1
|
Li J, Tong S. Primary Duck Hepatocyte Culture and Duck Hepatitis B Virus Infection Model. Methods Mol Biol 2024; 2837:11-22. [PMID: 39044071 DOI: 10.1007/978-1-0716-4027-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Duck hepatitis B virus (DHBV) is an avian member of the hepatotropic DNA viruses, or hepadnaviridae. It shares with the human hepatitis B virus (HBV) a similar genomic organization and replication strategy via reverse transcription, but is simpler than HBV in lacking the X gene and in expressing just two coterminal envelope proteins: Large (L) and small (S). DHBV has been extensively used as a convenient and valuable animal model for study of the hepadnaviral life cycle, and for drug screening in vitro but also in vivo. Ducks and primary duck hepatocytes (PDHs) are inexpensive, easily accessible, and readily infected with DHBV. The high levels of genome replication and protein expression in duck liver and PDHs also facilitate monitoring of viral life cycle using conventional molecular biology techniques such as Southern blot for replicative DNA and covalently closed circular DNA (cccDNA), Northern blot for viral RNAs, and Western blot for viral proteins.
Collapse
Affiliation(s)
- Jisu Li
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Shuping Tong
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
2
|
Dai X, Zhang X, Ostrikov K, Abrahamyan L. Host receptors: the key to establishing cells with broad viral tropism for vaccine production. Crit Rev Microbiol 2020; 46:147-168. [PMID: 32202955 PMCID: PMC7113910 DOI: 10.1080/1040841x.2020.1735992] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell culture-based vaccine technology is a flexible and convenient approach for vaccine production that requires adaptation of the vaccine strains to the new cells. Driven by the motivation to develop a broadly permissive cell line for infection with a wide range of viruses, we identified a set of the most relevant host receptors involved in viral attachment and entry. This identification was done through a review of different viral entry pathways and host cell lines, and in the context of the Baltimore classification of viruses. In addition, we indicated the potential technical problems and proposed some solutions regarding how to modify the host cell genome in order to meet industrial requirements for mass production of antiviral vaccines. Our work contributes to a finer understanding of the importance of breaking the host–virus recognition specificities for the possibility of creating a cell line feasible for the production of vaccines against a broad spectrum of viruses.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xuanhao Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Kostya Ostrikov
- School of Chemistry and Physics and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Levon Abrahamyan
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Diseases Research Center (CRIPA), Research Group on Infectious Diseases in Production Animals (GREMIP), Université de Montréal, Saint-Hyacinthe, Canada
| |
Collapse
|
3
|
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided into basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
4
|
Domingo E. Interaction of Virus Populations with Their Hosts. VIRUS AS POPULATIONS 2016. [PMCID: PMC7150142 DOI: 10.1016/b978-0-12-800837-9.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided in basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
5
|
Li J, Tong S. From DCPD to NTCP: the long journey towards identifying a functional hepatitis B virus receptor. Clin Mol Hepatol 2015; 21:193-9. [PMID: 26523264 PMCID: PMC4612279 DOI: 10.3350/cmh.2015.21.3.193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/15/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) is the prototype of hepatotropic DNA viruses (hepadnaviruses) infecting a wide range of human and non-human hosts. Previous studies with duck hepatitis B virus (DHBV) identified duck carboxypeptidase D (dCPD) as a host specific binding partner for full-length large envelope protein, and p120 as a binding partner for several truncated versions of the large envelope protein. p120 is the P protein of duck glycine decarboxylase (dGLDC) with restricted expression in DHBV infectible tissues. Several lines of evidence suggest the importance of dCPD, and especially p120, in productive DHBV infection, although neither dCPD nor p120 cDNA could confer susceptibility to DHBV infection in any cell line. Recently, sodium taurocholate cotransporting polypeptide (NTCP) has been identified as a binding partner for the N-terminus of HBV large envelope protein. Importantly, knock down and reconstitution experiments unequivocally demonstrated that NTCP is both necessary and sufficient for in vitro infection by HBV and hepatitis delta virus (HDV), an RNA virus using HBV envelope proteins for its transmission. What remains unclear is whether NTCP is the major HBV receptor in vivo. The fact that some HBV patients are homozygous with an NTCP mutation known to abolish its receptor function suggests the existence of NTCP-independent pathways of HBV entry. Also, NTCP very likely mediates just one step of the HBV entry process, with additional co-factors for productive HBV infection still to be discovered. NTCP offers a novel therapeutic target for the control of chronic HBV infection.
Collapse
Affiliation(s)
- Jisu Li
- Liver Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, USA
| | - Shuping Tong
- Liver Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, USA. ; Key lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Hu Q, Zhang X, Lei Y, Zhang Z, Mengji L, Yang D. Molecular characterization of duck hepatitis B virus isolated from Hubei brown ducks. ACTA ACUST UNITED AC 2013; 26:633-6. [PMID: 17219989 DOI: 10.1007/s11596-006-0541-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of this study was to characterize the genome structure of duck hepatitis B virus (DHBV) isolated from Hubei brown ducks. The natural carrier rate of DHBV in adult ducks from Hubei area was investigated and the DHBV DNA-positive serum screened out. The complete genome of a DHBV strain was amplified by polymerase chain reaction (PCR) and cloned into T vector and sequenced. The results showed that the carrier rate of DHBV in Hubei brown ducks was 10 %. This strain (GenBank accession number DQ276978) had a genome of 3024 nucleotides with three overlapping open reading frames encoding the surface, core and polymerase proteins respectively. Comparison of the strain with 17 DHBV strains registered in GenBank revealed a homology from 89.3 % to 93.5 % at the nucleotide level. The sequences of the structural and functional domains of these proteins were highly conserved. The strain was found to share more signature amino acids in the polymerase genes with the "Chinese" DHBV strains than those of the "Western" country strains. This finding was also corroborated by a phylogenetic tree analysis. Therefore, the DQ276978 might belong to a subtype of the Chinese DHBV strains.
Collapse
Affiliation(s)
- Quan Hu
- Division of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | |
Collapse
|
7
|
von dem Bussche A, Machida R, Li K, Loevinsohn G, Khander A, Wang J, Wakita T, Wands JR, Li J. Hepatitis C virus NS2 protein triggers endoplasmic reticulum stress and suppresses its own viral replication. J Hepatol 2010; 53:797-804. [PMID: 20801537 PMCID: PMC3077220 DOI: 10.1016/j.jhep.2010.05.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 04/22/2010] [Accepted: 05/06/2010] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS We previously reported that the NS2 protein of hepatitis C virus (HCV) inhibits the expression of reporter genes driven by a variety of cellular and viral promoters. The aim of the study was to determine whether the broad transcriptional repression is caused by endoplasmic reticulum (ER) stress. METHODS Phosphorylation of the translation initiation factor eIF2α and HCV replication was detected by Western and Northern blot, respectively. De novo protein synthesis was measured by metabolic labeling. Activation of ER stress responsive genes was determined by promoter reporter assay, as well as mRNA and protein measurement by real time PCR and Western blot. RESULTS Transient or inducible NS2 protein expression increased eIF2α phosphorylation and reduced de novo protein synthesis. It up-regulated promoter activities and transcript levels of ER stress inducible genes including GRP78, ATF6, and GADD153, as well as GRP78 protein level. The same effect was observed when NS2 was synthesized as part of the core-E1-E2-p7-NS2 polypeptide. NS2 protein also inhibited reporter gene expression from the HCV internal ribosome entry site and consequently reduced HCV replication. The full-length HCV replicon activated GRP78, ATF6, and GADD153 promoters more efficiently than the subgenomic replicon lacking the coding sequence for both the structural proteins and NS2. Abrogation of HCV infection/replication, by an inhibitor of the NS3 protease, relieved ER stress. CONCLUSIONS HCV infection can induce ER stress, with NS2 protein being a major mediator. The stress can be relieved by a feedback mechanism.
Collapse
Affiliation(s)
- Annette von dem Bussche
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Raiki Machida
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Ke Li
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | | | | | | | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Jack R. Wands
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA,Corresponding author: Liver Research Center, 55 Claverick Street, Providence, RI 02903. Tel.: 401.444.7387; fax: 401.444.2939. (J. Li)
| |
Collapse
|
8
|
Initiation of duck hepatitis B virus infection requires cleavage by a furin-like protease. J Virol 2010; 84:4569-78. [PMID: 20181690 DOI: 10.1128/jvi.02281-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The entry mechanism of hepatitis B virus (HBV) has not been defined, and this impedes development of antiviral therapies aimed at an early step in the viral life cycle. HBV infection has both host and tissue specificities. For the related duck hepatitis B virus (DHBV), duck carboxypeptidase D (DCPD) has been proposed as the species-specific docking receptor, while glycine decarboxylase (DGD) may serve as a tissue-specific cofactor or secondary receptor. DGD binds to several truncated versions of the viral large envelope protein but not to the full-length protein, suggesting a need for proteolytic cleavage of the envelope protein by a furin-like proprotein convertase. In the present study, we found that transfected DCPD could confer DHBV binding to non-duck cell lines but that this was followed by rapid virus release from cells. Coexpression of furin led to DCPD cleavage and increased virus retention. Treatment of DHBV particles with endosome prepared from duck liver led to cleavage of the large envelope protein, and such viral preparation could generate a small amount of covalently closed circular DNA in LMH cells, a chicken hepatoma cell line resistant to DHBV infection. A furin inhibitor composed of decanoyl-RVKR-chloromethylketone blocked endosomal cleavage of the large envelope protein in vitro and suppressed DHBV infection of primary duck hepatocytes in vivo. These findings suggest that furin or a furin-like proprotein convertase facilitates DHBV infection by cleaving both the docking receptor and the viral large envelope protein.
Collapse
|
9
|
Nguyen DH, Ludgate L, Hu J. Hepatitis B virus-cell interactions and pathogenesis. J Cell Physiol 2008; 216:289-94. [PMID: 18302164 DOI: 10.1002/jcp.21416] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Like all viruses, hepatitis B virus (HBV) replication and pathogenesis depends on the critical interplay between viral and host factors. In this review, we will focus on the recent progress in understanding the virus-host interactions at the level of the infected cell. These interactions include the requirement of cellular chaperones for the initiation of HBV reverse transcription, the role of the HBV X protein (HBx) in modifying viral and cellular transcription and signaling, the formation of the HBV episomal DNA and its epigenetic regulation in viral persistence, and the cellular factors involved in viral entry, nucleocapsid maturation, and virion secretion.
Collapse
Affiliation(s)
- David H Nguyen
- Department of Microbiology and Immunology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
10
|
Abstract
Hepatitis B viruses are small enveloped DNA viruses referred to as Hepadnaviridae that cause transient or persistent (chronic) infections of the liver. This family is divided into two genera, orthohepadnavirus and avihepadnavirus, which infect mammals or birds as natural hosts, respectively. They possess a narrow host range determined by the initial steps of viral attachment and entry. Hepatitis B virus is the focus of biomedical research owing to its medical significance. Approximately 2 billion people have serological evidence of hepatitis B, and of these approximately 350 million people have chronic infections (World Health Organisation, Fact Sheet WHO/204, October 2000). Depending on viral and host factors, the outcomes of infection with hepatitis B virus vary between acute hepatitis, mild or severe chronic hepatitis or cirrhosis. Chronic infections are associated with an increased risk for the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hans-Jürgen Netter
- Monash University, Department of Microbiology, Clayton Campus, Victoria 3800, Australia
| | - Shau-Feng Chang
- Industrial Technology Research Institute, Biomedical Engineering Laboratories, 300 Hsinchu, Taiwan
| | - Michael Bruns
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, 20251 Hamburg, Germany
| |
Collapse
|
11
|
Abstract
Host range describes the range of species that a virus can infect to productively propagate itself. Productive infection requires compatibility between virus and host molecules. Thus host range may be restricted by lack of appropriate permissivity factors;alternatively, hosts may actively counteract infection using restriction factors. Incompatibility between virus and host can manifest on the level of individual cells,of tissues or organs,and of the entire organism. All hepatitis B viruses are hepatotropic,but individual viruses infect the livers of only selected mammalian (orthohepadnaviruses) and avian (avihepadnaviruses) hosts. Hence a narrow host range is thought to be a salient feature of hepadnaviruses. Here we briefly review general mechanisms of host range restriction,and summarise older as well as recent data pertaining to hepadnaviral host range. Clearly,the term species-specific is inadequate for many hepadnaviruses because they can infect different species from one genus,and even species from different genera. For a few others,only a single species,or genus,has been identified that supports efficient infection;however,this could as well relate to the restricted number of experimentally addressable test species. Together with the uncertainty about quantitative phylogenetic relationships between species,still largely based on morphological rather than molecular criteria,this leaves the term narrow open to interpretation. Finally,few if any of the host molecules enabling productive infection by a hepadnavirus have unambiguously been identified,the role of restriction factors has not yet been assessed,and even on the virus side the so-called host determining regions in the PreS domains of the large envelope proteins appear to be relevant only under specialised experimental conditions. Hence this important aspect of hepadnavirus biology is still far from being understood.
Collapse
|
12
|
Maenz C, Chang SF, Iwanski A, Bruns M. Entry of duck hepatitis B virus into primary duck liver and kidney cells after discovery of a fusogenic region within the large surface protein. J Virol 2007; 81:5014-23. [PMID: 17360753 PMCID: PMC1900202 DOI: 10.1128/jvi.02290-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B viruses exhibit a narrow host range specificity that is believed to be mediated by a domain of the large surface protein, designated L. For duck hepatitis B virus, it has been shown that the pre-S domain of L binds to carboxypeptidase D, a cellular receptor present in many species on a wide variety of cell types. Nonetheless, only hepatocytes become infected. It has remained vague which viral features determine host range specificity and organotropicity. By using chymotrypsin to treat duck hepatitis B virus, we addressed the question of whether a putative fusogenic region within the amino-terminal end of the small surface protein may participate in viral entry and possibly constitute one of the determinants of the host range of the virus. Addition of the enzyme to virions resulted in increased infectivity. Remarkably, even remnants of enzyme-treated subviral particles proved to be inhibitory to infection. A noninfectious deletion mutant devoid of the binding region for carboxypeptidase D could be rendered infectious for primary duck hepatocytes by treatment with chymotrypsin. Although because of the protease treatment mutant and wild-type viruses may have become infectious in an unspecific and receptor-independent manner, their host range specificity was not affected, as shown by the inability of the virus to replicate in different hepatoma cell lines, as well as primary chicken hepatocytes. Instead, the organotropicity of the virus could be reduced, which was demonstrated by infection of primary duck kidney cells.
Collapse
Affiliation(s)
- Claudia Maenz
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | | | | | | |
Collapse
|
13
|
Abstract
Hepadnaviridae is a family of hepatotropic DNA viruses that is divided into the genera orthohepadnavirus of mammals and avihepadnavirus of birds. All members of this family can cause acute and chronic hepatic infection, which in the case of human hepatitis B virus (HBV) constitutes a major global health problem. Although our knowledge about the molecular biology of these highly liver-specific viruses has profoundly increased in the last two decades, the mechanisms of attachment and productive entrance into the differentiated host hepatocytes are still enigmatic. The difficulties in studying hepadnaviral entry were primarily caused by the lack of easily accessible in vitro infection systems. Thus, for more than twenty years, differentiated primary hepatocytes from the respective species were the only in vitro models for both orthohepadnaviruses (e.g. HBV) and avihepadnaviruses (e.g. duck hepatitis B virus [DHBV]). Two important discoveries have been made recently regarding HBV: (1) primary hepatocytes from tree-shrews; i.e., Tupaia belangeri, can be substituted for primary human hepatocytes, and (2) a human hepatoma cell line (HepaRG) was established that gains susceptibility for HBV infection upon induction of differentiation in vitro. A number of potential HBV receptor candidates have been described in the past, but none of them have been confirmed to function as a receptor. For DHBV and probably all other avian hepadnaviruses, carboxypeptidase D (CPD) has been shown to be indispensable for infection, although the exact role of this molecule is still under debate. While still restricted to the use of primary duck hepatocytes (PDH), investigations performed with DHBV provided important general concepts on the first steps of hepadnaviral infection. However, with emerging data obtained from the new HBV infection systems, the hope that DHBV utilizes the same mechanism as HBV only partially held true. Nevertheless, both HBV and DHBV in vitro infection systems will help to: (1) functionally dissect the hepadnaviral entry pathways, (2) perform reverse genetics (e.g. test the fitness of escape mutants), (3) titrate and map neutralizing antibodies, (4) improve current vaccines to combat acute and chronic infections of hepatitis B, and (5) develop entry inhibitors for future clinical applications.
Collapse
Affiliation(s)
- Dieter Glebe
- Institute of Medical Virology, Justus-Liebig University of Giessen, Frankfurter Strasse 107, D-35392 Giessen, Germany.
| | | |
Collapse
|
14
|
Franke C, Matschl U, Bruns M. Enzymatic treatment of duck hepatitis B virus: topology of the surface proteins for virions and noninfectious subviral particles. Virology 2006; 359:126-36. [PMID: 17045625 DOI: 10.1016/j.virol.2006.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/14/2006] [Accepted: 09/02/2006] [Indexed: 12/29/2022]
Abstract
The large surface antigen L of duck hepatitis B virus exhibits a mixed topology with the preS domains of the protein alternatively exposed to the particles' interior or exterior. After separating virions from subviral particles (SVPs), we compared their L topologies and showed that both particle types exhibit the same amount of L with the following differences: 1--preS of intact virions was enzymatically digested with chymotrypsin, whereas in SVPs only half of preS was accessible, 2--phosphorylation of L at S118 was completely removed by phosphatase treatment only in virions, 3--iodine-125 labeling disclosed a higher ratio of exposed preS to S domains in virions compared to SVPs. These data point towards different surface architectures of virions and SVPs. Because the preS domain acts in binding to a cellular receptor of hepatocytes, our findings implicate the exclusion of SVPs as competitors for the receptor binding and entry of virions.
Collapse
Affiliation(s)
- Claudia Franke
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | | | | |
Collapse
|
15
|
Barrera A, Guerra B, Notvall L, Lanford RE. Mapping of the hepatitis B virus pre-S1 domain involved in receptor recognition. J Virol 2005; 79:9786-98. [PMID: 16014940 PMCID: PMC1181564 DOI: 10.1128/jvi.79.15.9786-9798.2005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) and woolly monkey hepatitis B virus (WMHBV) are primate hepadnaviruses that display restricted tissue and host tropisms. Hepatitis D virus (HDV) particles pseudotyped with HBV and WMHBV envelopes (HBV-HDV and WM-HDV) preferentially infect human and spider monkey hepatocytes, respectively, thereby confirming host range bias in vitro. The analysis of chimeric HBV and WMHBV large (L) envelope proteins suggests that the pre-S1 domain may comprise two regions that affect infectivity: one within the amino-terminal 40 amino acids of pre-S1 and one downstream of this region. In the present study, we further characterized the role of the amino terminus of pre-S1 in infectivity by examining the ability of synthetic peptides to competitively block HDV infection of primary human and spider monkey hepatocytes. A synthetic peptide representing the first 45 residues of the pre-S1 domain of the HBV L protein blocked infectivity of HBV-HDV and WM-HDV, with a requirement for myristylation of the amino terminal residue. Competition studies with truncated peptides suggested that pre-S1 residues 5 to 20 represent the minimal domain for inhibition of HDV infection and, thus, presumably represent the residues involved in virus-host receptor interaction. Recombinant pre-S1 proteins expressed in insect cells blocked infection with HBV-HDV and WM-HDV at a concentration of 1 nanomolar. The ability of short pre-S1 peptides to efficiently inhibit HDV infection suggests that they represent suitable ligands for identification of the HBV receptor and that a pre-S1 mimetic may represent a rational therapy for the treatment of HBV infection.
Collapse
Affiliation(s)
- Azeneth Barrera
- Department of Virology and Immunology, Southwest National Primate Research Center, Southwest Foundation for Biomedical Research, TX 78227, USA
| | | | | | | |
Collapse
|
16
|
Lu X, Block T. Study of the early steps of the Hepatitis B Virus life cycle. Int J Med Sci 2004; 1:21-33. [PMID: 15912187 PMCID: PMC1074507 DOI: 10.7150/ijms.1.21] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 03/03/2004] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is a human pathogen, causing the serious liver disease. Despite considerable advances in the understanding of the natural history of HBV disease, most of the early steps in the virus life cycle remain unclear. Virus attachment to permissive cells, fusion and penetration through cell membranes and subsequent genome release, are largely a mystery. Current knowledge on the early steps of HBV life cycle has mostly come from molecular cloning, expression of individual genes and studies of the infection of duck hepatitis B virus (DHBV) with duck primary duck hepatocytes. However, considering of the difference of the surface protein of HBV and DHBV both in the composition and sequence, the degree to which information from DHBV applies to human HBV attachment and entry may be limited. A major obstacle to the study HBV infection is the lack of a reliable and sensitive in vitro infection system. We have found that the digestion of HBV and woodchuck hepatitis virus (WHBV) by protease V8 led to the infection of HepG2 cell, a cell line generally is refractory for their infection [Lu et al. J Virol. 1996. 70. 2277-2285 . Lu et al. Virus Research. 2001. 73(1): 27-4].. Further studies showed that a serine protease inhibitor Kazal (SPIK) was over expressed in the HepG2 cells. Therefore, it is possible that to silence the over expressed SPIK and thus to reinstate the activity of indispensable cellular proteases can result in the restoration of the susceptibility of HepG2 cells for HBV infection. The establishing a stable cell line for study of the early steps of HBV life cycle by silencing of SPIK is discussed.
Collapse
|
17
|
Li J, Tong S, Lee HB, Perdigoto AL, Spangenberg HC, Wands JR. Glycine decarboxylase mediates a postbinding step in duck hepatitis B virus infection. J Virol 2004; 78:1873-81. [PMID: 14747552 PMCID: PMC369508 DOI: 10.1128/jvi.78.4.1873-1881.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Envelope protein precursors of many viruses are processed by a basic endopeptidase to generate two molecules, one for receptor binding and the other for membrane fusion. Such a cleavage event has not been demonstrated for the hepatitis B virus family. Two binding partners for duck hepatitis B virus (DHBV) pre-S envelope protein have been identified. Duck carboxypeptidase D (DCPD) interacts with the full-length pre-S protein and is the DHBV docking receptor, while duck glycine decarboxylase (DGD) has the potential to bind several deletion constructs of the pre-S protein in vitro. Interestingly, DGD but not DCPD expression was diminished following prolonged culture of primary duck hepatocytes (PDH), which impaired productive DHBV infection. Introduction of exogenous DGD promoted formation of protein-free viral genome, suggesting restoration of several early events in viral life cycle. Conversely, blocking DGD expression in fresh PDH by antisense RNA abolished DHBV infection. Moreover, addition of DGD antibodies soon after virus binding reduced endogenous DGD protein levels and impaired production of covalently closed circular DNA, the template for DHBV gene expression and genome replication. Our findings implicate this second pre-S binding protein as a critical cellular factor for productive DHBV infection. We hypothesize that DCPD, a molecule cycling between the cell surface and the trans-Golgi network, targets DHBV particles to the secretary pathway for proteolytic cleavage of viral envelope protein. DGD represents the functional equivalent of other virus receptors in its interaction with processed viral particles.
Collapse
Affiliation(s)
- Jisu Li
- The Liver Research Center, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island 02903, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Baranowski E, Ruiz-Jarabo CM, Pariente N, Verdaguer N, Domingo E. Evolution of cell recognition by viruses: a source of biological novelty with medical implications. Adv Virus Res 2004; 62:19-111. [PMID: 14719364 PMCID: PMC7119103 DOI: 10.1016/s0065-3527(03)62002-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The picture beginning to form from genome analyses of viruses, unicellular organisms, and multicellular organisms is that viruses have shared functional modules with cells. A process of coevolution has probably involved exchanges of genetic information between cells and viruses for long evolutionary periods. From this point of view present-day viruses show flexibility in receptor usage and a capacity to alter through mutation their receptor recognition specificity. It is possible that for the complex DNA viruses, due to a likely limited tolerance to generalized high mutation rates, modifications in receptor specificity will be less frequent than for RNA viruses, albeit with similar biological consequences once they occur. It is found that different receptors, or allelic forms of one receptor, may be used with different efficiency and receptor affinities are probably modified by mutation and selection. Receptor abundance and its affinity for a virus may modulate not only the efficiency of infection, but also the capacity of the virus to diffuse toward other sites of the organism. The chapter concludes that receptors may be shared by different, unrelated viruses and that one virus may use several receptors and may expand its receptor specificity in ways that, at present, are largely unpredictable.
Collapse
Affiliation(s)
- Eric Baranowski
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Cooper A, Paran N, Shaul Y. The earliest steps in hepatitis B virus infection. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:89-96. [PMID: 12873769 DOI: 10.1016/s0005-2736(03)00166-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The early steps in hepatitis B virus (HBV) infection, a human hepadnavirus, initiates from cell attachment followed by entry and delivery of the genetic information to the nucleus. Despite the fact that these steps determine the virus-related pathogenesis, their molecular basis is poorly understood. Cumulative data suggest that this process can be divided to cell attachment, endocytosis, membrane fusion and post-fusion consecutive steps. These steps are likely to be regulated by the viral envelope proteins and by the cellular membrane, receptors and extracellular matrix. In the absence of animal model for HBV, the duck hepadnavirus DHBV turned out to be a fruitful animal model. Therefore data concerning the early, post-attachment steps in hepadnaviral entry are largely based on studies performed with DHBV in primary duck liver hepatocytes. These studies are now starting to illuminate the mechanisms of hepadnavirus route of cell entry and to provide some new insights on the molecular basis of the strict species specificity of hepadnavirus infection.
Collapse
Affiliation(s)
- Arik Cooper
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
20
|
Abstract
Virus infection is initiated by recognition and attachment of the virus to the cell surface. Despite the fact that this interaction determines the virus-related pathogenesis, its molecular basis remained obscure for HBV. This process is mediated primarily by the viral envelope and the cellular receptors. HBV infection is not exceptional in this regard but its putative receptors have not been identified yet. The recent development of protocols to establish HBV susceptible cell lines and unique tools to measure HBV-cell attachment at a single cell resolution set the stage for the study of HBV-host cell interaction. These studies revealed that the QLDPAF epitope of the HBV surface antigen large protein (LHBsAg) plays a major role in this process. Quantitative measurements suggested the presence of a second player in this process and both act synergistically to improve cell attachment. As the step of virus-cell attachment is potentially susceptible to specific inhibitors, understanding the molecular basis of virus-cell attachment can be expected to have therapeutic impacts.
Collapse
Affiliation(s)
- Nir Paran
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
21
|
Staschke KA, Colacino JM. Drug discovery and development of antiviral agents for the treatment of chronic hepatitis B virus infection. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2001; Spec No:111-83. [PMID: 11548207 DOI: 10.1007/978-3-0348-7784-8_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A safe and effective vaccine for hepatitis B virus (HBV) has been available for nearly twenty years and currently campaigns to provide universal vaccination in developing countries are underway. Nevertheless, chronic HBV infection remains a leading cause of chronic hepatitis worldwide and there is a strong need for safe and effective antiviral therapies. Attempts to identify and develop antiviral agents to treat chronic HBV infection remains focused on nucleoside analogs such as 3TC (lamivudine), adefovir dipivoxil, (bis-POMPMEA), and others. However, advances in our understanding of the molecular biology of HBV and the development of new assays for HBV polymerase activity, such as the reconstitution of active HBV polymerase in vitro, should facilitate large screening efforts for non-nucleoside reverse transcriptase inhibitors. Recent advances have furthered our understanding of clinical resistance to lamivudine, have provided new approaches to treatment, and have offered new perspectives on the major challenges to the identification and development of antiviral agents for chronic HBV infection. Here, in an update to our previous review article that appeared in this series [59a], we focus on recent advances that have occurred in the areas of virus structure and replication, in vitro viral polymerase assays, cell culture systems, and animal models.
Collapse
Affiliation(s)
- K A Staschke
- Infectious Diseases Research, Lilly Research Laboratories, Indianapolis, IN, USA
| | | |
Collapse
|
22
|
Paran N, Geiger B, Shaul Y. HBV infection of cell culture: evidence for multivalent and cooperative attachment. EMBO J 2001; 20:4443-53. [PMID: 11500372 PMCID: PMC125578 DOI: 10.1093/emboj/20.16.4443] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepadnaviruses do not infect cultured cells, therefore our knowledge of the mechanism of the early stages of virus-cell interaction is rather poor. In this study, we show that dimethylsulfoxide (DMSO)-treated HepG2 hepatoblastoma cells are infected efficiently by serum-derived hepatitis B virus (HBV) as monitored by viral gene expression and replication markers. To measure virus attachment, a variety of HBV surface proteins (HBsAgs) were conjugated to polystyrene beads and their capacity to attach cells was visualized and quantified by light microscopy at a single-cell resolution. Remarkably, DMSO increases the attachment efficiency by >200-fold. We further identify the QLDPAF sequence within preS1 as the receptor-binding viral domain epitope. Interestingly, a similar sequence is shared by several cellular, bacterial and viral proteins involved in cell adhesion, attachment and fusion. We also found that the small HBsAg contains a secondary attachment site that recognizes a distinct receptor on the cell membrane. Furthermore, we provide evidence in support of multivalent HBV attachment with synergistic interplay. Our data depict a mechanistic view of virus attachment and ingestion.
Collapse
Affiliation(s)
- Nir Paran
- Departments of
Molecular Genetics and Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| | - Benjamin Geiger
- Departments of
Molecular Genetics and Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| | - Yosef Shaul
- Departments of
Molecular Genetics and Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| |
Collapse
|
23
|
Galun E, Nahor O, Eid A, Jurim O, Rose-John S, Blum HE, Nussbaum O, Ilan E, Daudi N, Shouval D, Reisner Y, Dagan S. Human interleukin-6 facilitates hepatitis B virus infection in vitro and in vivo. Virology 2000; 270:299-309. [PMID: 10792989 DOI: 10.1006/viro.2000.0210] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM Research on hepatitis B virus (HBV) infection in vivo has been limited due to the absence of a suitable animal model. We have developed a human-mouse radiation chimera in which normal mice, preconditioned by lethal total body irradiation and radioprotected with SCID mouse bone marrow cells, are permissive for engraftment of human hematopoietic cells and solid tissues. This resulting human-mouse model, which comprises three genetically disparate sources of tissue, is therefore termed Trimera. This study was aimed at assessing the effect of human IL-6 on HBV infection in vivo in Trimera mice. METHODS Trimera mice were transplanted with human liver tissue fragments or with HepG2-derived cell lines, which had been previously infected ex vivo with HBV in the presence or absence of human interleukin-6 (hIL-6) and in the presence of anti-IL-6-neutralizing antibodies. RESULTS HBV sequences appeared in the sera of animals in which the liver tissue was incubated with both HBV and hIL-6 prior to transplantation. A similar result was obtained when a human hepatoblastoma cell line (HepG2), expressing the hIL-6 receptor, was infected ex vivo with HBV in the presence of hIL-6 prior to their injection into spleens of Trimera mice. However, when liver fragments were infected ex vivo and simultaneously treated with neutralizing antibodies against hIL-6 or were incubated with HBV prior to transplantation without hIL-6, the rate of mice positive for HBV DNA in their sera was lower. Human mononuclear cells are also permissive for HBV infection in vitro: in the presence of hIL-6 the infection of these cells is enhanced; and this infection is suppressed by the chimeric protein named Hyper-IL-6, generated by the fusion of hIL-6 to the soluble hIL-6 receptor (sIL-6Ralpha, gp80). CONCLUSION hIL-6 facilitates HBV infection in vitro and in vivo.
Collapse
Affiliation(s)
- E Galun
- Liver Unit, Goldyne Savad Institute of Gene Therapy, Hadassah University Hospital, Ein-Kerem, Jerusalem, 91120, Israel.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zoulim F. Therapy of chronic hepatitis B virus infection: inhibition of the viral polymerase and other antiviral strategies. Antiviral Res 1999; 44:1-30. [PMID: 10588330 DOI: 10.1016/s0166-3542(99)00056-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B infection remains a major public health problem worldwide. The hepatitis B virus belongs to the family of hepadnaviruses that replicate their DNA genome via a reverse transcription pathway. The chronicity of infection in infected hepatocytes is maintained by the persistence of the viral covalently closed circular DNA. The main strategies to combat chronic HBV infection rely on the stimulation of the specific antiviral immune response and on the inhibition of viral replication. While the prolonged administration of reverse transcriptase inhibitors is most often associated with a control of viral replication rather than eradication, it may select for resistant mutants. The search for new viral targets is therefore mandatory to design combination strategies to prevent the emergence of resistant mutants and eventually clear viral infection.
Collapse
|
25
|
Abstract
The receptor molecules for human and animal hepatitis B viruses have not been defined. Previous studies have described a 170 to 180 kDa molecule (p170 or gp180) that binds in vitro to the pre-S domain of the large envelope protein of duck hepatitis B virus (DHBV); cDNA cloning revealed the binding protein to be duck carboxypeptidase D (DCPD). In the present study, the DCPD cDNA was transfected into several nonpermissive human-, monkey-, and avian species-derived cell lines. Cells transfected with a plasmid encoding the full-length DCPD protein bound DHBV particles, whereas cells expressing truncated versions of DCPD protein that fail to bind the pre-S protein did not. The DHBV binding to DCPD-reconstituted cells was blocked by a monoclonal antibody that neutralizes DHBV infection of primary duck hepatocytes (PDH) and also by a pre-S peptide previously shown to inhibit DHBV infection of PDH. In addition to promoting virus binding, DCPD expression was associated with internalization of viral particles. The entry process was prevented by incubation of reconstituted cells with DHBV at 4 degrees C and by the addition of energy-depleting agents known to block DHBV entry into PDH. These results demonstrated that DCPD is a DHBV receptor. However, the lack of complete viral replication in DCPD-reconstituted cells suggested that additional factors are required for postentry events in immortalized cell lines.
Collapse
Affiliation(s)
- S Tong
- Molecular Hepatology Laboratory, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
26
|
Li J, Tong S, Wands JR. Identification and expression of glycine decarboxylase (p120) as a duck hepatitis B virus pre-S envelope-binding protein. J Biol Chem 1999; 274:27658-65. [PMID: 10488106 DOI: 10.1074/jbc.274.39.27658] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A 120-kilodalton protein (p120) was identified in the duck liver that binds to several truncated versions of duck hepatitis B virus (DHBV) pre-S envelope protein, suggesting p120 may serve as a DHBV co-receptor. The amino acid sequences of tryptic peptides from purified p120 were found to be the duck p protein of the glycine decarboxylase complex (DGD). DGD cDNA cloning revealed extensive protein conservation with the chicken homologue except for several insertions in the N-terminal leader sequence. The DGD cDNA contained no in-frame AUG codon at the predicted initiation site of the open reading frame, and site-directed mutagenesis experiments established an AUU codon as the translational initiator. The DGD protein expressed in rabbit reticulocyte lysates bound truncated DHBV pre-S protein identical to that of p120 derived from duck liver confirming DGD as p120. Moreover, transfection studies in liver- and kidney-derived cells revealed both cell surface and cytoplasmic expression of the protein. Cloning of the glycine decarboxylase cDNA will permit a direct test of whether it functions as a cell surface co-receptor or as a co-factor in the DHBV replication cycles.
Collapse
Affiliation(s)
- J Li
- Molecular Hepatology Laboratory, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
27
|
Qiao M, Scougall CA, Duszynski A, Burrell CJ. Kinetics of early molecular events in duck hepatitis B virus replication in primary duck hepatocytes. J Gen Virol 1999; 80 ( Pt 8):2127-2135. [PMID: 10466812 DOI: 10.1099/0022-1317-80-8-2127] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This paper describes the use of one-step growth conditions to study the kinetics of duck hepatitis B virus (DHBV) replication in primary duck hepatocytes. Synchronized infection was achieved using partially purified DHBV virions at an m.o.i. of 640 DHBV DNA-containing virions per cell, and these conditions were shown to produce a single cycle of infection. In this model, input purified DHBV DNA was rapidly internalized by cells at > or = 0.5 h, and localized to the nucleus by 4 h, but both covalently closed circular (CCC) DNA and single-stranded DNA were not detected until 48 h postinoculation (p.i.), suggesting that there was a > or = 40 h delay between DHBV localization to the nucleus and formation of CCC DNA. In contrast, CCC DNA can be first detected in hepatocytes at 6 h p.i. in in vivo infection of ducks with the same DHBV strain. In an analysis of the nuclear transport of the DHBV genome, release of nuclear viral DNA from a particulate form to a soluble nucleoplasmic form was only 50% complete by 48 h p.i. However, this process occurred simultaneously with genome uncoating since all soluble nucleoplasmic DHBV DNA was free of nucleocapsid material; this suggests that nucleocapsid disassembly and genome uncoating may occur at the nuclear membrane and not within the nucleus. Quantitative analysis demonstrated inefficiency in a number of steps including virus uptake and internalization, translocation of nucleocapsid across the nuclear membrane and antigen expression from intranuclear viral DNA.
Collapse
Affiliation(s)
- M Qiao
- Infectious Diseases Laboratories, Institute of Medical and Veterinary Science, PO Box 14, Rundle Mall, Adelaide, SA 5000, Australia1
| | - C A Scougall
- Department of Microbiology and Immunology, University of Adelaide, Adelaide, SA 5005, Australia2
| | - A Duszynski
- Department of Microbiology and Immunology, University of Adelaide, Adelaide, SA 5005, Australia2
| | - C J Burrell
- Department of Microbiology and Immunology, University of Adelaide, Adelaide, SA 5005, Australia2
- Infectious Diseases Laboratories, Institute of Medical and Veterinary Science, PO Box 14, Rundle Mall, Adelaide, SA 5000, Australia1
| |
Collapse
|
28
|
Breiner KM, Urban S, Schaller H. Carboxypeptidase D (gp180), a Golgi-resident protein, functions in the attachment and entry of avian hepatitis B viruses. J Virol 1998; 72:8098-104. [PMID: 9733850 PMCID: PMC110147 DOI: 10.1128/jvi.72.10.8098-8104.1998] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carboxypeptidase D (gp180), one of many candidate receptors proposed for hepatitis B viruses (HBVs), was examined and found to be the actual cellular receptor for avian HBVs. This conclusion was based on the following observations: (i) gp180 was the only host protein that bound with high affinity to the pre-S ectodomain of the large duck hepatitis B virus (DHBV) envelope protein, which is known to be essential for virus infection; (ii) a pre-S subdomain which determines physical binding to gp180 was found to coincide with a domain functionally defined in infection competition experiments as a receptor binding domain; (iii) soluble gp180, lacking the membrane anchor, efficiently inhibited DHBV infection; (iv) efficient interspecies gp180-pre-S interaction was limited to the natural hosts of avian hepadnaviruses; and (v) expression of gp180 in a heterologous hepatoma cell line mediated cellular attachment and subsequent internalization of fluorescently labeled viral particles into vesicular structures. However, gp180 expression did not render transfected heterologous cells permissive for productive infection, suggesting that a species-specific coreceptor is required for fusion to complete viral entry. In contrast to the case for known virus receptors, gp180 was not detected on the hepatocyte cell surface but was found to be concentrated in the Golgi apparatus, from where it functions by cycling to and from the plasma membrane.
Collapse
Affiliation(s)
- K M Breiner
- Zentrum für Molekulare Biologie, Universität Heidelberg, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
29
|
Bruns M, Miska S, Chassot S, Will H. Enhancement of hepatitis B virus infection by noninfectious subviral particles. J Virol 1998; 72:1462-8. [PMID: 9445049 PMCID: PMC124627 DOI: 10.1128/jvi.72.2.1462-1468.1998] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The biological function of the huge excess of subviral particles over virions in hepatitis B virus infections is unknown. Using the duck hepatitis B virus as a model, we unexpectedly found that subviral particles strongly enhance intracellular viral replication and gene expression. This effect is dependent on the multiplicity of infection, the ratio of virions over subviral particles, and the time point of addition of subviral particles. Most importantly, we show that the pre-S protein of the subviral particles triggers enhancement and requires the presence of the binding regions for putative cell-encoded virus receptor proteins. These data suggest that enhancement is due either to the recently described transactivation function of the pre-S protein or to signalling pathways which become activated upon binding of subviral particles to cellular receptors. The findings are of clinical importance, since they imply that infectivity of sera containing hepadnaviruses depends not only on the amount of infectious virions but also decisively on the number of particles devoid of nucleic acids. A similarly dramatic enhancing effect of noninfectious particles in other virus infections is well conceivable.
Collapse
Affiliation(s)
- M Bruns
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Germany.
| | | | | | | |
Collapse
|