1
|
Kniert J, Lin QF, Shmulevitz M. Captivating Perplexities of Spinareovirinae 5' RNA Caps. Viruses 2021; 13:v13020294. [PMID: 33668598 PMCID: PMC7918360 DOI: 10.3390/v13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
RNAs with methylated cap structures are present throughout multiple domains of life. Given that cap structures play a myriad of important roles beyond translation, such as stability and immune recognition, it is not surprising that viruses have adopted RNA capping processes for their own benefit throughout co-evolution with their hosts. In fact, that RNAs are capped was first discovered in a member of the Spinareovirinae family, Cypovirus, before these findings were translated to other domains of life. This review revisits long-past knowledge and recent studies on RNA capping among members of Spinareovirinae to help elucidate the perplex processes of RNA capping and functions of RNA cap structures during Spinareovirinae infection. The review brings to light the many uncertainties that remain about the precise capping status, enzymes that facilitate specific steps of capping, and the functions of RNA caps during Spinareovirinae replication.
Collapse
|
2
|
Glover KKM, Sutherland DM, Dermody TS, Coombs KM. A Single Point Mutation, Asn 16→Lys, Dictates the Temperature-Sensitivity of the Reovirus tsG453 Mutant. Viruses 2021; 13:v13020289. [PMID: 33673179 PMCID: PMC7917769 DOI: 10.3390/v13020289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Studies of conditionally lethal mutants can help delineate the structure-function relationships of biomolecules. Temperature-sensitive (ts) mammalian reovirus (MRV) mutants were isolated and characterized many years ago. Two of the most well-defined MRV ts mutants are tsC447, which contains mutations in the S2 gene encoding viral core protein σ2, and tsG453, which contains mutations in the S4 gene encoding major outer-capsid protein σ3. Because many MRV ts mutants, including both tsC447 and tsG453, encode multiple amino acid substitutions, the specific amino acid substitutions responsible for the ts phenotype are unknown. We used reverse genetics to recover recombinant reoviruses containing the single amino acid polymorphisms present in ts mutants tsC447 and tsG453 and assessed the recombinant viruses for temperature-sensitivity by efficiency-of-plating assays. Of the three amino acid substitutions in the tsG453 S4 gene, Asn16-Lys was solely responsible for the tsG453ts phenotype. Additionally, the mutant tsC447 Ala188-Val mutation did not induce a temperature-sensitive phenotype. This study is the first to employ reverse genetics to identify the dominant amino acid substitutions responsible for the tsC447 and tsG453 mutations and relate these substitutions to respective phenotypes. Further studies of other MRV ts mutants are warranted to define the sequence polymorphisms responsible for temperature sensitivity.
Collapse
Affiliation(s)
- Kathleen K. M. Glover
- Department of Medical Microbiology and Infectious Diseases, Room 543 Basic Medical Sciences Building, 745 Bannatyne Avenue, University of Manitoba, Winnipeg, MB R3E OJ9, Canada;
| | - Danica M. Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; (D.M.S.); (T.S.D.)
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; (D.M.S.); (T.S.D.)
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, Room 543 Basic Medical Sciences Building, 745 Bannatyne Avenue, University of Manitoba, Winnipeg, MB R3E OJ9, Canada;
- Manitoba Centre for Proteomics and Systems Biology, 715 McDermot Avenue, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Correspondence: ; Tel.: +1-204-789-3976
| |
Collapse
|
3
|
Eichwald C, Ackermann M, Fraefel C. Mammalian orthoreovirus core protein μ2 reorganizes host microtubule-organizing center components. Virology 2020; 549:13-24. [PMID: 32805585 PMCID: PMC7402380 DOI: 10.1016/j.virol.2020.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 10/26/2022]
Abstract
Filamentous mammalian orthoreovirus (MRV) viral factories (VFs) are membrane-less cytosolic inclusions in which virus transcription, replication of dsRNA genome segments, and packaging of virus progeny into newly synthesized virus cores take place. In infected cells, the MRV μ2 protein forms punctae in the enlarged region of the filamentous VFs that are co-localized with γ-tubulin and resistant to nocodazole treatment, and permitted microtubule (MT)-extension, features common to MT-organizing centers (MTOCs). Using a previously established reconstituted VF model, we addressed the functions of MT-components and MTOCs concerning their roles in the formation of filamentous VFs. Indeed, the MTOC markers γ-tubulin and centrin were redistributed within the VF-like structures (VFLS) in a μ2-dependent manner. Moreover, the MT-nucleation centers significantly increased in numbers, and γ-tubulin was pulled-down in a binding assay when co-expressed with histidine-tagged-μ2 and μNS. Thus, μ2, by interaction with γ-tubulin, can modulate MTOCs localization and function according to viral needs.
Collapse
Affiliation(s)
- Catherine Eichwald
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland.
| | - Mathias Ackermann
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland.
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland.
| |
Collapse
|
4
|
Polymorphisms in the Most Oncolytic Reovirus Strain Confer Enhanced Cell Attachment, Transcription, and Single-Step Replication Kinetics. J Virol 2020; 94:JVI.01937-19. [PMID: 31776267 DOI: 10.1128/jvi.01937-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022] Open
Abstract
Reovirus serotype 3 Dearing (T3D) replicates preferentially in transformed cells and is in clinical trials as a cancer therapy. Laboratory strains of T3D, however, exhibit differences in plaque size on cancer cells and differences in oncolytic activity in vivo This study aimed to determine why the most oncolytic T3D reovirus lab strain, the Patrick Lee laboratory strain (T3DPL), replicates more efficiently in cancer cells than other commonly used laboratory strains, the Kevin Coombs laboratory strain (T3DKC) and Terence Dermody laboratory (T3DTD) strain. In single-step growth curves, T3DPL titers increased at higher rates and produced ∼9-fold higher burst size. Furthermore, the number of reovirus antigen-positive cells increased more rapidly for T3DPL than for T3DTD In conclusion, the most oncolytic T3DPL possesses replication advantages in a single round of infection. Two specific mechanisms for enhanced infection by T3DPL were identified. First, T3DPL exhibited higher cell attachment, which was attributed to a higher proportion of virus particles with insufficient (≤3) σ1 cell attachment proteins. Second, T3DPL transcribed RNA at rates superior to those of the less oncolytic T3D strains, which is attributed to polymorphisms in M1-encoding μ2 protein, as confirmed in an in vitro transcription assay, and which thus demonstrates that T3DPL has an inherent transcription advantage that is cell type independent. Accordingly, T3DPL established rapid onset of viral RNA and protein synthesis, leading to more rapid kinetics of progeny virus production, larger virus burst size, and higher levels of cell death. Together, these results emphasize the importance of paying close attention to genomic divergence between virus laboratory strains and, mechanistically, reveal the importance of the rapid onset of infection for reovirus oncolysis.IMPORTANCE Reovirus serotype 3 Dearing (T3D) is in clinical trials for cancer therapy. Recently, it was discovered that highly related laboratory strains of T3D exhibit large differences in their abilities to replicate in cancer cells in vitro, which correlates with oncolytic activity in a murine model of melanoma. The current study reveals two mechanisms for the enhanced efficiency of T3DPL in cancer cells. Due to polymorphisms in two viral genes, within the first round of reovirus infection, T3DPL binds to cells more efficiency and more rapidly produces viral RNAs; this increased rate of infection relative to that of the less oncolytic strains gives T3DPL a strong inherent advantage that culminates in higher virus production, more cell death, and higher virus spread.
Collapse
|
5
|
Lemay G. Synthesis and Translation of Viral mRNA in Reovirus-Infected Cells: Progress and Remaining Questions. Viruses 2018; 10:E671. [PMID: 30486370 PMCID: PMC6315682 DOI: 10.3390/v10120671] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022] Open
Abstract
At the end of my doctoral studies, in 1988, I published a review article on the major steps of transcription and translation during the mammalian reovirus multiplication cycle, a topic that still fascinates me 30 years later. It is in the nature of scientific research to generate further questioning as new knowledge emerges. Our understanding of these fascinating viruses thus remains incomplete but it seemed appropriate at this moment to look back and reflect on our progress and most important questions that still puzzle us. It is also essential of being careful about concepts that seem so well established, but could still be better validated using new approaches. I hope that the few reflections presented here will stimulate discussions and maybe attract new investigators into the field of reovirus research. Many other aspects of the viral multiplication cycle would merit our attention. However, I will essentially limit my discussion to these central aspects of the viral cycle that are transcription of viral genes and their phenotypic expression through the host cell translational machinery. The objective here is not to review every aspect but to put more emphasis on important progress and challenges in the field.
Collapse
Affiliation(s)
- Guy Lemay
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
6
|
Eichwald C, Kim J, Nibert ML. Dissection of mammalian orthoreovirus µ2 reveals a self-associative domain required for binding to microtubules but not to factory matrix protein µNS. PLoS One 2017; 12:e0184356. [PMID: 28880890 PMCID: PMC5589220 DOI: 10.1371/journal.pone.0184356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/22/2017] [Indexed: 12/25/2022] Open
Abstract
Mammalian orthoreovirus protein μ2 is a component of the viral core particle. Its activities include RNA binding and hydrolysis of the γ-phosphate from NTPs and RNA 5´-termini, suggesting roles as a cofactor for the viral RNA-dependent RNA polymerase, λ3, first enzyme in 5´-capping of viral plus-strand RNAs, and/or prohibitory of RNA-5´-triphosphate-activated antiviral signaling. Within infected cells, μ2 also contributes to viral factories, cytoplasmic structures in which genome replication and particle assembly occur. By associating with both microtubules (MTs) and viral factory matrix protein μNS, μ2 can anchor the factories to MTs, the full effects of which remain unknown. In this study, a protease-hypersensitive region allowed μ2 to be dissected into two large fragments corresponding to residues 1-282 and 283-736. Fusions with enhanced green fluorescent protein revealed that these amino- and carboxyl-terminal regions of μ2 associate in cells with either MTs or μNS, respectively. More exhaustive deletion analysis defined μ2 residues 1-325 as the minimal contiguous region that associates with MTs in the absence of the self-associating tag. A region involved in μ2 self-association was mapped to residues 283-325, and self-association involving this region was essential for MT-association as well. Likewise, we mapped that μNS-binding site in μ2 relates to residues 290-453 which is independent of μ2 self-association. These findings suggest that μ2 monomers or oligomers can bind to MTs and μNS, but that self-association involving μ2 residues 283-325 is specifically relevant for MT-association during viral factories formation.
Collapse
Affiliation(s)
- Catherine Eichwald
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Institute of Virology, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Jonghwa Kim
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Laboratory of Gastroenterology, Samsung Medical Center, Seoul, Republic of Korea
| | - Max L. Nibert
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Reovirus replication protein μ2 influences cell tropism by promoting particle assembly within viral inclusions. J Virol 2012; 86:10979-87. [PMID: 22837214 DOI: 10.1128/jvi.01172-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The double-stranded RNA virus mammalian reovirus displays broad cell, tissue, and host tropism. A critical checkpoint in the reovirus replication cycle resides within viral cytoplasmic inclusions, which are biosynthetic centers of genome multiplication and new-particle assembly. Replication of strain type 3 Dearing (T3) is arrested in Madin-Darby canine kidney (MDCK) cells at a step subsequent to inclusion development and prior to formation of genomic double-stranded RNA. This phenotype is primarily regulated by viral replication protein μ2. To understand how reovirus inclusions differ in productively and abortively infected MDCK cells, we used confocal immunofluorescence and thin-section transmission electron microscopy (TEM) to probe inclusion organization and particle morphogenesis. Although no abnormalities in inclusion morphology or viral protein localization were observed in T3-infected MDCK cells using confocal microscopy, TEM revealed markedly diminished production of mature progeny virions. T3 inclusions were less frequent and smaller than those formed by T3-T1M1, a productively replicating reovirus strain, and contained decreased numbers of complete particles. T3 replication was enhanced when cells were cultivated at 31°C, and inclusion ultrastructure at low-temperature infection more closely resembled that of a productive infection. These results indicate that particle assembly in T3-infected MDCK cells is defective, possibly due to a temperature-sensitive structural or functional property of μ2. Thus, reovirus cell tropism can be governed by interactions between viral replication proteins and the unique cell environment that modulate efficiency of particle assembly.
Collapse
|
8
|
Assembly of Large Icosahedral Double-Stranded RNA Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:379-402. [DOI: 10.1007/978-1-4614-0980-9_17] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Cai L, Sun X, Shao L, Fang Q. Functional investigation of grass carp reovirus nonstructural protein NS80. Virol J 2011; 8:168. [PMID: 21489306 PMCID: PMC3101161 DOI: 10.1186/1743-422x-8-168] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 04/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Grass Carp Reovirus (GCRV), a highly virulent agent of aquatic animals, has an eleven segmented dsRNA genome encased in a multilayered capsid shell, which encodes twelve proteins including seven structural proteins (VP1-VP7), and five nonstructural proteins (NS80, NS38, NS31, NS26, and NS16). It has been suggested that the protein NS80 plays an important role in the viral replication cycle that is similar to that of its homologous protein μNS in the genus of Orthoreovirus. RESULTS As a step to understanding the basis of the part played by NS80 in GCRV replication and particle assembly, we used the yeast two-hybrid (Y2H) system to identify NS80 interactions with proteins NS38, VP4, and VP6 as well as NS80 and NS38 self-interactions, while no interactions appeared in the four protein pairs NS38-VP4, NS38-VP6, VP4-VP4, and VP4-VP6. Bioinformatic analyses of NS80 with its corresponding proteins were performed with all currently available homologous protein sequences in ARVs (avian reoviruses) and MRVs (mammalian reoviruses) to predict further potential functional domains of NS80 that are related to VFLS (viral factory-like structures) formation and other roles in viral replication. Two conserved regions spanning from aa (amino acid) residues of 388 to 433, and 562 to 580 were discovered in this study. The second conserved region with corresponding conserved residues Tyr565, His569, Cys571, Asn573, and Glu576 located between the two coiled-coils regions (aa ~513-550 and aa ~615-690) in carboxyl-proximal terminus were supposed to be essential to form VFLS, so that aa residues ranging from 513 to 742 of NS80 was inferred to be the smallest region that is necessary for forming VFLS. The function of the first conserved region including Ala395, Gly419, Asp421, Pro422, Leu438, and Leu443 residues is unclear, but one-third of the amino-terminal region might be species specific, dominating interactions with other viral components. CONCLUSIONS Our results in this study together with those from previous investigations indicate the protein NS80 might play a central role in VFLS formation and viral components recruitment in GCRV particle assembly, similar to the μNS protein in ARVs and MRVs.
Collapse
Affiliation(s)
- Lin Cai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | |
Collapse
|
10
|
Ooms LS, Kobayashi T, Dermody TS, Chappell JD. A post-entry step in the mammalian orthoreovirus replication cycle is a determinant of cell tropism. J Biol Chem 2010; 285:41604-13. [PMID: 20978124 DOI: 10.1074/jbc.m110.176255] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian reoviruses replicate in a broad range of hosts, cells, and tissues. These viruses display strain-dependent variation in tropism for different types of cells in vivo and ex vivo. Early steps in the reovirus life cycle, attachment, entry, and disassembly, have been identified as pivotal points of virus-cell interaction that determine the fate of infection, either productive or abortive. However, in studies of the differential capacity of reovirus strains type 1 Lang and type 3 Dearing to replicate in Madin-Darby canine kidney (MDCK) cells, we found that replication efficiency is regulated at a late point in the viral life cycle following primary transcription and translation. Results of genetic studies using recombinant virus strains show that reovirus tropism for MDCK cells is primarily regulated by replication protein μ2 and further influenced by the viral RNA-dependent RNA polymerase protein, λ3, depending on the viral genetic background. Furthermore, μ2 residue 347 is a critical determinant of replication efficiency in MDCK cells. These findings indicate that components of the reovirus replication complex are mediators of cell-selective viral replication capacity at a post-entry step. Thus, reovirus cell tropism may be determined at early and late points in the viral replication program.
Collapse
Affiliation(s)
- Laura S Ooms
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
11
|
Broome virus, a new fusogenic Orthoreovirus species isolated from an Australian fruit bat. Virology 2010; 402:26-40. [PMID: 20350736 DOI: 10.1016/j.virol.2009.11.048] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/16/2009] [Accepted: 11/26/2009] [Indexed: 11/22/2022]
Abstract
This report describes the discovery and characterization of a new fusogenic orthoreovirus, Broome virus (BroV), isolated from a little red flying-fox (Pteropus scapulatus). The BroV genome consists of 10 dsRNA segments, each having a 3' terminal pentanucleotide sequence conserved amongst all members of the genus Orthoreovirus, and a unique 5' terminal pentanucleotide sequence. The smallest genome segment is bicistronic and encodes two small nonstructural proteins, one of which is a novel fusion associated small transmembrane (FAST) protein responsible for syncytium formation, but no cell attachment protein. The low amino acid sequence identity between BroV proteins and those of other orthoreoviruses (13-50%), combined with phylogenetic analyses of structural and nonstructural proteins provide evidence to support the classification of BroV in a new sixth species group within the genus Orthoreovirus.
Collapse
|
12
|
Identification of functional domains in reovirus replication proteins muNS and mu2. J Virol 2009; 83:2892-906. [PMID: 19176625 DOI: 10.1128/jvi.01495-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mammalian reoviruses are nonenveloped particles containing a genome of 10 double-stranded RNA (dsRNA) gene segments. Reovirus replication occurs within viral inclusions, which are specialized nonmembranous cytoplasmic organelles formed by viral nonstructural and structural proteins. Although these structures serve as sites for several major events in the reovirus life cycle, including dsRNA synthesis, gene segment assortment, and genome encapsidation, biochemical mechanisms of virion morphogenesis within inclusions have not been elucidated because much remains unknown about inclusion anatomy and functional organization. To better understand how inclusions support viral replication, we have used RNA interference (RNAi) and reverse genetics to define functional domains in two inclusion-associated proteins, muNS and mu2, which are interacting partners essential for inclusion development and viral replication. Removal of muNS N-terminal sequences required for association with mu2 or another muNS-binding protein, sigmaNS, prevented the capacity of muNS to support viral replication without affecting inclusion formation, indicating that muNS-mu2 and muNS-sigmaNS interactions are necessary for inclusion function but not establishment. In contrast, introduction of changes into the muNS C-terminal region, including sequences that form a putative oligomerization domain, precluded inclusion formation as well as viral replication. Mutational analysis of mu2 revealed a critical dependence of viral replication on an intact nucleotide/RNA triphosphatase domain and an N-terminal cluster of basic amino acid residues conforming to a nuclear localization motif. Another domain in mu2 governs the capacity of viral inclusions to affiliate with microtubules and thereby modulates inclusion morphology, either globular or filamentous. However, viral variants altered in inclusion morphology displayed equivalent replication efficiency. These studies reveal a modular functional organization of inclusion proteins muNS and mu2, define the importance of specific amino acid sequences and motifs in these proteins for viral replication, and demonstrate the utility of complementary RNAi-based and reverse genetic approaches for studies of reovirus replication proteins.
Collapse
|
13
|
Carvalho J, Arnold MM, Nibert ML. Silencing and complementation of reovirus core protein mu2: functional correlations with mu2-microtubule association and differences between virus- and plasmid-derived mu2. Virology 2007; 364:301-16. [PMID: 17451769 PMCID: PMC2486448 DOI: 10.1016/j.virol.2007.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 11/28/2006] [Accepted: 03/15/2007] [Indexed: 10/23/2022]
Abstract
A low-copy component of mammalian reovirus particles is mu2, an 83-kDa protein encoded by the M1 viral genome segment and packaged within the viral core. Previous studies have identified mu2 as a nucleoside triphosphate phosphohydrolase (NTPase) as well as an RNA 5'-triphosphate phosphohydrolase (RTPase), putatively involved in reovirus RNA synthesis and/or 5'-capping. Other studies have identified mu2 as a microtubule-binding protein, which also associates with the viral factory matrix protein muNS and thereby anchors the factories to cellular microtubules during infections by most reovirus strains. To extend studies of mu2 functions during infection, we tested a small interfering RNA (siRNA) directed against the M1 plus-strand RNAs of reovirus strains Type 1 Lang (T1L) and Type 3 Dearing (T3D). The siRNA strongly suppressed mu2 expression by either strain and reduced infectious yields in a strain-dependent manner. This first strain difference was genetically mapped to the M1 genome segment and tentatively assigned to a single mu2 sequence polymorphism, Pro/Ser208, which also determines a T1L-T3D strain difference in microtubule association. The siRNA-based defect in mu2 expression was rescued by plasmids, containing silent mutations in the siRNA-targeted sequence, which encoded either T1L or T3D mu2, but the growth defect was rescued only by T1L mu2. This second strain difference was also mapped to Pro/Ser208, in that swapping this one residue between T1L and T3D mu2 reversed the rescue phenotypes. Thus, the T1L-T3D strain difference in mu2-microtubule association was correlated not only with the extent of reduction in infectious yields by the siRNA but also with the extent of rescue by plasmid-derived mu2. In addition, the rescue capacity of T1L mu2 was abrogated by nocodazole treatment, providing independent evidence for the importance of mu2-microtubule association in plasmid-based rescue. In two separate cases, the results revealed functional differences between virus- and plasmid-derived mu2. Ala substitutions within the NTP-binding motif of T1L mu2 also abrogated its rescue capacity, suggesting that the NTPase or RTPase activity of mu2 is additionally required for effective viral growth.
Collapse
Affiliation(s)
- John Carvalho
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115 USA
| | - Michelle M. Arnold
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115 USA
- Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, Massachusetts 02115 USA
| | - Max L. Nibert
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115 USA
- Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, Massachusetts 02115 USA
- * Corresponding author. Dept. of Microbiology and Molecular Genetics, 200 Longwood Ave., Boston, MA 02115, USA., Fax: +1 617 738-7664. E-mail address: (M.L. Nibert)
| |
Collapse
|
14
|
Zhang Y, Guo D, Geng H, Liu M, Hu Q, Wang J, Tong G, Kong X, Liu N, Liu C. Characterization of M-class genome segments of muscovy duck reovirus S14. Virus Res 2007; 125:42-53. [PMID: 17218035 DOI: 10.1016/j.virusres.2006.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/07/2006] [Accepted: 12/08/2006] [Indexed: 11/26/2022]
Abstract
This report documents the first sequence analysis of the entire M1, M2, and M3 genome segments of the muscovy duck reovirus (DRV) S14. The complete sequence of each of the three M gene segments was determined. The M1 genome segment was 2283 nucleotides in length and was predicted to encode muA protein of 732 residues. The Escherichia coli expressed M1 transcripts generated a 108kDa protein, as expected for muA. A cleavage product of muA, muA1, could be detected by Western blotting with duck anti-reovirus and mouse anti-muA polyclonal serum. muA was distributed diffusely in the cytoplasma and nucleus of transfected Vero cells, which provides evidence that muA might be functional related to the mammalian reovirus (MRV) mu2. The M2 gene was 2155 nucleotides in length and was predicted to encode muB major outer capsid protein of 676 amino acids. The M3 genome segment was 1996 nucleotides in length and was predicted to encode a muNS protein of 635 amino acids. It was unexpectedly found that 5'-termini of the M1 and M2 genes ended with 5'-ACUUUU and 5'-UCUUUU, respectively, instead of 5'-GCUUUU, which is present on most mRNAs of other avian reoviruses (ARV). The UCAUC 3'-terminal sequences of the S14 M1, M2, and M3 genome segments are shared by DRV, ARV, and MRV. Alignment of the DRV muA-, muB-, and muNS-encoding genes with ARV revealed 72.9-73.9%, 67.1-69.6%, and 69.4-70.8% nucleotide identity, respectively. The amino acid sequence homology between DRV and ARV ranged from 85.3 to 86.2% (muA), 75.0 to 76.5% (muB), and 78.4 to 79.8% (muNS). Phylogenetic analyses of the M1, M2, M3, and S-class [Kuntz-Simon, G., Le Gall-Recule, G., de Boisseson, C., Jestin, V., 2002. Muscovy duck reovirus sigmaC protein is a typically encoded by the smallest genome segment. J. Gen. Virol. 83, 1189-1200; Zhang, Y., Liu, M., Hu, Q.L., Ouyang, S.D., Tong, G.Z., 2006a. Characterization of the sigmaC-encoding gene from muscovy duck reovirus. Virus Genes 36, 169-174; Zhang, Y., Liu, M., Ouyan, S.D., Hu, Q.L., Guo, D.C., Han, Z., 2006b. Detection and identification of avian, duck, and goose reoviruses by RT-PCR: goose and duck reoviruses aggregated the same specified genogroup in Orthoreovirus Genus II. Arch. Virol. 151, 1525-1538] genome segments suggests that DRV and ARV share a recent common ancestor and that the two lineages have subsequently undergone host dependent evolution.
Collapse
Affiliation(s)
- Yun Zhang
- Avian Infectious Disease Division of National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kobayashi T, Chappell JD, Danthi P, Dermody TS. Gene-specific inhibition of reovirus replication by RNA interference. J Virol 2006; 80:9053-63. [PMID: 16940517 PMCID: PMC1563907 DOI: 10.1128/jvi.00276-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 07/03/2006] [Indexed: 01/26/2023] Open
Abstract
Mammalian reoviruses contain a genome of 10 segments of double-stranded RNA (dsRNA). Reovirus replication and assembly occur within distinct structures called viral inclusions, which form in the cytoplasm of infected cells. Viral nonstructural proteins muNS and sigmaNS and core protein mu2 play key roles in forming viral inclusions and recruiting other viral proteins and RNA to these structures for replication and assembly. However, the precise functions of these proteins in viral replication are poorly defined. Therefore, to better understand the functions of reovirus proteins associated with formation of viral inclusions, we used plasmid-based vectors to establish 293T cell lines stably expressing small interfering RNAs (siRNAs) specific for transcripts encoding the mu2, muNS, and sigmaNS proteins of strain type 3 Dearing (T3D). Infectivity assays revealed that yields of T3D, but not those of strain type 1 Lang, were significantly decreased in 293T cells stably expressing mu2, muNS, or sigmaNS siRNA. Stable expression of siRNAs specific for any one of these proteins substantially diminished viral dsRNA, protein synthesis, and inclusion formation, indicating that each is a critical component of the viral replication machinery. Using cell lines stably expressing muNS siRNA, we developed a complementation system to rescue viral replication by transient transfection with recombinant T3D muNS in which silent mutations were introduced into the sequence targeted by the muNS siRNA. Furthermore, we demonstrated that muNSC, which lacks the first 40 amino residues of muNS, is incapable of restoring reovirus growth in the complementation system. These results reveal interdependent functions for viral inclusion proteins and indicate that cell lines stably expressing reovirus siRNAs are useful tools for the study of viral protein structure-function relationships.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Department of Pediatrics, and Lamb Center for Pediatric Research (D7235 MCN), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
16
|
Burgener A, Coombs K, Butler M. Intracellular ATP and total adenylate concentrations are critical predictors of reovirus productivity from Vero cells. Biotechnol Bioeng 2006; 94:667-79. [PMID: 16570315 DOI: 10.1002/bit.20873] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The productivity of reovirus type-3 Dearing was studied in cultures of Vero cells in serum-free media. Viral productivity was dependent upon the metabolic state of the cells rather than the phase of growth at which the cells were infected. Cells at different energy states were established by 24-h incubation in nutrient-depleted media. This resulted in variable intracellular nucleotide concentrations but high cellular viability was maintained. Of the nucleotides analyzed at the time of infection only the intracellular [ATP] and total adenylate nucleotides were positively correlated with viral productivity. The correlated data followed a sigmoidal plot with an equation defined by polynomial regression analysis. Apparent threshold values of 3.2 fmol/cell and 3.3 fmol/cell were established for ATP and total adenylate, respectively, at which the viral production was 50% the maximal value. Cultures with lower ATP and total adenylate levels at the time of infection resulted in as much as a 95% reduction in overall viral titer compared to the control. The adenylate energy charge (AEC) showed a negative correlation with viral production with an AEC value >0.97 resulting in low virus productivity. Intracellular ATP or total adenylate concentration at the point of infection may be used as a predictor of viral yield in bioprocesses designed for virus/vaccine production.
Collapse
Affiliation(s)
- A Burgener
- Department of Microbiology, Buller Bldg., University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | |
Collapse
|
17
|
Xu W, Tran AT, Patrick MK, Coombs KM. Assignment of avian reovirus temperature-sensitive mutant recombination groups B, C, and D to genome segments. Virology 2005; 338:227-35. [PMID: 15955543 DOI: 10.1016/j.virol.2005.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 03/25/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
We recently generated a new set of avian orthoreovirus (ARV) temperature-sensitive (ts) mutants after chemical mutagenesis of wild-type strain ARV138 and described mutants in the A recombination group. Here, each prototype ts mutant from ARV recombination groups B, C, and D was crossed with wild-type ARV strain 176 to generate reassortant clones that were used to map the ts lesions in the respective mutants. Reassortant clones were identified by comparison of segment mobility to parental markers in polyacrylamide gels. An efficiency of plating (EOP) value, which measures the capacity of a virus clone to grow under non-permissive conditions, was used to assign reassortant clones to either a ts group or non-ts group. Analysis of EOP values and parental origin of genome segments in the reassortant clones revealed that the group B lesion in tsB31 was located on the M2 genome segment; the group C lesion in tsC37 was on the S3 genome segment; and the group D lesion in tsD46 was on the L2 genome segment. The assignments of tsB31 and tsC37 were further confirmed by sequence analysis and amino acid substitutions in the corresponding muB and sigmaB proteins localized within the recently determined homologous mammalian reovirus mu1/sigma3 heterohexameric crystal structure.
Collapse
Affiliation(s)
- Wanhong Xu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
18
|
Miller CL, Parker JSL, Dinoso JB, Piggott CDS, Perron MJ, Nibert ML. Increased ubiquitination and other covariant phenotypes attributed to a strain- and temperature-dependent defect of reovirus core protein mu2. J Virol 2004; 78:10291-302. [PMID: 15367595 PMCID: PMC516405 DOI: 10.1128/jvi.78.19.10291-10302.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reovirus replication and assembly are thought to occur within cytoplasmic inclusion bodies, which we call viral factories. A strain-dependent difference in the morphology of these structures reflects more effective microtubule association by the mu2 core proteins of some viral strains, which form filamentous factories, than by those of others, which form globular factories. For this report, we identified and characterized another strain-dependent attribute of the factories, namely, the extent to which they colocalized with conjugated ubiquitin (cUb). Among 16 laboratory strains and field isolates, the extent of factory costaining for cUb paralleled factory morphology, with globular strains exhibiting higher levels by far. In reassortant viruses, factory costaining for cUb mapped primarily to the mu2-encoding M1 genome segment, although contributions by the lambda3- and lambda2-encoding L1 and L2 genome segments were also evident. Immunoprecipitations revealed that cells infected with globular strains contained higher levels of ubiquitinated mu2 (Ub-mu2). In M1-transfected cells, cUb commonly colocalized with aggregates formed by mu2 from globular strains but not with microtubules coated by mu2 from filamentous strains, and immunoprecipitations revealed that mu2 from globular strains displayed higher levels of Ub-mu2. Allelic changes at mu2 residue 208 determined these differences. Nocodazole treatment of cells infected with filamentous strains resulted in globular factories that still showed low levels of costaining for cUb, indicating that higher levels of costaining were not a direct result of decreased microtubule association. The factories of globular strains, or their mu2 proteins expressed in transfected cells, were furthermore shown to gain microtubule association and to lose colocalization with cUb when cells were grown at reduced temperature. From the sum of these findings, we propose that mu2 from globular strains is more prone to temperature-dependent misfolding and as a result displays increased aggregation, increased levels of Ub-mu2, and decreased association with microtubules. Because so few of the viral strains formed factories that were regularly associated with ubiquitinated proteins, we conclude that reovirus factories are generally distinct from cellular aggresomes.
Collapse
Affiliation(s)
- Cathy L Miller
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
19
|
Yin P, Keirstead ND, Broering TJ, Arnold MM, Parker JSL, Nibert ML, Coombs KM. Comparisons of the M1 genome segments and encoded mu2 proteins of different reovirus isolates. Virol J 2004; 1:6. [PMID: 15507160 PMCID: PMC524354 DOI: 10.1186/1743-422x-1-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 09/23/2004] [Indexed: 12/03/2022] Open
Abstract
Background The reovirus M1 genome segment encodes the μ2 protein, a structurally minor component of the viral core, which has been identified as a transcriptase cofactor, nucleoside and RNA triphosphatase, and microtubule-binding protein. The μ2 protein is the most poorly understood of the reovirus structural proteins. Genome segment sequences have been reported for 9 of the 10 genome segments for the 3 prototypic reoviruses type 1 Lang (T1L), type 2 Jones (T2J), and type 3 Dearing (T3D), but the M1 genome segment sequences for only T1L and T3D have been previously reported. For this study, we determined the M1 nucleotide and deduced μ2 amino acid sequences for T2J, nine other reovirus field isolates, and various T3D plaque-isolated clones from different laboratories. Results Determination of the T2J M1 sequence completes the analysis of all ten genome segments of that prototype. The T2J M1 sequence contained a 1 base pair deletion in the 3' non-translated region, compared to the T1L and T3D M1 sequences. The T2J M1 gene showed ~80% nucleotide homology, and the encoded μ2 protein showed ~71% amino acid identity, with the T1L and T3D M1 and μ2 sequences, respectively, making the T2J M1 gene and μ2 proteins amongst the most divergent of all reovirus genes and proteins. Comparisons of these newly determined M1 and μ2 sequences with newly determined M1 and μ2 sequences from nine additional field isolates and a variety of laboratory T3D clones identified conserved features and/or regions that provide clues about μ2 structure and function. Conclusions The findings suggest a model for the domain organization of μ2 and provide further evidence for a role of μ2 in viral RNA synthesis. The new sequences were also used to explore the basis for M1/μ2-determined differences in the morphology of viral factories in infected cells. The findings confirm the key role of Ser/Pro208 as a prevalent determinant of differences in factory morphology among reovirus isolates and trace the divergence of this residue and its associated phenotype among the different laboratory-specific clones of type 3 Dearing.
Collapse
Affiliation(s)
- Peng Yin
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0W3 Canada
- Thrasos Therapeutics, Hopkinton, MA 01748 USA
| | - Natalie D Keirstead
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0W3 Canada
- Department of Pathobiology, Ontario Veterinary College, Guelph, ON, N1G 2W1 Canada
| | - Teresa J Broering
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, 02115 USA
- Massachusetts Biologic Laboratories, Jamaica Plain, MA 02130-3597 USA
| | - Michelle M Arnold
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, 02115 USA
- Virology Training Program, Division of Medical Sciences, Harvard University, Cambridge, MA 02138 USA
| | - John SL Parker
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, 02115 USA
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 USA
| | - Max L Nibert
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, 02115 USA
- Virology Training Program, Division of Medical Sciences, Harvard University, Cambridge, MA 02138 USA
| | - Kevin M Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0W3 Canada
| |
Collapse
|
20
|
Kim J, Tao Y, Reinisch KM, Harrison SC, Nibert ML. Orthoreovirus and Aquareovirus core proteins: conserved enzymatic surfaces, but not protein-protein interfaces. Virus Res 2004; 101:15-28. [PMID: 15010214 DOI: 10.1016/j.virusres.2003.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Orthoreoviruses and Aquareoviruses constitute two respective genera in the family Reoviridae of double-stranded RNA viruses. Orthoreoviruses infect mammals, birds, and reptiles and have a genome comprising 10 RNA segments. Aquareoviruses infect fish and have a genome comprising 11 RNA segments. Despite these differences, recent structural and nucleotide sequence evidence indicate that the proteins of Orthoreoviruses and Aquareoviruses share many similarities. The focus of this review is on the structure and function of the Orthoreovirus core proteins lambda1, lambda2, lambda3, and sigma2, for which X-ray crystal structures have been recently reported. The homologous core proteins in Aquareoviruses are VP3, VP1, VP2, and VP6, respectively. By mapping the locations of conserved residues onto the Orthoreovirus crystal structures, we have found that enzymatic surfaces involved in mRNA synthesis are well conserved between these two groups of viruses, whereas several surfaces involved in protein-protein interactions are not well conserved. Other evidence indicates that the Orthoreovirus mu2 and Aquareovirus VP5 proteins are homologous, suggesting that VP5 is a core protein as mu2 is known to be. These findings provide further evidence that Orthoreoviruses and Aquareoviruses have diverged from a common ancestor and contribute to a growing understanding of the functions of the core proteins in viral mRNA synthesis.
Collapse
Affiliation(s)
- Jonghwa Kim
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02115, USA
| | | | | | | | | |
Collapse
|
21
|
Kim J, Parker JSL, Murray KE, Nibert ML. Nucleoside and RNA triphosphatase activities of orthoreovirus transcriptase cofactor mu2. J Biol Chem 2003; 279:4394-403. [PMID: 14613938 DOI: 10.1074/jbc.m308637200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian Orthoreovirus (mORV) core particle is an icosahedral multienzyme complex for viral mRNA synthesis and provides a delimited system for mechanistic studies of that process. Previous genetic results have identified the mORV mu2 protein as a determinant of viral strain differences in the transcriptase and nucleoside triphosphatase activities of cores. New results in this report provided biochemical and genetic evidence that purified mu2 is itself a divalent cation-dependent nucleoside triphosphatase that can remove the 5' gamma-phosphate from RNA as well. Alanine substitutions in a putative nucleotide binding region of mu2 abrogated both functions but did not affect the purification profile of the protein or its known associations with microtubules and mORV microNS protein in vivo. In vitro microtubule binding by purified mu2 was also demonstrated and not affected by the mutations. Purified mu2 was further demonstrated to interact in vitro with the mORV RNA-dependent RNA polymerase, lambda3, and the presence of lambda3 mildly stimulated the triphosphatase activities of mu2. These findings confirm that mu2 is an enzymatic component of the mORV core and may contribute several possible functions to viral mRNA synthesis.
Collapse
Affiliation(s)
- Jonghwa Kim
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
22
|
Becker MM, Peters TR, Dermody TS. Reovirus sigma NS and mu NS proteins form cytoplasmic inclusion structures in the absence of viral infection. J Virol 2003; 77:5948-63. [PMID: 12719587 PMCID: PMC154006 DOI: 10.1128/jvi.77.10.5948-5963.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Accepted: 02/24/2003] [Indexed: 11/20/2022] Open
Abstract
Reovirus replication occurs in the cytoplasm of infected cells and culminates in the formation of crystalline arrays of progeny virions within viral inclusions. Two viral nonstructural proteins, sigma NS and micro NS, and structural protein sigma 3 form protein-RNA complexes early in reovirus infection. To better understand the minimal requirements of viral inclusion formation, we expressed sigma NS, mu NS, and sigma 3 alone and in combination in the absence of viral infection. In contrast to its concentration in inclusion structures during reovirus replication, sigma NS expressed in cells in the absence of infection is distributed diffusely throughout the cytoplasm and does not form structures that resemble viral inclusions. Expressed sigma NS is functional as it complements the defect in temperature-sensitive, sigma NS-mutant virus tsE320. In both transfected and infected cells, mu NS is found in punctate cytoplasmic structures and sigma 3 is distributed diffusely in the cytoplasm and the nucleus. The subcellular localization of mu NS and sigma 3 is not altered when the proteins are expressed together or with sigma NS. However, when expressed with micro NS, sigma NS colocalizes with mu NS to punctate structures similar in morphology to inclusion structures observed early in viral replication. During reovirus infection, both sigma NS and mu NS are detectable 4 h after adsorption and colocalize to punctate structures throughout the viral life cycle. In concordance with these results, sigma NS interacts with mu NS in a yeast two-hybrid assay and by coimmunoprecipitation analysis. These data suggest that sigma NS and mu NS are the minimal viral components required to form inclusions, which then recruit other reovirus proteins and RNA to initiate viral genome replication.
Collapse
Affiliation(s)
- Michelle M Becker
- Department of Microbiology and Immunology and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
23
|
Abstract
Reovirus-induced murine myocarditis provides an excellent model for the human disease. Cardiac tissue damage varies between reovirus strains, and is caused by a direct viral cytopathogenic effect. One determinant of virus-induced cardiac tissue damage is the cardiac interferon-beta (IFN-beta) response to viral infection. Nonmyocarditic reoviruses induce more IFN-beta and/or are more sensitive to the antiviral effects of IFN-beta in cardiac cells than myocarditis reoviruses. The roles of interferon regulatory factors (IRFs) in the cardiac response to viral infection are reviewed, and results suggest possible cardiac-specific variations in IRF-3 and IRF-1 function. In addition, data are presented indicating that the role of IRF-2 in regulation of IFN-beta expression is cell type-specific and differs between skeletal and cardiac muscle cells. Together, results suggest that the heart may provide a unique environment for IRF function, critical for protection against virus-induced cardiac damage.
Collapse
Affiliation(s)
- Barbara Sherry
- Department of Microbiology, Pathology and Parasitology, College of Veterinary Medicine, North Carolina State University, Raleigh 27606, USA.
| |
Collapse
|
24
|
Taraporewala ZF, Schuck P, Ramig RF, Silvestri L, Patton JT. Analysis of a temperature-sensitive mutant rotavirus indicates that NSP2 octamers are the functional form of the protein. J Virol 2002; 76:7082-93. [PMID: 12072508 PMCID: PMC136338 DOI: 10.1128/jvi.76.14.7082-7093.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evidence that NSP2 plays a role in packaging and replication comes from studies on tsE(1400), a rotavirus mutant with a temperature-sensitive (ts) lesion in the NSP2 gene. Cells infected with tsE and maintained at nonpermissive temperature contain few replication-assembly factories (viroplasms) or replication intermediates and produce virus particles that are mostly empty. Sequence analysis has indicated that an A152V mutation in NSP2 is responsible for the ts phenotype of tsE. To gain insight into the effect of the mutation on the octameric structure and biochemical activities of tsE NSP2, the protein was expressed in bacteria and purified to homogeneity. Analytical ultracentrifugation showed that tsE NSP2 formed octamers which, like those formed by wild-type (wt) NSP2, undergo conformational change into more compact structures upon binding of nucleotides. However, exposure to Mg(2+) and the nonpermissive temperature caused disruption of the tsE octamers and yielded the formation of polydisperse NSP2 aggregates, events not observed with wt octamers. Biochemical analysis showed that the RNA-binding, helix-destabilizing and NTPase activities of tsE NSP2 were significantly less at the nonpermissive temperature than at the permissive temperature. In contrast, these activities for wt NSP2 were higher at the nonpermissive temperature. Our results indicate that the octamer is the fully functional form of NSP2 and the form required for productive virus replication. The propensity of tsE NSP2 to form large aggregates provides a possible explanation for the inability of the protein to support packaging and/or replication in the infected cell at the nonpermissive temperature.
Collapse
Affiliation(s)
- Zenobia F Taraporewala
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Becker MM, Goral MI, Hazelton PR, Baer GS, Rodgers SE, Brown EG, Coombs KM, Dermody TS. Reovirus sigmaNS protein is required for nucleation of viral assembly complexes and formation of viral inclusions. J Virol 2001; 75:1459-75. [PMID: 11152519 PMCID: PMC114052 DOI: 10.1128/jvi.75.3.1459-1475.2001] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2000] [Accepted: 10/26/2000] [Indexed: 11/20/2022] Open
Abstract
Progeny virions of mammalian reoviruses are assembled in the cytoplasm of infected cells at discrete sites termed viral inclusions. Studies of temperature-sensitive (ts) mutant viruses indicate that nonstructural protein sigmaNS and core protein mu2 are required for synthesis of double-stranded (ds) RNA, a process that occurs at sites of viral assembly. We used confocal immunofluorescence microscopy and ts mutant reoviruses to define the roles of sigmaNS and mu2 in viral inclusion formation. In cells infected with wild-type (wt) reovirus, sigmaNS and mu2 colocalize to large, perinuclear structures that correspond to viral inclusions. In cells infected at a nonpermissive temperature with sigmaNS-mutant virus tsE320, sigmaNS is distributed diffusely in the cytoplasm and mu2 is contained in small, punctate foci that do not resemble viral inclusions. In cells infected at a nonpermissive temperature with mu2-mutant virus tsH11.2, mu2 is distributed diffusely in the cytoplasm and the nucleus. However, sigmaNS localizes to discrete structures in the cytoplasm that contain other viral proteins and are morphologically indistinguishable from viral inclusions seen in cells infected with wt reovirus. Examination of cells infected with wt reovirus over a time course demonstrates that sigmaNS precedes mu2 in localization to viral inclusions. These findings suggest that viral RNA-protein complexes containing sigmaNS nucleate sites of viral replication to which other viral proteins, including mu2, are recruited to commence dsRNA synthesis.
Collapse
Affiliation(s)
- M M Becker
- Departments of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mbisa JL, Becker MM, Zou S, Dermody TS, Brown EG. Reovirus mu2 protein determines strain-specific differences in the rate of viral inclusion formation in L929 cells. Virology 2000; 272:16-26. [PMID: 10873745 DOI: 10.1006/viro.2000.0362] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reovirus infection induces the formation of large cytoplasmic inclusions that serve as the major site of viral assembly. Reovirus strains type 3 Dearing (T3D) and type 1 Lang (T1L) differ in the rate of inclusion formation in L929 cells. The median time of inclusion formation is 18 h in cells infected with T3D and 39 h in cells infected with T1L. Using reassortant viruses that contain combinations of gene segments derived from T1L and T3D, we found that the M1 gene, which encodes the mu2 protein, is the primary determinant of the rate of inclusion formation. The S3 gene, which encodes the nonstructural protein sigmaNS, plays a secondary role in this process. The subcellular location of the mu2 protein was determined by confocal laser scanning microscopy using dual-fluorescence labeling of mu2 and the outer-capsid protein mu1/mu1C. In virus-infected cells, mu2 protein colocalized with other viral proteins in inclusions and was also distributed diffusely in the cytoplasm and nucleus. Expression of recombinant T1L and T3D mu2 proteins resulted in the formation of protein complexes resembling inclusions in both the cytoplasm and the nucleus with kinetics that reflected the strain of origin. The median time of mu2 protein complex formation was 22 h in cells transfected with the T3D M1 gene and 43 h in cells transfected with the T1L M1 gene. These findings suggest that the mu2 protein influences the rate of inclusion formation and contributes to inclusion morphogenesis. The requirement of mu2 protein in inclusion formation was tested by determining the subcellular localization of mu2 in cells infected with temperature-sensitive (ts) mutants that are defective in viral assembly. In contrast to infection with wild-type virus, mu2 did not colocalize with mu1/mu1C protein in subcellular structures that formed in cells infected at nonpermissive temperature with ts mutants tsH11.2, tsC447, and tsG453 with mutations in the M1, S2, and S4 genes, respectively. These results suggest that despite the role of the mu2 protein in controlling the rate of inclusion formation, this process is a concerted function of several reovirus proteins.
Collapse
Affiliation(s)
- J L Mbisa
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | | | | | | | |
Collapse
|
27
|
Hazelton PR, Coombs KM. The reovirus mutant tsA279 L2 gene is associated with generation of a spikeless core particle: implications for capsid assembly. J Virol 1999; 73:2298-308. [PMID: 9971813 PMCID: PMC104475 DOI: 10.1128/jvi.73.3.2298-2308.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/1998] [Accepted: 11/23/1998] [Indexed: 11/20/2022] Open
Abstract
Previous studies which used intertypic reassortants of the wild-type reovirus serotype 1 Lang and the temperature-sensitive (ts) serotype 3 mutant clone tsA279 identified two ts lesions; one lesion, in the M2 gene segment, was associated with defective transmembrane transport of restrictively assembled virions (P. R. Hazelton and K. M. Coombs, Virology 207:46-58, 1995). In the present study we show that the second lesion, in the L2 gene segment, which encodes the lambda2 protein, is associated with the accumulation of a core-like particle defective for the lambda2 pentameric spike. Physicochemical, biochemical, and immunological studies showed that these structures were deficient for genomic double-stranded RNA, the core spike protein lambda2, and the minor core protein micro2. Core particles with the lambda2 spike structure accumulated after temperature shift-down from a restrictive to a permissive temperature in the presence of cycloheximide. These data suggest the spike-deficient, core-like particle is an assembly intermediate in reovirus morphogenesis. The existence of this naturally occurring primary core structure suggests that the core proteins lambda1, lambda3, and sigma2 interact to initiate the process of virion capsid assembly through a dodecahedral mechanism. The next step in the proposed capsid assembly model would be the association of the minor core protein mu2, either preceding or collateral to the condensation of the lambda2 pentameric spike at the apices of the primary core structure. The assembly pathway of the reovirus double capsid is further elaborated when these observations are combined with structures identified in other studies.
Collapse
Affiliation(s)
- P R Hazelton
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3
| | | |
Collapse
|
28
|
Brentano L, Noah DL, Brown EG, Sherry B. The reovirus protein mu2, encoded by the M1 gene, is an RNA-binding protein. J Virol 1998; 72:8354-7. [PMID: 9733883 PMCID: PMC110211 DOI: 10.1128/jvi.72.10.8354-8357.1998] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/1998] [Accepted: 07/01/1998] [Indexed: 11/20/2022] Open
Abstract
The reovirus M1, L1, and L2 genes encode proteins found at each vertex of the viral core and are likely to form a structural unit involved in RNA synthesis. Genetic analyses have implicated the M1 gene in viral RNA synthesis and core nucleoside triphosphatase activity, but there have been no direct biochemical studies of mu2 function. Here, we expressed mu2 in vitro and assessed its RNA-binding activity. The expressed mu2 binds both poly(I-C)- and poly(U)-Sepharose, and binding activity is greater in Mn2+ than in Mg2+. Heterologous RNA competes for mu2 binding to reovirus RNA transcripts as effectively as homologous reovirus RNA does, providing no evidence for sequence-specific RNA binding by mu2. Protein mu2 is now the sixth reovirus protein demonstrated to have RNA-binding activity.
Collapse
Affiliation(s)
- L Brentano
- Department of Microbiology, Pathology, and Parasitology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606, USA
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- B Sherry
- College of Veterinary Medicine, North Carolina State University, Raleigh 27606, USA
| |
Collapse
|
30
|
Yue Z, Shatkin AJ. Enzymatic and control functions of reovirus structural proteins. Curr Top Microbiol Immunol 1998; 233:31-56. [PMID: 9599920 DOI: 10.1007/978-3-642-72092-5_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Z Yue
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854-5638, USA
| | | |
Collapse
|
31
|
Affiliation(s)
- K M Coombs
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
32
|
Brown EG. Reovirus M1 gene expression. Curr Top Microbiol Immunol 1998; 233:197-213. [PMID: 9599928 DOI: 10.1007/978-3-642-72092-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- E G Brown
- Department of Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada
| |
Collapse
|
33
|
Affiliation(s)
- M L Nibert
- Institute for Molecular Virology, Graduate School, University of Wisconsin-Madison 53706, USA
| |
Collapse
|
34
|
Dryden KA, Farsetta DL, Wang G, Keegan JM, Fields BN, Baker TS, Nibert ML. Internal/structures containing transcriptase-related proteins in top component particles of mammalian orthoreovirus. Virology 1998; 245:33-46. [PMID: 9614865 DOI: 10.1006/viro.1998.9146] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of mammalian orthoreovirus top component particles, which are profoundly deficient in the content of double-stranded RNA genome, was determined at 30 A resolution by transmission cryoelectron microscopy and three-dimensional image reconstruction. Previously undetected, ordered densities, appearing primarily as pentameric flowers in the reconstruction, were seen to extend 65 A inwardly from the inner capsid at the icosahedral fivefold axes. Identically positioned but lower density elements were observed in two types of partially uncoated top component particles obtained by limited proteolysis. The levels of three inner-capsid proteins-lamda 1, lamda 3, and mu 2-were reduced in concert with the internal densities during proteolytic uncoating. Since lamda 3 contains the catalytic regions of the viral RNA polymerase and since both lamda 1 and mu 2 appear to play roles in transcription or mRNA capping, the internal structures are concluded to be complexes of the viral transcriptase-related enzymes. The findings have implications for the mechanisms of transcription and mRNA capping by orthoreovirus particles.
Collapse
Affiliation(s)
- K A Dryden
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Keirstead ND, Coombs KM. Absence of superinfection exclusion during asynchronous reovirus infections of mouse, monkey, and human cell lines. Virus Res 1998; 54:225-35. [PMID: 9696130 PMCID: PMC7126977 DOI: 10.1016/s0168-1702(98)00023-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reovirus is a gastroenteric virus with a genome that consists of ten segments of double-stranded RNA. The segmented nature of the genome allows for genetic mixing when cells are simultaneously infected with two different viral serotypes. The ability of viral reassortment to take place in asynchronous infections has not previously been investigated with mammalian reoviruses. In this study, five different cell lines, representing mouse, monkey, and human, were infected synchronously or asynchronously with various sets of two different temperature-sensitive (ts) reovirus mutants in order to study the genetic interactions which occur. Recombinant viruses were detected at high frequency when infection by the two different ts mutants was separated by as much as 24 h, suggesting that superinfection exclusion does not play a role in reovirus mixed infections. The apparent lack of superinfection exclusion in reovirus infections may have important implications in its evolution.
Collapse
Affiliation(s)
| | - Kevin M Coombs
- Corresponding author. Tel: +1 204 7893309; fax: +1 204 7893926;
| |
Collapse
|
36
|
Abstract
All eight reovirus structural proteins were resolved in a new tris, glycine, and urea (TGU) electrophoretic gel system. The specific identities of proteins were determined immunologically, biochemically, and genetically. Structural proteins of reovirus type 1 Lang had different mobilities in the TGU gel than did type 3 Dearing proteins. Intertypic reassortant viruses that contained various combinations of parental genes were used to identify each of the viral protein bands. Type 1 Lang virions were metabolically-labelled with either 3H-amino acids or 35S-methionine/cysteine and gradient purified. Aliquots of purified virions were treated to generate infectious subviral particles (ISVPs) and core particles. Radiolabelled virus, ISVP, and core proteins were resolved in the TGU gel and protein band intensities were used to determine copy numbers of each structural protein. These studies confirmed the copy numbers and locations of most reovirus proteins. However, important new findings include the discovery that virions contain approximately 120 copies of major core protein sigma 2 and 20 copies of the polymerase cofactor protein mu 2, and ISVP particles contain about 24 copies of mu 1 C that has not been processed to the delta peptide. These data are used to generate a new model of the arrangement of structural proteins with the reovirus particle.
Collapse
Affiliation(s)
- K M Coombs
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
37
|
Sherry B, Torres J, Blum MA. Reovirus induction of and sensitivity to beta interferon in cardiac myocyte cultures correlate with induction of myocarditis and are determined by viral core proteins. J Virol 1998; 72:1314-23. [PMID: 9445032 PMCID: PMC124610 DOI: 10.1128/jvi.72.2.1314-1323.1998] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Reovirus-induced acute myocarditis in mice serves as a model to investigate non-immune-mediated mechanisms of viral myocarditis. We have used primary cardiac myocyte cultures infected with a large panel of myocarditic and nonmyocarditic reassortant reoviruses to identify determinants of viral myocarditic potential. Here, we report that while both myocarditic and nonmyocarditic reoviruses kill cardiac myocytes, viral myocarditic potential correlates with viral spread through cardiac myocyte cultures and with cumulative cell death. To address the role of secreted interferon (IFN), we added anti-IFN-alpha/beta antibody to infected cardiac myocyte cultures. Antibody benefited nonmyocarditic more than myocarditic virus spread (P < 0.001), and this benefit was associated with the reovirus M1 and L2 genes. There was no benefit for a differentiated skeletal muscle cell line culture (C2C12 cells), suggesting cell type specificity. IFN-beta induction in reovirus-infected cardiac myocyte cultures correlated with viral myocarditic potential (P = 0.006) and was associated with the reovirus M1, S2, and L2 genes. Sensitivity to the antiviral effects of IFN-alpha/beta added to cardiac myocyte cultures also correlated with viral myocarditic potential (P = 0.004) and was associated with the same reovirus genes. Several reoviruses induced IFN-beta levels discordant with their myocarditic phenotypes, and for those tested, sensitivity to IFN-alpha/beta compensated for the anomalous induction levels. Thus, the combination of induction of and sensitivity to IFN-alpha/beta is a determinant of reovirus myocarditic potential. Finally, a nonmyocarditic reovirus induced cardiac lesions in mice depleted of IFN-alpha/beta, demonstrating that IFN-alpha/beta is a determinant of reovirus-induced myocarditis. This provides the first identification of reovirus genes associated with IFN induction and sensitivity and provides the first evidence that IFN-beta can be a determinant of viral myocarditis and reovirus disease.
Collapse
Affiliation(s)
- B Sherry
- Department of Microbiology, Pathology, and Parasitology, College of Veterinary Medicine, North Carolina State University, Raleigh 27606, USA.
| | | | | |
Collapse
|
38
|
Noble S, Nibert ML. Core protein mu2 is a second determinant of nucleoside triphosphatase activities by reovirus cores. J Virol 1997; 71:7728-35. [PMID: 9311857 PMCID: PMC192124 DOI: 10.1128/jvi.71.10.7728-7735.1997] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
NTPase activities in mammalian reovirus cores were examined under various conditions that permitted several new differences to be identified between strains type 1 Lang (T1L) and type 3 Dearing (T3D). One difference concerned the ratio (at pH 8.5) of ATP hydrolysis at 50 degrees C to that at 35 degrees C. A genetic analysis using T1L x T3D reassortant viruses implicated the L3 and M1 gene segments in this difference, with M1 influencing ATPase activity most strongly at high temperatures. L3 and M1 encode the core proteins lambda1 and mu2, respectively. Another difference concerned the absolute levels of GTP hydrolysis by cores at 45 degrees C and pH 6.5. A genetic analysis using T1L x T3D reassortants implicated the M1 gene as the sole determinant of this difference. The results of these experiments, coupled with previous findings (S. Noble and M. L. Nibert, J. Virol. 71:2182-2191, 1997), suggest either that a single type of NTPase in cores is strongly influenced by two different core proteins--lambda1 and mu2--or that cores contain two different types of NTPase influenced by the two proteins. The findings appear relevant for understanding the complex functions of reovirus cores in RNA synthesis and capping.
Collapse
Affiliation(s)
- S Noble
- Institute for Molecular Virology, Graduate School, and Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, 52706, USA
| | | |
Collapse
|
39
|
Bisaillon M, Bergeron J, Lemay G. Characterization of the nucleoside triphosphate phosphohydrolase and helicase activities of the reovirus lambda1 protein. J Biol Chem 1997; 272:18298-303. [PMID: 9218469 DOI: 10.1074/jbc.272.29.18298] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Previous studies have shown that the reovirus lambda1 core protein harbors a putative nucleotide-binding motif and exhibits an affinity for nucleic acids. In addition, a nucleoside triphosphate phosphohydrolase activity present in reovirus cores has been recently assigned to lambda1 using gene reassortment analysis. In this study, it was demonstrated that the recombinant lambda1 protein, expressed in the yeast Pichia pastoris, is able to hydrolyze nucleoside 5'-triphosphates or deoxynucleoside 5'-triphosphates. This activity was absolutely dependent on the presence of a divalent cation, Mg2+ or Mn2+. The protein can also unwind double-stranded nucleic acid molecules in the presence of a nucleoside 5'-triphosphate or deoxynucleoside 5'-triphosphate. These results provide the first biochemical evidence that the reovirus lambda1 protein is a nucleoside triphosphate phosphohydrolase/helicase and strongly support the idea that lambda1 participates in transcription of the viral genome.
Collapse
Affiliation(s)
- M Bisaillon
- Département de Microbiologie et Immunologie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | |
Collapse
|
40
|
Rodgers SE, Barton ES, Oberhaus SM, Pike B, Gibson CA, Tyler KL, Dermody TS. Reovirus-induced apoptosis of MDCK cells is not linked to viral yield and is blocked by Bcl-2. J Virol 1997; 71:2540-6. [PMID: 9032397 PMCID: PMC191370 DOI: 10.1128/jvi.71.3.2540-2546.1997] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this study, we investigated the relationship between reovirus-induced apoptosis and viral growth. Madin-Darby canine kidney (MDCK) epithelial cells infected with prototype reovirus strains type 1 Lang (T1L) or type 3 Dearing (T3D) were found to undergo apoptosis, and T3D induced apoptosis of MDCK cells to a substantially greater extent than T1L. By using T1L x T3D reassortant viruses, we found that differences in the capacities of these strains to induce apoptosis are determined by the viral S1 and M2 gene segments. These genes encode viral outer-capsid proteins that play important roles in viral entry into cells. T1L grew significantly better in MDCK cells than T3D, and these differences in growth segregated with the viral L1 and M1 gene segments. The L1 and M1 genes encode viral core proteins involved in viral RNA synthesis. Bcl-2 overexpression in MDCK cells inhibited reovirus-induced apoptosis but did not substantially affect reovirus growth. These findings indicate that differences in the capacities of reovirus strains to induce apoptosis and grow in MDCK cells are determined by different viral genes and that premature cell death by apoptosis does not limit reovirus growth in MDCK cells.
Collapse
Affiliation(s)
- S E Rodgers
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Shing M, Coombs KM. Assembly of the reovirus outer capsid requires mu 1/sigma 3 interactions which are prevented by misfolded sigma 3 protein in temperature-sensitive mutant tsG453. Virus Res 1996; 46:19-29. [PMID: 9029774 DOI: 10.1016/s0168-1702(96)01372-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A temperature-sensitive reovirus mutant, tsG453, whose defect was mapped to major outer capsid protein sigma 3, makes core particles but fails to assemble the outer capsid around the core at non-permissive temperature. Previous studies that made use of electron cryo-microscopy and image reconstructions showed that mu 1, the other major outer capsid protein, but not sigma 3, interact extensively with the core capsid. Although wild-type sigma 3 and mu 1 interact with each other, immunocoprecipitation studies showed that mutant sigma 3 protein was incapable of interacting with mu 1 at the non-permissive temperature. In addition, restrictively-grown mutant sigma 3 protein could not be precipitated by some sigma 3-specific monoclonal antibodies. These observations suggest that in a wild-type infection, specific sigma 3 and mu 1 interactions result in changes in mu 1 conformation which are required to allow mu 1/sigma 3 complexes to condense onto the core capsid shell during outer capsid assembly, and that sigma 3 in non-permissive tsG453 infections is misfolded such that it cannot interact with mu 1.
Collapse
Affiliation(s)
- M Shing
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|