1
|
von Stromberg K, Seddar L, Ip WH, Günther T, Gornott B, Weinert SC, Hüppner M, Bertzbach LD, Dobner T. The human adenovirus E1B-55K oncoprotein coordinates cell transformation through regulation of DNA-bound host transcription factors. Proc Natl Acad Sci U S A 2023; 120:e2310770120. [PMID: 37883435 PMCID: PMC10622919 DOI: 10.1073/pnas.2310770120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
The multifunctional adenovirus E1B-55K oncoprotein can induce cell transformation in conjunction with adenovirus E1A gene products. Previous data from transient expression studies and in vitro experiments suggest that these growth-promoting activities correlate with E1B-55K-mediated transcriptional repression of p53-targeted genes. Here, we analyzed genome-wide occupancies and transcriptional consequences of species C5 and A12 E1B-55Ks in transformed mammalian cells by combinatory ChIP and RNA-seq analyses. E1B-55K-mediated repression correlates with tethering of the viral oncoprotein to p53-dependent promoters via DNA-bound p53. Moreover, we found that E1B-55K also interacts with and represses transcription of numerous p53-independent genes through interactions with transcription factors that play central roles in cancer and stress signaling. Our results demonstrate that E1B-55K oncoproteins function as promiscuous transcriptional repressors of both p53-dependent and -independent genes and further support the model that manipulation of cellular transcription is central to adenovirus-induced cell transformation and oncogenesis.
Collapse
Affiliation(s)
| | - Laura Seddar
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Thomas Günther
- Virus Genomics, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Britta Gornott
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Sophie-Celine Weinert
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Max Hüppner
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| |
Collapse
|
2
|
Price AM, Steinbock RT, Lauman R, Charman M, Hayer KE, Kumar N, Halko E, Lum KK, Wei M, Wilson AC, Garcia BA, Depledge DP, Weitzman MD. Novel viral splicing events and open reading frames revealed by long-read direct RNA sequencing of adenovirus transcripts. PLoS Pathog 2022; 18:e1010797. [PMID: 36095031 PMCID: PMC9499273 DOI: 10.1371/journal.ppat.1010797] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/22/2022] [Accepted: 08/05/2022] [Indexed: 01/07/2023] Open
Abstract
Adenovirus is a common human pathogen that relies on host cell processes for transcription and processing of viral RNA and protein production. Although adenoviral promoters, splice junctions, and polyadenylation sites have been characterized using low-throughput biochemical techniques or short read cDNA-based sequencing, these technologies do not fully capture the complexity of the adenoviral transcriptome. By combining Illumina short-read and nanopore long-read direct RNA sequencing approaches, we mapped transcription start sites and RNA cleavage and polyadenylation sites across the adenovirus genome. In addition to confirming the known canonical viral early and late RNA cassettes, our analysis of splice junctions within long RNA reads revealed an additional 35 novel viral transcripts that meet stringent criteria for expression. These RNAs include fourteen new splice junctions which lead to expression of canonical open reading frames (ORFs), six novel ORF-containing transcripts, and 15 transcripts encoding for messages that could alter protein functions through truncation or fusion of canonical ORFs. In addition, we detect RNAs that bypass canonical cleavage sites and generate potential chimeric proteins by linking distinct gene transcription units. Among these chimeric proteins we detected an evolutionarily conserved protein containing the N-terminus of E4orf6 fused to the downstream DBP/E2A ORF. Loss of this novel protein, E4orf6/DBP, was associated with aberrant viral replication center morphology and poor viral spread. Our work highlights how long-read sequencing technologies combined with mass spectrometry can reveal further complexity within viral transcriptomes and resulting proteomes.
Collapse
Affiliation(s)
- Alexander M. Price
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Robert T. Steinbock
- Cell & Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard Lauman
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew Charman
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Katharina E. Hayer
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Namrata Kumar
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Edwin Halko
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Krystal K. Lum
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Monica Wei
- Cell & Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Angus C. Wilson
- Department of Microbiology, New York University School of Medicine, New York city, New York, United States of America
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Daniel P. Depledge
- Department of Microbiology, New York University School of Medicine, New York city, New York, United States of America
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Matthew D. Weitzman
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Protein–Protein Interactions Facilitate E4orf6-Dependent Regulation of E1B-55K SUMOylation in HAdV-C5 Infection. Viruses 2022; 14:v14030463. [PMID: 35336871 PMCID: PMC8953357 DOI: 10.3390/v14030463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
The human adenovirus type C5 (HAdV-C5) E1B-55K protein is a multifunctional regulator of HAdV-C5 replication, participating in many processes required for maximal virus production. Its multifunctional properties are primarily regulated by post-translational modifications (PTMs). The most influential E1B-55K PTMs are phosphorylation at highly conserved serine and threonine residues at the C-terminus, and SUMO conjugation to lysines 104 (K104) and 101 (K101) situated in the N-terminal region of the protein, which have been shown to regulate each other. Reversible SUMO conjugation provides a molecular switch that controls key functions of the viral protein, including intracellular trafficking and viral immune evasion. Interestingly, SUMOylation at SUMO conjugation site (SCS) K104 is negatively regulated by another multifunctional HAdV-C5 protein, E4orf6, which is known to form a complex with E1B-55K. To further evaluate the role of E4orf6 in the regulation of SUMO conjugation to E1B-55K, we analyzed different virus mutants expressing E1B-55K proteins with amino acid exchanges in both SCS (K101 and K104) in the presence or absence of E4orf6. We could exclude phosphorylation as factor for E4orf6-mediated reduction of E1B-55K SUMOylation. In fact, we demonstrate that a direct interaction between E1B-55K and E4orf6 is required to reduce E1B-55K SUMOylation. Additionally, we show that an E4orf6-mediated decrease of SUMO conjugation to K101 and K104 result in impaired co-localization of E1B-55K and SUMO in viral replication compartments. These findings indicate that E4orf6 inhibits E1B-55K SUMOylation, which could favor assembly of E4orf6-dependent E3 ubiquitin ligase complexes that are known to degrade a variety of host restriction factors by proteasomal degradation and, thereby, promote viral replication.
Collapse
|
4
|
Double-edged role of PML nuclear bodies during human adenovirus infection. Virus Res 2020; 295:198280. [PMID: 33370557 DOI: 10.1016/j.virusres.2020.198280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 01/31/2023]
Abstract
PML nuclear bodies are matrix-bound nuclear structures with a variety of functions in human cells. These nuclear domains are interferon regulated and play an essential role during virus infections involving accumulation of SUMO-dependent host and viral factors. PML-NBs are targeted and subsequently manipulated by adenoviral regulatory proteins, illustrating their crucial role during productive infection and virus-mediated oncogenic transformation. PML-NBs have a longstanding antiviral reputation; however, the genomes of Human Adenoviruses and initial sites of viral transcription/replication are found juxtaposed to these domains, resulting in a double-edged capacity of these nuclear multiprotein/multifunctional complexes. This enigma provides evidence that Human Adenoviruses selectively counteract antiviral responses, and simultaneously benefit from or even depend on proviral PML-NB associated components by active recruitment to PML track-like structures, that are induced during infection. Thereby, a positive microenvironment for adenoviral transcription and replication is created at these nuclear subdomains. Based on the available data, this review aims to provide a detailed overview of the current knowledge of Human Adenovirus crosstalk with nuclear PML body compartments as sites of SUMOylation processes in the host cells, evaluating the currently known principles and molecular mechanisms.
Collapse
|
5
|
Hidalgo P, Ip WH, Dobner T, Gonzalez RA. The biology of the adenovirus E1B 55K protein. FEBS Lett 2019; 593:3504-3517. [PMID: 31769868 DOI: 10.1002/1873-3468.13694] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022]
Abstract
The adenovirus E1B 55K (E1B) protein plays major roles in productive adenoviral infection and cellular transformation. Interest in E1B increased because of the potential of adenoviruses as therapeutic vectors, and the E1B gene is commonly deleted from adenovirus vectors for anticancer therapy. E1B activities are spatiotemporally regulated through SUMOylation and phosphorylation, and through interactions with multiple partners that occur presumably at different intracellular sites and times postinfection. E1B is implicated in the formation of viral replication compartments and regulates viral genome replication and transcription, transcriptional repression, degradation of cellular proteins, and several intranuclear steps of viral late mRNA biogenesis. Here, we review advances in our understanding of E1B during productive adenovirus replication and discuss fundamental aspects that remain unresolved.
Collapse
Affiliation(s)
- Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ramón A Gonzalez
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
6
|
E1B-55K-Mediated Regulation of RNF4 SUMO-Targeted Ubiquitin Ligase Promotes Human Adenovirus Gene Expression. J Virol 2018; 92:JVI.00164-18. [PMID: 29695423 DOI: 10.1128/jvi.00164-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 01/26/2023] Open
Abstract
Human adenovirus (HAdV) E1B-55K is a multifunctional regulator of productive viral replication and oncogenic transformation in nonpermissive mammalian cells. These functions depend on E1B-55K's posttranslational modification with the SUMO protein and its binding to HAdV E4orf6. Both early viral proteins recruit specific host factors to form an E3 ubiquitin ligase complex that targets antiviral host substrates for proteasomal degradation. Recently, we reported that the PML-NB-associated factor Daxx represses efficient HAdV productive infection and is proteasomally degraded via a SUMO-E1B-55K-dependent, E4orf6-independent pathway, the details of which remained to be established. RNF4, a cellular SUMO-targeted ubiquitin ligase (STUbL), induces ubiquitinylation of specific SUMOylated proteins and plays an essential role during DNA repair. Here, we show that E1B-55K recruits RNF4 to the insoluble nuclear matrix fraction of the infected cell to support RNF4/Daxx association, promoting Daxx PTM and thus inhibiting this antiviral factor. Removing RNF4 from infected cells using RNA interference resulted in blocking the proper establishment of viral replication centers and significantly diminished viral gene expression. These results provide a model for how HAdV antagonize the antiviral host responses by exploiting the functional capacity of cellular STUbLs. Thus, RNF4 and its STUbL function represent a positive factor during lytic infection and a novel candidate for future therapeutic antiviral intervention strategies.IMPORTANCE Daxx is a PML-NB-associated transcription factor that was recently shown to repress efficient HAdV productive infection. To counteract this antiviral measurement during infection, Daxx is degraded via a novel pathway including viral E1B-55K and host proteasomes. This virus-mediated degradation is independent of the classical HAdV E3 ubiquitin ligase complex, which is essential during viral infection to target other host antiviral substrates. To maintain a productive viral life cycle, HAdV E1B-55K early viral protein inhibits the chromatin-remodeling factor Daxx in a SUMO-dependent manner. In addition, viral E1B-55K protein recruits the STUbL RNF4 and sequesters it into the insoluble fraction of the infected cell. E1B-55K promotes complex formation between RNF4- and E1B-55K-targeted Daxx protein, supporting Daxx posttranslational modification prior to functional inhibition. Hence, RNF4 represents a novel host factor that is beneficial for HAdV gene expression by supporting Daxx counteraction. In this regard, RNF4 and other STUbL proteins might represent novel targets for therapeutic intervention.
Collapse
|
7
|
Berscheminski J, Brun J, Speiseder T, Wimmer P, Ip WH, Terzic M, Dobner T, Schreiner S. Sp100A is a tumor suppressor that activates p53-dependent transcription and counteracts E1A/E1B-55K-mediated transformation. Oncogene 2016; 35:3178-89. [PMID: 26477309 DOI: 10.1038/onc.2015.378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/03/2015] [Accepted: 08/14/2015] [Indexed: 01/29/2023]
Abstract
Human adenoviruses (HAdV) are used as a model system to investigate tumorigenic processes in mammalian cells where the viral oncoproteins E1A and E1B-55K are absolutely required for oncogenic transformation, because they simultaneously accelerate cell cycle progression and inhibit tumor suppressor proteins such as p53, although the underlying mechanism is still not understood in detail. In our present study, we provide evidence that E1B-55K binding to the PML-NB component Sp100A apparently has an essential role in regulating adenovirus-mediated transformation processes. Specifically, when this E1B-55K/Sp100A complex recruits p53, Sp100A-induced activation of p53 transcriptional activity is effectively abolished. Hence, Sp100A exhibits tumor-suppressive activity, not only by stabilizing p53 transactivation but also by depressing E1A/E1B-55K-mediated transformation. E1B-55K counteracts this suppressive activity, inducing Sp100A SUMOylation and sequestering the modified cellular factor into the insoluble matrix of the nucleus or into cytoplasmic inclusions. These observations provide novel insights into how E1B-55K modulates cellular determinants to maintain growth-promoting activity during oncogenic processes and lytic infection.
Collapse
Affiliation(s)
- J Berscheminski
- Department of Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - J Brun
- Department of Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - T Speiseder
- Department of Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - P Wimmer
- Department of Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - W H Ip
- Department of Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - M Terzic
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - T Dobner
- Department of Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - S Schreiner
- Department of Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
8
|
PML isoforms IV and V contribute to adenovirus-mediated oncogenic transformation by functionally inhibiting the tumor-suppressor p53. Oncogene 2015; 35:69-82. [PMID: 25772236 DOI: 10.1038/onc.2015.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/16/2014] [Accepted: 01/30/2015] [Indexed: 11/09/2022]
Abstract
Although modulation of the cellular tumor-suppressor p53 is considered to have the major role in E1A/E1B-55K-mediated tumorigenesis, other promyelocytic leukemia nuclear body (PML-NB)/PML oncogenic domain (POD)-associated factors including SUMO, Mre11, Daxx, as well as the integrity of these nuclear bodies contribute to the transformation process. However, the biochemical consequences and oncogenic alterations of PML-associated E1B-55K by SUMO-dependent PML-IV and PML-V interaction have so far remained elusive. We performed mutational analysis to define a PML interaction motif within the E1B-55K polypeptide. Our results showed that E1B-55K/PML binding is not required for p53, Mre11 and Daxx interaction. We also observed that E1B-55K lacking subnuclear PML localization because of either PML-IV or PML-V-binding deficiency was no longer capable of mediating E1B-55K-dependent SUMOylation of p53, inhibition of p53-mediated transactivation or efficiently transforming primary rodent cells. These results together with the observation that E1B-55K-dependent SUMOylation of p53 is required for efficient cell transformation, provides evidence for the idea that the SUMO ligase activity of the E1B-55K viral oncoprotein is intimately linked to its growth-promoting oncogenic activities.
Collapse
|
9
|
Schreiner S, Kinkley S, Bürck C, Mund A, Wimmer P, Schubert T, Groitl P, Will H, Dobner T. SPOC1-mediated antiviral host cell response is antagonized early in human adenovirus type 5 infection. PLoS Pathog 2013; 9:e1003775. [PMID: 24278021 PMCID: PMC3836738 DOI: 10.1371/journal.ppat.1003775] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/04/2013] [Indexed: 01/22/2023] Open
Abstract
Little is known about immediate phases after viral infection and how an incoming viral genome complex counteracts host cell defenses, before the start of viral gene expression. Adenovirus (Ad) serves as an ideal model, since entry and onset of gene expression are rapid and highly efficient, and mechanisms used 24–48 hours post infection to counteract host antiviral and DNA repair factors (e.g. p53, Mre11, Daxx) are well studied. Here, we identify an even earlier host cell target for Ad, the chromatin-associated factor and epigenetic reader, SPOC1, recently found recruited to double strand breaks, and playing a role in DNA damage response. SPOC1 co-localized with viral replication centers in the host cell nucleus, interacted with Ad DNA, and repressed viral gene expression at the transcriptional level. We discovered that this SPOC1-mediated restriction imposed upon Ad growth is relieved by its functional association with the Ad major core protein pVII that enters with the viral genome, followed by E1B-55K/E4orf6-dependent proteasomal degradation of SPOC1. Mimicking removal of SPOC1 in the cell, knock down of this cellular restriction factor using RNAi techniques resulted in significantly increased Ad replication, including enhanced viral gene expression. However, depletion of SPOC1 also reduced the efficiency of E1B-55K transcriptional repression of cellular promoters, with possible implications for viral transformation. Intriguingly, not exclusive to Ad infection, other human pathogenic viruses (HSV-1, HSV-2, HIV-1, and HCV) also depleted SPOC1 in infected cells. Our findings provide a general model for how pathogenic human viruses antagonize intrinsic SPOC1-mediated antiviral responses in their host cells. A better understanding of viral entry and early restrictive functions in host cells should provide new perspectives for developing antiviral agents and therapies. Conversely, for Ad vectors used in gene therapy, counteracting mechanisms eradicating incoming viral DNA would increase Ad vector efficacy and safety for the patient. Viruses have acquired functions that target and modulate host cell signaling and diverse regulatory cascades, leading to efficient viral propagation. During the course of productive infection, Ad gene products manipulate destruction pathways to prevent viral clearance or cell death prior to viral genome amplification and release of progeny. Recently, we reported that chromatin formation and cellular SWI/SNF chromatin remodeling processes play a key role in Ad transcriptional regulation. Here, we observe for the first time that SPOC1, identified as a regulator of DNA damage response and chromatin structure, plays an essential role in restricting Ad gene expression and progeny production. This host cell antiviral mechanism is efficiently counteracted by tight association with the major core protein pVII bound to the incoming viral genome. Subsequently, SPOC1 undergoes proteasomal degradation via the Ad E1B-55K/E4orf6-dependent, Cullin-based E3 ubiquitin ligase complex. We also show that other viruses from RNA and DNA families also induce efficient degradation of SPOC1. These analyses of evasion strategies acquired by viruses and other human pathogens should provide important insights into factors manipulating the epigenetic environment to potentially inactivate, or amplify host cell immune responses, since detailed molecular mechanisms and the full repertoire of cellular targets still remain elusive.
Collapse
Affiliation(s)
- Sabrina Schreiner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sarah Kinkley
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Carolin Bürck
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Andreas Mund
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Wimmer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Tobias Schubert
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Groitl
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Hans Will
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
10
|
Aggresome formation by the adenoviral protein E1B55K is not conserved among adenovirus species and is not required for efficient degradation of nuclear substrates. J Virol 2013; 87:4872-81. [PMID: 23408624 DOI: 10.1128/jvi.03272-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Much of the work on the basic molecular biology of human adenoviruses has been carried out on a very limited number of the more than 60 serotypes, primarily the highly related species C viruses adenovirus type 5 (Ad5) and Ad2 and, to some extent, Ad12 of species A. Until recently, it has been widely assumed that insights obtained with these model viruses were representative of all human adenoviruses. Recent studies on the E3 ubiquitin ligase formed by the viral E1B55K and E4orf6 proteins with a cellular Cullin-based complex indicated that although all species form such a functional complex, significant variations exist in terms of complex composition and the substrates that are degraded. In the present report we conducted a comprehensive analysis of the localization of E1B55K products from representatives of six of the seven adenovirus species in the presence and the absence of the corresponding E4orf6 protein. We found that although in some species E1B55K localized in aggresomes, such was not always the case, suggesting that these structures are not necessary for the efficient degradation of substrates. In addition, differences were evident in the localization of E1B55K, although all forms readily associated with PML. Finally, Ad5 E1B55K was seen to localize in close proximity to Rab11, a marker for the endosomal recycling compartment, and both focused at the microtubule organizing center. These findings suggest that E1B55K from some species may employ the transport system utilized by the membrane recycling pathway to assemble aggresomes and the possibility that this structure might then affect recycling of cell surface components.
Collapse
|
11
|
Functional cooperation between human adenovirus type 5 early region 4, open reading frame 6 protein, and cellular homeobox protein HoxB7. J Virol 2012; 86:8296-308. [PMID: 22553335 DOI: 10.1128/jvi.00222-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human adenovirus type 5 (HAdV5) E4orf6 (early region 4 open reading frame 6 protein) is a multifunctional early viral protein promoting efficient replication and progeny production. E4orf6 complexes with E1B-55K to assemble cellular proteins into a functional E3 ubiquitin ligase complex that not only mediates proteasomal degradation of host cell substrates but also facilitates export of viral late mRNA to promote efficient viral protein expression and host cell shutoff. Recent findings defined the role of E4orf6 in RNA splicing independent of E1B-55K binding. To reveal further functions of the early viral protein in infected cells, we used a yeast two-hybrid system and identified the homeobox transcription factor HoxB7 as a novel E4orf6-associated protein. Using a HoxB7 knockdown cell line, we observed a positive role of HoxB7 in adenoviral replication. Our experiments demonstrate that the absence of HoxB7 leads to inefficient viral progeny production, as HAdV5 gene expression is highly regulated by HoxB7-mediated activation of various adenoviral promoters. We have thus identified a novel role of E4orf6 in HAdV5 gene transcription via regulation of homeobox protein-dependent modulation of viral promoter activity.
Collapse
|
12
|
Adenovirus type 5 early region 1B 55K oncoprotein-dependent degradation of cellular factor Daxx is required for efficient transformation of primary rodent cells. J Virol 2011; 85:8752-65. [PMID: 21697482 DOI: 10.1128/jvi.00440-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Early region 1B 55K (E1B-55K) from adenovirus type 5 (Ad5) is a multifunctional regulator of lytic infection and contributes in vitro to complete cell transformation of primary rodent cells in combination with Ad5 E1A. Inhibition of p53 activated transcription plays a key role in processes by which E1B-55K executes its oncogenic potential. Nevertheless, additional functions of E1B-55K or further protein interactions with cellular factors of DNA repair, transcription, and apoptosis, including Mre11, PML, and Daxx, may also contribute to the transformation process. In line with previous results, we performed mutational analysis to define a Daxx interaction motif within the E1B-55K polypeptide. The results from these studies showed that E1B-55K/Daxx binding is not required for inhibition of p53-mediated transactivation or binding and degradation of cellular factors (p53/Mre11). Surprisingly, these mutants lost the ability to degrade Daxx and showed reduced transforming potential in primary rodent cells. In addition, we observed that E1B-55K lacking the SUMO-1 conjugation site (SCS/K104R) was sufficient for Daxx interaction but no longer capable of E1B-55K-dependent proteasomal degradation of the cellular factor Daxx. These results, together with the observation that E1B-55K SUMOylation is required for efficient transformation, provides evidence for the idea that SUMO-1-conjugated E1B-55K-mediated degradation of Daxx plays a key role in adenoviral oncogenic transformation. We assume that the viral protein contributes to cell transformation through the modulation of Daxx-dependent pathways. This further substantiates the assumption that further mechanisms for efficient transformation of primary cells can be separated from functions required for the inhibition of p53-stimulated transcription.
Collapse
|
13
|
Adenovirus E1B 55-kilodalton protein is a p53-SUMO1 E3 ligase that represses p53 and stimulates its nuclear export through interactions with promyelocytic leukemia nuclear bodies. J Virol 2010; 84:12210-25. [PMID: 20861261 DOI: 10.1128/jvi.01442-10] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oncogenic transformation by adenovirus E1A and E1B-55K requires E1B-55K inhibition of p53 activity to prevent E1A-induced apoptosis. During viral infection, E1B-55K and E4orf6 substitute for the substrate-binding subunits of the host cell cullin 5 class of ubiquitin ligases, resulting in p53 polyubiquitinylation and proteasomal degradation. Here we show that E1B-55K alone also functions as an E3 SUMO1-p53 ligase. Fluorescence microscopy studies showed that E1B-55K alone, in the absence of other viral proteins, causes p53 to colocalize with E1B-55K in promyelocytic leukemia (PML) nuclear bodies, nuclear domains with a high concentration of sumoylated proteins. Photobleaching experiments with live cells revealed that E1B-55K tethering of p53 in PML nuclear bodies decreases the in vivo nuclear mobility of p53 nearly 2 orders of magnitude. E1B-55K-induced p53 sumoylation contributes to maximal inhibition of p53 function since mutation of the major p53 sumoylation site decreases E1B-55K-induced p53 sumoylation, tethering in PML nuclear bodies, and E1B-55K inhibition of p53 activity. Mutation of the E1B-55K sumoylation site greatly inhibits E1B-55K association with PML nuclear bodies and the p53 nuclear export to cytoplasmic aggresomes observed in E1A-E1B-transformed cells. Purified E1B-55K and p53 form high-molecular-weight complexes potentially through the formation of a network of E1B-55K dimers bound to the N termini of p53 tetramers. In support of this model, a p53 mutation that prevents tetramer formation greatly reduces E1B-55K-induced tethering in PML nuclear bodies and p53 nuclear export. These data indicate that E1B-55K's association with PML nuclear bodies inactivates p53 by first sequestering it in PML nuclear bodies and then greatly facilitating its nuclear export.
Collapse
|
14
|
Schreiner S, Wimmer P, Sirma H, Everett RD, Blanchette P, Groitl P, Dobner T. Proteasome-dependent degradation of Daxx by the viral E1B-55K protein in human adenovirus-infected cells. J Virol 2010; 84:7029-38. [PMID: 20484509 PMCID: PMC2898266 DOI: 10.1128/jvi.00074-10] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 05/06/2010] [Indexed: 01/19/2023] Open
Abstract
The death-associated protein Daxx found in PML (promyelocytic leukemia protein) nuclear bodies (PML-NBs) is involved in transcriptional regulation and cellular intrinsic antiviral resistence against incoming viruses. We found that knockdown of Daxx in a nontransformed human hepatocyte cell line using RNA interference (RNAi) techniques results in significantly increased adenoviral (Ad) replication, including enhanced viral mRNA synthesis and viral protein expression. This Daxx restriction imposed upon adenovirus growth is counteracted by early protein E1B-55K (early region 1B 55-kDa protein), a multifunctional regulator of cell-cycle-independent Ad5 replication. The viral protein binds to Daxx and induces its degradation through a proteasome-dependent pathway. We show that this process is independent of Ad E4orf6 (early region 4 open reading frame 6), known to promote the proteasomal degradation of cellular p53, Mre11, DNA ligase IV, and integrin alpha3 in combination with E1B-55K. These results illustrate the importance of the PML-NB-associated factor Daxx in virus growth restriction and suggest that E1B-55K antagonizes innate antiviral activities of Daxx and PML-NBs to stimulate viral replication at a posttranslational level.
Collapse
Affiliation(s)
- Sabrina Schreiner
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Peter Wimmer
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Hüseyin Sirma
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Roger D. Everett
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Paola Blanchette
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Peter Groitl
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Thomas Dobner
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| |
Collapse
|
15
|
Yamasaki S, Miura Y, Brown E, Davydova J, Yamamoto M. Development of a method for effective amplification of human adenovirus 40. Arch Virol 2010; 155:1059-68. [PMID: 20490608 DOI: 10.1007/s00705-010-0683-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
Abstract
Human adenovirus 40 (Ad40) is an interesting candidate for vector construction because of its tropism for the gastrointestinal tract. Although effective preparation of the vector is necessary for its in vivo application, amplification of Ad40 has been very difficult. Ad40 E1 deletion mutants were detected by PCR in the viral DNA from Ad40 Dugan amplified by Ad5 E1-expressing human embryonic kidney (293) cells and in Ad40 Dugan plaques observed with Ad5 E1-expressing human retinoblastic cells. For the purpose of generating a single wild-type Ad40 clone, the entire Ad40 DNA was cloned into a plasmid by homologous recombination. A pure Ad40 was successfully generated by plasmid transfection and subsequently amplified with Ad5 E4orf6-inducible 293 (2V6.11) cells. 2V6.11 is an apposite cell line for effective Ad40 amplification and for future vector construction because Ad40 genetic integrity was maintained with this Ad5 E1 and E4orf6 trans-complementing cell line.
Collapse
Affiliation(s)
- Satoshi Yamasaki
- Department of Surgery, Division of Basic and Translational Research, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
16
|
Morawska-Onyszczuk M, Bieńkowska-Szewczyk K, Dobbelstein M. Self-association of adenovirus type 5 E1B-55 kDa as well as p53 is essential for their mutual interaction. Oncogene 2009; 29:1773-86. [PMID: 20023703 DOI: 10.1038/onc.2009.461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adenovirus type 5 E1B-55 kDa oncoprotein forms a complex with the tumor suppressor p53 and inactivates it. E1B-55 kDa and p53 are each capable of forming oligomers. We mapped the oligomerization domain of E1B-55 kDa to the central portion of the protein. Disturbing E1B-55 kDa self-association by point mutations at residues 285/286 or 307 not only impairs its intracellular localization to the cytoplasmic clusters, but in addition, its association with p53. Strikingly, tetramerization of p53 is also required for efficient association with E1B-55 kDa. Moreover, two different E1B-55 kDa mutants defective for p53 binding but proficient for oligomerization can trans-complement each other for p53 relocalization. We propose that the homo-oligomerization of each component enables efficient interaction between E1B-55 kDa and p53 through increased avidity.
Collapse
Affiliation(s)
- M Morawska-Onyszczuk
- Department of Molecular Oncology, Göttingen Center of Molecular Bioscience, Ernst Caspari Haus, University of Göttingen, Göttingen 37077, Germany
| | | | | |
Collapse
|
17
|
Adenovirus E1B 55-kilodalton protein: multiple roles in viral infection and cell transformation. J Virol 2009; 83:4000-12. [PMID: 19211739 DOI: 10.1128/jvi.02417-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
18
|
Distinct requirements of adenovirus E1b55K protein for degradation of cellular substrates. J Virol 2008; 82:9043-55. [PMID: 18614635 DOI: 10.1128/jvi.00925-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E1b55K and E4orf6 proteins of adenovirus type 5 (Ad5) assemble into a complex together with cellular proteins including cullin 5, elongins B and C, and Rbx1. This complex possesses E3 ubiquitin ligase activity and targets cellular proteins for proteasome-mediated degradation. The ligase activity has been suggested to be responsible for all functions of E1b55K/E4orf6, including promoting efficient viral DNA replication, preventing a cellular DNA damage response, and stimulating late viral mRNA nuclear export and late protein synthesis. The known cellular substrates for degradation by E1b55K/E4orf6 are the Mre11/Rad50/Nbs1 DNA repair complex, the tumor suppressor p53, and DNA ligase IV. Here we show that the degradation of individual targets can occur independently of other substrates. Furthermore, we identify separation-of-function mutant forms of E1b55K that can distinguish substrates for binding and degradation. Our results identify distinct regions of E1b55K that are involved in substrate recognition but also imply that there are additional requirements beyond protein association. These mutant proteins will facilitate the determination of the relevance of specific substrates to the functions of E1b55K in promoting infection and inactivating host defenses.
Collapse
|
19
|
RUNX1 permits E4orf6-directed nuclear localization of the adenovirus E1B-55K protein and associates with centers of viral DNA and RNA synthesis. J Virol 2008; 82:6395-408. [PMID: 18417565 DOI: 10.1128/jvi.00043-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The localization of the adenovirus E1B-55K-E4orf6 protein complex is critical for its function. Prior studies demonstrated that E4orf6 directs the nuclear localization of E1B-55K in human cells and in rodent cells that contain part of human chromosome 21. We show here that the relevant activity on chromosome 21 maps to RUNX1. RUNX1 proteins are transcription factors that serve as scaffolds for the assembly of proteins that regulate transcription and RNA processing. After transfection, the RUNX1a, RUNX1b, and RUNX1-DeltaN variants allowed E4orf6-directed E1B-55K nuclear localization. The failure of RUNX1c to allow nuclear colocalization was relieved by the deletion of amino-terminal residues of this protein. In the adenovirus-infected mouse cell, RUNX1 proteins were localized to discrete structures about the periphery of viral replication centers. These sites are enriched in viral RNA and RNA-processing factors. RUNX1b and RUNX1a proteins displaced E4orf6 from these sites. The association of E1B-55K at viral replication centers was enhanced by the RUNX1a and RUNX1b proteins, but only in the absence of E4orf6. In the presence of E4orf6, E1B-55K occurred in a perinuclear cytoplasmic body resembling the aggresome and was excluded from the nucleus of the infected mouse cell. We interpret these findings to mean that a dynamic relationship exists between the E4orf6, E1B-55K, and RUNX1 proteins. In cooperation with E4orf6, RUNX1 proteins are able to modulate the localization of E1B-55K and even remodel virus-specific structures that form at late times of infection. Subsequent studies will need to determine a functional consequence of the interaction between E4orf6, E1B-55K, and RUNX1.
Collapse
|
20
|
Baker A, Rohleder KJ, Hanakahi LA, Ketner G. Adenovirus E4 34k and E1b 55k oncoproteins target host DNA ligase IV for proteasomal degradation. J Virol 2007; 81:7034-40. [PMID: 17459921 PMCID: PMC1933317 DOI: 10.1128/jvi.00029-07] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cells infected by adenovirus E4 mutants accumulate end-to-end concatemers of the viral genome that are assembled from unit-length viral DNAs by nonhomologous end joining (NHEJ). Genome concatenation can be prevented by expression either of E4 11k (product of E4orf3) or of the complex of E4 34k (product of E4orf6) and E1b 55k. Both E4 11k and the E4 34k/E1b 55k complex prevent concatenation at least in part by inactivation of the host protein Mre11: E4 11k sequesters Mre11 in aggresomes, while the E4 34k/E1b 55k complex participates in a virus-specific E3 ubiquitin ligase that mediates ubiquitination and proteasomal degradation. The E4 34k/E1b 55k complex, but not E4 11k, also inhibits NHEJ activity on internal breaks in the viral genome and on V(D)J recombination substrate plasmids, suggesting that it may interfere with NHEJ independently of its effect on Mre11. We show here that DNA ligase IV, which performs the joining step of NHEJ, is degraded as a consequence of adenovirus infection. Degradation is dependent upon E4 34k and E1b 55k, functional proteasomes, and the activity of cellular cullin 5, a component of the adenoviral ubiquitin ligase. DNA ligase IV also interacts physically with E1b 55k. The data demonstrate that DNA ligase IV, like Mre11, is a substrate for the adenovirus-specific E3 ubiquitin ligase; identify an additional viral approach to prevention of genome concatenation; and provide a mechanism for the general inhibition of NHEJ by adenoviruses.
Collapse
Affiliation(s)
- Amy Baker
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
21
|
Jiang H, Alonso MM, Gomez-Manzano C, Piao Y, Fueyo J. Oncolytic viruses and DNA-repair machinery: overcoming chemoresistance of gliomas. Expert Rev Anticancer Ther 2007; 6:1585-92. [PMID: 17134363 DOI: 10.1586/14737140.6.11.1585] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The current standard of care for malignant gliomas is surgical resection and radiotherapy followed by extended adjuvant treatment with the alkylating agent temozolomide. Temozolomide causes DNA damage, which induces cell death. Through changes in the DNA-repair machinery, glioma cells develop resistance to temozolomide, compromising the therapeutic effect of the drug. Oncolytic viruses, such as herpes simplex viruses and adenoviruses, are being introduced into clinical trials as a new treatment for this malignancy. Biological studies have revealed that these viruses use mechanisms to either inactivate (adenovirus) or take advantage of (herpes simplex virus) the cellular DNA-repair machinery to achieve productive replication. Adenoviruses express proteins from the early genes to either downregulate the damage-repair enzyme, O(6)-methylguanine-DNA methyltransferase, or degrade poly (ADP-ribose) polymerase or the Mre11-Rad50-NBS1 complex, which detects DNA strand breaks. Temozolomide enhances herpes simplex virus oncolysis by upregulating the DNA repair-related genes growth arrest DNA damage 34 and ribonucleotide reductase. The interactions between viruses and the DNA-repair machinery suggest that a combined temozolomide and viral therapy will overcome the limitations of a single therapy by diminishing chemoresistance or enhancing oncolysis. This hypothesis has been supported by promising findings from preclinical and clinical studies.
Collapse
Affiliation(s)
- Hong Jiang
- University of Texas MD Anderson Cancer Center, Department of Neuro-Oncology, 1515 Holcombe Blvd., Box 1002, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
22
|
Li X, Babiuk LA, Tikoo SK. Transcription mapping and characterization of proteins produced from early region 4 of porcine adenovirus type 3. Arch Virol 2006; 152:495-505. [PMID: 17122893 DOI: 10.1007/s00705-006-0876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 10/10/2006] [Indexed: 10/23/2022]
Abstract
The early region 4 (E4) of porcine adenovirus 3 (PAdV-3) was characterized by Northern blot, rapid amplification of cDNA ends (RACE), RT-PCR and cDNA sequence analysis. Northern blot analysis revealed three different classes of transcripts, which appeared and peaked at different times post-infection. The RT-PCR, RACE and cDNA sequence analysis identified nine major E4 transcripts, all of which shared a 107-bp 5' leader sequence and a 126-bp 3' terminus. These transcripts have one to three introns removed. Interestingly, of the nine major transcripts, there was one fusion transcript of ORFp1 and ORFp7 (ORFp1/7), which codes for a protein of 119 amino acids. All transcripts initiated at nucleotide 33740 of the PAdV-3 genome. To identify proteins, rabbit antiserum was prepared using a bacterial fusion protein encoding p2, p3, p4 or p7 proteins. Serum against p2, p3 and p4 immunoprecipitated proteins of 13.5, 13.6 and 15.3 kDa, respectively, in in-vitro transcribed and translated mRNA and in PAdV-3-infected cells. Serum against p7 immunoprecipitated a protein of 19.8 kDa in in-vitro transcription and translation analysis but recognized two proteins of 19.8 kDa (encoded by ORFp7) and 14 kDa (encoded by the fusion transcript ORF1/7) in PAdV-3-infected cells. The protein encoded by ORFp2 was localized in the nucleus of PAdV-3-infected cells. The proteins encoded by ORFp3 and ORFp7\ORFp1/7 were detected in the cytoplasm of PAdV-3-infected cells. However, the protein encoded by ORFp4 was observed both in the cytoplasm and nucleus of PAdV-3-infected cells.
Collapse
Affiliation(s)
- X Li
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
23
|
Abstract
Theadenovirus type 5 (Ad5) E1B-55K and E4orf6 proteins are required together to stimulate viral late nuclear mRNA export to the cytoplasm and to restrict host cell nuclear mRNA export during the late phase of infection. Previous studies have shown that these two viral proteins interact with the cellular proteins elongins B and C, cullin 5, RBX1, and additional cellular proteins to form an E3 ubiquitin-protein ligase that polyubiquitinates p53 and probably one or more subunits of the MRE11-RAD50-NBS1 (MRN) complex, directing their proteasomal degradation. The MRN complex is required for cellular DNA double-strand break repair and induction of the DNA damage response by adenovirus infection. To determine if the ability of E1B-55K and E4orf6 to stimulate viral late mRNA nuclear export requires the ubiquitin-protein ligase activity of this viral ubiquitin-protein ligase complex, we designed and expressed a dominant-negative mutant form of cullin 5 in HeLa cells before infection with wild-type Ad5 or the E1B-55K null mutant dl1520. The dominant-negative cullin 5 protein stabilized p53 and the MRN complex, indicating that it inhibited the viral ubiquitin-protein ligase but had no effect on viral early mRNA synthesis, early protein synthesis, or viral DNA replication. However, expression of the dominant-negative cullin 5 protein caused a decrease in viral late protein synthesis and viral nuclear mRNA export similar to the phenotype produced by mutations in E1B-55K. We conclude that the stimulation of adenovirus late mRNA nuclear export by E1B-55K and E4orf6 results from the ubiquitin-protein ligase activity of the adenovirus ubiquitin-protein ligase complex.
Collapse
Affiliation(s)
- Jennifer L Woo
- Molecular Biology Institute, Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | | |
Collapse
|
24
|
Lemckert AAC, Grimbergen J, Smits S, Hartkoorn E, Holterman L, Berkhout B, Barouch DH, Vogels R, Quax P, Goudsmit J, Havenga MJE. Generation of a novel replication-incompetent adenoviral vector derived from human adenovirus type 49: manufacture on PER.C6 cells, tropism and immunogenicity. J Gen Virol 2006; 87:2891-2899. [PMID: 16963747 DOI: 10.1099/vir.0.82079-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombinant adenoviral vectors based on type 5 (rAd5) show great promise as a vaccine carrier. However, neutralizing activity against Ad5 is prevalent and high-titred among human populations, and significantly dampens Ad5-based vaccine modalities. The generation of alternative adenoviral vectors with low seroprevalence thus receives much research attention. Here, it is shown that a member from human adenovirus subgroup D, i.e. Ad49, does not cross-react with Ad5 neutralizing activity, making it a candidate serotype for vector development. Therefore, a plasmid system that allows formation of replication-incompetent adenovirus serotype 49 vaccine vectors (rAd49) was constructed and it was demonstrated that rAd49 can be successfully propagated to high titres on existing Ad5.E1-complementing cell lines such as PER.C6. Using an rAd49 vector carrying the luciferase marker gene, detailed seroprevalence studies were performed, demonstrating that rAd49 has low seroprevalence and neutralizing antibody titres worldwide. Also, we have initiated rAd49 vector receptor usage suggesting that rAd49 utilizes hCD46 as a cellular receptor. Finally, the immunogenicity of the rAd49 vector was assessed and it was shown that an rAd49.SIVGag vaccine induces strong anti-SIVGag CD8+ T-lymphocytes in naïve mice, albeit less than an rAd5.SIVGag vaccine. However, in mice with high anti-Ad5 immunity the rAd5.SIVGag vaccine was severely blunted, whereas the anti-SIVGag response was not significantly suppressed using the rAd49.SIVGag vaccine. These data demonstrate the potential of a replication deficient human group D adenoviral vector for vaccination purposes.
Collapse
Affiliation(s)
| | - Jos Grimbergen
- Gaubius Laboratory, TNO, 2301 CA Leiden, The Netherlands
| | - Shirley Smits
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
| | - Eric Hartkoorn
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
| | | | - Ben Berkhout
- Department of Human Retrovirology, Academic Medical Center, Amsterdam, The Netherlands
| | - Dan H Barouch
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Ronald Vogels
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
| | - Paul Quax
- Department of Surgery, LUMC, Leiden, The Netherlands
- Gaubius Laboratory, TNO, 2301 CA Leiden, The Netherlands
| | - Jaap Goudsmit
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
| | | |
Collapse
|
25
|
Royds JA, Hibma M, Dix BR, Hananeia L, Russell IA, Wiles A, Wynford-Thomas D, Braithwaite AW. p53 promotes adenoviral replication and increases late viral gene expression. Oncogene 2006; 25:1509-20. [PMID: 16247442 DOI: 10.1038/sj.onc.1209185] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tumor suppressor protein, p53, plays a critical role in viro-oncology. However, the role of p53 in adenoviral replication is still poorly understood. In this paper, we have explored further the effect of p53 on adenoviral replicative lysis. Using well-characterized cells expressing a functional p53 (A549, K1neo, RKO) and isogenic derivatives that do not (K1scx, RKOp53.13), we show that virus replication, late virus protein expression and both wtAd5 and ONYX-015 virus-induced cell death are impaired in cells deficient in functional p53. Conversely, by transfecting p53 into these and other cells (IIICF/c, HeLa), we increase late virus protein expression and virus yield. We also show, using reporter assays in IIICF/c, HeLa and K1scx cells, that p53 can cooperate with E1a to enhance transcription from the major late promoter of the virus. Late viral protein production is enhanced by exogenous p53. Taken together, our data suggest that functional p53 can promote the adenovirus (Ad) lytic cycle. These results have implications for the use of Ad mutants that are defective in p53 degradation, such as ONYX-015, as agents for the treatment of cancers.
Collapse
Affiliation(s)
- J A Royds
- Department of Pathology, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu Y, Shevchenko A, Shevchenko A, Berk AJ. Adenovirus exploits the cellular aggresome response to accelerate inactivation of the MRN complex. J Virol 2005; 79:14004-16. [PMID: 16254336 PMCID: PMC1280221 DOI: 10.1128/jvi.79.22.14004-14016.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 08/18/2005] [Indexed: 12/26/2022] Open
Abstract
Results reported here indicate that adenovirus 5 exploits the cellular aggresome response to accelerate inactivation of MRE11-RAD50-NBS1 (MRN) complexes that otherwise inhibit viral DNA replication and packaging. Aggresomes are cytoplasmic inclusion bodies, observed in many degenerative diseases, that are formed from aggregated proteins by dynein-dependent retrograde transport on microtubules to the microtubule organizing center. Viral E1B-55K protein forms aggresomes that sequester p53 and MRN in transformed cells and in cells transfected with an E1B-55K expression vector. During adenovirus infection, the viral protein E4orf3 associates with MRN in promyelocytic leukemia protein nuclear bodies before MRN is bound by E1B-55K. Either E4orf3 or E4orf6 is required in addition to E1B-55K for E1B-55K aggresome formation and MRE11 export to aggresomes in adenovirus-infected cells. Aggresome formation contributes to the protection of viral DNA from MRN activity by sequestering MRN in the cytoplasm and greatly accelerating its degradation by proteosomes following its ubiquitination by the E1B-55K/E4orf6/elongin BC/Cullin5/Rbx1 ubiquitin ligase. Our results show that aggresomes significantly accelerate protein degradation by the ubiquitin-proteosome system. The observation that a normal cellular protein is inactivated when sequestered into an aggresome through association with an aggresome-inducing protein has implications for the potential cytotoxicity of aggresome-like inclusion bodies in degenerative diseases.
Collapse
Affiliation(s)
- Yue Liu
- Molecular Biology Institute and Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095-1570, USA
| | | | | | | |
Collapse
|
27
|
Araujo FD, Stracker TH, Carson CT, Lee DV, Weitzman MD. Adenovirus type 5 E4orf3 protein targets the Mre11 complex to cytoplasmic aggresomes. J Virol 2005; 79:11382-91. [PMID: 16103189 PMCID: PMC1193610 DOI: 10.1128/jvi.79.17.11382-11391.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 06/01/2005] [Indexed: 12/20/2022] Open
Abstract
Virus infections have dramatic effects on structural and morphological characteristics of the host cell. The gene product of open reading frame 3 in the early region 4 (E4orf3) of adenovirus serotype 5 (Ad5) is involved in efficient replication and late protein synthesis. During infection with adenovirus mutants lacking the E4 region, the viral genomic DNA is joined into concatemers by cellular DNA repair factors, and this requires the Mre11/Rad50/Nbs1 complex. Concatemer formation can be prevented by the E4orf3 protein, which causes the cellular redistribution of the Mre11 complex. Here we show that E4orf3 colocalizes with components of the Mre11 complex in nuclear tracks and also in large cytoplasmic accumulations. Rearrangement of Mre11 and Rad50 by Ad5 E4orf3 is not dependent on interactions with Nbs1 or promyelocytic leukemia protein nuclear bodies. Late in infection the cytoplasmic inclusions appear as a distinct juxtanuclear accumulation at the centrosome and this requires an intact microtubule cytoskeleton. The large cytoplasmic accumulations meet the criteria defined for aggresomes, including gamma-tubulin colocalization and formation of a surrounding vimentin cage. E4orf3 also appears to alter the solubility of the cellular Mre11 complex. These data suggest that E4orf3 can target the Mre11 complex to an aggresome and may explain how the cellular repair complex is inactivated during adenovirus infection.
Collapse
Affiliation(s)
- Felipe D Araujo
- Laboratory of Genetics, Salk Institute for Biological Studies, San Diego, CA 92186-5800, USA
| | | | | | | | | |
Collapse
|
28
|
Higashino F, Aoyagi M, Takahashi A, Ishino M, Taoka M, Isobe T, Kobayashi M, Totsuka Y, Kohgo T, Shindoh M. Adenovirus E4orf6 targets pp32/LANP to control the fate of ARE-containing mRNAs by perturbing the CRM1-dependent mechanism. J Cell Biol 2005; 170:15-20. [PMID: 15983058 PMCID: PMC2171388 DOI: 10.1083/jcb.200405112] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 06/01/2005] [Indexed: 11/30/2022] Open
Abstract
E4orf6 plays an important role in the transportation of cellular and viral mRNAs and is known as an oncogene product of adenovirus. Here, we show that E4orf6 interacts with pp32/leucine-rich acidic nuclear protein (LANP). E4orf6 exports pp32/LANP from the nucleus to the cytoplasm with its binding partner, HuR, which binds to an AU-rich element (ARE) present within many protooncogene and cytokine mRNAs. We found that ARE-mRNAs, such as c-fos, c-myc, and cyclooxygenase-2, were also exported to and stabilized in the cytoplasm of E4orf6-expressing cells. The oncodomain of E4orf6 was necessary for both binding to pp32/LANP and effect for ARE-mRNA. C-fos mRNA was exported together with E4orf6, E1B-55kD, pp32/LANP, and HuR proteins. Moreover, inhibition of the CRM1-dependent export pathway failed to block the export of ARE-mRNAs mediated by E4orf6. Thus, E4orf6 interacts with pp32/LANP to modulate the fate of ARE-mRNAs by altering the CRM1-dependent export pathway.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Adenoviridae/genetics
- Adenoviridae/metabolism
- Adenovirus E1B Proteins/genetics
- Adenovirus E1B Proteins/metabolism
- Adenovirus E4 Proteins/genetics
- Adenovirus E4 Proteins/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Cell Line
- Cell Nucleus/metabolism
- ELAV Proteins
- ELAV-Like Protein 1
- Humans
- Karyopherins/genetics
- Karyopherins/metabolism
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Open Reading Frames/genetics
- Protein Binding/physiology
- Protein Structure, Tertiary/physiology
- Protein Transport/physiology
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Exportin 1 Protein
Collapse
Affiliation(s)
- Fumihiro Higashino
- Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Weitzman MD, Carson CT, Schwartz RA, Lilley CE. Interactions of viruses with the cellular DNA repair machinery. DNA Repair (Amst) 2005; 3:1165-73. [PMID: 15279805 DOI: 10.1016/j.dnarep.2004.03.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mammalian cells are equipped with complex machinery to monitor and repair damaged DNA. In addition to responding to breaks in cellular DNA, recent studies have revealed that the DNA repair machinery also recognizes viral genetic material. We review some examples that highlight the different strategies that viruses have developed to interact with the host DNA repair apparatus. While adenovirus (Ad) inactivates the host machinery to prevent signaling and concatemerization of the viral genome, other viruses may utilize DNA repair to their own advantage. Viral interactions with the repair machinery can also have detrimental consequences for the host cells and their ability to maintain the integrity of the host genome. Exploring the interactions between viruses and the host DNA repair machinery has revealed novel host responses to virus infections and has provided new tools to study the DNA damage response.
Collapse
Affiliation(s)
- Matthew D Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
30
|
Endter C, Härtl B, Spruss T, Hauber J, Dobner T. Blockage of CRM1-dependent nuclear export of the adenovirus type 5 early region 1B 55-kDa protein augments oncogenic transformation of primary rat cells. Oncogene 2005; 24:55-64. [PMID: 15480414 DOI: 10.1038/sj.onc.1208170] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 08/31/2004] [Accepted: 09/02/2004] [Indexed: 12/12/2022]
Abstract
The 55-kDa gene product from subgroup C adenovirus type 5 (Ad5) early region 1 (E1B-55kDa) plays a central role in the oncogenic transformation of primary rodent cells primarily by inactivating transcriptional and presumably other functional properties of the tumor suppressor protein p53. We have previously shown that Ad5 E1B-55kDa possesses a leucine-rich nuclear export signal (NES), which confers rapid nucleocytoplasmic shuttling via the CRM1-dependent export pathway. In this study we report that an export-deficient mutant of the viral protein (E1B-NES) substantially enhances focus formation of primary baby rat kidney cells in combination with Ad E1A. Transformed rat cells stably expressing the E1B-NES protein exhibited increased tumorigenicity and accelerated tumor growth in nude mice compared to transformants containing the wild-type E1B product. This 'gain of function' correlated with enhanced inhibition of p53 transactivation in transient reporter assays and the accumulation of the mutant protein and p53 in several dot-like subnuclear aggregates. Interestingly, these structures also contained a large fraction of cellular promyelocytic leukemia protein (PML), a known regulator of p53. These data indicate that E1B-NES promotes oncogenic transformation by combinatorial mechanisms that involve modulation of p53 in the context of PML nuclear bodies. In sum, these results extend our previous observation that inhibition of PML activities by E1B-55kDa is required for efficient focus formation and provide further support for the view that blocking p53 transcriptional functions is the principal mechanism by which the Ad protein contributes to complete cell transformation in conjunction with Ad E1A.
Collapse
Affiliation(s)
- Christian Endter
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Landshuterstrasse 22, D-93047 Regensburg, Germany
| | | | | | | | | |
Collapse
|
31
|
O'Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A, Boyle L, Pandey K, Soria C, Kunich J, Shen Y, Habets G, Ginzinger D, McCormick F. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 2004; 6:611-23. [PMID: 15607965 DOI: 10.1016/j.ccr.2004.11.012] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 10/27/2004] [Accepted: 11/17/2004] [Indexed: 12/29/2022]
Abstract
ONYX-015 is an adenovirus that lacks the E1B-55K gene product for p53 degradation. Thus, ONYX-015 was conceived as an oncolytic virus that would selectively replicate in p53-defective tumor cells. Here we show that loss of E1B-55K leads to the induction, but not the activation, of p53 in ONYX-015-infected primary cells. We use a novel adenovirus mutant, ONYX-053, to demonstrate that loss of E1B-55K-mediated late viral RNA export, rather than p53 degradation, restricts ONYX-015 replication in primary cells. In contrast, we show that tumor cells that support ONYX-015 replication provide the RNA export function of E1B-55K. These data reveal that tumor cells have altered mechanisms for RNA export and resolve the controversial role of p53 in governing ONYX-015 oncolytic selectivity.
Collapse
|
32
|
Blanchette P, Cheng CY, Yan Q, Ketner G, Ornelles DA, Dobner T, Conaway RC, Conaway JW, Branton PE. Both BC-box motifs of adenovirus protein E4orf6 are required to efficiently assemble an E3 ligase complex that degrades p53. Mol Cell Biol 2004; 24:9619-29. [PMID: 15485928 PMCID: PMC522240 DOI: 10.1128/mcb.24.21.9619-9629.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 06/15/2004] [Accepted: 07/22/2004] [Indexed: 11/20/2022] Open
Abstract
Small DNA tumor viruses typically encode proteins that either inactivate or degrade p53. Human adenoviruses encode products, including E4orf6 and E1B55K, that do both. Each independently binds to p53 and inhibits its ability to activate gene expression; however, in combination they induce p53 degradation by the ubiquitin pathway. We have shown previously that p53 degradation relies on interactions of E4orf6 with the cellular proteins Cul5, Rbx1, and elongins B and C to form an E3 ligase similar to the SCF and VBC complexes. Here we show that, like other elongin BC-interacting proteins, including elongin A, von Hippel-Lindau protein, and Muf1, the interaction of E4orf6 is mediated by the BC-box motif; however, E4orf6 uniquely utilizes two BC-box motifs for degradation of p53 and another target, Mre11. In addition, our data suggest that the interaction of E1B55K with E4orf6 depends on the ability of E4orf6 to form the E3 ligase complex and that such complex formation may be required for all E4orf6-E1B55K functions.
Collapse
Affiliation(s)
- Paola Blanchette
- McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li X, Babiuk LA, Tikoo SK. Analysis of early region 4 of porcine adenovirus type 3. Virus Res 2004; 104:181-90. [PMID: 15246655 DOI: 10.1016/j.virusres.2004.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 04/05/2004] [Accepted: 04/05/2004] [Indexed: 12/25/2022]
Abstract
The early region 4 (E4) of porcine adenovirus (PAdV)-3, located at the right-hand end of the genome is transcribed in a leftward direction and has the potential to encode seven (p1-p7) open reading frames (ORFs). To determine the role of each protein in viral replication, we constructed full-length PAdV-3 genomic clones containing deletions of individual E4 ORF or combined deletions of the neighboring ORFs. Transfection of swine testicular (ST) cells with individual E4 mutant plasmid DNAs generated PAdV-3 E4 mutant viruses except with plasmids containing a deletion of ORF p3, ORF p2+ p3 or ORF p3+ p4. Each of the mutants was further analyzed for growth kinetics, and early/late protein synthesis. Mutant viruses carrying deletions in ORF p1, ORF p2 or ORF p4 showed growth characteristics similar to that of wild-type PAdV-3. Early/late protein synthesis was also indistinguishable from that of wild-type PAdV-3. However, mutant viruses carrying deletions in ORF p5, ORF p6 or ORF p7 showed a modest effect in their ability to grow in porcine cells and express early proteins. These results suggest that the E4 ORF p3 (showing low homology with non-essential human adenovirus (HAdV)-9-E4 ORF1 encoded proteins) is essential for the replication of PAdV-3 in vitro. In contrast, the E4 ORF p7 (showing homology to essential HAdV-2 34 kDa protein) is not essential for replication of PAdV-3 in vitro. Moreover, successful deletion of 1.957 kb fragment in E4 region increased the available capacity of replication-competent PAdV-3 (E3 + E4 deleted) to approximately 4.3 kb and that of replication-defective PAdV-3 (E1 + E3 + E4 deleted) to approximately 7 kb. This is extremely useful for the construction of PAdV-3 vectors that express multiple genes and/or regulatory elements for gene therapy and vaccination.
Collapse
Affiliation(s)
- Xiaoxin Li
- Vaccine & Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada S7N 5E3
| | | | | |
Collapse
|
34
|
Abstract
The last 40 years of molecular biological investigations into human adenoviruses have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of their productive infection cycle in permissive host cells. Also, initial observations concerning the carcinogenic potential of human adenoviruses subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer, and established adenoviruses as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human adenoviruses is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in adenovirus-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, detailed studies on the tumorigenic potential of subgroup D adenovirus type 9 (Ad9) E4 have now revealed a new pathway that points to a novel, general mechanism of virus-mediated oncogenesis. In this chapter, we summarize the current state of knowledge about the oncogenes and oncogene products of human adenoviruses, focusing particularly on recent findings concerning the transforming and oncogenic properties of viral proteins encoded in the E1B and E4 transcription units.
Collapse
Affiliation(s)
- C Endter
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Landshuterstr. 22, 93047 Regensburg, Germany
| | | |
Collapse
|
35
|
Carson CT, Schwartz RA, Stracker TH, Lilley CE, Lee DV, Weitzman MD. The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J 2003; 22:6610-20. [PMID: 14657032 PMCID: PMC291825 DOI: 10.1093/emboj/cdg630] [Citation(s) in RCA: 449] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 10/24/2003] [Accepted: 10/27/2003] [Indexed: 12/11/2022] Open
Abstract
The maintenance of genome integrity requires a rapid and specific response to many types of DNA damage. The conserved and related PI3-like protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate signal transduction pathways in response to genomic insults, such as DNA double-strand breaks (DSBs). It is unclear which proteins recognize DSBs and activate these pathways, but the Mre11/Rad50/NBS1 complex has been suggested to act as a damage sensor. Here we show that infection with an adenovirus lacking the E4 region also induces a cellular DNA damage response, with activation of ATM and ATR. Wild-type virus blocks this signaling through degradation of the Mre11 complex by the viral E1b55K/E4orf6 proteins. Using these viral proteins, we show that the Mre11 complex is required for both ATM activation and the ATM-dependent G(2)/M checkpoint in response to DSBs. These results demonstrate that the Mre11 complex can function as a damage sensor upstream of ATM/ATR signaling in mammalian cells.
Collapse
Affiliation(s)
- Christian T Carson
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
36
|
Aoyagi M, Higashino F, Yasuda M, Takahashi A, Sawada Y, Totsuka Y, Kohgo T, Sano H, Kobayashi M, Shindoh M. Nuclear export of adenovirus E4orf6 protein is necessary for its ability to antagonize apoptotic activity of BH3-only proteins. Oncogene 2003; 22:6919-27. [PMID: 14534539 DOI: 10.1038/sj.onc.1206743] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The adenovirus E4orf6 is a viral oncoprotein known to cooperate with the E1A gene product in transforming primary murine cells. It has been shown to inhibit the apoptotic activities of p53 and p73 through direct binding to these proteins. Here, we demonstrate that the adenovirus E4orf6 protein inhibits apoptosis mediated by BNIP3 and Bik, which are BH3-only proteins of the Bcl-2 family. This activity was not mediated by p53 and p73 because E4orf6 had the same effect on the apoptosis in Saos-2 cells that do not express p53-related genes. It was also ascertained that E4orf6 could change the mitochondrial localization of BNIP3 and Bik. A mutant lacking the nuclear export signal of E4orf6 failed to inhibit apoptosis and to translocate BNIP3 protein from the mitochondria. Moreover, it was also established that E4orf6 was able to interact with BNIP3 and Bik. In BNIP3 protein, the region required for the interaction included the transmembrane domain, which is required for the localization of BNIP3 to the mitochondria. These results suggest that E4orf6 is exported from the nucleus to the cytoplasm, enabling it to interact with BH3-only proteins, eventually leading to the inhibition of apoptotic activity.
Collapse
Affiliation(s)
- Mariko Aoyagi
- Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, N13, W7, Kita-ku, Sapporo 060-8586, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chastain-Moore AM, Roberts T, Trott DA, Newbold RF, Ornelles DA. An activity associated with human chromosome 21 permits nuclear colocalization of the adenovirus E1B-55K and E4orf6 proteins and promotes viral late gene expression. J Virol 2003; 77:8087-98. [PMID: 12829847 PMCID: PMC161949 DOI: 10.1128/jvi.77.14.8087-8098.2003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus E1B-55K and E4orf6 proteins cooperate during virus infection while performing several tasks that contribute to a productive infection, including the selective nucleocytoplasmic transport of late viral mRNA. Previous studies have shown that the E4orf6 protein retains the E1B-55K protein in the nucleus of human and monkey cells, but not in those of rodents, suggesting that primate-specific cellular factors contribute to the E4orf6-mediated retention of the E1B-55K protein in the nucleus. In an effort to identify these proposed primate-specific cellular factors, the interaction of the E1B-55K and E4orf6 proteins was studied in a panel of stable human-rodent monochromosomal somatic cell hybrids. Analysis of this panel of cell lines has demonstrated the existence of an activity associated with human chromosome 21 that permits the E1B-55K and E4orf6 proteins to colocalize in the nucleus of a rodent cell. Additional hybrid cells bearing portions of human chromosome 21 were used to map this activity to a 10-megabase-pair segment of the chromosome, extending from 21q22.12 to a region near the q terminus. Strikingly, this region also facilitates the expression of adenovirus late genes in a rodent cell background while having little impact on the expression of early viral genes.
Collapse
Affiliation(s)
- Amy M Chastain-Moore
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, NC 27157-1064, USA
| | | | | | | | | |
Collapse
|
38
|
Flint SJ, Gonzalez RA. Regulation of mRNA production by the adenoviral E1B 55-kDa and E4 Orf6 proteins. Curr Top Microbiol Immunol 2003; 272:287-330. [PMID: 12747554 DOI: 10.1007/978-3-662-05597-7_10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The E1B 55-kDa and E4 Orf6 proteins of human subgroup C adenoviruses both counter host cell defenses mediated by the cellular p53 protein and regulate viral late gene expression. A complex containing the two proteins has been implicated in induction of selective export of viral late mRNAs from the nucleus to the cytoplasm, with concomitant inhibition of export of the majority of newly synthesized cellular mRNAs. The molecular mechanisms by which these viral proteins subvert cellular pathways of nuclear export are not yet clear. Here, we review recent efforts to identify molecular and biochemical functions of the E1B 55-kDa and E4 Orf6 proteins required for regulation of mRNA export, the several difficulties and discrepancies that have been encountered in studies of these viral proteins, and evidence indicating that the reorganization of the infected cell nucleus and production of viral late mRNA at specific intra-nuclear sites are important determinants of selective mRNA export in infected cells. In our view, it is not yet possible to propose a coherent molecular model for regulation of mRNA export by the E1B 55-kDa and E4 Orf6 proteins. However, it should now be possible to address specific questions about the roles of potentially relevant properties of these viral proteins.
Collapse
Affiliation(s)
- S J Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08844, USA.
| | | |
Collapse
|
39
|
Lethbridge KJ, Scott GE, Leppard KN. Nuclear matrix localization and SUMO-1 modification of adenovirus type 5 E1b 55K protein are controlled by E4 Orf6 protein. J Gen Virol 2003; 84:259-268. [PMID: 12560556 DOI: 10.1099/vir.0.18820-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human adenovirus serotype 5 encodes three proteins, E1b 55K, E4 Orf3 and E4 Orf6, which interact with each other and with components of the nucleus to regulate mRNA processing and export, viral DNA replication and p53-dependent apoptosis. Previous studies have shown that, during wild-type infection, 55K associates initially with structures termed ND10, which are sites of localization of the promyelocytic leukaemia protein, and then moves, dependent upon its interaction with Orf6, to the establishing virus replication centres. Absence of either Orf3 or Orf6 affects the localization of 55K and so may affect its function. In this study, the influence of Orf3 and Orf6 expression on the association of 55K with the insoluble matrix fraction of the nucleus and with ND10 particularly was examined. Overexpression of Orf6 was sufficient to block the association of 55K with this fraction, irrespective of the presence of Orf3. This effect depended upon the two proteins being able to interact. However, the association of 55K with ND10, which persists throughout infection in the absence of Orf6, required Orf3 to be present, thus distinguishing two subsets of matrix-associated 55K. A modified form of 55K, formation of which was blocked by mutating the known site of SUMO-1 attachment, was more abundant in the absence of Orf6 but unaffected by the absence of Orf3. Thus, this modification is favoured when 55K remains associated with the matrix but does not correlate with its stable association with ND10, many components of which are modified by SUMO-1.
Collapse
Affiliation(s)
| | - Gillian E Scott
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Keith N Leppard
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
40
|
Harada JN, Shevchenko A, Shevchenko A, Pallas DC, Berk AJ. Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. J Virol 2002; 76:9194-206. [PMID: 12186903 PMCID: PMC136464 DOI: 10.1128/jvi.76.18.9194-9206.2002] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Accepted: 06/12/2002] [Indexed: 12/26/2022] Open
Abstract
During the early phase of infection, the E1B-55K protein of adenovirus type 5 (Ad5) counters the E1A-induced stabilization of p53, whereas in the late phase, E1B-55K modulates the preferential nucleocytoplasmic transport and translation of the late viral mRNAs. The mechanism(s) by which E1B-55K performs these functions has not yet been clearly elucidated. In this study, we have taken a proteomics-based approach to identify and characterize novel E1B-55K-associated proteins. A multiprotein E1B-55K-containing complex was immunopurified from Ad5-infected HeLa cells and found to contain E4-orf6, as well as several cellular factors previously implicated in the ubiquitin-proteasome-mediated destruction of proteins, including Cullin-5, Rbx1/ROC1/Hrt1, and Elongins B and C. We further demonstrate that a complex containing these as well as other proteins is capable of directing the polyubiquitination of p53 in vitro. These ubiquitin ligase components were found in a high-molecular-mass complex of 800 to 900 kDa. We propose that these newly identified binding partners (Cullin-5, Elongins B and C, and Rbx1) complex with E1B-55K and E4-orf6 during Ad infection to form part of an E3 ubiquitin ligase that targets specific protein substrates for degradation. We further suggest that E1B-55K functions as the principal substrate recognition component of this SCF-type ubiquitin ligase, whereas E4-orf6 may serve to nucleate the assembly of the complex. Lastly, we describe the identification and characterization of two novel E1B-55K interacting factors, importin-alpha 1 and pp32, that may also participate in the functions previously ascribed to E1B-55K and E4-orf6.
Collapse
Affiliation(s)
- Josephine N Harada
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095-1570, USA
| | | | | | | | | |
Collapse
|
41
|
Orlando JS, Ornelles DA. E4orf6 variants with separate abilities to augment adenovirus replication and direct nuclear localization of the E1B 55-kilodalton protein. J Virol 2002; 76:1475-87. [PMID: 11773420 PMCID: PMC135776 DOI: 10.1128/jvi.76.3.1475-1487.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E4orf6 protein of group C adenovirus is an oncoprotein that, in association with the E1B 55-kDa protein and by E1B-independent means, promotes virus replication. An arginine-faced amphipathic alpha-helix in the E4orf6 protein is required for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein and to enhance replication of an E4 deletion virus. In this study, E4orf6 protein variants containing arginine substitutions in the amphipathic alpha-helix were analyzed. Two of the six arginine residues within the alpha-helix, arginine-241 and arginine-243, were critical for directing nuclear localization of the E1B 55-kDa protein. The four remaining arginine residues appear to provide a net positive charge for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein. The molecular determinants of the arginine-faced amphipathic alpha-helix that were required for the functional interaction between the E4orf6 and E1B 55-kDa proteins seen in the transfected cell differed from those required to support a productive infection. Several E4orf6 protein variants with arginine-to-glutamic acid substitutions that failed to direct nuclear localization of the E1B 55-kDa protein restored replication of an E4 deletion virus. Additionally, a variant containing an arginine-to-alanine substitution at position 243 that directed nuclear localization of the E1B 55-kDa protein failed to enhance virus replication. These results indicate that the ability of the E4orf6 protein to relocalize the E1B 55-kDa protein to the nucleus can be separated from the ability of the E4orf6 protein to support a productive infection.
Collapse
Affiliation(s)
- Joseph S Orlando
- Department of Microbiology and Immunology, School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157-1064, USA
| | | |
Collapse
|
42
|
Querido E, Blanchette P, Yan Q, Kamura T, Morrison M, Boivin D, Kaelin WG, Conaway RC, Conaway JW, Branton PE. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev 2001; 15:3104-17. [PMID: 11731475 PMCID: PMC312842 DOI: 10.1101/gad.926401] [Citation(s) in RCA: 390] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although MDM2 plays a major role in regulating the stability of the p53 tumor suppressor protein, other poorly understood MDM2-independent pathways also exist. Human adenoviruses have evolved strategies to regulate p53 function and stability to permit efficient viral replication. One mechanism involves adenovirus E1B55K and E4orf6 proteins, which collaborate to target p53 for degradation. To determine the mechanism of this process, a multiprotein E4orf6-associated complex was purified and shown to contain a novel Cullin-containing E3 ubiquitin ligase that is (1) composed of Cullin family member Cul5, Elongins B and C, and the RING-H2 finger protein Rbx1(ROC1); (2) remarkably similar to the von Hippel-Lindau tumor suppressor and SCF (Skp1-Cul1/Cdc53-F-box) E3 ubiquitin ligase complexes; and (3) capable of stimulating ubiquitination of p53 in vitro in the presence of E1/E2 ubiquitin-activating and -conjugating enzymes. Cullins are activated by NEDD8 modification; therefore, to determine whether Cullin complexes are required for adenovirus-induced p53 degradation, studies were conducted in ts41 Chinese hamster ovary cells that are temperature sensitive for the NEDD8 pathway. E4orf6/E1B55K failed to induce the degradation of p53 at the nonpermissive temperature. Thus, our results identify a novel role for the Cullin-based machinery in regulation of p53.
Collapse
Affiliation(s)
- E Querido
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Previous investigations into potential transforming activities of adenovirus (Ad) early genes were largely overshadowed by the more obvious roles of E1A and E1B products. One exception was an Ad9 E4 protein (ORF1) shown to enhance transformation of cultured cells and promote mammary tumors in female rats. Recently, significant advances in understanding Ad E4 gene products at the molecular level have revealed that these proteins possess an unexpectedly diverse collection of functions, which not only orchestrate many viral processes, but overlap with oncogenic transformation of primary mammalian cells. Operating through a complex network of protein interactions with key viral and cellular regulatory components, Ad E4 products are apparently involved in transcription, apoptosis, cell cycle control, DNA repair, cell signaling, posttranslational modifications and the integrity of nuclear multiprotein complexes known as PML oncogenic domains (PODs). Some of these functions directly relate to known transforming and oncogenic processes, or implicate mechanisms such as modulating the function and subcellular localization of cellular PDZ domain-containing proteins, POD reorganization, targeted proteolytic degradation, inhibition of DNA double-strand break repair and 'hit-and-run' mutagenesis. Here, we summarize the recent data and discuss how E4 gene product interactions may contribute to viral oncogenesis.
Collapse
Affiliation(s)
- B Täuber
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | |
Collapse
|
44
|
Abstract
Over the past few years there have been a number of interesting advances in our understanding of the functions encoded by the adenovirus early transcription unit 4 (Ad E4). A large body of recent data demonstrates that E4 proteins encompass an unexpectedly diverse collection of functions required for efficient viral replication. E4 gene products operate through a complex network of protein interactions with key viral and cellular regulatory components involved in transcription, apoptosis, cell cycle control and DNA repair, as well as host cell factors that regulate cell signaling, posttranslational modifications and the integrity of nuclear multiprotein complexes known as nuclear bodies (NBs) or PML oncogenic domains (PODs). As understood at present, some of the lytic functions overlap with roles in oncogenic transformation of primary mammalian cells. These observations, together with findings that E4 proteins substantially affect cell toxicity and the immune response of the host have profound implications for the development of Ad vectors for gene therapy. In this article we will summarize recent findings regarding the diverse functions of E4 gene products in the context of earlier work. We will emphasize the interaction of E4 proteins with cellular and viral interaction partners, the role of these interactions for lytic virus growth and how these interactions may contribute to viral oncogenesis. Finally, we will discuss their role in Ad vector and adeno-associated virus infections.
Collapse
Affiliation(s)
- B Täuber
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | |
Collapse
|
45
|
Brown LM, Gonzalez RA, Novotny J, Flint SJ. Structure of the adenovirus E4 Orf6 protein predicted by fold recognition and comparative protein modeling. Proteins 2001; 44:97-109. [PMID: 11391772 DOI: 10.1002/prot.1076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To facilitate investigation of the molecular and biochemical functions of the adenovirus E4 Orf6 protein, we sought to derive three-dimensional structural information using computational methods, particularly threading and comparative protein modeling. The amino acid sequence of the protein was used for secondary structure and hidden Markov model (HMM) analyses, and for fold recognition by the ProCeryon program. Six alternative models were generated from the top-scoring folds identified by threading. These models were examined by 3D-1D analysis and evaluated in the light of available experimental evidence. The final model of the E4 protein derived from these and additional threading calculations was a chimera, with the tertiary structure of its C-terminal 226 residues derived from a TIM barrel template and a mainly alpha-nonbundle topology for its poorly conserved N-terminal 68 residues. To assess the accuracy of this model, additional threading calculations were performed with E4 Orf6 sequences altered as in previous experimental studies. The proposed structural model is consistent with the reported secondary structure of a functionally important C-terminal sequence and can account for the properties of proteins carrying alterations in functionally important sequences or of those that disrupt an unusual zinc-coordination motif.
Collapse
Affiliation(s)
- L M Brown
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
46
|
Affiliation(s)
- T Dobner
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | |
Collapse
|
47
|
Shen Y, Kitzes G, Nye JA, Fattaey A, Hermiston T. Analyses of single-amino-acid substitution mutants of adenovirus type 5 E1B-55K protein. J Virol 2001; 75:4297-307. [PMID: 11287579 PMCID: PMC114175 DOI: 10.1128/jvi.75.9.4297-4307.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E1B-55K protein plays an important role during human adenovirus type 5 productive infection. In the early phase of the viral infection, E1B-55K binds to and inactivates the tumor suppressor protein p53, allowing efficient replication of the virus. During the late phase of infection, E1B-55K is required for efficient nucleocytoplasmic transport and translation of late viral mRNAs, as well as for host cell shutoff. In an effort to separate the p53 binding and inactivation function and the late functions of the E1B-55K protein, we have generated 26 single-amino-acid mutations in the E1B-55K protein. These mutants were characterized for their ability to modulate the p53 level, interact with the E4orf6 protein, mediate viral late-gene expression, and support virus replication in human cancer cells. Of the 26 mutants, 24 can mediate p53 degradation as efficiently as the wild-type protein. Two mutants, R240A (ONYX-051) and H260A (ONYX-053), failed to degrade p53 in the infected cells. In vitro binding assays indicated that R240A and H260A bound p53 poorly compared to the wild-type protein. When interaction with another viral protein, E4orf6, was examined, H260A significantly lost its ability to bind E4orf6, while R240A was fully functional in this interaction. Another mutant, T255A, lost the ability to bind E4orf6, but unexpectedly, viral late-gene expression was not affected. This raised the possibility that the interaction between E1B-55K and E4orf6 was not required for efficient viral mRNA transport. Both R240A and H260A have retained, at least partially, the late functions of wild-type E1B-55K, as determined by the expression of viral late proteins, host cell shutoff, and lack of a cold-sensitive phenotype. Virus expressing R240A (ONYX-051) replicated very efficiently in human cancer cells, while virus expressing H260A (ONYX-053) was attenuated compared to wild-type virus dl309 but was more active than ONYX-015. The ability to separate the p53-inactivation activity and the late functions of E1B-55K raises the possibility of generating adenovirus variants that retain the tumor selectivity of ONYX-015 but can replicate more efficiently than ONYX-015 in a broad spectrum of cell types.
Collapse
Affiliation(s)
- Y Shen
- ONYX Pharmaceuticals, Inc., Richmond, California 94806, USA.
| | | | | | | | | |
Collapse
|
48
|
Querido E, Morrison MR, Chu-Pham-Dang H, Thirlwell SW, Boivin D, Branton PE, Morisson MR. Identification of three functions of the adenovirus e4orf6 protein that mediate p53 degradation by the E4orf6-E1B55K complex. J Virol 2001; 75:699-709. [PMID: 11134283 PMCID: PMC113966 DOI: 10.1128/jvi.75.2.699-709.2001] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Complexes containing adenovirus E4orf6 and E1B55K proteins play critical roles in productive infection. Both proteins interact directly with the cellular tumor suppressor p53, and in combination they promote its rapid degradation. To examine the mechanism of this process, degradation of exogenously expressed p53 was analyzed in p53-null human cells infected with adenovirus vectors encoding E4orf6 and/or E1B55K. Coexpression of E4orf6 and E1B55K greatly reduced both the level and the half-life of wild-type p53. No effect was observed with the p53-related p73 proteins, which did not appear to interact with E4orf6 or E1B55K. Mutant forms of p53 were not degraded if they could not efficiently bind E1B55K, suggesting that direct interaction between p53 and E1B55K may be required. Degradation of p53 was independent of both MDM2 and p19ARF, regulators of p53 stability in mammalian cells, but required an extended region of E4orf6 from residues 44 to 274, which appeared to possess three separate biological functions. First, residues 39 to 107 were necessary to interact with E1B55K. Second, an overlapping region from about residues 44 to 218 corresponded to the ability of E4orf6 to form complexes with cellular proteins of 19 and 14 kDa. Third, the nuclear retention signal/amphipathic arginine-rich alpha-helical region from residues 239 to 253 was required. Interestingly, neither the E4orf6 nuclear localization signal nor the nuclear export signal was essential. These results suggested that if nuclear-cytoplasmic shuttling is involved in this process, it must involve another export signal. Degradation was significantly blocked by the 26S proteasome inhibitor MG132, but unlike the HPV E6 protein, E4orf6 and E1B55K were unable to induce p53 degradation in vitro in reticulocyte lysates. Thus, this study implies that the E4orf6-E1B55K complex may direct p53 for degradation by a novel mechanism.
Collapse
Affiliation(s)
- E Querido
- Departments of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | | | | | |
Collapse
|
49
|
Trahair TN, Alexander IE, Rowe PB, Smythe JA. The adenovirus E4 ORF6 and E1b 55 kDa proteins cooperate in a p53-independent manner to enhance transduction by recombinant adeno-associated virus vectors. J Gen Virol 2000; 81:2983-2991. [PMID: 11086129 DOI: 10.1099/0022-1317-81-12-2983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The observation that exposure of target cells to genotoxic stress or adenovirus infection enhances recombinant adeno-associated virus (rAAV) transduction is an important lead towards defining the rAAV transduction mechanism, and has significant implications for the exploitation of rAAV in gene therapy applications. The adenovirus-mediated enhancement of rAAV transduction has been mapped to the E4 ORF6 gene, and expression of E4 ORF6 alone has been considered necessary and sufficient to mediate this effect. Since p53 subserves an important function in the cellular response to genotoxic stress, and interacts with the E4 ORF6 gene product during adenovirus infection, we hypothesized that p53 function might be essential to the rAAV enhancement resulting from these cellular insults. In the current study, using the p53-null cell lines H1299 and Saos-2, we find that p53 is not essential to either genotoxic stress or adenovirus-mediated enhancement of rAAV transduction. We further demonstrate using HeLa, H1299 and Saos-2 cells that E4 ORF6 expression alone is not sufficient to enhance rAAV transduction and that coexpression of the adenovirus E1b 55 kDa protein is necessary. Together, these observations indicate that the mechanism by which adenovirus infection enhances rAAV transduction involves cooperative and interdependent functions of the E4 ORF6 and E1b 55 kDa proteins that are p53-independent.
Collapse
Affiliation(s)
- Toby N Trahair
- Gene Therapy Research Unit of the Children's Medical Research Institute and The New Children's Hospital1, and The University of Sydney Department of Paediatrics and Child Health2, PO Box 3515, Parramatta, NSW 2124, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit of the Children's Medical Research Institute and The New Children's Hospital1, and The University of Sydney Department of Paediatrics and Child Health2, PO Box 3515, Parramatta, NSW 2124, Australia
| | - Peter B Rowe
- Gene Therapy Research Unit of the Children's Medical Research Institute and The New Children's Hospital1, and The University of Sydney Department of Paediatrics and Child Health2, PO Box 3515, Parramatta, NSW 2124, Australia
| | - Jason A Smythe
- Gene Therapy Research Unit of the Children's Medical Research Institute and The New Children's Hospital1, and The University of Sydney Department of Paediatrics and Child Health2, PO Box 3515, Parramatta, NSW 2124, Australia
| |
Collapse
|
50
|
Mouw MB, Pintel DJ. Adeno-associated virus RNAs appear in a temporal order and their splicing is stimulated during coinfection with adenovirus. J Virol 2000; 74:9878-88. [PMID: 11024114 PMCID: PMC102024 DOI: 10.1128/jvi.74.21.9878-9888.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used a quantitative RNase protection assay to characterize the relative accumulation and abundance of individual adeno-associated virus type 2 (AAV) RNAs throughout the course of AAV-adenovirus coinfections and preinfections. We have demonstrated that there is a previously unrecognized temporal order to the appearance of AAV RNAs. First, unspliced P5-generated transcripts, which encode Rep78, were detectable prior to the significant accumulation of other AAV RNAs. Ultimately, as previously demonstrated, P19-generated products accumulated to levels greater than those generated from P5, and P40-generated transcripts predominated in the total RNA pool. Second, the percentage of each class of AAV RNA that was spliced increased during infection, and the degree of this increase was different for the P5/P19 products than for those generated by P40. At late times postcoinfection, approximately 90% of P40 products, but only approximately 50% of RNAs generated by P5 and P19, were seen to be spliced; thus, the AAV intron was removed to different final levels from these different RNA species. We have shown that each of the AAV RNAs is quite stable; the majority of each RNA species persisted 6 h after treatment with actinomycin D. Quantification of the accumulation of individual AAV RNAs, over intervals during which degradation was negligible, allowed us to infer that at late times during infection the relative strength of P5, P19, and P40 was approximately 1:3:18, respectively, consistent with the steady-state accumulated levels of the RNAs generated by each promoter. All AAV RNAs exited to the cytoplasm with similar efficiencies in the presence or absence of adenovirus; however, adenovirus coinfection appeared to stimulate total splicing of AAV RNAs and the relative use of the downstream intron acceptor. Our results confirm and extend previous observations concerning the appearance and processing of AAV-generated RNAs.
Collapse
Affiliation(s)
- M B Mouw
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | |
Collapse
|