1
|
Suffian IFBM, Al-Jamal KT. Bioengineering of virus-like particles as dynamic nanocarriers for in vivo delivery and targeting to solid tumours. Adv Drug Deliv Rev 2022; 180:114030. [PMID: 34736988 DOI: 10.1016/j.addr.2021.114030] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/16/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
Virus-like particles (VLPs) are known as self-assembled, non-replicative and non-infectious protein particles, which imitate the formation and structure of original wild type viruses, however, lack the viral genome and/or their fragments. The capacity of VLPs to encompass small molecules like nucleic acids and others has made them as novel vessels of nanocarriers for drug delivery applications. In addition, VLPs surface have the capacity to achieve variation of the surface display via several modification strategies including genetic modification, chemical modification, and non-covalent modification. Among the VLPs nanocarriers, Hepatitis B virus core (HBc) particles have been the most encouraging candidate. HBc particles are hollow nanoparticles in the range of 30-34 nm in diameter and 7 nm thick envelopes, consisting of 180 or 240 copies of identical polypeptide monomer. They also employ a distinctive position among the VLPs carriers due to the high-level synthesis, which serves as a strong protective capsid shell and efficient self-assembly properties. This review highlights on the bioengineering of HBc particles as dynamic nanocarriers for in vivo delivery and specific targeting to solid tumours.
Collapse
Affiliation(s)
- Izzat F B M Suffian
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (Kuantan Campus), Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
2
|
Swanson J, Fragkoudis R, Hawes PC, Newman J, Burman A, Panjwani A, Stonehouse NJ, Tuthill TJ. Generation of Antibodies against Foot-and-Mouth-Disease Virus Capsid Protein VP4 Using Hepatitis B Core VLPs as a Scaffold. Life (Basel) 2021; 11:338. [PMID: 33920339 PMCID: PMC8069431 DOI: 10.3390/life11040338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The picornavirus foot-and-mouth disease virus (FMDV) is the causative agent of the economically important disease of livestock, foot-and-mouth disease (FMD). VP4 is a highly conserved capsid protein, which is important during virus entry. Previous published work has shown that antibodies targeting the N-terminus of VP4 of the picornavirus human rhinovirus are broadly neutralising. In addition, previous studies showed that immunisation with the N-terminal 20 amino acids of enterovirus A71 VP4 displayed on the hepatitis B core (HBc) virus-like particles (VLP) can induce cross-genotype neutralisation. To investigate if a similar neutralising response against FMDV VP4 could be generated, HBc VLPs displaying the N-terminus of FMDV VP4 were designed. The N-terminal 15 amino acids of FMDV VP4 was inserted into the major immunodominant region. HBc VLPs were also decorated with peptides of the N-terminus of FMDV VP4 attached using a HBc-spike binding tag. Both types of VLPs were used to immunise mice and the resulting serum was investigated for VP4-specific antibodies. The VLP with VP4 inserted into the spike, induced VP4-specific antibodies, however the VLPs with peptides attached to the spikes did not. The VP4-specific antibodies could recognise native FMDV, but virus neutralisation was not demonstrated. This work shows that the HBc VLP presents a useful tool for the presentation of FMDV capsid epitopes.
Collapse
Affiliation(s)
- Jessica Swanson
- The Pirbright Institute, Pirbright GU24 0NF, UK; (J.S.); (R.F.); (P.C.H.); (J.N.); (A.B.); (A.P.)
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Rennos Fragkoudis
- The Pirbright Institute, Pirbright GU24 0NF, UK; (J.S.); (R.F.); (P.C.H.); (J.N.); (A.B.); (A.P.)
| | - Philippa C. Hawes
- The Pirbright Institute, Pirbright GU24 0NF, UK; (J.S.); (R.F.); (P.C.H.); (J.N.); (A.B.); (A.P.)
| | - Joseph Newman
- The Pirbright Institute, Pirbright GU24 0NF, UK; (J.S.); (R.F.); (P.C.H.); (J.N.); (A.B.); (A.P.)
| | - Alison Burman
- The Pirbright Institute, Pirbright GU24 0NF, UK; (J.S.); (R.F.); (P.C.H.); (J.N.); (A.B.); (A.P.)
| | - Anusha Panjwani
- The Pirbright Institute, Pirbright GU24 0NF, UK; (J.S.); (R.F.); (P.C.H.); (J.N.); (A.B.); (A.P.)
| | | | - Tobias J. Tuthill
- The Pirbright Institute, Pirbright GU24 0NF, UK; (J.S.); (R.F.); (P.C.H.); (J.N.); (A.B.); (A.P.)
| |
Collapse
|
3
|
Pumpens P, Grens E. The true story and advantages of the famous Hepatitis B virus core particles: Outlook 2016. Mol Biol 2016. [DOI: 10.1134/s0026893316040099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Peyret H, Gehin A, Thuenemann EC, Blond D, El Turabi A, Beales L, Clarke D, Gilbert RJC, Fry EE, Stuart DI, Holmes K, Stonehouse NJ, Whelan M, Rosenberg W, Lomonossoff GP, Rowlands DJ. Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins. PLoS One 2015; 10:e0120751. [PMID: 25830365 PMCID: PMC4382129 DOI: 10.1371/journal.pone.0120751] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/26/2015] [Indexed: 01/03/2023] Open
Abstract
The core protein of the hepatitis B virus, HBcAg, assembles into highly immunogenic virus-like particles (HBc VLPs) when expressed in a variety of heterologous systems. Specifically, the major insertion region (MIR) on the HBcAg protein allows the insertion of foreign sequences, which are then exposed on the tips of surface spike structures on the outside of the assembled particle. Here, we present a novel strategy which aids the display of whole proteins on the surface of HBc particles. This strategy, named tandem core, is based on the production of the HBcAg dimer as a single polypeptide chain by tandem fusion of two HBcAg open reading frames. This allows the insertion of large heterologous sequences in only one of the two MIRs in each spike, without compromising VLP formation. We present the use of tandem core technology in both plant and bacterial expression systems. The results show that tandem core particles can be produced with unmodified MIRs, or with one MIR in each tandem dimer modified to contain the entire sequence of GFP or of a camelid nanobody. Both inserted proteins are correctly folded and the nanobody fused to the surface of the tandem core particle (which we name tandibody) retains the ability to bind to its cognate antigen. This technology paves the way for the display of natively folded proteins on the surface of HBc particles either through direct fusion or through non-covalent attachment via a nanobody.
Collapse
Affiliation(s)
- Hadrien Peyret
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Annick Gehin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Eva C. Thuenemann
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Donatienne Blond
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Aadil El Turabi
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- iQur Ltd, London, United Kingdom
| | - Lucy Beales
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- iQur Ltd, London, United Kingdom
| | - Dean Clarke
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Elizabeth E. Fry
- UK Division of Structural Biology, University of Oxford, Oxford, United Kingdom
| | - David I. Stuart
- UK Division of Structural Biology, University of Oxford, Oxford, United Kingdom
| | - Kris Holmes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Nicola J. Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | | | | | - David J. Rowlands
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
5
|
Bayo-Puxan N, Gimenez-Alejandre M, Lavilla-Alonso S, Gros A, Cascallo M, Hemminki A, Alemany R. Replacement of Adenovirus Type 5 Fiber Shaft Heparan Sulfate Proteoglycan-Binding Domain with RGD for Improved Tumor Infectivity and Targeting. Hum Gene Ther 2009; 20:1214-21. [DOI: 10.1089/hum.2009.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Neus Bayo-Puxan
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL)-Institut Català d'Oncologia, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Marta Gimenez-Alejandre
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL)-Institut Català d'Oncologia, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Sergio Lavilla-Alonso
- University of Helsinki, Cancer Gene Therapy Group, Molecular Cancer Biology Program, and Haartman Institute and Finnish Institute for Molecular Medicine, 00290 Helsinki, Finland
| | - Alena Gros
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL)-Institut Català d'Oncologia, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Manel Cascallo
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL)-Institut Català d'Oncologia, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Akseli Hemminki
- University of Helsinki, Cancer Gene Therapy Group, Molecular Cancer Biology Program, and Haartman Institute and Finnish Institute for Molecular Medicine, 00290 Helsinki, Finland
| | - Ramon Alemany
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL)-Institut Català d'Oncologia, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| |
Collapse
|
6
|
Affiliation(s)
- Terry Jackson
- Department of Molecular Biology, Institute for Animal Health, Pirbright, Surrey GU24 ONF, UK
| | | | | | | |
Collapse
|
7
|
Alcalá P, Feliu JX, Arís A, Villaverde A. Efficient accommodation of recombinant, foot-and-mouth disease virus RGD peptides to cell-surface integrins. Biochem Biophys Res Commun 2001; 285:201-6. [PMID: 11444826 DOI: 10.1006/bbrc.2001.5157] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The engineering of either complete virus cell-binding proteins or derived ligand peptides generates promising nonviral vectors for cell targeting and gene therapy. In this work, we have explored the molecular interaction between a recombinant, integrin-binding foot-and-mouth disease virus RGD peptide displayed on the surface of a carrier protein and its receptors on the cell surface. By increasing the number of viral segments, cell binding to recombinant proteins was significantly improved. This fact resulted in a dramatic growth stimulation of virus-sensitive BHK(21) cells but not virus-resistant HeLa cells in protein-coated wells. Surprisingly, growth stimulation was not observed in vitronectin-coated plates, suggesting that integrins other than alpha(v)beta(3) could be involved in binding of the recombinant peptide, maybe as coreceptors. On the other hand, both free and cell-linked integrins did not modify the enzymatic activity of RGD-based enzymatic sensors that contrarily, were activated by the induced fit of anti-RGD antibodies. Those findings are discussed in the context of a proper mimicry of the unusually complex architecture of this cell-binding site as engineered in multifunctional proteins.
Collapse
Affiliation(s)
- P Alcalá
- Institut de Biotecnologia i de Biomedicina, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | |
Collapse
|
8
|
Jackson T, Blakemore W, Newman JW, Knowles NJ, Mould AP, Humphries MJ, King AM. Foot-and-mouth disease virus is a ligand for the high-affinity binding conformation of integrin alpha5beta1: influence of the leucine residue within the RGDL motif on selectivity of integrin binding. J Gen Virol 2000; 81:1383-91. [PMID: 10769082 DOI: 10.1099/0022-1317-81-5-1383] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Field isolates of foot-and-mouth disease virus (FMDV) use RGD-dependent integrins as receptors for internalization, whereas strains that are adapted for growth in cultured cell lines appear to be able to use alternative receptors like heparan sulphate proteoglycans (HSPG). The ligand-binding potential of integrins is regulated by changes in the conformation of their ectodomains and the ligand-binding state would be expected to be an important determinant of tropism for viruses that use integrins as cellular receptors. Currently, alphavbeta3 is the only integrin that has been shown to act as a receptor for FMDV. In this study, a solid-phase receptor-binding assay has been used to characterize the binding of FMDV to purified preparations of the human integrin alpha5beta1, in the absence of HSPG and other RGD-binding integrins. In this assay, binding of FMDV resembled authentic ligand binding to alpha5beta1 in its dependence on divalent cations and specific inhibition by RGD peptides. Most importantly, binding was found to be critically dependent on the conformation of the integrin, as virus bound only after induction of the high-affinity ligand-binding state. In addition, the identity of the amino acid residue immediately following the RGD motif is shown to influence differentially the ability of FMDV to bind integrins alpha5beta1 and alphavbeta3 and evidence is provided that alpha5beta1 might be an important FMDV receptor in vivo.
Collapse
Affiliation(s)
- T Jackson
- Department of Molecular Biology, Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK.
| | | | | | | | | | | | | |
Collapse
|
9
|
Lorenz TJ, Macdonald F, Kitt MM. Nonimmunogenicity of eptifibatide, a cyclic heptapeptide inhibitor of platelet glycoprotein IIb-IIIa. Clin Ther 1999; 21:128-37. [PMID: 10090430 DOI: 10.1016/s0149-2918(00)88273-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Inhibitors of platelet glycoprotein (GP) IIb-IIIa have been demonstrated to be effective in controlling acute cardiac complications in patients presenting with acute ischemic coronary syndromes (AICS). Since patients with atherosclerotic coronary vascular disease may present with AICS on multiple occasions, it is important to have documented evidence that novel antithrombotic agents are nonimmunogenic and thus safe for repeated administration. Eptifibatide (Integrilin) is a cyclic heptapeptide inhibitor that contains a modified lysine-glycine-aspartic acid sequence that recognizes the binding site of platelet GP IIb-IIIa, resulting in potent and selective inhibition of its binding to fibrinogen. An enzyme-linked immunosorbent assay sensitive to all classes of immunoglobulins was developed to test the immunogenicity of eptifibatide in humans. In two clinical studies, Integrilin to Minimize and Prevent Acute Coronary Thrombosis (IMPACT) and IMPACT II, samples were obtained from 414 patients undergoing coronary angioplasty to determine anti-eptifibatide antibodies at baseline and 30 days after treatment. In a separate clinical pharmacology study, 28 healthy volunteers received 2 infusions of eptifibatide 28 days apart and were monitored at baseline (immediately before the first infusion), at 28 days (immediately before the second infusion), and at 42, 56, 84, and 112 days after enrollment to monitor for an anamnestic anti-eptifibatide response. Eptifibatide administration did not result in an antibody response in any of the 3 studies, even after repeated administration. Eptifibatide represents a potent, specific inhibitor of the platelet GP IIb-IIIa complex that has not been observed to be immunogenic in clinical studies and is thus safe for repeated administration. This finding suggests that small, peptide-based therapeutic agents, which are becoming increasingly common, may be used in humans without inciting an immune response.
Collapse
Affiliation(s)
- T J Lorenz
- Clinical Research Department, COR Therapeutics, Inc., South San Francisco, California 94080, USA
| | | | | |
Collapse
|
10
|
Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G, Belousova N, Curiel DT. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998; 72:9706-13. [PMID: 9811704 PMCID: PMC110480 DOI: 10.1128/jvi.72.12.9706-9713.1998] [Citation(s) in RCA: 567] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant adenoviruses (Ad) have become the vector system of choice for a variety of gene therapy applications. However, the utility of Ad vectors is limited due to the low efficiency of Ad-mediated gene transfer to cells expressing marginal levels of the coxsackievirus and adenovirus receptor (CAR). In order to achieve CAR-independent gene transfer by Ad vectors in clinically important contexts, we proposed modification of viral tropism via genetic alterations to the viral fiber protein. We have shown that incorporation of an Arg-Gly-Asp (RGD)-containing peptide in the HI loop of the fiber knob domain results in the ability of the virus to utilize an alternative receptor during the cell entry process. We have also demonstrated that due to its expanded tissue tropism, this novel vector is capable of efficient transduction of primary tumor cells. An increase in gene transfer to ovarian cancer cells of 2 to 3 orders of magnitude was demonstrated by the vector, suggesting that recombinant Ad containing fibers with an incorporated RGD peptide may be of great utility for treatment of neoplasms characterized by deficiency of the primary Ad type 5 receptor.
Collapse
Affiliation(s)
- I Dmitriev
- Gene Therapy Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-3300, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Feliu JX, Benito A, Oliva B, Avilés FX, Villaverde A. Conformational flexibility in a highly mobile protein loop of foot-and-mouth disease virus: distinct structural requirements for integrin and antibody binding. J Mol Biol 1998; 283:331-8. [PMID: 9769208 DOI: 10.1006/jmbi.1998.2104] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The G-H loop of foot-and-mouth disease virus VP1 protein is a highly mobile peptide, that extends from the capsid surface and that in native virions is invisible by X-ray crystallography. In serotype C, this segment contains a hypervariable region with several continuous, overlapping, B-cell epitopes that embrace the conserved Arg-Gly-Asp (RGD) cell attachment motif. The solvent-exposed positioning of this peptide by selective insertion into different structural frameworks of E. coli beta-galactosidase, generates a spectrum of antigenic variants which react distinctively with a panel of anti-VP1 monoclonal antibodies and exhibit different efficiencies as cell ligands. The cell attachment efficiency is much less restricted by the different positioning of the viral segment at the insertion sites. A molecular model of an inserted stretch reveals a highest flexibility of the RGD tripeptide segment compared with the flanking sequences, that could allow a proper accommodation to integrin receptors even in poorly antigenic conformations. The non-converging structural requirements for RGD-mediated integrin binding and antibody recognition, explains the dynamism of the generation of neutralisation-resistant antigenic variants in the viral quasi-species, arising from a conformational space of integrin-binding competent peptides. This might be of special relevance for foot-and-moth disease virus evolution, since unlike in other picornaviruses, the cell binding motif and the major neutralising B-cell epitopes overlap in a solvent-exposed peptide accessible to the host immune system, in a virion lacking canyons and similar hiding structures.
Collapse
Affiliation(s)
- J X Feliu
- Institut de Biologia Fonamental, Universitat Autònoma de Barcelona Bellaterra, 08193 Barcelona Spain
| | | | | | | | | |
Collapse
|
12
|
Neff S, Sá-Carvalho D, Rieder E, Mason PW, Blystone SD, Brown EJ, Baxt B. Foot-and-mouth disease virus virulent for cattle utilizes the integrin alpha(v)beta3 as its receptor. J Virol 1998; 72:3587-94. [PMID: 9557639 PMCID: PMC109579 DOI: 10.1128/jvi.72.5.3587-3594.1998] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adsorption and plaque formation of foot-and-mouth disease virus (FMDV) serotype A12 are inhibited by antibodies to the integrin alpha(v)beta3 (A. Berinstein et al., J. Virol. 69:2664-2666, 1995). A human cell line, K562, which does not normally express alpha(v)beta3 cannot replicate this serotype unless cells are transfected with cDNAs encoding this integrin (K562-alpha(v)beta3 cells). In contrast, we found that a tissue culture-propagated FMDV, type O1BFS, was able to replicate in nontransfected K562 cells, and replication was not inhibited by antibodies to the endogenously expressed integrin alpha5beta1. A recent report indicating that cell surface heparan sulfate (HS) was required for efficient infection of type O1 (T. Jackson et al., J. Virol. 70:5282-5287, 1996) led us to examine the role of HS and alpha(v)beta3 in FMDV infection. We transfected normal CHO cells, which express HS but not alpha(v)beta3, and two HS-deficient CHO cell lines with cDNAs encoding human alpha(v)beta3, producing a panel of cells that expressed one or both receptors. In these cells, type A12 replication was dependent on expression of alpha(v)beta3, whereas type O1BFS replicated to high titer in normal CHO cells but could not replicate in HS-deficient cells even when they expressed alpha(v)beta3. We have also analyzed two genetically engineered variants of type O1Campos, vCRM4, which has greatly reduced virulence in cattle and can bind to heparin-Sepharose columns, and vCRM8, which is highly virulent in cattle and cannot bind to heparin-Sepharose. vCRM4 replicated in wild-type K562 cells and normal, nontransfected CHO (HS+ alpha(v)beta3-) cells, whereas vCRM8 replicated only in K562 and CHO cells transfected with alpha(v)beta3 cDNAs. A similar result was also obtained in assays using a vCRM4 virus with an engineered RGD-->KGE mutation. These results indicate that virulent FMDV utilizes the alpha(v)beta3 integrin as a primary receptor for infection and that adaptation of type O1 virus to cell culture results in the ability of the virus to utilize HS as a receptor and a concomitant loss of virulence.
Collapse
Affiliation(s)
- S Neff
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Ulrich R, Nassal M, Meisel H, Krüger DH. Core particles of hepatitis B virus as carrier for foreign epitopes. Adv Virus Res 1998; 50:141-82. [PMID: 9520999 DOI: 10.1016/s0065-3527(08)60808-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To be effective as vaccines, most monomeric proteins and peptides either require chemical coupling to high molecular weight carriers or application together with adjuvants. More recently, recombinant DNA techniques have been used to insert foreign epitopes into proteins with inherent multimerization capacity, such as particle-forming viral capsid or envelope proteins. The core protein of hepatitis B virus (HBcAg), because of its unique structural and immunological properties, has gained widespread interest as a potential antigen carrier. Foreign sequences of up to approximately 40 amino acid residues at the N terminus, 50 or 100 amino acids in the central immunodominant c/e 1 epitope region of HBcAg, and up to 100 or even more residues at the C terminus, did not interfere with particle formation. The humoral immunogenicity of inserted epitopes is determined by the immunogenicity of the peptide itself and its surface exposure, and is influenced by the route of application. The probably flexible and surface-exposed c/e1 region emerged as the most promising insertion site. When applied together with adjuvants approved for human and veterinary use, or even without adjuvants, such chimeric particles induced B and T cell immune responses against the inserted epitopes. In some cases neutralizing antibodies, cytotoxic T cells and protection against challenge with the intact pathogen were demonstrated. Major factors for the potentiated immune response against the foreign epitopes are the multimeric structure of chimeric HBcAg that results in a high epitope density per particle, and the provision of T cell help by the carrier moiety. Beyond its use as subunit vaccine, chimeric HBcAg produced in attenuated Salmonella strains may be applicable as live vaccine.
Collapse
Affiliation(s)
- R Ulrich
- Charité Medical School, Humboldt University, Berlin, Germany
| | | | | | | |
Collapse
|