1
|
Seo D, Byun H, Cho M, Lee SH, Youn S, Lee J, Jung I, Cho H, Kang H. Dihydrotestosterone Enhances MICA-Mediated Immune Responses to Epstein-Barr Virus-Associated Gastric Carcinoma. Cancers (Basel) 2024; 16:3219. [PMID: 39335190 PMCID: PMC11429822 DOI: 10.3390/cancers16183219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Epstein-Barr virus-associated gastric carcinoma (EBVaGC) is a subset of gastric cancers linked to EBV infection. While the role of male hormones in cancers such as prostate, breast, and ovarian cancers is well-studied, their impact on EBVaGC remains less understood. This study aims to examine the effect of dihydrotestosterone (DHT) on EBVaGC, particularly focusing on its influence on the immune response. METHODS The study utilized the SNU719 EBVaGC cell line. Cells were treated with DHT to assess androgen receptor (AR) expression and the activation of signaling pathways, including NF-κB. The expression of MHC class I polypeptide-related sequence A (MICA) and its interaction with the NKG2D receptor on NK and T cells was evaluated. Cytotoxicity assays were conducted to determine DHT's effect on NK and T cell-mediated cytotoxicity, and proinflammatory cytokine gene expression was analyzed. RESULTS DHT significantly increased AR expression in EBVaGC cells and activated the NF-κB pathway, which led to increased transcription of target genes such as MICA and EBNA1. These changes enhanced the interaction with receptors on NK and T cells, thereby boosting their cytotoxicity against EBVaGC cells. Importantly, DHT did not upregulate proinflammatory cytokine genes. CONCLUSION DHT enhances the immune response against EBVaGC by upregulating MICA and activating NK and T cells. These findings suggest potential therapeutic strategies targeting androgen signaling to improve anti-tumor immunity in EBVaGC.
Collapse
Affiliation(s)
- Donghyun Seo
- Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (D.S.); (H.B.); (M.C.); (S.H.L.)
| | - Hyeji Byun
- Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (D.S.); (H.B.); (M.C.); (S.H.L.)
| | - Miyeon Cho
- Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (D.S.); (H.B.); (M.C.); (S.H.L.)
| | - Sun Hee Lee
- Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (D.S.); (H.B.); (M.C.); (S.H.L.)
| | - Sohyun Youn
- Department of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; (S.Y.); (I.J.)
| | - Junho Lee
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Inuk Jung
- Department of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; (S.Y.); (I.J.)
| | - Hyosun Cho
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Hyojeung Kang
- Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (D.S.); (H.B.); (M.C.); (S.H.L.)
| |
Collapse
|
2
|
Bridges R, Correia S, Wegner F, Venturini C, Palser A, White RE, Kellam P, Breuer J, Farrell PJ. Essential role of inverted repeat in Epstein-Barr virus IR-1 in B cell transformation; geographical variation of the viral genome. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180299. [PMID: 30955492 PMCID: PMC6501908 DOI: 10.1098/rstb.2018.0299] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many regions of the Epstein–Barr virus (EBV) genome, repeated and unique sequences, contribute to the geographical variation observed between strains. Here we use a large alignment of curated EBV genome sequences to identify major sites of variation in the genome of type 1 EBV strains; the CAO deletion in latent membrane protein 1 (LMP1) is the most frequent major indel present in the unique regions of EBV strains from various parts of the world. Principal component analysis was used to identify patterns of sequence variation and nucleotide positions in the sequences that can distinguish EBV from some different geographical regions. Viral genome sequence variation also affects interpretation of genetic content; known genes, origins of replication and gene expression control regions explain most of the viral genome but there are still a few sections of unknown function. One of these EBV genome regions contains a large inverted repeat sequence (invR) within the IR-1 major internal repeat array. We deleted this invR sequence and showed that this abolished the ability of the virus to transform human B cells into lymphoblastoid cell lines. This article is part of the theme issue ‘Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses’.
Collapse
Affiliation(s)
- Ray Bridges
- 1 Section of Virology, Faculty of Medicine , Imperial College London, London W2 1PG , UK
| | - Samantha Correia
- 1 Section of Virology, Faculty of Medicine , Imperial College London, London W2 1PG , UK
| | - Fanny Wegner
- 2 Division of Infection and Immunity, University College London , Gower Street, London WC1E 6BT , UK
| | - Cristina Venturini
- 2 Division of Infection and Immunity, University College London , Gower Street, London WC1E 6BT , UK
| | - Anne Palser
- 3 Wellcome Trust Sanger Institute , Hinxton, Cambridge CB10 1SJ , UK
| | - Robert E White
- 1 Section of Virology, Faculty of Medicine , Imperial College London, London W2 1PG , UK
| | - Paul Kellam
- 1 Section of Virology, Faculty of Medicine , Imperial College London, London W2 1PG , UK.,3 Wellcome Trust Sanger Institute , Hinxton, Cambridge CB10 1SJ , UK
| | - Judith Breuer
- 2 Division of Infection and Immunity, University College London , Gower Street, London WC1E 6BT , UK
| | - Paul J Farrell
- 1 Section of Virology, Faculty of Medicine , Imperial College London, London W2 1PG , UK
| |
Collapse
|
3
|
Sorel O, Dewals BG. The Critical Role of Genome Maintenance Proteins in Immune Evasion During Gammaherpesvirus Latency. Front Microbiol 2019; 9:3315. [PMID: 30687291 PMCID: PMC6333680 DOI: 10.3389/fmicb.2018.03315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/20/2018] [Indexed: 12/25/2022] Open
Abstract
Gammaherpesviruses are important pathogens that establish latent infection in their natural host for lifelong persistence. During latency, the viral genome persists in the nucleus of infected cells as a circular episomal element while the viral gene expression program is restricted to non-coding RNAs and a few latency proteins. Among these, the genome maintenance protein (GMP) is part of the small subset of genes expressed in latently infected cells. Despite sharing little peptidic sequence similarity, gammaherpesvirus GMPs have conserved functions playing essential roles in latent infection. Among these functions, GMPs have acquired an intriguing capacity to evade the cytotoxic T cell response through self-limitation of MHC class I-restricted antigen presentation, further ensuring virus persistence in the infected host. In this review, we provide an updated overview of the main functions of gammaherpesvirus GMPs during latency with an emphasis on their immune evasion properties.
Collapse
Affiliation(s)
- Océane Sorel
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine-FARAH, University of Liège, Liège, Belgium.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Benjamin G Dewals
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine-FARAH, University of Liège, Liège, Belgium
| |
Collapse
|
4
|
Tierney RJ, Nagra J, Rowe M, Bell AI, Rickinson AB. The Epstein-Barr virus BamHI C promoter is not essential for B cell immortalization in vitro, but it greatly enhances B cell growth transformation. J Virol 2015; 89:2483-93. [PMID: 25540367 PMCID: PMC4325715 DOI: 10.1128/jvi.03300-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/08/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) infection of B cells leads to the sequential activation of two viral promoters, Wp and Cp, resulting in the expression of six EBV nuclear antigens (EBNAs) and the viral Bcl2 homologue BHRF1. The viral transactivator EBNA2 is required for this switch from Wp to Cp usage during the initial stages of infection. EBNA2-dependent Cp transcription is mediated by the EBNA2 response element (E2RE), a region that contains at least two binding sites for cellular factors; one of these sites, CBF1, interacts with RBP-JK, which then recruits EBNA2 to the transcription initiation complex. Here we demonstrate that the B cell-specific transcription factor BSAP/Pax5 binds to a second site, CBF2, in the E2RE. Deletion of the E2RE in the context of a recombinant virus greatly diminished levels of Cp-initiated transcripts during the initial stages of infection but did not affect the levels of Wp-initiated transcripts or EBNA mRNAs. Consistent with this finding, viruses deleted for the E2RE were not markedly impaired in their ability to induce B cell transformation in vitro. In contrast, a larger deletion of the entire Cp region did reduce EBNA mRNA levels early after infection and subsequently almost completely ablated lymphoblastoid cell line (LCL) outgrowth. Notably, however, rare LCLs could be established following infection with Cp-deleted viruses, and these were indistinguishable from wild-type-derived LCLs in terms of steady-state EBV gene transcription. These data indicate that, unlike Wp, Cp is dispensable for the virus' growth-transforming activity. IMPORTANCE Epstein-Barr virus (EBV), a B lymphotropic herpesvirus etiologically linked to several B cell malignancies, efficiently induces B cell proliferation leading to the outgrowth of lymphoblastoid cell lines (LCLs). The initial stages of this growth-transforming infection are characterized by the sequential activation of two viral promoters, Wp and Cp, both of which appear to be preferentially active in target B cells. In this work, we have investigated the importance of Cp activity in initiating B cell proliferation and maintaining LCL growth. Using recombinant viruses, we demonstrate that while Cp is not essential for LCL outgrowth in vitro, it enhances transformation efficiency by >100-fold. We also show that Cp, like Wp, interacts with the B cell-specific activator protein BSAP/Pax5. We suggest that EBV has evolved this two-promoter system to ensure efficient colonization of the host B cell system in vivo.
Collapse
Affiliation(s)
- Rosemary J Tierney
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jasdeep Nagra
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Martin Rowe
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew I Bell
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alan B Rickinson
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
5
|
Tierney R, Nagra J, Hutchings I, Shannon-Lowe C, Altmann M, Hammerschmidt W, Rickinson A, Bell A. Epstein-Barr virus exploits BSAP/Pax5 to achieve the B-cell specificity of its growth-transforming program. J Virol 2007; 81:10092-100. [PMID: 17626071 PMCID: PMC2045388 DOI: 10.1128/jvi.00358-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) can infect various cell types but limits its classical growth-transforming function to B lymphocytes, the cells in which it persists in vivo. Transformation initiates with the activation of Wp, a promoter present as tandemly repeated copies in the viral genome. Assays with short Wp reporter constructs have identified two promoter-activating regions, one of which (UAS2) appears to be lineage independent, while the other (UAS1) was B-cell specific and contained two putative binding sites for the B-cell-specific activator protein BSAP/Pax5. To address the physiologic relevance of these findings, we first used chromosome immunoprecipitation assays and found that BSAP is indeed bound to Wp sequences on the EBV genome in transformed cells. Thereafter, we constructed recombinant EBVs carrying two Wp copies, both wild type, with UAS1 or UAS2 deleted, or mutated in the BSAP binding sites. All the viruses delivered their genomes to the B-cell nucleus equally well. However, the BSAP binding mutant (and the virus with UAS1 deleted) showed no detectable activity in B cells, whether measured by early Wp transcription, expression of EBV latent proteins, or outgrowth of transformed cells. This was a B-cell-specific defect since, on entry into epithelial cells, an environment where Wp is not the latent promoter of choice, all the Wp mutant viruses initiated infection as efficiently as wild-type virus. We infer that EBV ensures the B-cell specificity of its growth-transforming function by exploiting BSAP/Pax5 as a lineage-specific activator of the transforming program.
Collapse
Affiliation(s)
- Rosemary Tierney
- Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Day L, Chau CM, Nebozhyn M, Rennekamp AJ, Showe M, Lieberman PM. Chromatin profiling of Epstein-Barr virus latency control region. J Virol 2007; 81:6389-401. [PMID: 17409162 PMCID: PMC1900095 DOI: 10.1128/jvi.02172-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) escapes host immunity by the reversible and epigenetic silencing of immunogenic viral genes. We previously presented evidence that a dynamic chromatin domain, which we have referred to as the latency control region (LCR), contributes to the reversible repression of EBNA2 and LMP1 gene transcription. We now explore the protein-DNA interaction profiles for a few known regulatory factors and histone modifications that regulate LCR structure and activity. A chromatin immunoprecipitation assay combined with real-time PCR analysis was used to analyze protein-DNA interactions at approximately 500-bp intervals across the first 60,000 bp of the EBV genome. We compared the binding patterns of EBNA1 with those of the origin recognition complex protein ORC2, the chromatin boundary factor CTCF, the linker histone H1, and several histone modifications. We analyzed three EBV-positive cell lines (MutuI, Raji, and LCL3459) with distinct transcription patterns reflecting different latency types. Our findings suggest that histone modification patterns within the LCR are complex but reflect differences in each latency type. The most striking finding was the identification of CTCF sites immediately upstream of the Qp, Cp, and EBER transcription initiation regions in all three cell types. In transient assays, CTCF facilitated EBNA1-dependent transcription activation of Cp, suggesting that CTCF coordinates interactions between different chromatin domains. We also found that histone H3 methyl K4 clustered with CTCF and EBNA1 at sites of active transcription or DNA replication initiation. Our findings support a model where CTCF delineates multiple domains within the LCR and regulates interactions between these domains that correlate with changes in gene expression.
Collapse
Affiliation(s)
- Latasha Day
- The Wistar Institute, 3601 Spruce St., Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
7
|
Jiménez-Ramírez C, Brooks AJ, Forshell LP, Yakimchuk K, Zhao B, Fulgham TZ, Sample CE. Epstein-Barr virus EBNA-3C is targeted to and regulates expression from the bidirectional LMP-1/2B promoter. J Virol 2006; 80:11200-8. [PMID: 16956945 PMCID: PMC1642179 DOI: 10.1128/jvi.00897-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 08/24/2006] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA-3C) is essential for EBV-mediated immortalization of human B lymphocytes and regulates both the cell cycle and transcription. Transient reporter gene assays have implicated a pivotal role for EBNA-3C in the regulation of transcription of the majority of latency-associated genes expressed during the EBV growth program, including the viral oncoprotein LMP-1. To examine the regulation of latency gene expression by EBNA-3C, we generated an EBV-positive cell line that inducibly expresses EBNA-3C. This cell line allowed us to examine expression from the endogenous latency gene promoters in the context of an actual latent infection and the presence of other EBNA proteins, in particular EBNA-2, which is presumed to coregulate transcription with EBNA-3C. EBNA-3C induced the expression of both LMP-1 and LMP-2B mRNAs from the bidirectional LMP-1/LMP-2B promoter. In contrast, no effect was seen on expression from the common EBNA promoter Cp, which is responsive to EBNA-3C in reporter assays. Activation of LMP expression was not the consequence of increases in EBNA-2, PU.1 or Spi-B transcription factors, all of which are believed to be critical for activation of LMP-1. Chromatin immunoprecipitation assays furthermore indicated that EBNA-3C is present at the bidirectional LMP-1/LMP-2B promoter. These results indicate that EBNA-3C directly activates the expression of LMP-1 and LMP-2B but is unlikely to significantly regulate EBNA expression via Cp under normal growth conditions.
Collapse
|
8
|
Chau CM, Zhang XY, McMahon SB, Lieberman PM. Regulation of Epstein-Barr virus latency type by the chromatin boundary factor CTCF. J Virol 2006; 80:5723-32. [PMID: 16731911 PMCID: PMC1472585 DOI: 10.1128/jvi.00025-06] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein Barr virus (EBV) can establish distinct latency types with different growth-transforming properties. Type I latency and type III latency can be distinguished by the expression of EBNA2, which has been shown to be regulated, in part, by the EBNA1-dependent enhancer activity of the origin of replication (OriP). Here, we report that CTCF, a chromatin boundary factor with well-established enhancer-blocking activity, binds to EBV sequences between the OriP and the RBP-Jkappa response elements of the C promoter (Cp) and regulates transcription levels of EBNA2 mRNA. Using DNA affinity, electrophoretic mobility shift assay, DNase I footprinting, and chromatin immunoprecipitation (ChIP), we found that CTCF binds both in vitro and in vivo to the EBV genome between OriP and Cp, with an approximately 50-bp footprint at EBV coordinates 10515 to 10560. Deletion of this CTCF binding site in a recombinant EBV bacterial artificial chromosome (BAC) increased EBNA2 transcription by 3.5-fold compared to a wild-type EBV BAC. DNA affinity and ChIP showed more CTCF binding at this site in type I latency cell lines (MutuI and KemI) than in type III latency cell lines (LCL3456 and Raji). CTCF protein and mRNA expression levels were higher in type I than type III cell lines. Short interfering RNA depletion of CTCF in type I MutuI cells stimulated EBNA2 mRNA levels, while overexpression of CTCF in type III Raji cells inhibited EBNA2 mRNA levels. These results indicate that increased CTCF can repress EBNA2 transcription. We also show that c-MYC, as well as EBNA2, can stimulate CTCF mRNA levels, suggesting that CTCF levels may contribute to B-cell differentiation as well as EBV latency type determination.
Collapse
|
9
|
Endo R, Yoshioka M, Ebihara T, Ishiguro N, Kikuta H, Kobayashi K. Clonal expansion of multiphenotypic Epstein–Barr virus-infected lymphocytes in chronic active Epstein–Barr virus infection. Med Hypotheses 2004; 63:582-7. [PMID: 15325000 DOI: 10.1016/j.mehy.2004.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 03/14/2004] [Indexed: 11/19/2022]
Abstract
Chronic active Epstein-Barr virus (EBV) infection has been recognized as clonal non-neoplastic lymphoproliferative diseases. However, some reports of cases with a multiphenotypic expansion of EBV-infected lymphocytes give rise to questions of how EBV infects multiphenotypic lymphocytes and whether chronic active EBV infection is a truly monoclonal lymphoproliferative disease. We report two patients with chronic active EBV infection who showed expansion of multiphenotypic EBV-infected lymphocytes. EBV DNA was detected in CD4+ and CD8+ T cells and in B cells from pleural fluid of one patient and in T and B cells from a cervical lymph node of the other patient by polymerase chain reaction (PCR). Although real-time PCR showed that there were equally high loads of EBV genomes in CD4+ and CD8+ T cells from the pleural fluid, Southern blot hybridization with terminal repeats of the EBV genome showed a single band of the same molecular weight in three tissue samples from the patient. The results indicated biphenotypic expansions of CD4+ and CD8+ T cells infected with the same clone of EBV. Furthermore, bisulfite PCR analysis showed hypermethylated status in the Cp region in the two patients regardless of their cell populations. There has been a discrepancy between clonality and expansion of multiphenotypic EBV-infected lymphocytes. We speculate that lymphoid progenitor cells that have not differentiated into T and B cell progenitors are infected with EBV, resulting in clonal expansion of EBV-infected multiphenotypic cells.
Collapse
Affiliation(s)
- Rika Endo
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Viejo-Borbolla A, Kati E, Sheldon JA, Nathan K, Mattsson K, Szekely L, Schulz TF. A Domain in the C-terminal region of latency-associated nuclear antigen 1 of Kaposi's sarcoma-associated Herpesvirus affects transcriptional activation and binding to nuclear heterochromatin. J Virol 2003; 77:7093-100. [PMID: 12768028 PMCID: PMC156177 DOI: 10.1128/jvi.77.12.7093-7100.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The latency-associated nuclear antigen 1 (LANA-1) of Kaposi's sarcoma-associated herpesvirus (KSHV) is required for the maintenance and replication of viral episomal DNA. The binding sites for nuclear heterochromatin and transcriptional repressor complexes are located in an amino-terminal region of LANA-1, whereas those for viral episomal DNA, p53, pRB, and members of the BRD/fsh family of nuclear proteins are located in its carboxy-terminal domain. LANA-1 activates or represses several cellular and viral promoters. In this report we show that a domain of 15 amino acids (amino acids 1129 to 1143), located close to the carboxy-terminal end of LANA-1, is required for the interaction of LANA-1 with nuclear heterochromatin or nuclear matrix, and for the ability of LANA-1 to activate the Epstein-Barr virus Cp promoter. LANA-1 proteins that are tightly associated with nuclear heterochromatin or matrix differ in molecular weight from LANA-1 proteins that can be dissociated from the nuclear matrix by high-salt buffers, suggesting that posttranslational modifications may determine the association of LANA-1 with nuclear heterochromatin or matrix.
Collapse
|
11
|
Yoshioka M, Kikuta H, Ishiguro N, Ma X, Kobayashi K. Unique Epstein-Barr virus (EBV) latent gene expression, EBNA promoter usage and EBNA promoter methylation status in chronic active EBV infection. J Gen Virol 2003; 84:1133-1140. [PMID: 12692278 DOI: 10.1099/vir.0.18777-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic active Epstein-Barr virus infection (CAEBV) has been considered to be a non-neoplastic T-cell lymphoproliferative disease associated with Epstein-Barr virus (EBV) infection. In EBV-associated diseases, the cell phenotype-dependent differences in EBV latent gene expression may reflect the strategy of the virus in relation to latent infection. We previously reported that EBV latent gene expression was restricted; EBV nuclear antigen 1 (EBNA1) transcripts were consistently detected in all spleen samples from five CAEBV patients, but EBNA2 transcripts were detected in only one sample. EBV latent gene expression is controlled by distinct usage of three EBNA promoters (Cp, Wp and Qp). In this study, we examined the EBNA promoter usage by RT-PCR and the methylation status in the Cp and Wp regions using bisulfite PCR analysis in spleen samples from CAEBV patients. EBNA1 transcripts were unexpectedly initiated not from Qp but from Cp in all samples in spite of the restricted form of latency. Furthermore, while Cp was active, Cp was heavily methylated, indicating that CAEBV has unique EBV latent gene expression, EBNA promoter usage and EBNA promoter methylation status, in part due to unique splicing of Cp-initiated transcripts and an activation mechanism in hypermethylated Cp.
Collapse
Affiliation(s)
- Mikio Yoshioka
- Department of Pediatrics, Hokkaido University School of Medicine, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| | - Hideaki Kikuta
- Department of Pediatrics, Hokkaido University School of Medicine, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| | - Nobuhisa Ishiguro
- Department of Pediatrics, Hokkaido University School of Medicine, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| | - Xiaoming Ma
- Department of Pediatrics, Hokkaido University School of Medicine, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| | - Kunihiko Kobayashi
- Department of Pediatrics, Hokkaido University School of Medicine, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
12
|
Cooper A, Johannsen E, Maruo S, Cahir-McFarland E, Illanes D, Davidson D, Kieff E. EBNA3A association with RBP-Jkappa down-regulates c-myc and Epstein-Barr virus-transformed lymphoblast growth. J Virol 2003; 77:999-1010. [PMID: 12502816 PMCID: PMC140836 DOI: 10.1128/jvi.77.2.999-1010.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus nuclear antigen protein 3A (EBNA3A) is one of four EBNAs (EBNA-2, EBNALP, EBNA3A, and EBNA3C) through the cellular DNA sequence-specific transcription factor RBP-Jkappa/CBF-1/CSL and are essential for conversion of primary B lymphocytes to lymphoblastoid cell lines (LCLs). In the present study, we investigated the effects of EBNA3A on EBNA2 activation of transcription in the IB4 LCL by conditionally overexpressing EBNA3A three- to fivefold. EBNA3A overexpression increased EBNA3A association with RBP-Jkappa, did not change EBNA3C association with RBP-Jkappa or EBNA or LMP1 expression, decreased EBNA2 association with RBP-Jkappa, decreased c-myc expression, and caused G(0)/G(1) growth arrest with prolonged viability. Expression of the fusion protein MycERTM in cells with conditional EBNA3A overexpression restored cell cycle progression and caused apoptosis. In contrast, MycER in the same cells without EBNA3A overexpression enhanced cell proliferation and did not increase apoptosis. These data indicate that EBNA3A overexpression inhibits protection from c-myc-induced apoptosis. In assays of EBNA2- and RBP-Jkappa-dependent transcription, EBNA3A amino acids 1 to 386 were sufficient for repression equivalent to that by wild-type EBNA3A, amino acids 1 to 124 were unimportant, amino acids 1 to 277 were insufficient, and a triple alanine substitution within the EBNA3A core RBP-Jkappa binding domain was a null mutation. In reverse genetic experiments with IB4 LCLs, the effects of conditional EBNA3A overexpression on c-myc expression and proliferation did not require amino acids 524 to 944 but did require amino acids 278 to 524 as well as wild-type sequence in the core RBP-Jkappa binding domain. The dependence of EBNA3A effects on the core RBP-Jkappa interaction domain and on the more C-terminal amino acids (amino acids 278 to 524) required for efficient RBP-Jkappa association strongly implicates RBP-Jkappa in c-myc promoter regulation.
Collapse
Affiliation(s)
- Andrew Cooper
- Virology Program and Department of Medicine, Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Pajic A, Polack A, Staege MS, Spitkovsky D, Baier B, Bornkamm GW, Laux G. Elevated expression of c-myc in lymphoblastoid cells does not support an Epstein-Barr virus latency III-to-I switch. J Gen Virol 2001; 82:3051-3055. [PMID: 11714983 DOI: 10.1099/0022-1317-82-12-3051] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) transforms primary B cells in vitro. Established cell lines adopt a lymphoblastoid phenotype (LCL). In contrast, EBV-positive Burkitt's lymphoma (BL) cells, in which the proto-oncogene c-myc is constitutively activated, do not express a lymphoblastoid phenotype in vivo. The two different phenotypes are paralleled by two distinct programmes of EBV latent gene expression termed latency type I in BL cells and type III in LCL. Human B cell lines were established from a conditional LCL (EREB2-5) by overexpression of c-myc and inactivation of EBV nuclear protein 2 (EBNA2). These cells (A1 and P493-6) adopted a BL phenotype in the absence of EBNA2. However, the EBV latency I promoter Qp was not activated. Instead, the latency III promoter Cp remained active. These data suggest that the induction of a BL phenotype by overexpression of c-myc in an LCL is not necessarily paralleled by an EBV latency III-to-I switch.
Collapse
Affiliation(s)
- Alexander Pajic
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Klinische Molekularbiologie und Tumorgenetik, Marchioninistr. 25, D-81377 München, Germany1
| | - Axel Polack
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Klinische Molekularbiologie und Tumorgenetik, Marchioninistr. 25, D-81377 München, Germany1
| | - Martin S Staege
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Klinische Molekularbiologie und Tumorgenetik, Marchioninistr. 25, D-81377 München, Germany1
| | - Dimitry Spitkovsky
- Deutsches Krebsforschungszentrum (DKFZ), Forschungsschwerpunkt Angewandte Tumorvirologie, D-69120 Heidelberg, Germany2
| | - Barbara Baier
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Klinische Molekularbiologie und Tumorgenetik, Marchioninistr. 25, D-81377 München, Germany1
| | - Georg W Bornkamm
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Klinische Molekularbiologie und Tumorgenetik, Marchioninistr. 25, D-81377 München, Germany1
| | - Gerhard Laux
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Klinische Molekularbiologie und Tumorgenetik, Marchioninistr. 25, D-81377 München, Germany1
| |
Collapse
|
14
|
Salamon D, Takacs M, Ujvari D, Uhlig J, Wolf H, Minarovits J, Niller HH. Protein-DNA binding and CpG methylation at nucleotide resolution of latency-associated promoters Qp, Cp, and LMP1p of Epstein-Barr virus. J Virol 2001; 75:2584-96. [PMID: 11222681 PMCID: PMC115881 DOI: 10.1128/jvi.75.6.2584-2596.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr viral (EBV) latency-associated promoters Qp, Cp, and LMP1p are crucial for the regulated expression of the EBNA and LMP transcripts in dependence of the latency type. By transient transfection and in vitro binding analyses, many promoter elements and transcription factors have previously been shown to be involved in the activities of these promoters. However, the latency promoters have only partially been examined at the nucleotide level in vivo. Therefore, we undertook a comprehensive analysis of in vivo protein binding and CpG methylation patterns at these promoters in five representative cell lines and correlated the results with the known in vitro binding data and activities of these promoters from previous transfection experiments. Promoter activity inversely correlated with the methylation state of promoters, although Qp was a remarkable exception. Novel protein binding data were obtained for all promoters. For Cp, binding correlated well with promoter activity; for LMP1p and Qp, binding patterns looked similar regardless of promoter activity.
Collapse
Affiliation(s)
- D Salamon
- Microbiological Research Group, National Center for Epidemiology, H-1529 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
15
|
Yoo L, Speck SH. Determining the role of the Epstein-Barr virus Cp EBNA2-dependent enhancer during the establishment of latency by using mutant and wild-type viruses recovered from cottontop marmoset lymphoblastoid cell lines. J Virol 2000; 74:11115-20. [PMID: 11070007 PMCID: PMC113192 DOI: 10.1128/jvi.74.23.11115-11120.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen (EBNA) 2 (EBNA2) is involved in upregulating the expression of both EBNAs and latency-associated membrane proteins. Transcription of the six EBNA genes, which are expressed in EBV-immortalized primary B cells, arises from one of two promoters, Cp and Wp, located near the left end of the viral genome. Wp is exclusively used to drive EBNA gene transcription during the initial stages of infection in primary B cells; induction of transcription from Cp follows. We previously have mapped an EBNA2-dependent enhancer upstream of Cp (M. Woisetschlaeger et al., Proc. Natl. Acad. Sci. USA 88:3942-3946, 1991) and, more recently, have demonstrated that deletion of this enhancer results in EBV-immortalized lymphoblastoid cell lines (LCLs) that are heavily biased toward the use of Wp to drive transcription of the EBNA genes (L. Yoo et al., J. Virol. 71:9134-9142, 1997). To assess the immortalizing capacity of this mutant EBV and to monitor the early events after infection of primary B cells, B cells isolated from cottontop marmosets were used to generate LCLs immortalized with the Cp EBNA2 enhancer deletion mutant virus. As previously reported, all EBV-infected marmoset LCLs examined could be triggered to produce significant levels of virus. Infection of human B cells with wild-type or Cp EBNA2 enhancer mutant viruses recovered from marmoset B-cell lines demonstrated that (i) the Cp EBNA2 enhancer mutant virus immortalizes primary human B cells nearly as efficiently as wild-type virus and (ii) the Cp EBNA2-dependent enhancer plays an important role in the induction of Cp activity during the early stages of infection. The latter is consistent with the phenotype of LCLs immortalized with the Cp EBNA2 enhancer mutant EBV. Finally, using an established LCL in which EBNA2 function is regulated by beta-estradiol, we showed that the loss of EBNA2 function results in an approximately 4-fold decrease in the steady-state levels of Cp-initiated transcripts and a concomitant increase in the steady-state levels of Wp-initiated transcripts. Taken together, these results provide strong evidence that EBNA2 plays an important role in regulating Cp activity. These results also demonstrate that diminished induction of Cp activity does not appear to affect the ability of EBV to immortalize primary B cells in cultures. Finally, as shown here, infection of marmoset B cells with immortalization-competent mutants of EBV provides a convenient reservoir for the production of mutant viruses.
Collapse
Affiliation(s)
- L Yoo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
16
|
Fuentes-Pananá EM, Peng R, Brewer G, Tan J, Ling PD. Regulation of the Epstein-Barr virus C promoter by AUF1 and the cyclic AMP/protein kinase A signaling pathway. J Virol 2000; 74:8166-75. [PMID: 10933728 PMCID: PMC112351 DOI: 10.1128/jvi.74.17.8166-8175.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
EBNA2 is an Epstein-Barr virus (EBV)-encoded protein that regulates the expression of viral and cellular genes required for EBV-driven B-cell immortalization. Elucidating the mechanisms by which EBNA2 regulates viral and cellular gene expression is necessary to understand EBV-induced B-cell immortalization and viral latency in humans. EBNA2 targets to the latency C promoter (Cp) through an interaction with the cellular DNA binding protein CBF1 (RBPJk). The EBNA2 enhancer in Cp also binds another cellular factor, C promoter binding factor 2 (CBF2), whose protein product(s) has not yet been identified. Within the EBNA2 enhancer in Cp, we have previously identified the DNA sequence required for CBF2 binding and also determined that this element is required for efficient activation of Cp by EBNA2. In this study, the CBF2 activity was biochemically purified and microsequenced. The peptides sequenced were identical to the hnRNP protein AUF1. Antibodies against AUF1 but not antibodies to related hnRNP proteins reacted with CBF2 in gel mobility shift assays. In addition, stimulation of the cellular cyclic AMP (cAMP)/protein kinase A (PKA) signal transduction pathway results in an increase in detectable CBF2/AUF1 binding activity extracted from stimulated cells. Furthermore, the CBF2 binding site was able to confer EBNA2 responsiveness to a heterologous promoter when transfected cells were treated with compounds that activate PKA or by cotransfection of plasmids expressing a constitutively active catalytic subunit of PKA. EBNA2-mediated stimulation of the latency Cp is also increased in similar cotransfection assays. These results further support an important role for CBF2 in mediating EBNA2 transactivation; they identify the hnRNP protein AUF1 as a major component of CBF2 and are also the first evidence of a cis-acting sequence other than a CBF1 binding element that is able to confer responsiveness to EBNA2.
Collapse
Affiliation(s)
- E M Fuentes-Pananá
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
17
|
Smith PR, de Jesus O, Turner D, Hollyoake M, Karstegl CE, Griffin BE, Karran L, Wang Y, Hayward SD, Farrell PJ. Structure and coding content of CST (BART) family RNAs of Epstein-Barr virus. J Virol 2000; 74:3082-92. [PMID: 10708423 PMCID: PMC111807 DOI: 10.1128/jvi.74.7.3082-3092.2000] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/1999] [Accepted: 01/03/2000] [Indexed: 11/20/2022] Open
Abstract
CST (BART BARF0) family viral RNAs are expressed in several types of Epstein-Barr virus (EBV) infection, including EBV-associated cancers. Many different spliced forms of these RNAs have been described; here we have clarified the structures of some of the more abundant splicing patterns. We report the first cDNAs representing a full-length CST mRNA from a clone library and further characterize the transcription start. The relative abundance of splicing patterns and genomic analysis of the open reading frames (ORFs) suggest that, in addition to the much studied BARF0 ORF, there may be important products made from some of the upstream ORFs in the CST RNAs. Potential biological functions are identified for two of these. The product of the RPMS1 ORF is shown to be a nuclear protein that can bind to the CBF1 component of Notch signal transduction. RPMS1 can inhibit the transcription activation induced through CBF1 by NotchIC or EBNA-2. The protein product of another CST ORF, A73, is shown to be a cytoplasmic protein which can interact with the cell RACK1 protein. Since RACK1 modulates signaling from protein kinase C and Src tyrosine kinases, the results suggest a possible role for CST products in growth control, perhaps consistent with the abundant transcription of CST RNAs in cancers such as nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- P R Smith
- Virology and Cell Biology, Imperial College School of Medicine, London W2 1PG, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jenkins PJ, Binné UK, Farrell PJ. Histone acetylation and reactivation of Epstein-Barr virus from latency. J Virol 2000; 74:710-20. [PMID: 10623733 PMCID: PMC111591 DOI: 10.1128/jvi.74.2.710-720.2000] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/1999] [Accepted: 10/07/1999] [Indexed: 11/20/2022] Open
Abstract
Induction of the viral BZLF1 gene has previously been shown to be one of the first steps in the reactivation of Epstein-Barr virus (EBV). Using an EBV oriP episomal vector system, we have reconstituted the regulation of the promoter for BZLF1 on stably transfected episomes, mapped promoter elements required for that regulation, and investigated mechanisms that may control the switch between latency and the lytic cycle. Changes in histone acetylation at the promoter for the BZLF1 gene appear to be a key part of the reactivation mechanism of this herpesvirus.
Collapse
Affiliation(s)
- P J Jenkins
- Ludwig Institute for Cancer Research, Imperial College School of Medicine, St. Mary's Campus, London W2 1PG, United Kingdom
| | | | | |
Collapse
|
19
|
Fuentes-Pananá EM, Swaminathan S, Ling PD. Transcriptional activation signals found in the Epstein-Barr virus (EBV) latency C promoter are conserved in the latency C promoter sequences from baboon and Rhesus monkey EBV-like lymphocryptoviruses (cercopithicine herpesviruses 12 and 15). J Virol 1999; 73:826-33. [PMID: 9847397 PMCID: PMC103898 DOI: 10.1128/jvi.73.1.826-833.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) EBNA2 protein is a transcriptional activator that controls viral latent gene expression and is essential for EBV-driven B-cell immortalization. EBNA2 is expressed from the viral C promoter (Cp) and regulates its own expression by activating Cp through interaction with the cellular DNA binding protein CBF1. Through regulation of Cp and EBNA2 expression, EBV controls the pattern of latent protein expression and the type of latency established. To gain further insight into the important regulatory elements that modulate Cp usage, we isolated and sequenced the Cp regions corresponding to nucleotides 10251 to 11479 of the EBV genome (-1079 to +144 relative to the transcription initiation site) from the EBV-like lymphocryptoviruses found in baboons (herpesvirus papio; HVP) and Rhesus macaques (RhEBV). Sequence comparison of the approximately 1,230-bp Cp regions from these primate viruses revealed that EBV and HVP Cp sequences are 64% conserved, EBV and RhEBV Cp sequences are 66% conserved, and HVP and RhEBV Cp sequences are 65% conserved relative to each other. Approximately 50% of the residues are conserved among all three sequences, yet all three viruses have retained response elements for glucocorticoids, two positionally conserved CCAAT boxes, and positionally conserved TATA boxes. The putative EBNA2 100-bp enhancers within these promoters contain 54 conserved residues, and the binding sites for CBF1 and CBF2 are well conserved. Cp usage in the HVP- and RhEBV-transformed cell lines was detected by S1 nuclease protection analysis. Transient-transfection analysis showed that promoters of both HVP and RhEBV are responsive to EBNA2 and that they bind CBF1 and CBF2 in gel mobility shift assays. These results suggest that similar mechanisms for regulation of latent gene expression are conserved among the EBV-related lymphocryptoviruses found in nonhuman primates.
Collapse
Affiliation(s)
- E M Fuentes-Pananá
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
20
|
Webster-Cyriaque J, Raab-Traub N. Transcription of Epstein-Barr virus latent cycle genes in oral hairy leukoplakia. Virology 1998; 248:53-65. [PMID: 9705255 DOI: 10.1006/viro.1998.9268] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hairy leukoplakia lesion (HLP) is a unique example of a permissive infection with Epstein-Barr virus (EBV) in the tongue epithelium. HLP contains abundant replicating viral DNA and may be coinfected with multiple EBV strains. In this study, characterization of viral gene transcription within HLP biopsy specimens revealed that several genes, usually expressed in latently infected lymphocytes, are also transcribed in the HLP lesion. The BamHI W and C promoters, (Wp and Cp) are consistently active in the HLP lesion, resulting in transcription and processing of mRNAs that encode the Epstein-Barr nuclear antigens (EBNAs) EBNA-LP, EBNA1, EBNA2, EBNA3B, and EBNA3C. The EBNA2 protein has been shown to activate expression of the EBV receptor, CD21. In HLP, CD21 transcription is also detected, usually in samples that contain transcripts for EBNA2. Transcripts encoding the LMP1 gene, the LMP2 gene, and rightward transcripts from the BamHI A fragment of the EBV genome are also detected in HLP. These gene products are invariably expressed in latently infected lymphocytes. This pattern of transcription suggests that genes characteristic of latent infection are also expressed in HLP. The activation of Wp and expression of EBNA2 and CD21 may contribute to the unique ability of the HLP lesion to permit superinfection and viral replication of multiple EBV strains.
Collapse
Affiliation(s)
- J Webster-Cyriaque
- University of North Carolina Hospitals, University of North Carolina, Chapel Hill, North Carolina, 27599, USA
| | | |
Collapse
|
21
|
Abstract
Two regions of the EBNA-3A protein of Epstein-Barr virus were shown to be capable of binding to the cell protein RBP-Jk (also known as CBF-1), a component of the Notch signaling pathway. Consistent with this binding, EBNA-3A inhibited reporter gene expression from plasmids containing RBP-Jk DNA binding sites within their promoters, including the Cp promoter. When EBNA-3A was linked to a GAL4 DNA binding domain, it repressed the activity of a promoter containing GAL4 binding sites at all plasmid concentrations tested. However, a deletion mutant of EBNA-3A lacking amino acids 100 to 364 showed a biphasic response in the GAL4 assay: it inhibited transcription at low DNA concentrations but activated it at high DNA concentrations. There appears to be a gene activation function within EBNA-3A that is masked in the full-length protein in this assay. Current models for EBNA-3 function have stressed transcription repression through binding to RBP-Jk, but we consider an alternative scheme in which the role of the binding of EBNA-3A, -3B, and -3C to RBP-Jk is to buffer the levels of active EBNA-3 protein. We have also found that the behavior of EBNA-3A in a cell fractionation procedure that distinguishes insoluble matrix from soluble cell fractions is modified by EBNA-LP, indicating a further novel level of interplay between the EBNA proteins.
Collapse
Affiliation(s)
- I Cludts
- Ludwig Institute for Cancer Research, Imperial College School of Medicine at St. Mary's, London, United Kingdom
| | | |
Collapse
|
22
|
Fuentes-Pananá EM, Ling PD. Characterization of the CBF2 binding site within the Epstein-Barr virus latency C promoter and its role in modulating EBNA2-mediated transactivation. J Virol 1998; 72:693-700. [PMID: 9420275 PMCID: PMC109424 DOI: 10.1128/jvi.72.1.693-700.1998] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Epstein-Barr virus (EBV) EBNA2 protein is a transcriptional activator that regulates viral and cellular gene expression and is also essential for EBV-driven immortalization of B lymphocytes. The EBNA2-responsive enhancer in the viral latency C promoter (Cp) binds two cellular factors, CBF1 and CBF2. The precise role of the CBF2 protein for Cp enhancer function is presently unclear. CBF2 does not appear to interact with EBNA2 and binds just downstream of CBF1 between positions -339 and -368 in the Cp EBNA2 enhancer. Within this region an 8-bp sequence, CAGTGCGT, can be found, and a similar sequence is also located downstream of CBF1 binding sites in other EBNA2-responsive promoters. Previous studies have indicated that mutations and methylation in this sequence affect EBNA2 responsiveness. To investigate the requirements for CBF2 binding, we synthesized a series of oligonucleotides carrying double transversion mutations spanning both the conserved core sequence and outside flanking sequences. Surprisingly, mutations outside of the conserved core sequence in 4 bases immediately flanking the 5' end, GGTT, had the most deleterious effect on CBF2 binding. Mutations in the conserved core had a gradient effect, with those near the 5' end having the most deleterious effects on CBF2 binding. In addition, the affinities of CBF2 for binding to the LMP-1, LMP-2, and CD23 promoters were also measured. These promoters contain the conserved core but lack the 5' flanking GGTT motif and bound CBF2 weakly or not at all. Using Cp reporter plasmids containing CBF2 mutant binding sites, we were also able to show that at lower doses of EBNA2, Cp transactivation required a functional CBF2 binding site but that higher doses of EBNA2 transactivated CBF2 mutant promoters to 40% of wild-type levels. These assays indicate that CBF2 is important for EBNA2-mediated transactivation of the viral latency Cp. In addition, CBF2 activity was found to be associated with two polypeptides of 27 and 33 kDa.
Collapse
Affiliation(s)
- E M Fuentes-Pananá
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
23
|
Yoo LI, Mooney M, Puglielli MT, Speck SH. B-cell lines immortalized with an Epstein-Barr virus mutant lacking the Cp EBNA2 enhancer are biased toward utilization of the oriP-proximal EBNA gene promoter Wp1. J Virol 1997; 71:9134-42. [PMID: 9371570 PMCID: PMC230214 DOI: 10.1128/jvi.71.12.9134-9142.1997] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During Epstein-Barr virus (EBV) latent infection of B lymphocytes in vitro, six viral nuclear antigens (EBNAs) are expressed from one of two promoters, Cp or Wp, whose activities have previously been shown to be mutually exclusive in established lymphoblastoid cell lines. Initially after infection, the EBNA genes are transcribed from Wp, which is present in multiples copies within the major internal repeat of EBV. Approximately 48 to 72 h postinfection, Wp is downregulated, with a corresponding increase in transcription from Cp. An EBNA2-responsive enhancer exists upstream of Cp, and a role for EBNA2 in the induction of Cp activity during the establishment of viral latency has previously been proposed (Woisetschlaeger et al., Proc. Natl. Acad. Sci. USA 87:1725-1729, 1991). To critically assess the potential role for this enhancer region in determining relative usage of Cp and Wp, an EBNA2 enhancer deletion mutant virus was generated. Lymphoblastoid cell lines were screened by PCR and Southern blotting for the presence of mutant virus harboring the EBNA2 enhancer deletion. A quantitative S1 nuclease protection assay was developed to allow comparison of relative Cp and Wp activities for the cell lines containing mutant virus and those of the wild-type recombinants which lacked the enhancer deletion. In general, the wild-type recombinants had higher levels of Cp-initiated transcripts than Wp-initiated transcripts. In contrast, the Cp EBNA2 enhancer deletion mutants exhibited a strong bias toward Wp activity. Notably, only the first Wp (oriP-proximal Wp; Wp1) appears active in these mutants. S1 nuclease protection assays using a probe which hybridizes to the W2 exon, contained in both Cp- and Wp-initiated transcripts, indicated that the total level of transcription from Cp and Wp remained the same in wild-type and EBNA2 enhancer mutant cell lines. The presence of both Cp and Wp activity in the wild-type recombinants, as well as in newly derived lymphoblastoid cell lines established with the prototype B95.8 virus, demonstrated that Cp and Wp activities are not always mutually exclusive.
Collapse
Affiliation(s)
- L I Yoo
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
24
|
Radkov SA, Bain M, Farrell PJ, West M, Rowe M, Allday MJ. Epstein-Barr virus EBNA3C represses Cp, the major promoter for EBNA expression, but has no effect on the promoter of the cell gene CD21. J Virol 1997; 71:8552-62. [PMID: 9343213 PMCID: PMC192319 DOI: 10.1128/jvi.71.11.8552-8562.1997] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
EBNA3C is a potent repressor of transcription when bound to DNA as a fusion with the DNA binding domain (DBD) of GALA. A survey of promoters has revealed that the wild-type, unfused EBNA3C can specifically repress expression from reporter plasmids containing the Epstein-Barr virus Cp latency-associated promoter. Repression of Cp activity required amino acids 207 to 368, which encompasses a region resembling a basic DBD adjacent to a leucine zipper DNA binding motif and a site which binds to the cellular factor CBF1/RBP-Jkappa. However, amino acids 207 to 368 are dispensable when the protein is bound to DNA as a fusion with the GAL4 DBD, thus implicating this region in DNA binding. Mutation of the CBF1/RBP-Jkappa binding site in EBNA3C abrogated repression, strongly suggesting that CBF1/RBP-Jkappa is necessary for targeting the viral protein to Cp. Consistent with this result, mutation of the EBNA2 response element (a CBF1/RBP-Jkappa binding site) in Cp also prevented significant repression. In addition, amino acids 346 to 543, which were previously defined as important for the repressor activity of the GAL4-EBNA3C fusion proteins, also appear to be necessary for the repression of Cp. Since repression by these fusions was not observed in all cell types, it seems likely that EBNA3C either depends on a corepressor which may interact with amino acids 346 to 543 or is modified in a cell-specific manner in order to repress. These data are consistent with EBNA3C contributing to the regulation of EBNA expression in latently infected B cells through CBF1/RBP-Jkappa and another factor, but this need not directly involve EBNA2. Finally, although it has been reported that EBNA3C can upregulate CD21 in some B cells, we were unable to demonstrate any effect of EBNA3C on reporter plasmids which contain the CD21 promoter.
Collapse
Affiliation(s)
- S A Radkov
- Department of Medical Microbiology, Imperial College School of Medicine at St Mary's, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
25
|
Robertson KD, Ambinder RF. Mapping promoter regions that are hypersensitive to methylation-mediated inhibition of transcription: application of the methylation cassette assay to the Epstein-Barr virus major latency promoter. J Virol 1997; 71:6445-54. [PMID: 9261362 PMCID: PMC191918 DOI: 10.1128/jvi.71.9.6445-6454.1997] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Methylation-associated transcriptional repression is recognized in many settings and may play a role in normal differentiation and in tumorigenesis. Both sequence-specific and nonspecific mechanisms have been elaborated. Recently, we have presented evidence that methylation-associated inhibition of the Epstein-Barr virus (EBV) major latency promoter (BamHI C promoter or Cp) in Burkitt's lymphoma and Hodgkin's disease may play an important role in the pathogenesis of these tumors by protecting them from CD8+ cytotoxic T-cell immunosurveillance. The mechanism of transcriptional repression may relate to specific inhibition of the binding of a cellular transcription factor by methylation. To dissect the viral promoter with regard to transcriptional sensitivity to methylation, we have devised an assay that allows the methylation of discrete regions of reporter plasmids. During the course of the assay, methylation patterns appeared to be stable; there was no evidence of either spread or reversal of the imposed methylation pattern. Application of the assay to the 3.8-kb region upstream of the major EBV latency promoter with natural Cp reporter plasmids showed that sensitivity to methylation is not homogeneously distributed but is concentrated in two discrete regions. The first of these methylation-hypersensitive regions (MHRI) is the previously identified EBNA-2 response element, which includes the methylation-sensitive CBF2 binding site. The second (MHRII) is a sequence further downstream whose potential role in methylation-mediated transcriptional repression had been previously unsuspected. In chimeric enhancer/promoter plasmids, methylation of this downstream region was sufficient to virtually abolish simian virus 40 enhancer-driven transcription. Further dissection indicated that methylation of the EBNA-2 response element (MHRI) was sufficient to abolish EBNA-2-mediated Cp activity while methylation of a region including the EBNA-2 response element and downstream sequence (MHRI and MHRII) was sufficient to abolish all Cp-mediated reporter activity, including that driven by the EBNA-1-dependent enhancer in the origin of plasmid replication, oriP.
Collapse
Affiliation(s)
- K D Robertson
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
26
|
Puglielli MT, Desai N, Speck SH. Regulation of EBNA gene transcription in lymphoblastoid cell lines: characterization of sequences downstream of BCR2 (Cp). J Virol 1997; 71:120-8. [PMID: 8985330 PMCID: PMC191031 DOI: 10.1128/jvi.71.1.120-128.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During Epstein-Barr virus (EBV) latent infection of B lymphocytes in vitro, six EBV nuclear antigens (EBNAs) are expressed from one of two promoters, Cp and Wp, whose activities are mutually exclusive. Upon infection, Wp is initially active, followed by a switch to Cp for the duration of latency. In this study, the impact on Cp and Wp activity of sequences downstream of the distal EBNA gene promoter, Cp, was assessed in two lymphoblastoid cell lines. Cp activity was detected in constructs extending from just upstream of oriP to the first W1 exon. In contrast, Wp activity required the presence of the next downstream exon, W2. Viral sequences from -2199 to +2680 bp, relative to the Cp transcription start site, were dispensable for Wp activity. Sequences from +155 to +2680 bp, relative to the Cp transcription start site, were dispensable for Cp activity. Deletion of a 200-bp region from +2680 to +2880 bp downstream of Cp decreased both Cp and Wp activity two- to fivefold. Wp activity was also significantly diminished by deletion of the sequences from +2880 to +3000 bp downstream of the Cp transcription initiation site, which encompassed the Wp CCATT box. Based on deletion analyses of 10.3 kb of viral genomic sequence extending from just upstream of oriP to the first Wp, the only deletions which significantly upregulated Wp activity were those which abrogated Cp activity. However, reporter constructs in which the orientation of Cp was reversed displayed Wp activity comparable to that of reporter constructs in which Cp was deleted, even though the steady-state level of Cp-initiated transcripts from the inverted promoter was indistinguishable from that observed with Cp in normal orientation. This is the first direct evidence to support transcriptional interference as the mechanism for the mutually exclusive behavior of Cp and Wp.
Collapse
Affiliation(s)
- M T Puglielli
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
27
|
Puglielli MT, Woisetschlaeger M, Speck SH. oriP is essential for EBNA gene promoter activity in Epstein-Barr virus-immortalized lymphoblastoid cell lines. J Virol 1996; 70:5758-68. [PMID: 8709191 PMCID: PMC190589 DOI: 10.1128/jvi.70.9.5758-5768.1996] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During Epstein-Barr virus latent infection of B lymphocytes in vitro, six viral nuclear antigens (EBNAs) are expressed from one of two promoters, Cp or Wp, whose activities are mutually exclusive. Upon infection, Wp is initially active, followed by a switch to Cp for the duration of latency. In this study, the region upstream of Cp was analyzed for the presence of cis elements involved in regulating the activities of the EBNA gene promoters in established in vitro immortalized lymphoblastoid cell lines (LCLs). It was determined that oriP, the origin for episomal maintenance during latency, is essential for efficient transcription initiation from either Cp or Wp in LCLs, as well as in some Burkitt's lymphoma cell lines. Deletion of the EBNA2-dependent enhancer located upstream of Cp resulted in a ca. two- to fivefold reduction in Cp activity in the LCLs assayed. More extensive deletion of sequences upstream of Cp, including the EBNA2-dependent enhancer, resulted in nearly complete loss of Cp activity. This loss of activity was shown to correlate with deletion of two CCAAT boxes, a proximal CCAAT box located at bp -61 to -65 and a distal CCAAT box located at bp -253 to -257, upstream of Cp. Site-directed mutagenesis of these cis elements demonstrated that Cp activity is highly dependent on the presence of a properly positioned CCAAT box, with the dependence on the distal CCAAT box apparent only when the proximal CCAAT box was deleted or mutated. Deletion of the glucocorticoid response elements located at ca. bp -850 upstream of Cp did not result in a significant loss in activity. In general, deletions which diminished Cp activity resulted in induction of Wp activity, consistent with suppression of Wp activity by transcriptional interference from Cp. The identification of oriP and the EBNA2-dependent enhancer as the major positive cis elements involved in regulating Cp activity in LCL suggests that EBNA gene transcription is largely autoregulated by EBNA 1 and EBNA 2.
Collapse
Affiliation(s)
- M T Puglielli
- Committee on Virology of Harvard University at Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|