1
|
Chakraborty J, Okonta H, Bagalb H, Lee SJ, Fink B, Changanamkandat R, Duggan J. Retroviral gene insertion in breast milk mediated lymphomagenesis. Virology 2008; 377:100-9. [PMID: 18501945 DOI: 10.1016/j.virol.2008.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/27/2008] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
Abstract
We have demonstrated breast milk transmitted MoMuLV-ts1 retrovirus infection and subsequent lymphoma development in offspring of uninfected mothers suckled by infected surrogate mothers. Additionally, we have shown that the lymphoma development occurs as a result of viral gene integration into host genome. A total of 146 pups from Balb/C mice were divided into 5 groups; one control and 4 experimental. All offspring suckled from surrogate infected or control mothers, except one group of infected pups left with their biological mothers. Thirteen of 91 infected pups developed lymphoma. Inverse-PCR, DNA cloning, and quantitative real-time PCR (qRT-PCR) were used to study the virus integration sites (VIS) and alterations in gene expression. VIS were randomly distributed throughout the genome. The majority of insertion sites were found in chromosomes 10, 12 and 13. A total of 209 proviral genomic insertion sites were located with 52 intragenic and 157 intergenic sites. We have identified 29 target genes. Four genes including Tacc3, Aurka, Gfi1 and Ahi1 showed the maximum upregulation of mRNA expression. These four genes can be considered as candidate genes based on their association with cancer. Upregulation of these genes may be involved in this type of lymphoma development. This model provides an important opportunity to gain insight into the relationship of viral gene insertion into host genome and development of lymphoma via natural transmission route such as breast milk.
Collapse
Affiliation(s)
- Joana Chakraborty
- Department of Physiology and Pharmacology, College of Medicine, Health Science Campus, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | | | | | | | | | | | | |
Collapse
|
2
|
Abujamra AL, Spanjaard RA, Akinsheye I, Zhao X, Faller DV, Ghosh SK. Leukemia virus long terminal repeat activates NFkappaB pathway by a TLR3-dependent mechanism. Virology 2005; 345:390-403. [PMID: 16289658 PMCID: PMC3808874 DOI: 10.1016/j.virol.2005.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 08/30/2005] [Accepted: 10/04/2005] [Indexed: 01/04/2023]
Abstract
The long terminal repeat (LTR) region of leukemia viruses plays a critical role in tissue tropism and pathogenic potential of the viruses. We have previously reported that U3-LTR from Moloney murine and feline leukemia viruses (Mo-MuLV and FeLV) upregulates specific cellular genes in trans in an integration-independent way. The U3-LTR region necessary for this action does not encode a protein but instead makes a specific RNA transcript. Because several cellular genes transactivated by the U3-LTR can also be activated by NFkappaB, and because the antiapoptotic and growth promoting activities of NFkappaB have been implicated in leukemogenesis, we investigated whether FeLV U3-LTR can activate NFkappaB signaling. Here, we demonstrate that FeLV U3-LTR indeed upregulates the NFkappaB signaling pathway via activation of Ras-Raf-IkappaB kinase (IKK) and degradation of IkappaB. LTR-mediated transcriptional activation of genes did not require new protein synthesis suggesting an active role of the LTR transcript in the process. Using Toll-like receptor (TLR) deficient HEK293 cells and PKR(-/-) mouse embryo fibroblasts, we further demonstrate that although dsRNA-activated protein kinase R (PKR) is not necessary, TLR3 is required for the activation of NFkappaB by the LTR. Our study thus demonstrates involvement of a TLR3-dependent but PKR-independent dsRNA-mediated signaling pathway for NFkappaB activation and thus provides a new mechanistic explanation of LTR-mediated cellular gene transactivation.
Collapse
Affiliation(s)
- Ana L. Abujamra
- Cancer Research Center, Boston University School of Medicine, Boston, MA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
| | - Remco A. Spanjaard
- Cancer Research Center, Boston University School of Medicine, Boston, MA
- Departments of Otolaryngology and Biochemistry, Boston University School of Medicine, Boston, MA
| | - Idowu Akinsheye
- Cancer Research Center, Boston University School of Medicine, Boston, MA
| | - Xiansi Zhao
- Cancer Research Center, Boston University School of Medicine, Boston, MA
- Departments of Otolaryngology and Biochemistry, Boston University School of Medicine, Boston, MA
| | - Douglas V. Faller
- Cancer Research Center, Boston University School of Medicine, Boston, MA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
| | - Sajal K. Ghosh
- Cancer Research Center, Boston University School of Medicine, Boston, MA
- Address for Correspondence: Sajal K. Ghosh, Ph.D., Cancer Research Center, Boston University School of Medicine, 715 Albany Street, R908, Boston, MA 02118., Phone: (617) 638-5615, Fax: (617) 638-5609.,
| |
Collapse
|
3
|
Rio P, Martinez-Palacio J, Ramirez A, Bueren JA, Segovia JC. Efficient engraftment of in utero transplanted mice with retrovirally transduced hematopoietic stem cells. Gene Ther 2004; 12:358-63. [PMID: 15550924 DOI: 10.1038/sj.gt.3302419] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Using an experimental mouse model, we have investigated the kinetics of hematopoietic reconstitution of recipients transplanted during fetal development with fresh and transduced hematopoietic stem cells (HSCs). Total bone marrow (BM) and purified Lin(-)Sca-1(+) cells, either fresh or transduced ex vivo with enhanced green fluorescent protein (EGFP)-encoding retroviral vectors, were in utero transplanted (IUT) into fetal mice. Data obtained 2 months after transplantation showed a similar proportion of engrafted animals, regardless of the fact that samples were purified or not on HSCs, and subjected or not to ex vivo transduction with retroviral vectors. The transplantation of grafts enriched in HSCs, either fresh or transduced, always improved the levels of donor chimerism of IUT mice in comparison with results obtained in mice transplanted with unpurified BM grafts (6.8 and 7.3% versus 1.15% median values, respectively). Significantly, engrafted recipients that were transplanted with the transduced graft always contained transduced EGFP(+) cells in peripheral blood (around 5% of donor cells were EGFP(+) at 2 months post-transplantation). This proportion was essentially maintained at longer times post-transplantation, as well as in secondary recipients transplanted with the BM of IUT mice. Our study describes for the first time a significant and stable engraftment of unconditioned mice subjected to IUT with HSCs transduced with retroviral vectors.
Collapse
Affiliation(s)
- P Rio
- Hematopoietic Gene Therapy Program, CIEMAT/Marcelino Botín Foundation, Madrid 28040, Spain
| | | | | | | | | |
Collapse
|
4
|
Kim HT, Qiang W, Wong PK, Stoica G. Enhanced proteolysis of IkappaBalpha and IkappaBbeta proteins in astrocytes by Moloney murine leukemia virus (MoMuLV)-ts1 infection: a potential mechanism of NF-kappaB activation. J Neurovirol 2001; 7:466-75. [PMID: 11582519 DOI: 10.1080/135502801753170327] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Moloney murine leukemia virus (MoMuLV)-ts1-mediated neuronal degeneration in mice is likely due to loss of glial support and release of inflammatory cytokines and neurotoxins from surrounding ts1-infected glial cells including astrocytes. NF-kappaB is a transcription factor that participates in the transcriptional activation of a variety of immune and inflammatory genes. We investigated whether ts1 activates NF-kappaB in astrocytes and examined the mechanism(s) responsible for the activation of NF-kappaB by ts1 infection in vitro. Here we present evidence that ts1 infection of astrocytes in vitro activates NF-kappaB by enhanced proteolysis of the NF-kappaB inhibitors, IkappaBalpha and IkappaBbeta. In in vitro studies using protease inhibitors, IkappaBalpha proteolysis in ts1-infected astrocytes was significantly blocked by a specific calpain inhibitor calpeptin but not by MG-132, a specific proteasome inhibitor, whereas rapid IkappaBbeta proteolysis was blocked by MG-132. Furthermore, treatment with MG-132 increased levels of multiubiquitinated IkappaBbeta protein in ts1-infected astrocytes. These results indicate that the calpain proteolysis is a major mechanism of IkappaBalpha proteolysis in ts1-infected astrocytes. Additionally, ts1 infection of astrocytes in vitro increased expression of inducible nitric oxide synthase (iNOS), a NF-kappaB-dependent gene product. Our results suggest that NF-kappaB activation in ts1-infected astrocytes is mediated by enhanced proteolysis of IkappaBalpha and IkappaBbeta through two different proteolytic pathways, the calpain and ubiquitin-proteasome pathways, resulting in increased expression of iNOS, a NF-kappaB-dependent gene.
Collapse
Affiliation(s)
- H T Kim
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
5
|
Guo SP, Wang WL, Zhai YQ, Zhao YL. Expression of nuclear factor-kappa B in hepatocellular carcinoma and its relation with the X protein of hepatitis B virus. World J Gastroenterol 2001; 7:340-4. [PMID: 11819787 PMCID: PMC4688719 DOI: 10.3748/wjg.v7.i3.340] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Revised: 03/13/2001] [Accepted: 03/18/2001] [Indexed: 02/06/2023] Open
Abstract
AIM In this study we investigated the relationship of the X protein of HBV and nuclear factor-kappa B (NF-kappa B) and the expression of NF-kappa B in human hepatocellular carcinoma tissues. METHODS Immunohistochemistry SP method was used to detect the expression of NF-kappa B and the X protein of HBV in human hepatocellular carcinoma tissues of 52 cases. Gene transfection mediated by lipofectamine was used to transfect the eukaryotic expression vector pCDNA3.1-HBX of HBV x gene into human hepatocellular carcinoma cell line HCC-9204 and NF-kappa B was detected. RESULTS NF kappa B was widely expressed in human hepatocellular carcinoma tissues in a total of 52 cases and its expression was related to the X protein of HBV. NF-kappa B was localized both in the cytoplasm and the nuclei of hepatocellular carcinoma cells in 11 cases which were positive for the X protein of HBV while in 41 cases negative for the X protein of HBV, NF-kappa B was only localized in the cytoplasm of hepatocellular carcinoma cells but translocated to the nuclei of hepatocellular carcinoma cells after the eukaryotic expression vector pCDNA3.1-HBX was transfected into HCC-9204 cells. CONCLUSION This study strongly suggests that the nuclear factor NF-kappa B is widely expressed in hepatocellular carcinoma tissues in different styles according to the expression of the X protein of HBV. NF-kappa B is abnormally activated in hepatocellular carcinoma, which is probably related to the X protein of HBV. The X protein of HBV can activate NF-kappa B to translocate into nuclei of hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- S P Guo
- Department of Pathology, Xijing Hospital of the Fourth Military Medical University, Xi'an, China.
| | | | | | | |
Collapse
|
6
|
Abstract
The vertebrate transcription factor NF-kappaB is induced by over 150 different stimuli. Active NF-kappaB, in turn, participates in the control of transcription of over 150 target genes. Because a large variety of bacteria and viruses activate NF-kappaB and because the transcription factor regulates the expression of inflammatory cytokines, chemokines, immunoreceptors, and cell adhesion molecules, NF-kappaB has often been termed a 'central mediator of the human immune response'. This article contains a complete listing of all NF-kappaB inducers and target genes described to date. The collected data argue that NF-kappaB functions more generally as a central regulator of stress responses. In addition, NF-kappaB activation blocks apoptosis in several cell types. Coupling stress responsiveness and anti-apoptotic pathways through the use of a common transcription factor may result in increased cell survival following stress insults.
Collapse
Affiliation(s)
- H L Pahl
- Department of Experimental Anesthesiology, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
7
|
Abstract
The vertebrate transcription factor NF-kappaB is induced by over 150 different stimuli. Active NF-kappaB, in turn, participates in the control of transcription of over 150 target genes. Because a large variety of bacteria and viruses activate NF-kappaB and because the transcription factor regulates the expression of inflammatory cytokines, chemokines, immunoreceptors, and cell adhesion molecules, NF-kappaB has often been termed a 'central mediator of the human immune response'. This article contains a complete listing of all NF-kappaB inducers and target genes described to date. The collected data argue that NF-kappaB functions more generally as a central regulator of stress responses. In addition, NF-kappaB activation blocks apoptosis in several cell types. Coupling stress responsiveness and anti-apoptotic pathways through the use of a common transcription factor may result in increased cell survival following stress insults.
Collapse
Affiliation(s)
- H L Pahl
- Department of Experimental Anesthesiology, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
8
|
Faller DV, Weng H, Graves DT, Choi SY. Moloney murine leukemia virus long terminal repeat activates monocyte chemotactic protein-1 protein expression and chemotactic activity. J Cell Physiol 1997; 172:240-52. [PMID: 9258345 DOI: 10.1002/(sici)1097-4652(199708)172:2<240::aid-jcp11>3.0.co;2-d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Moloney murine leukemia virus (Mo-MuLV) is a thymotropic and leukemogenic retrovirus which causes T lymphomas. Recently, Mo-MuLV has been shown to trans-activate cellular genes. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine which can promote the migration and diapedesis of monocytes and lymphocytes, as well as inducing metastasis of lymphomas. Here we demonstrate that introduction of Mo-MuLV or the MuLV LTR alone, transiently or stably, into Balb/c-3T3 cells or HeLa cells resulted in 9-11 fold increases in MCP-1 transcripts. This trans-activation of the MCP-1 gene by the Mo-MuLV LTR is independent of the physical location of the MCP-1 gene or of the LTR, occurring whether the LTR or the MCP-1 gene is integrated in the genome or transiently expressed. Immunoblot analysis using an anti-MCP-1 polyclonal antibody showed that the expression of the MuLV LTR in HeLa cells also induced the appearance of the MCP-1 protein. Boyden Chamber analysis demonstrated that the MCP-1 chemotactic activity produced by HeLa cells with an integrated MuLV LTR was elevated by 11 fold and that neutralizing antibody to human MCP-1 abrogated monocyte migration in response to MuLV LTR expression. Promoter deletional analysis showed the LTR responsive cis-acting element in the MCP-1 promoter is located between -141 and -88. Deletion of this region abolished the trans-activation of MCP-1 by the LTR. These LTR-mediated activations of a chemotactic and inflammatory cytokine may be relevant as mechanisms whereby retroviruses which do not contain oncogenes can induce neoplasia.
Collapse
Affiliation(s)
- D V Faller
- Cancer Research Center, Boston University School of Medicine, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|