1
|
Alemán MV, Bertzbach LD, Speiseder T, Ip WH, González RA, Dobner T. Global Transcriptome Analyses of Cellular and Viral mRNAs during HAdV-C5 Infection Highlight New Aspects of Viral mRNA Biogenesis and Cytoplasmic Viral mRNA Accumulations. Viruses 2022; 14:2428. [PMID: 36366526 PMCID: PMC9692883 DOI: 10.3390/v14112428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
It is well established that human adenoviruses such as species C, types 2 and 5 (HAdV-C2 and HAdV-C5), induce a nearly complete shutoff of host-cell protein synthesis in the infected cell, simultaneously directing very efficient production of viral proteins. Such preferential expression of viral over cellular genes is thought to be controlled by selective nucleocytoplasmic export and translation of viral mRNA. While detailed knowledge of the regulatory mechanisms responsible for the translation of viral mRNA is available, the viral or cellular mechanisms of mRNA biogenesis are not completely understood. To identify parameters that control the differential export of viral and cellular mRNAs, we performed global transcriptome analyses (RNAseq) and monitored temporal nucleocytoplasmic partitioning of viral and cellular mRNAs during HAdV-C5 infection of A549 cells. Our analyses confirmed previously reported features of the viral mRNA expression program, as a clear shift in viral early to late mRNA accumulation was observed upon transition from the early to the late phase of viral replication. The progression into the late phase of infection, however, did not result in abrogation of cellular mRNA export; rather, viral late mRNAs outnumbered viral early and most cellular mRNAs by several orders of magnitude during the late phase, revealing that viral late mRNAs are not selectively exported but outcompete cellular mRNA biogenesis.
Collapse
Affiliation(s)
- Margarita Valdés Alemán
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Thomas Speiseder
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Wing Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Ramón A. González
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| |
Collapse
|
2
|
E1B-55K is a phosphorylation-dependent transcriptional and post-transcriptional regulator of viral gene expression in HAdV-C5 infection. J Virol 2022; 96:e0206221. [PMID: 35019711 DOI: 10.1128/jvi.02062-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multifunctional adenoviral E1B-55K phosphoprotein is a major regulator of viral replication and plays key roles in virus-mediated cell transformation. While much is known about its function in oncogenic cell transformation, underlying features and exact mechanisms that implicate E1B-55K in regulation of viral gene expression are less well understood. Therefore, this work aimed at unravelling basic intranuclear principles of E1B-55K-regulated viral mRNA biogenesis using wild type HAdV-C5 E1B-55K, a virus mutant with abrogated E1B-55K expression and a mutant that expresses a phosphomimetic E1B-55K. By subnuclear fractionation, mRNA, DNA and protein analyses as well as luciferase reporter assays, we show that (i) E1B-55K promotes efficient release of viral late mRNAs from their site of synthesis in viral replication compartments (RCs) to the surrounding nucleoplasm, that (ii) E1B-55K modulates the rate of viral gene transcription and splicing in RCs, that (iii) E1B-55K participates in the temporal regulation of viral gene expression, that (iv) E1B-55K can enhance or repress the expression of viral early and late promoters and that (v) the phosphorylation of E1B-55K regulates the temporal effect of the protein on each of these activities. Together, these data demonstrate that E1B-55K is a phosphorylation-dependent transcriptional and post-transcriptional regulator of viral genes during HAdV-C5 infection. Importance Human adenoviruses are useful models to study basic aspects of gene expression and splicing. Moreover, they are one of the most commonly used viral vectors for clinical applications. However, key aspects of the activities of essential viral proteins that are commonly modified in adenoviral vectors have not been fully described. A prominent example is the multifunctional adenoviral oncoprotein E1B-55K that is known to promote efficient viral genome replication and expression while simultaneously repressing host gene expression and antiviral host responses. Our study combined different quantitative methods to study how E1B-55K promotes viral mRNA biogenesis. The data presented here propose a novel role for E1B-55K as a phosphorylation-dependent transcriptional and post-transcriptional regulator of viral genes.
Collapse
|
3
|
Kuss SK, Mata MA, Zhang L, Fontoura BMA. Nuclear imprisonment: viral strategies to arrest host mRNA nuclear export. Viruses 2013; 5:1824-49. [PMID: 23872491 PMCID: PMC3738964 DOI: 10.3390/v5071824] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 06/27/2013] [Accepted: 07/11/2013] [Indexed: 12/15/2022] Open
Abstract
Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses.
Collapse
Affiliation(s)
- Sharon K Kuss
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | | | |
Collapse
|
4
|
The repression domain of the E1B 55-kilodalton protein participates in countering interferon-induced inhibition of adenovirus replication. J Virol 2013; 87:4432-44. [PMID: 23388716 DOI: 10.1128/jvi.03387-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To begin to investigate the mechanism by which the human adenovirus type 5 E1B 55-kDa protein protects against the antiviral effects of type 1 interferon (IFN) (J. S. Chahal, J. Qi, and S. J. Flint, PLoS Pathog. 8:e1002853, 2012 [doi:10.1371/journal.ppat.1002853]), we examined the effects of precise amino acid substitution in this protein on resistance of viral replication to the cytokine. Only substitution of residues 443 to 448 of E1B for alanine (E1B Sub19) specifically impaired production of progeny virus and resulted in a large defect in viral DNA synthesis in IFN-treated normal human fibroblasts. Untreated or IFN-treated cells infected by this mutant virus (AdEasyE1Sub19) contained much higher steady-state concentrations of IFN-inducible GBP1 and IFIT2 mRNAs than did wild-type-infected cells and of the corresponding newly transcribed pre-mRNAs, isolated exploiting 5'-ethynyluridine labeling and click chemistry. These results indicated that the mutations created by substitution of residues 443 to 448 for alanine (Sub19) impair repression of transcription of IFN-inducible genes, by the E1B, 55-kDa protein, consistent with their location in a segment required for repression of p53-dependent transcription. However, when synthesized alone, the E1B 55-kDa protein inhibited expression of the p53-regulated genes BAX and MDM2 but had no impact whatsoever on induction of IFIT2 and GBP1 expression by IFN. These observations correlate repression of transcription of IFN-inducible genes by the E1B 55-kDa protein with protection against inhibition of viral genome replication and indicate that the E1B 55-kDa protein is not sufficient to establish such transcriptional repression.
Collapse
|
5
|
Abstract
Bat adenoviruses are a group of recently identified adenoviruses (AdVs) which are highly prevalent in bats yet share low similarity to known AdVs from other species. In this study, deep RNA sequencing was used to analyze the transcriptome at five time points following the infection of a bat AdV in a kidney cell line derived from a myotis bat species. Evidence of AdV replication was observed with the proportion of viral RNAs ranging from 0.01% at 6 h to 1.3% at 18 h. Further analysis of viral temporal gene expression revealed three replication stages, the early-stage genes encoding mainly host interaction proteins, the intermediate-stage genes for the DNA replication and assembly proteins, and the late-stage genes for most structural proteins. Several bat AdV genes were expressed at stages that differed from those of their counterpart genes previously reported for human AdV type 2. In addition, single-base resolution splice sites of several genes and promoter regions of all 30 viral genes were fully determined. Simultaneously, the temporal cellular gene expression profiles were identified. The most overrepresented functional categories of the differentially expressed genes were related to cellular immune response, transcription, translation, and DNA replication and repair. Taken together, the deep RNA sequencing provided a global, transcriptional profile of the novel bat AdV and the virus-host interactions which will be useful for the understanding and investigation of AdV replication, pathogenesis, and specific virus-bat interactions in future research.
Collapse
|
6
|
Reduced infectivity of adenovirus type 5 particles and degradation of entering viral genomes associated with incomplete processing of the preterminal protein. J Virol 2012; 86:13554-65. [PMID: 23035217 DOI: 10.1128/jvi.02337-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To investigate further the contribution of the adenovirus type 5 (Ad5) E1B 55-kDa protein to genome replication, viral DNA accumulation was examined in primary human fibroblasts and epithelial cells infected with Ad5 or the E1B 55-kDa-null mutant Hr6. Unexpectedly, all cell types were observed to contain a significantly higher concentration of entering Hr6 than of Ad5 DNA, as did an infectious unit of Hr6. However, the great majority of the Hr6 genomes were degraded soon after entry. As this unusual phenotype cannot be ascribed to the Hr6 E1B frameshift mutation (J. S. Chahal and S. J. Flint, J. Virol. 86:3064-3072, 2012), the sequences of the Ad5 and Hr6 genomes were compared by using high-throughput sequencing. Seven previously unrecognized mutations were identified in the Hr6 genome, two of which result in substitutions in virion proteins, G315V in the preterminal protein (preTP) and A406V in fiber protein IV. Previous observations and the visualization by immunofluorescence of greater numbers of viral genomes entering the cytosol of Hr6-infected cells than of Ad5-infected cells indicated that the fiber mutation could not be responsible for the low-infectivity phenotype of Hr6. However, comparison of the forms of terminal protein present in purified virus particles indicated that the production of mature terminal protein from a processing intermediate is impaired in Hr6 particles. We therefore propose that complete processing of preTP within virus particles is necessary for the ability of viral genomes to become localized at appropriate sites and persist in infected cells.
Collapse
|
7
|
Virus-heat shock protein interaction and a novel axis for innate antiviral immunity. Cells 2012; 1:646-66. [PMID: 24710494 PMCID: PMC3901102 DOI: 10.3390/cells1030646] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 12/20/2022] Open
Abstract
Virus infections induce heat shock proteins that in turn enhance virus gene expression, a phenomenon that is particularly well characterized for the major inducible 70 kDa heat shock protein (hsp70). However, hsp70 is also readily induced by fever, a phylogenetically conserved response to microbial infections, and when released from cells, hsp70 can stimulate innate immune responses through toll like receptors 2 and 4 (TLR2 and 4). This review examines how the virus-hsp70 relationship can lead to host protective innate antiviral immunity, and the importance of hsp70 dependent stimulation of virus gene expression in this host response. Beginning with the well-characterized measles virus-hsp70 relationship and the mouse model of neuronal infection in brain, we examine data indicating that the innate immune response is not driven by intracellular sensors of pathogen associated molecular patterns, but rather by extracellular ligands signaling through TLR2 and 4. Specifically, we address the relationship between virus gene expression, extracellular release of hsp70 (as a damage associated molecular pattern), and hsp70-mediated induction of antigen presentation and type 1 interferons in uninfected macrophages as a novel axis of antiviral immunity. New data are discussed that examines the more broad relevance of this protective mechanism using vesicular stomatitis virus, and a review of the literature is presented that supports the probable relevance to both RNA and DNA viruses and for infections both within and outside of the central nervous system.
Collapse
|
8
|
Chahal JS, Qi J, Flint SJ. The human adenovirus type 5 E1B 55 kDa protein obstructs inhibition of viral replication by type I interferon in normal human cells. PLoS Pathog 2012; 8:e1002853. [PMID: 22912576 PMCID: PMC3415460 DOI: 10.1371/journal.ppat.1002853] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/26/2012] [Indexed: 12/24/2022] Open
Abstract
Vectors derived from human adenovirus type 5, which typically lack the E1A and E1B genes, induce robust innate immune responses that limit their therapeutic efficacy. We reported previously that the E1B 55 kDa protein inhibits expression of a set of cellular genes that is highly enriched for those associated with anti-viral defense and immune responses, and includes many interferon-sensitive genes. The sensitivity of replication of E1B 55 kDa null-mutants to exogenous interferon (IFN) was therefore examined in normal human fibroblasts and respiratory epithelial cells. Yields of the mutants were reduced at least 500-fold, compared to only 5-fold, for wild-type (WT) virus replication. To investigate the mechanistic basis of such inhibition, the accumulation of viral early proteins and genomes was compared by immunoblotting and qPCR, respectively, in WT- and mutant-infected cells in the absence or presence of exogenous IFN. Both the concentration of viral genomes detected during the late phase and the numbers of viral replication centers formed were strongly reduced in IFN-treated cells in the absence of the E1B protein, despite production of similar quantities of viral replication proteins. These defects could not be attributed to degradation of entering viral genomes, induction of apoptosis, or failure to reorganize components of PML nuclear bodies. Nor was assembly of the E1B- and E4 Orf6 protein- E3 ubiquitin ligase required to prevent inhibition of viral replication by IFN. However, by using RT-PCR, the E1B 55 kDa protein was demonstrated to be a potent repressor of expression of IFN-inducible genes in IFN-treated cells. We propose that a primary function of the previously described transcriptional repression activity of the E1B 55 kDa protein is to block expression of IFN- inducible genes, and hence to facilitate formation of viral replication centers and genome replication. The most frequently used therapeutic vectors for gene transfer or cancer treatment are derived from human adenovirus type 5 (Ad5). We have observed previously that the E1B 55 kDa protein encoded by a gene routinely deleted from these vectors represses expression of numerous cellular genes regulated by interferon (IFN) α and β, which are important components of the innate immune response to viral infection. We therefore compared synthesis of pre-mRNA from IFN-inducible genes, viral yields and early reactions in the infectious cycle in normal human cells exposed to exogenous IFN and infected by wild-type or E1B 55 kDa null-mutant viruses. We report that the E1B 55 kDa protein is a potent repressor of expression of IFN-regulated genes, and protects viral replication against anti-viral actions of IFN by blocking inhibition of formation of viral replication centers and genome replication. These observations provide the first information about the function of the transcription repression activity of E1B during the infectious cycle. Importantly, they also suggest new design considerations for adenoviral vectors that can circumvent induction of innate immune responses, currently a major therapeutic limitation.
Collapse
Affiliation(s)
- Jasdave S. Chahal
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, New Jersey, United States of America
| | - Ji Qi
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, New Jersey, United States of America
| | - S. J. Flint
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
9
|
Schmid M, Gonzalez RA, Dobner T. CRM1-dependent transport supports cytoplasmic accumulation of adenoviral early transcripts. J Virol 2012; 86:2282-92. [PMID: 22171254 PMCID: PMC3302419 DOI: 10.1128/jvi.06275-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/30/2011] [Indexed: 02/08/2023] Open
Abstract
The life cycle of adenoviruses is divided by convention into early and late phases, separated by the onset of viral genome replication. Early events include virus adsorption, transport of the genome into the nucleus, and the expression of early genes. After the onset of viral DNA replication, transcription of the major late transcription unit (MLTU) and thereby synthesis of late proteins is induced. These steps are controlled by an orchestra of regulatory processes and require import of the genome and numerous viral proteins into the nucleus, as well as active transport of viral transcripts and proteins from the nucleus to the cytoplasm. The latter is achieved by exploiting the shuttling functions of cellular transport receptors, which normally stimulate the nuclear export of cellular mRNA and protein cargos. A set of adenoviral early and late proteins contains a leucine-rich nuclear export signal of the HIV-1 Rev type, known to be recognized by the cellular export receptor CRM1. However, a role for CRM1-dependent export in supporting adenoviral replication has not been established. To address this issue in detail, we investigated the impact of two different CRM1 inhibitors on several steps of the adenoviral life cycle. Inhibition of CRM1 led to a reduction in viral early and late gene expression, viral genome replication, and progeny virus production. For the first time, our findings indicate that CRM1-dependent shuttling is required for the efficient export of adenoviral early mRNA.
Collapse
Affiliation(s)
- Melanie Schmid
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | | |
Collapse
|
10
|
Kato SEM, Huang W, Flint SJ. Role of the RNA recognition motif of the E1B 55 kDa protein in the adenovirus type 5 infectious cycle. Virology 2011; 417:9-17. [PMID: 21605885 DOI: 10.1016/j.virol.2011.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/08/2011] [Accepted: 04/25/2011] [Indexed: 11/30/2022]
Abstract
Although the adenovirus type 5 (Ad5) E1B 55 kDa protein can bind to RNA in vitro, no UV-light-induced crosslinking of this E1B protein to RNA could be detected in infected cells, under conditions in which RNA binding by a known viral RNA-binding protein (the L4 100 kDa protein) was observed readily. Substitution mutations, including substitutions reported to inhibit RNA binding in vitro, did not impair synthesis of viral early or late proteins or alter significantly the efficiency of viral replication in transformed or normal human cells. However, substitutions of conserved residues in the C-terminal segment of an RNA recognition motif specifically inhibited degradation of Mre11. We conclude that, if the E1B 55 kDa protein binds to RNA in infected cells in the same manner as in in vitro assays, this activity is not required for such well established functions as induction of selective export of viral late mRNAs.
Collapse
Affiliation(s)
- Sayuri E M Kato
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
11
|
Yatherajam G, Huang W, Flint SJ. Export of adenoviral late mRNA from the nucleus requires the Nxf1/Tap export receptor. J Virol 2011; 85:1429-38. [PMID: 21123381 PMCID: PMC3028892 DOI: 10.1128/jvi.02108-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 11/22/2010] [Indexed: 01/04/2023] Open
Abstract
One important function of the human adenovirus E1B 55-kDa protein is induction of selective nuclear export of viral late mRNAs. This protein interacts with the viral E4 Orf6 and four cellular proteins to form an infected-cell-specific E3 ubiquitin ligase. The assembly of this enzyme is required for efficient viral late mRNA export, but neither the relevant substrates nor the cellular pathway that exports viral late mRNAs has been identified. We therefore examined the effects on viral late gene expression of inhibition of the synthesis or activity of the mRNA export receptor Nxf1, which was observed to colocalize with the E1B 55-kDa protein in infected cells. When production of Nxf1 was impaired by using RNA interference, the efficiency of viral late mRNA export was reduced to a corresponding degree. Furthermore, synthesis of a dominant-negative derivative of Nxf1 during the late phase of infection interfered with production of a late structural protein. These observations indicate that the Nxf1 pathway is responsible for export of viral late mRNAs. As the infected-cell-specific E3 ubiquitin ligase targets its known substrates for proteasomal degradation, we compared the concentrations of several components of this pathway (Nxf1, Thox1, and Thoc4) in infected cells that did or did not contain this enzyme. Although the concentration of a well-established substrate, Mre11, decreased significantly in cells infected by adenovirus type 5 (Ad5), but not in those infected by the E1B 55-kDa protein-null mutant Hr6, no E1B 55-kDa protein-dependent degradation of the Nxf1 pathway proteins was observed.
Collapse
Affiliation(s)
- Gayatri Yatherajam
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08854
| | - Wenying Huang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08854
| | - S. J. Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08854
| |
Collapse
|
12
|
Pockley AG, Calderwood SK, Santoro MG. Role of Heat Shock Proteins in Viral Infection. PROKARYOTIC AND EUKARYOTIC HEAT SHOCK PROTEINS IN INFECTIOUS DISEASE 2009; 4. [PMCID: PMC7121897 DOI: 10.1007/978-90-481-2976-8_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
One of the most intriguing and less known aspects of the interaction between viruses and their host is the impact of the viral infection on the heat shock response (HSR). While both a positive and a negative role of different heat shock proteins (HSP) in the control of virus replication has been hypothesized, HSP function during the virus replication cycle is still not well understood. This chapter describes different aspects of the interactions between viruses and heat shock proteins during infection of mammalian cells: the first part focuses on the modulation of the heat shock response by human viral pathogens; the second describes the interactions of HSP and other chaperones with viral components, and their function during different steps of the virus replication cycle; the last part summarizes our knowledge on the effect of hyperthermia and HSR modulators on virus replication.
Collapse
Affiliation(s)
- A. Graham Pockley
- School of Medicine & Biomedical Science, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX United Kingdom
| | - Stuart K. Calderwood
- Beth Israel Deaconess Medical Center, Harvard Medical School, Burlington Avenue 21-27, Boston, 02215 U.S.A
| | - M. Gabriella Santoro
- Dipto. Biologia, Università di Roma, Tor Vergata, Via della Ricerca Scientifica 1, Roma, 00133 Italy
| |
Collapse
|
13
|
Iftode C, Flint SJ. Analysis of the efficiency of adenovirus transcription. METHODS IN MOLECULAR MEDICINE 2007; 131:1-14. [PMID: 17656771 DOI: 10.1007/978-1-59745-277-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This method is designed to measure rates of transcription from adenoviral promoters as a function of the concentrations within infected cells of the promoter(s) of interest. The latter parameter is assessed by quantification of viral DNA by hybridization of membrane-bound DNA following purification of DNA from nuclear fractions of adenovirus-infected cells. Two alternative protocols, primer extension and quantitative reverse transcription polymerase chain reaction, are described for determination of the concentrations of viral mRNAs purified from the cytoplasmic fractions of the same infected cell samples. An alternative procedure to measure rates of transcription directly using run-on transcription in isolated nuclei is also presented.
Collapse
|
14
|
Granberg F, Svensson C, Pettersson U, Zhao H. Modulation of host cell gene expression during onset of the late phase of an adenovirus infection is focused on growth inhibition and cell architecture. Virology 2005; 343:236-45. [PMID: 16169035 DOI: 10.1016/j.virol.2005.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 08/01/2005] [Accepted: 08/17/2005] [Indexed: 12/01/2022]
Abstract
Microarray analysis of host cell gene expression during an adenovirus type 2 infection showed that the number of regulated genes, as well as the magnitude of change, was increased as the infection proceeded into the late phase. In contrast to the early phase of infection when the majority of differentially expressed genes were upregulated, expression of most of the regulated genes (82 out of 112) declined during the late phase. In particular, numerous TGF-beta inducible genes and several TGF-beta-independent growth-arrest-inducing genes were targeted. Of the 30 genes upregulated more than 2-fold at 20 h post-infection, nearly two-thirds of encoded proteins are involved in cell metabolism. The data indicate that adenovirus primarily targets cellular genes involved in antiviral defense, cell growth arrest and apoptosis, as well as cell metabolism, to ensure sufficient production of viral progeny.
Collapse
Affiliation(s)
- Fredrik Granberg
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | | | | | | |
Collapse
|
15
|
Flint SJ, Huang W, Goodhouse J, Kyin S. A peptide inhibitor of exportin1 blocks shuttling of the adenoviral E1B 55 kDa protein but not export of viral late mRNAs. Virology 2005; 337:7-17. [PMID: 15914216 DOI: 10.1016/j.virol.2005.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 12/20/2004] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
The human subgroup C adenoviral E1B 55 kDa and E4 Orf6 proteins are required for efficient nuclear export of viral late mRNAs, but the cellular pathway that mediates such export has not been identified. As a first step to develop a general approach to address this issue, we have assessed the utility of cell-permeable peptide inhibitors of cellular export receptors. As both E1B and E4 proteins have been reported to contain a leucine-rich nuclear export signal (NES), we synthesized a cell-permeable peptide containing such an NES. This peptide induced substantial inhibition of export of the E1B protein, whereas a control, non-functional peptide did not. However, under the same conditions, the NES peptide had no effect on export of viral late mRNAs. These observations establish that viral late mRNAs are not exported by exportin1, as well as the value of peptide inhibitors in investigation of mRNA export regulation in adenovirus-infected cells.
Collapse
Affiliation(s)
- S J Flint
- Department of Molecular Biology, Princeton University, NJ 08544, USA.
| | | | | | | |
Collapse
|
16
|
XU ZHUPING, YUE YONGPING, LAI YI, YE CHAOYANG, QIU JIANMING, PINTEL DAVIDJ, DUAN DONGSHENG. Trans-splicing adeno-associated viral vector-mediated gene therapy is limited by the accumulation of spliced mRNA but not by dual vector coinfection efficiency. Hum Gene Ther 2004; 15:896-905. [PMID: 15353044 PMCID: PMC2431462 DOI: 10.1089/hum.2004.15.896] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Therapeutic application of recombinant adeno-associated virus (AAV) has been limited by its small carrying capacity. To overcome this limitation trans-splicing vectors were developed recently. However, the transduction efficiency of trans-splicing vectors is considerably lower than that of a single intact vector in skeletal muscle. To improve trans-splicing vectors for skeletal muscle gene therapy, we examined whether coinfection efficiency is a rate-limiting factor in the mdx mouse, a model for Duchenne muscular dystrophy. Two different AAV viruses were delivered to the mdx muscle. Similar to previous reports in normal muscle, coinfection efficiency reached approximately 90% in the diseased muscle. This result suggests that coinfection is not a hurdle in dystrophic muscle. Another critical step in the trans-splicing method is the transcription and splicing across the inverted terminal repeat (ITR) junction in the reconstituted genome. To test whether this represented a significant obstacle, we systematically evaluated the transcription, pre-mRNA stability and splicing, and translation in a synthetic lacZ construct that mimicked the reconstituted genome. Although inserting an intron in the lacZ gene had no effect on its expression, inclusion of the ITR junction in the intron reduced expression by 50%. In construct containing the ITR junction, the mRNA transcript level was significantly reduced. This mRNA level reduction was associated with decreased pre-mRNA stability. These data suggest that the accumulation of mRNA is a rate-limiting factor in trans-splicing vector-mediated gene therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - DONGSHENG DUAN
- Address reprint requests to: Dongsheng Duan, Ph.D. Department of Molecular Microbiology and Immunology The University of Missouri School of Medicine One Hospital Dr., Room M610G, MSB Columbia, MO 65212 E-mail:
| |
Collapse
|
17
|
Mayer MP. Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol 2004; 153:1-46. [PMID: 15243813 DOI: 10.1007/s10254-004-0025-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Virus proliferation depends on the successful recruitment of host cellular components for their own replication, protein synthesis, and virion assembly. In the course of virus particle production a large number of proteins are synthesized in a relatively short time, whereby protein folding can become a limiting step. Most viruses therefore need cellular chaperones during their life cycle. In addition to their own protein folding problems viruses need to interfere with cellular processes such as signal transduction, cell cycle regulation and induction of apoptosis in order to create a favorable environment for their proliferation and to avoid premature cell death. Chaperones are involved in the control of these cellular processes and some viruses reprogram their host cell by interacting with them. Hsp70 chaperones, as central components of the cellular chaperone network, are frequently recruited by viruses. This review focuses on the function of Hsp70 chaperones at the different stages of the viral life cycle emphasizing mechanistic aspects.
Collapse
Affiliation(s)
- M P Mayer
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Chastain-Moore AM, Roberts T, Trott DA, Newbold RF, Ornelles DA. An activity associated with human chromosome 21 permits nuclear colocalization of the adenovirus E1B-55K and E4orf6 proteins and promotes viral late gene expression. J Virol 2003; 77:8087-98. [PMID: 12829847 PMCID: PMC161949 DOI: 10.1128/jvi.77.14.8087-8098.2003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus E1B-55K and E4orf6 proteins cooperate during virus infection while performing several tasks that contribute to a productive infection, including the selective nucleocytoplasmic transport of late viral mRNA. Previous studies have shown that the E4orf6 protein retains the E1B-55K protein in the nucleus of human and monkey cells, but not in those of rodents, suggesting that primate-specific cellular factors contribute to the E4orf6-mediated retention of the E1B-55K protein in the nucleus. In an effort to identify these proposed primate-specific cellular factors, the interaction of the E1B-55K and E4orf6 proteins was studied in a panel of stable human-rodent monochromosomal somatic cell hybrids. Analysis of this panel of cell lines has demonstrated the existence of an activity associated with human chromosome 21 that permits the E1B-55K and E4orf6 proteins to colocalize in the nucleus of a rodent cell. Additional hybrid cells bearing portions of human chromosome 21 were used to map this activity to a 10-megabase-pair segment of the chromosome, extending from 21q22.12 to a region near the q terminus. Strikingly, this region also facilitates the expression of adenovirus late genes in a rodent cell background while having little impact on the expression of early viral genes.
Collapse
Affiliation(s)
- Amy M Chastain-Moore
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, NC 27157-1064, USA
| | | | | | | | | |
Collapse
|
19
|
Löhr K, Hartmann O, Schäfer H, Dobbelstein M. Mutual interference of adenovirus infection and myc expression. J Virol 2003; 77:7936-44. [PMID: 12829833 PMCID: PMC161938 DOI: 10.1128/jvi.77.14.7936-7944.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During infection with adenovirus, massive changes in the transcription of virus genes are observed, suggesting that the expression of cellular genes may also be modulated. To characterize the levels of cellular RNA species in infected cells, cDNA arrays were screened 24 h after infection of HeLa cells with wild-type adenovirus type 5, strain dl309. Despite complete transduction of the cells, fewer than 20 cellular genes (out of 4,600 analyzed and 1,200 found detectable and expressed above background) were altered more than threefold in their corresponding RNA levels compared to mock-infected cells. In particular, the expression of the myc oncogene was reduced at the mRNA level. This reduction was dependent on the replication of virus DNA and partially dependent on the presence of the adenovirus gene products E1B-55 kDa and E4orf6, but not E4orf3. On the other hand, MYC protein had an increased half-life in infected cells, resulting in roughly constant steady-state protein levels. The adenovirus E1A gene product is necessary and sufficient to stabilize MYC. Overexpressed MYC inhibited adenovirus replication and the proper formation of the virus replication centers. We conclude that adenovirus infection leads to the stabilization of MYC, perhaps as a side effect of E1A activities. On the other hand, myc mRNA levels are negatively regulated during adenovirus infection, and this may avoid the detrimental effect of excessive MYC on adenovirus replication.
Collapse
Affiliation(s)
- Kristina Löhr
- Institut für Virologie, Philipps-Universität Marburg, Robert Koch Strasse 17, 35037 Marburg, Germany
| | | | | | | |
Collapse
|
20
|
Flint SJ, Gonzalez RA. Regulation of mRNA production by the adenoviral E1B 55-kDa and E4 Orf6 proteins. Curr Top Microbiol Immunol 2003; 272:287-330. [PMID: 12747554 DOI: 10.1007/978-3-662-05597-7_10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The E1B 55-kDa and E4 Orf6 proteins of human subgroup C adenoviruses both counter host cell defenses mediated by the cellular p53 protein and regulate viral late gene expression. A complex containing the two proteins has been implicated in induction of selective export of viral late mRNAs from the nucleus to the cytoplasm, with concomitant inhibition of export of the majority of newly synthesized cellular mRNAs. The molecular mechanisms by which these viral proteins subvert cellular pathways of nuclear export are not yet clear. Here, we review recent efforts to identify molecular and biochemical functions of the E1B 55-kDa and E4 Orf6 proteins required for regulation of mRNA export, the several difficulties and discrepancies that have been encountered in studies of these viral proteins, and evidence indicating that the reorganization of the infected cell nucleus and production of viral late mRNA at specific intra-nuclear sites are important determinants of selective mRNA export in infected cells. In our view, it is not yet possible to propose a coherent molecular model for regulation of mRNA export by the E1B 55-kDa and E4 Orf6 proteins. However, it should now be possible to address specific questions about the roles of potentially relevant properties of these viral proteins.
Collapse
Affiliation(s)
- S J Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08844, USA.
| | | |
Collapse
|
21
|
Gonzalez RA, Flint SJ. Effects of mutations in the adenoviral E1B 55-kilodalton protein coding sequence on viral late mRNA metabolism. J Virol 2002; 76:4507-19. [PMID: 11932416 PMCID: PMC155063 DOI: 10.1128/jvi.76.9.4507-4519.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2001] [Accepted: 01/30/2002] [Indexed: 11/20/2022] Open
Abstract
The human subgroup C adenoviral E1B 55-kDa protein cooperates with the viral E4 Orf6 protein to induce selective export of viral, late mRNAs from the nucleus to the cytoplasm. Previous studies have suggested that such preferential transport of viral mRNA and the concomitant inhibition of export of cellular mRNAs are the result of viral colonization of specialized microenvironments within the nucleus. However, neither the molecular basis of this phenomenon nor the mechanism by which the E1B 55-kDa protein acts has been elucidated. We therefore examined viral late mRNA metabolism in HeLa cells infected with a series of mutant viruses that carry insertions at various positions in the E1B protein coding sequence (P. R. Yew, C. C. Kao, and A. J. Berk, Virology 179:795-805, 1990). All the mutations examined impaired cytoplasmic accumulation of viral L2 mRNAs and reduced L2 mRNA export efficiency. However, in most cases these defects could be ascribed to reduced E1B 55-kDa protein concentration or the unexpected failure of the altered E1B proteins to enter the nucleus efficiently. The latter property, the pleiotropic defects associated with all the mutations that impaired nuclear entry of the E1B protein, and consideration of its primary sequence suggest that these insertions result in misfolding of the protein. Insertion of four amino acids at residue 143 also inhibited viral mRNA export but resulted in increased rather than decreased accumulation of the E1B 55-kDa protein in the nucleus. This mutation specifically impaired the previously described association of the E1B protein with intranuclear structures that correspond to sites of adenoviral DNA replication and transcription (D. Ornelles and T. Shenk, J. Virol. 65:424-439, 1991) and the colocalization of the E1B and E4 Orf6 proteins. As this insertion has been shown to inhibit the interaction of the E1B with the E4 Orf6 protein in infected cell extracts (S. Rubenwolf, H. Schütt, M. Nevels, H. Wolf, and T. Dobner, J. Virol. 71:1115-1123, 1997), these phenotypes provide direct support for the hypothesis that selective viral mRNA export is determined by the functional organization of the infected cell nucleus.
Collapse
Affiliation(s)
- Ramon A Gonzalez
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
22
|
Affiliation(s)
- T Dobner
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | |
Collapse
|
23
|
Mouw MB, Pintel DJ. Adeno-associated virus RNAs appear in a temporal order and their splicing is stimulated during coinfection with adenovirus. J Virol 2000; 74:9878-88. [PMID: 11024114 PMCID: PMC102024 DOI: 10.1128/jvi.74.21.9878-9888.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used a quantitative RNase protection assay to characterize the relative accumulation and abundance of individual adeno-associated virus type 2 (AAV) RNAs throughout the course of AAV-adenovirus coinfections and preinfections. We have demonstrated that there is a previously unrecognized temporal order to the appearance of AAV RNAs. First, unspliced P5-generated transcripts, which encode Rep78, were detectable prior to the significant accumulation of other AAV RNAs. Ultimately, as previously demonstrated, P19-generated products accumulated to levels greater than those generated from P5, and P40-generated transcripts predominated in the total RNA pool. Second, the percentage of each class of AAV RNA that was spliced increased during infection, and the degree of this increase was different for the P5/P19 products than for those generated by P40. At late times postcoinfection, approximately 90% of P40 products, but only approximately 50% of RNAs generated by P5 and P19, were seen to be spliced; thus, the AAV intron was removed to different final levels from these different RNA species. We have shown that each of the AAV RNAs is quite stable; the majority of each RNA species persisted 6 h after treatment with actinomycin D. Quantification of the accumulation of individual AAV RNAs, over intervals during which degradation was negligible, allowed us to infer that at late times during infection the relative strength of P5, P19, and P40 was approximately 1:3:18, respectively, consistent with the steady-state accumulated levels of the RNAs generated by each promoter. All AAV RNAs exited to the cytoplasm with similar efficiencies in the presence or absence of adenovirus; however, adenovirus coinfection appeared to stimulate total splicing of AAV RNAs and the relative use of the downstream intron acceptor. Our results confirm and extend previous observations concerning the appearance and processing of AAV-generated RNAs.
Collapse
Affiliation(s)
- M B Mouw
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | |
Collapse
|
24
|
Krätzer F, Rosorius O, Heger P, Hirschmann N, Dobner T, Hauber J, Stauber RH. The adenovirus type 5 E1B-55K oncoprotein is a highly active shuttle protein and shuttling is independent of E4orf6, p53 and Mdm2. Oncogene 2000; 19:850-7. [PMID: 10702793 DOI: 10.1038/sj.onc.1203395] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/1999] [Revised: 12/06/1999] [Accepted: 12/08/1999] [Indexed: 11/09/2022]
Abstract
The E1B-55K and E4orf6 oncoproteins of adenovirus type 5 are involved in the export of viral mRNAs. Previously, it was suggested that a complex composed of E1B-55K and E4orf6 serves as a nucleocytoplasmic transporter for viral mRNAs in which the E4orf6 protein directs both nuclear import and export. We now demonstrate that the E1B-55K protein itself shuttles efficiently in the absence of E4orf6. In addition, E1B-55K trafficking was independent of the defined shuttle proteins Mdm2 or p53, which interacts with E1B-55K. The identified N-terminal E1B-55K leucine-rich nuclear-export signal (NES) conferred rapid nuclear export even in a heterologous system in contrast to the postulated E4orf6NES. Interestingly, although shuttling was blocked by inhibitors of the CRM1 mediated export pathway, E1B-55K inhibited neither the activity nor the trafficking of the retroviral shuttle proteins HIV-1 Rev and HTLV-1 Rex. In contrast, Rev or Rex blocked the nuclear export of E1B-55K, most likely by competing for essential export factors. Our results provide new insights into the regulation of the adenovirus mRNA export system and the processes of adenovirus mediated transformation. Oncogene (2000) 19, 850 - 857.
Collapse
Affiliation(s)
- F Krätzer
- Institute for Clinical and Molecular Virology, University of Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Weigel S, Dobbelstein M. The nuclear export signal within the E4orf6 protein of adenovirus type 5 supports virus replication and cytoplasmic accumulation of viral mRNA. J Virol 2000; 74:764-72. [PMID: 10623738 PMCID: PMC111596 DOI: 10.1128/jvi.74.2.764-772.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the late phase of adenovirus infection, viral mRNA is efficiently transported from the nucleus to the cytoplasm while most cellular mRNA species are retained in the nucleus. Two viral proteins, E1B-55 kDa and E4orf6, are both necessary for these effects. The E4orf6 protein of adenovirus type 5 binds and relocalizes E1B-55 kDa, and the complex of the two proteins was previously shown to shuttle continuously between the nucleus and cytoplasm. Nucleocytoplasmic transport of the complex is achieved by a nuclear export signal (NES) within E4orf6. Mutation of this signal sequence severely reduces the ability of the E1B-55 kDa-E4orf6 complex to leave the nucleus. Here, we examined the role of functional domains within E4orf6 during virus infection. E4orf6 or mutants derived from it were transiently expressed, followed by infection with recombinant adenovirus lacking the E4 region and determination of virus yield. An arginine-rich putative alpha helix near the carboxy terminus of E4orf6 contributes to E1B-55 kDa binding and relocalization as well as to the synthesis of viral DNA, mRNA, and proteins. Further mutational analysis revealed that mutation of the NES within E4orf6 considerably reduces its ability to support virus production. The same effect was observed when nuclear export was blocked with a competitor. Further, a functional NES within E4orf6 contributed to the efficiency of late virus protein synthesis and viral DNA replication, as well as total and cytoplasmic accumulation of viral late mRNA. Our data support the view that NES-mediated nucleocytoplasmic shuttling strongly enhances most, if not all, intracellular activities of E4orf6 during the late phase of adenovirus infection.
Collapse
Affiliation(s)
- S Weigel
- Institut für Virologie, Zentrum für Mikrobiologie und Hygiene, Philipps-Universität Marburg, 35037 Marburg, Germany
| | | |
Collapse
|
26
|
Goodrum FD, Ornelles DA. Roles for the E4 orf6, orf3, and E1B 55-kilodalton proteins in cell cycle-independent adenovirus replication. J Virol 1999; 73:7474-88. [PMID: 10438837 PMCID: PMC104274 DOI: 10.1128/jvi.73.9.7474-7488.1999] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenoviruses bearing lesions in the E1B 55-kDa protein (E1B 55-kDa) gene are restricted by the cell cycle such that mutant virus growth is most impaired in cells infected during G(1) and least restricted in cells infected during S phase (F. D. Goodrum and D. A. Ornelles, J. Virol. 71:548-561, 1997). A similar defect is reported here for E4 orf6-mutant viruses. An E4 orf3-mutant virus was not restricted for growth by the cell cycle. However, orf3 was required for enhanced growth of an E4 orf6-mutant virus in cells infected during S phase. The cell cycle restriction may be linked to virus-mediated mRNA transport because both E1B 55-kDa- and E4 orf6-mutant viruses are defective at regulating mRNA transport at late times of infection. Accordingly, the cytoplasmic-to-nuclear ratio of late viral mRNA was reduced in G(1) cells infected with the mutant viruses compared to that in G(1) cells infected with the wild-type virus. By contrast, this ratio was equivalent among cells infected during S phase with the wild-type or mutant viruses. Furthermore, cells infected during S phase with the E1B 55-kDa- or E4 orf6-mutant viruses synthesized more late viral protein than did cells infected during G(1). However, the total amount of cytoplasmic late viral mRNA was greater in cells infected during G(1) than in cells infected during S phase with either the wild-type or mutant viruses, indicating that enhanced transport of viral mRNA in cells infected during S phase cannot account for the difference in yields in cells infected during S phase and in cells infected during G(1). Thus, additional factors affect the cell cycle restriction. These results indicate that the E4 orf6 and orf3 proteins, in addition to the E1B 55-kDa protein, may cooperate to promote cell cycle-independent adenovirus growth.
Collapse
Affiliation(s)
- F D Goodrum
- Molecular Genetics Program and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157-1064, USA
| | | |
Collapse
|
27
|
Goodrum FD, Ornelles DA. p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J Virol 1998; 72:9479-90. [PMID: 9811681 PMCID: PMC110444 DOI: 10.1128/jvi.72.12.9479-9490.1998] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of the adenovirus type 5 E1B 55-kDa mutants dl1520 and dl338 to replicate efficiently and independently of the cell cycle, to synthesis viral DNA, and to lyse infected cells did not correlate with the status of p53 in seven cell lines examined. Rather, cell cycle-independent replication and virus-induced cell killing correlated with permissivity to viral replication. This correlation extended to S-phase HeLa cells, which were more susceptible to virus-induced cell killing by the E1B 55-kDa mutant virus than HeLa cells infected during G1. Wild-type p53 had only a modest effect on E1B mutant virus yields in H1299 cells expressing a temperature-sensitive p53 allele. The defect in E1B 55-kDa mutant virus replication resulting from reduced temperature was as much as 10-fold greater than the defect due to p53 function. At 39 degreesC, the E1B 55-kDa mutant viruses produced wild-type yields of virus and replicated independently of the cell cycle. In addition, the E1B 55-kDa mutant viruses directed the synthesis of late viral proteins to levels equivalent to the wild-type virus level at 39 degreesC. We have previously shown that the defect in mutant virus replication can also be overcome by infecting HeLa cells during S phase. Taken together, these results indicate that the capacity of the E1B 55-kDa mutant virus to replicate independently of the cell cycle does not correlate with the status of p53 but is determined by yet unidentified mechanisms. The cold-sensitive nature of the defect of the E1B 55-kDa mutant virus in both late gene expression and cell cycle-independent replication leads us to speculate that these functions of the E1B 55-kDa protein may be linked.
Collapse
Affiliation(s)
- F D Goodrum
- Molecular Genetics Program and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
28
|
Gabler S, Schütt H, Groitl P, Wolf H, Shenk T, Dobner T. E1B 55-kilodalton-associated protein: a cellular protein with RNA-binding activity implicated in nucleocytoplasmic transport of adenovirus and cellular mRNAs. J Virol 1998; 72:7960-71. [PMID: 9733834 PMCID: PMC110131 DOI: 10.1128/jvi.72.10.7960-7971.1998] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/1998] [Accepted: 07/01/1998] [Indexed: 11/20/2022] Open
Abstract
The adenovirus type 5 (Ad5) early 1B 55-kDa protein (E1B-55kDa) is a multifunctional phosphoprotein that regulates viral DNA replication and nucleocytoplasmic RNA transport in lytically infected cells. In addition, E1B-55kDa provides functions required for complete oncogenic transformation of rodent cells in cooperation with the E1A proteins. Using the far-Western technique, we have isolated human genes encoding E1B-55kDa-associated proteins (E1B-APs). The E1B-AP5 gene encodes a novel nuclear RNA-binding protein of the heterogeneous nuclear ribonucleoprotein (hnRNP) family that is highly related to hnRNP-U/SAF-A. Immunoprecipitation experiments indicate that two distinct segments in the 55-kDa polypeptide which partly overlap regions responsible for p53 binding are required for complex formation with E1B-AP5 in Ad-infected cells and that this protein interaction is modulated by the adenovirus E4orf6 protein. Expression of E1B-AP5 efficiently interferes with Ad5 E1A/E1B-mediated transformation of primary rat cells. Furthermore, stable expression of E1B-AP5 in Ad-infected cells overcomes the E1B-dependent inhibition of cytoplasmic host mRNA accumulation. These data suggest that E1B-AP5 might play a role in RNA transport and that this function is modulated by E1B-55kDa in Ad-infected cells.
Collapse
Affiliation(s)
- S Gabler
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, D-93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Leppard KN. Regulated RNA Processing and RNA Transport during Adenovirus Infection. ACTA ACUST UNITED AC 1998. [DOI: 10.1006/smvy.1997.0132] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Huang W, Flint SJ. The tripartite leader sequence of subgroup C adenovirus major late mRNAs can increase the efficiency of mRNA export. J Virol 1998; 72:225-35. [PMID: 9420219 PMCID: PMC109368 DOI: 10.1128/jvi.72.1.225-235.1998] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The subgroup C human adenoviruses induce selective export of newly synthesized viral mRNA from the nucleus to the cytoplasm, with concomitant inhibition of export of the majority of cellular mRNA species. Such posttranscriptional regulation of viral and cellular gene expression in infected cells requires viral E1B and E4 proteins. To facilitate the investigation of parameters that govern selective export in adenovirus-infected cells, we constructed a marked human beta-actin minigene under the control of the glucocorticoid-inducible enhancer-promoter of mouse mammary tumor virus and introduced it into the left end of the adenovirus type 5 (Ad5) genome. Transcription of this reporter gene (designated MA) as well as of a sibling, which differed only in the inclusion of a cDNA copy of the Ad2 major late tripartite leader sequence upstream of beta-actin sequences (termed MtplA), in recombinant virus-infected cells was strictly dependent on the addition of dexamethasone to the medium. When transcription of the MA gene was induced during the late phase of infection, newly synthesized MA RNA entered the cytoplasm. These transcripts, which contain no viral sequences, therefore reproduce the behavior of exceptional cellular mRNA species observed when transcription of their genes is activated during the late phase of infection (U.-C. Yang, W. Huang, and S. J. Flint, J. Virol. 70:4071-4080, 1996). Unexpectedly, however, higher concentrations of newly synthesized RNA accumulated in the cytoplasm when the tripartite leader sequence was present in the reporter RNA, despite equal rates of transcription of the two reporter genes. Examination of the partitioning of both newly synthesized and steady-state populations of MA and MtplA RNAs between nuclear and cytoplasmic compartments indicated that the tripartite leader sequence did not increase RNA stability in the cytoplasm. Comparison of nuclear and cytoplasmic reporter RNA species by Northern blotting, primer extension, and reverse transcription-PCR provided no evidence for altered processing induced by the tripartite leader sequence. We therefore conclude that the tripartite leader sequence, long known to facilitate the translation of mRNAs during the late phase of adenovirus infection, can also modulate mRNA export from the nucleus.
Collapse
MESH Headings
- Actins/genetics
- Adenoviruses, Human/classification
- Adenoviruses, Human/genetics
- Adenoviruses, Human/metabolism
- Animals
- Biological Transport, Active
- Cell Line
- Cell Nucleus/metabolism
- Cell Nucleus/virology
- Chimera/genetics
- Cytoplasm/metabolism
- Cytoplasm/virology
- Gene Expression Regulation, Viral
- Genes, Reporter
- Humans
- Mice
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombination, Genetic
Collapse
Affiliation(s)
- W Huang
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | |
Collapse
|
31
|
Lu H, Reach MD, Minaya E, Young CS. The initiator element of the adenovirus major late promoter has an important role in transcription initiation in vivo. J Virol 1997; 71:102-9. [PMID: 8985328 PMCID: PMC191029 DOI: 10.1128/jvi.71.1.102-109.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previous results showed that the structure and function of the adenovirus major late promoter (MLP) can be analyzed genetically in its correct location, despite its essential role in the viral life cycle. This genetic approach was extended to investigate the in vivo role of the initiator (INR), a transcriptional element that surrounds the start site of transcription. The analysis was designed to investigate if the INR is an alternative basal element to the canonical TATA box of the MLP, its relative importance in the functioning of the promoter, and if its function was affected by upstream activating elements. Accordingly, two different mutations in the INR were created and tested in the genome, either by themselves or together with mutations in the TATA box or one of the two upstream activating elements, the upstream promoter element (UPE) and the inverted CAAT box. The mutant viruses were examined first in one-step growth experiments, and then levels of late mRNA accumulation were measured by primer extension, transcription initiation was assayed in isolated nuclei, and viral DNA accumulation was determined by Southern hybridization. Neither mutation in the INR alone had any discernible phenotypic effects but when coupled to a phenotypically silent mutation in the TATA box gave rise to viruses with growth defects that were attributable to a significantly lowered rate of transcription initiation from the MLP. These results suggest that the INR plays a role in vivo and can act as an alternative basal element in the absence of a functioning TATA box. A virus with mutations in both the INR and the UPE, although viable, likewise had a severe deficiency in transcription, suggesting that the function of the INR is affected by that of the UPE. This contrasts with the previous report that a TATA box-UPE double mutation is not recoverable in virus. In addition, the virus with mutations in both the INR and the inverted CAAT box was phenotypically wild type, unlike the previously described TATA box-CAAT box double mutant, which had a severe transcription deficiency. Taken together, the present and previous genetic results can be interpreted as evidence that in the MLP, the TATA box and the UPE are the more important of the two basal and activating elements, respectively, but that the INR and CAAT can function in transcription initiation. We consider the role of the INR in the formation of the preinitiation complex and speculate on possible protein-protein interactions.
Collapse
Affiliation(s)
- H Lu
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|