coexpressed proteins. The amino-terminal third of the protein is responsible for the induction of proteolysis. We mutated five potential casein kinase II phosphorylation sites located in the amino-terminal third of the protein. Mutations affecting position 157 almost completely abrogated proteolysis induction, whereas a mutation at position 162 produced a moderate decrease and mutations at positions 151, 200, and 224 did not affect proteolysis induction. Reconstitution of the influenza virus polymerase in vivo with viral model RNA containing the chloramphenicol acetyltransferase (CAT) gene indicated that the CAT activity obtained correlated with the capacity of each PA mutant to induce proteolysis. RNA protection assays of the products obtained with viral polymerase, reconstituted in vivo with model RNAs, indicated that mutations at position 157 led to a selective loss of the ability to synthesize cRNA from the viral RNA template but not to transcribe viral RNA, while a mutation affecting position 162 showed an intermediate phenotype. Collectively, these data provide a link between PA-mediated induction of proteolysis and the replication activity of the polymerase.
Collapse
Affiliation(s)
- B Perales
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Ortega J, Martín-Benito J, Zürcher T, Valpuesta JM, Carrascosa JL, Ortín J. Ultrastructural and functional analyses of recombinant influenza virus ribonucleoproteins suggest dimerization of nucleoprotein during virus amplification. J Virol 2000; 74:156-63. [PMID: 10590102 PMCID: PMC111524 DOI: 10.1128/jvi.74.1.156-163.2000] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/1999] [Accepted: 09/17/1999] [Indexed: 11/20/2022] Open
Abstract
Influenza virus ribonucleoproteins (RNPs) were reconstituted in vivo from cloned cDNAs expressing the three polymerase subunits, the nucleoprotein (NP), and short template RNAs. The structure of purified RNPs was studied by electron microscopy and image processing. Circular and elliptic structures were obtained in which the NP and the polymerase complex could be defined. Comparison of the structure of RNPs of various lengths indicated that each NP monomer interacts with approximately 24 nucleotides. The analysis of the amplification of RNPs with different lengths showed that those with the highest replication efficiency contained an even number of NP monomers, suggesting that the NP is incorporated as dimers into newly synthesized RNPs.
Collapse
Affiliation(s)
- J Ortega
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- A Portela
- Centro Nacional de Biotecnología (CSIC) Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Honda A, Mizumoto K, Ishihama A. Two separate sequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerase. Genes Cells 1999; 4:475-85. [PMID: 10526235 DOI: 10.1046/j.1365-2443.1999.00275.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Influenza virus RNA polymerase with the subunit composition of PB1-PB2-PA is a unique multifunctional enzyme with the activities of both synthesis and cleavage of RNA, and is involved in both transcription and replication of the RNA genome. Transcription is initiated by using capped RNA fragments, which are generated after cleavage of host cell mRNA by the RNA polymerase-associated capped RNA endonuclease. To identify the RNA cap 1-binding site on the RNA polymerase, viral ribonucleoprotein (RNP) cores were subjected to UV-crosslinking with RNA which was labelled with 32P only at the cap-1 structure. RESULTS After SDS-PAGE of UV-crosslinked cores, 32P was found to be associated only with the PB2 subunit (759 amino acid residues). The labelled PB2 was subjected, together with PB2 expressed in E. coli, to limited digestion with V8 protease. Analysis of the amino terminal sequences of some isolated fragments with the crosslinked cap-1 indicated that two separate sequences within the PB2 were involved in RNA cap-1 binding, one (N-site) at the N-terminal proximal region approximately between amino acid residues 242-282 downstream from the PB1 subunit-binding site and the other (C-site) between residues 538-577 including the cap-binding motifs. Two lines of evidence support the prediction of the involvement of two separate PB2 sequences on the RNA cap-binding: (i) cross-linking of the capped RNA on to expressed and isolated PB2 fragments, each containing either the N-site or the C-site; and (ii) competition of capped RNA-binding to PB2 by both of the N- and C-terminal PB2 fragments. Taking together, we propose that two separate sequences within PB2 constitute the capped RNA-binding site of the RNA polymerase. CONCLUSION Two separate sequences, one N-(242-282) and the other C-terminal (538-577) proximal segments of PB2 subunit, constitute the RNA cap-binding site of the influenza virus RNA polymerase.
Collapse
Affiliation(s)
- A Honda
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
39
|
Zhou NN, Shortridge KF, Claas EC, Krauss SL, Webster RG. Rapid evolution of H5N1 influenza viruses in chickens in Hong Kong. J Virol 1999; 73:3366-74. [PMID: 10074191 PMCID: PMC104101 DOI: 10.1128/jvi.73.4.3366-3374.1999] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The H5N1 avian influenza virus that killed 6 of 18 persons infected in Hong Kong in 1997 was transmitted directly from poultry to humans. Viral isolates from this outbreak may provide molecular clues to zoonotic transfer. Here we demonstrate that the H5N1 viruses circulating in poultry comprised two distinguishable phylogenetic lineages in all genes that were in very rapid evolution. When introduced into new hosts, influenza viruses usually undergo rapid alteration of their surface glycoproteins, especially in the hemagglutinin (HA). Surprisingly, these H5N1 isolates had a large proportion of amino acid changes in all gene products except in the HA. These viruses maybe reassortants each of whose HA gene is well adapted to domestic poultry while the rest of the genome arises from a different source. The consensus amino acid sequences of "internal" virion proteins reveal amino acids previously found in human strains. These human-specific amino acids may be important factors in zoonotic transmission.
Collapse
Affiliation(s)
- N N Zhou
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
40
|
González S, Ortín J. Characterization of influenza virus PB1 protein binding to viral RNA: two separate regions of the protein contribute to the interaction domain. J Virol 1999; 73:631-7. [PMID: 9847368 PMCID: PMC103869 DOI: 10.1128/jvi.73.1.631-637.1999] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of the PB1 subunit of the influenza virus polymerase with the viral RNA (vRNA) template has been studied in vitro. The experimental approach included the in vitro binding of labeled model vRNA to PB1 protein immobilized as an immunoprecipitate, as well as Northwestern analyses. The binding to model vRNA was specific, and an apparent Kd of about 2 x 10(-8) M was determined. Although interaction with the isolated 3' arm of the panhandle was detectable, interaction with the 5' arm was prominent and the binding was optimal with a panhandle analog structure (5'+3' probe). When presented with a panhandle analog mixed probe, PB1 was able to retain the 3' arm as efficiently as the 5' arm. The sequences of the PB1 protein involved in vRNA binding were identified by in vitro interaction tests with PB1 deletion mutants. Two separate regions of the PB1 protein sequence proved positive for binding: the N-terminal 83 amino acids and the C-proximal sequences located downstream of position 493. All mutants able to interact with model vRNA were capable of binding the 5' arm more efficiently than the 3' arm of the panhandle. Taken together, these results suggest that two separate regions of the PB1 protein constitute a vRNA binding site that interacts preferentially with the 5' arm of the panhandle structure.
Collapse
Affiliation(s)
- S González
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
41
|
Weber F, Jambrina E, González S, Dessens JT, Leahy M, Kochs G, Portela A, Nuttall PA, Haller O, Ortín J, Zürcher T. In vivo reconstitution of active Thogoto virus polymerase: assays for the compatibility with other orthomyxovirus core proteins and template RNAs. Virus Res 1998; 58:13-20. [PMID: 9879758 DOI: 10.1016/s0168-1702(98)00096-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tick-borne Thogoto virus (THOV), the prototype of a new genus in the Orthomyxoviridae family, contains six single-stranded RNA segments of negative polarity. Four of them encode gene products that correspond to the influenza virus PB1, PB2, PA and NP core proteins. Here we describe an in vivo system in which the expression of a THOV model RNA is driven by THOV core proteins synthesized from cloned cDNAs. Our results demonstrated the biological activity of our cloned genes and showed that the three polymerase subunits and the NP are required for gene expression. For comparison, we also used the in vivo reconstituted systems of the influenza A and B viruses. None of the polymerase or NP proteins was active in a heterologous orthomyxovirus core, indicating a high specificity in core assembly and/or function. Interestingly, the THOV polymerase did not recognize the influenza A virus promoter and vice versa.
Collapse
Affiliation(s)
- F Weber
- Department of Virology, University of Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pritlove DC, Poon LL, Fodor E, Sharps J, Brownlee GG. Polyadenylation of influenza virus mRNA transcribed in vitro from model virion RNA templates: requirement for 5' conserved sequences. J Virol 1998; 72:1280-6. [PMID: 9445028 PMCID: PMC124606 DOI: 10.1128/jvi.72.2.1280-1286.1998] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Here we report the development of two independent assays which demonstrate for the first time that exogenous model RNA templates based on influenza virus virion RNA (vRNA) are transcribed in vitro to produce polyadenylated mRNA. We investigated the activities of mutated templates with known polymerase binding properties to test our model that polyadenylation occurs when a polymerase complex, which is bound to conserved 5' sequences of vRNA, prevents read-through of the U track at which polyadenylation subsequently occurs by reiterative copying. Mutated templates with perturbed polymerase binding sites (i.e., a deletion mutant lacking the first 4 5' residues and a U-->A point mutant at the third residue) initiated transcription in the in vitro assay but failed to produce polyadenylated transcripts, whereas an A-->U point mutant at the fourth residue, which retained polymerase binding properties similar to those of the wild type, produced polyadenylated transcripts. Our results show that nucleotides within the conserved 5' sequence are required for polyadenylation and support the hypothesis that polymerase binding to 5' sequences of the template is required for mRNA synthesis.
Collapse
Affiliation(s)
- D C Pritlove
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
43
|
Perales B, Ortín J. The influenza A virus PB2 polymerase subunit is required for the replication of viral RNA. J Virol 1997; 71:1381-5. [PMID: 8995663 PMCID: PMC191194 DOI: 10.1128/jvi.71.2.1381-1385.1997] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The transcription and replication of influenza virus RNA (vRNA) were reconstituted in vivo. The experimental approach involved the transfection of plasmids encoding the viral subunits of the polymerase and the nucleoprotein into cells infected with a vaccinia virus recombinant virus expressing the T7 RNA polymerase. As templates, one of two model RNAs was transfected: vNSZ or cNSZ RNA. The RNAs were 240 nucleotides in length, contained the terminal sequences of the NS viral segment, and were of negative or positive polarity, respectively. The accumulation of cRNA and mRNA in cells transfected with vNSZ RNA and the accumulation of vRNA and mRNA in cells transfected with cNSZ RNA were determined by RNase protection assays with labeled vNSZ-L or cNSZ-L probes. The patterns of protected bands obtained indicated that both cRNA replication intermediate and mRNA accumulated when the system was reconstituted with vNSZ RNA. Likewise, both vRNA and mRNA accumulated after reconstitution with cNSZ RNA. The reconstitution of incomplete systems in which any of the subunits of the polymerase or the model RNA were omitted was completely negative for the accumulation of cRNA or vRNA, indicating that the presence of the PB2 subunit in the polymerase is required for replication of vRNA.
Collapse
Affiliation(s)
- B Perales
- Centro Nacional de Biotecnologia (CSIC), Madrid, Spain
| | | |
Collapse
|
44
|
González S, Zürcher T, Ortín J. Identification of two separate domains in the influenza virus PB1 protein involved in the interaction with the PB2 and PA subunits: a model for the viral RNA polymerase structure. Nucleic Acids Res 1996; 24:4456-63. [PMID: 8948635 PMCID: PMC146260 DOI: 10.1093/nar/24.22.4456] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The domains of the PB1 subunit of the influenza virus polymerase involved in the interaction with the PB2 and PA subunits have been defined by mutational analysis of PB1 protein. The experimental approach included in vivo competition of the PB1 activity, two-hybrid interaction assays and in vitro binding to PB1-specific matrices. Mutants of the PB1 gene including N-terminal, C-terminal and internal deletions and single amino acid insertions were constructed. They were unable to support polymerase activity in a reconstituted transcription-replication system and were tested for their competition activity when expressed in excess over wild-type PB1 protein. The pattern of competition obtained suggested that the N-terminal 78 amino acids and the sequences between positions 506 and 659 in the PB1 protein are involved in the interaction with the other components of the polymerase. We identified the N-terminal region of PB1 protein as responsible for the interaction with the PA subunit by two-hybrid assays in mammalian cells. N- and C-terminal fragments of the PB1 protein were expressed as His-tagged proteins and purified on Ni2+-NTA resin. Such PB1-specific matrices were used in binding assays in vitro with metabolically labelled PB2 and PA proteins and mutants thereof. The results obtained indicated that the N-terminal and the C-terminal regions of PB1 are responsible for binding to PA and PB2 subunits, respectively. With this information and previously published results we propose a preliminary model for the architecture of the influenza virus RNA polymerase.
Collapse
Affiliation(s)
- S González
- Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | | | | |
Collapse
|
45
|
Biswas SK, Nayak DP. Influenza virus polymerase basic protein 1 interacts with influenza virus polymerase basic protein 2 at multiple sites. J Virol 1996; 70:6716-22. [PMID: 8794308 PMCID: PMC190714 DOI: 10.1128/jvi.70.10.6716-6722.1996] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Three polymerase proteins of influenza type A virus interact with each other to form the active polymerase complex. Polymerase basic protein 1 (PB1) can interact with PB2 in the presence or absence of polymerase acidic protein. In this study, we investigated the domains of PB1 involved in complex formation with PB2 in vivo, using coexpression and coimmunoprecipitation of the PB1-PB2 complex with monospecific antibodies. Results show that PB1 possesses at least two regions which can interact independently and form stable complexes with PB2. Both of these regions are located at the NH2 terminus of PB1; the COOH-terminal half of PB1 is not involved in interacting with PB2. Deletion analysis further demonstrated that the interacting regions of PB1 encompass amino acids (aa) 48 to 145 and aa 251 to 321. Linker insertions throughout the PB1 sequences did not affect complex formation with PB2. Deletion and linker-insertion mutants of PB1 were tested for polymerase activity in vivo. For this analysis, we developed a simplified assay for viral polymerase activity that uses a reporter chloramphenicol acetyltransferase gene containing the 5' and 3' ends of influenza viral promoter and nontranslating regions (minus sense) of the NS gene joined to a hepatitis delta virus ribozyme at its 3' end. This assay demonstrated that all deletion mutants of PB1 exhibited either background or greatly reduced polymerase activity irrespective of the ability to interact with PB2 and that all linker-insertion mutants except one at the extreme COOH end (L-746) of PB1 were also negative for viral polymerase activity. These results show that compared with complex formation of PB1 with PB2, the polymerase activity of PB1 was extremely sensitive to structural perturbation.
Collapse
Affiliation(s)
- S K Biswas
- Department of Microbiology and Immunology and Jonsson Comprehensive Cancer Center, UCLA School of Medicine, Los Angeles, California 90024-1747, USA
| | | |
Collapse
|