1
|
Marschall M, Schütz M, Wild M, Socher E, Wangen C, Dhotre K, Rawlinson WD, Sticht H. Understanding the Cytomegalovirus Cyclin-Dependent Kinase Ortholog pUL97 as a Multifaceted Regulator and an Antiviral Drug Target. Cells 2024; 13:1338. [PMID: 39195228 PMCID: PMC11352327 DOI: 10.3390/cells13161338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Herpesviral protein kinases, such as the therapy-relevant pUL97 of human cytomegalovirus (HCMV), are important for viral replication efficiency as well as pathogenesis, and represent key antiviral drug targets. HCMV pUL97 is a viral cyclin-dependent kinase (CDK) ortholog, as it shares functional and structural properties with human CDKs. Recently, the formation of vCDK/pUL97-cyclin complexes and the phosphorylation of a variety of viral and cellular substrate proteins has been demonstrated. Genetic mapping and structural modeling approaches helped to define two pUL97 interfaces, IF1 and IF2, responsible for cyclin binding. In particular, the regulatory importance of interactions between vCDK/pUL97 and host cyclins as well as CDKs has been highlighted, both as determinants of virus replication and as a novel drug-targeting option. This aspect was substantiated by the finding that virus replication was impaired upon cyclin type H knock-down, and that such host-directed interference also affected viruses resistant to existing therapies. Beyond the formation of binary interactive complexes, a ternary pUL97-cyclin H-CDK7 complex has also been described, and in light of this, an experimental trans-stimulation of CDK7 activity by pUL97 appeared crucial for virus-host coregulation. In accordance with this understanding, several novel antiviral targeting options have emerged. These include kinase inhibitors directed to pUL97, to host CDKs, and to the pUL97-cyclin H interactive complexes. Importantly, a statistically significant drug synergy has recently been reported for antiviral treatment schemes using combinations of pharmacologically relevant CDK7 and vCDK/pUL97 inhibitors, including maribavir. Combined, such findings provide increased options for anti-HCMV control. This review focuses on regulatory interactions of vCDK/pUL97 with the host cyclin-CDK apparatus, and it addresses the functional relevance of these key effector complexes for viral replication and pathogenesis. On this basis, novel strategies of antiviral drug targeting are defined.
Collapse
Affiliation(s)
- Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Markus Wild
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Eileen Socher
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Kishore Dhotre
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - William D. Rawlinson
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, and Schools of Biomedical Sciences, Women’s and Children’s Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, High Street, Sydney 2050, Australia;
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, FAU, 91054 Erlangen, Germany;
| |
Collapse
|
2
|
Royston L, Papanicolaou GA, Neofytos D. Refractory/Resistant Cytomegalovirus Infection in Transplant Recipients: An Update. Viruses 2024; 16:1085. [PMID: 39066247 PMCID: PMC11281367 DOI: 10.3390/v16071085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Despite the significant progress made, CMV infection is one of the most frequent infectious complications in transplant recipients. CMV infections that become refractory or resistant (R/R) to the available antiviral drugs constitute a clinical challenge and are associated with increased morbidity and mortality. Novel anti-CMV therapies have been recently developed and introduced in clinical practice, which may improve the treatment of these infections. In this review, we summarize the treatment options for R/R CMV infections in adult hematopoietic cell transplant and solid organ transplant recipients, with a special focus on newly available antiviral agents with anti-CMV activity, including maribavir and letermovir.
Collapse
Affiliation(s)
- Léna Royston
- Division of Infectious Diseases, University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Genovefa A. Papanicolaou
- Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dionysios Neofytos
- Division of Infectious Diseases, University Hospital of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Piret J, Boivin G. Management of Cytomegalovirus Infections in the Era of the Novel Antiviral Players, Letermovir and Maribavir. Infect Dis Rep 2024; 16:65-82. [PMID: 38247977 PMCID: PMC10801527 DOI: 10.3390/idr16010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Cytomegalovirus (CMV) infections may increase morbidity and mortality in immunocompromised patients. Until recently, standard antiviral drugs against CMV were limited to viral DNA polymerase inhibitors (val)ganciclovir, foscarnet and cidofovir with a risk for cross-resistance. These drugs may also cause serious side effects. This narrative review provides an update on new antiviral agents that were approved for the prevention and treatment of CMV infections in transplant recipients. Letermovir was approved in 2017 for CMV prophylaxis in CMV-seropositive adults who received an allogeneic hematopoietic stem cell transplant. Maribavir followed four years later, with an indication in the treatment of adult and pediatric transplant patients with refractory/resistant CMV disease. The target of letermovir is the CMV terminase complex (constituted of pUL56, pUL89 and pUL51 subunits). Letermovir prevents the cleavage of viral DNA and its packaging into capsids. Maribavir is a pUL97 kinase inhibitor, which interferes with the assembly of capsids and the egress of virions from the nucleus. Both drugs have activity against most CMV strains resistant to standard drugs and exhibit favorable safety profiles. However, high-level resistance mutations may arise more rapidly in the UL56 gene under letermovir than low-grade resistance mutations. Some mutations emerging in the UL97 gene under maribavir can be cross-resistant with ganciclovir. Thus, letermovir and maribavir now extend the drug arsenal available for the management of CMV infections and their respective niches are currently defined.
Collapse
Affiliation(s)
| | - Guy Boivin
- Centre de Recherche en Infectiologie, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
| |
Collapse
|
4
|
Moy MA, Collins-McMillen D, Crawford L, Parkins C, Zeltzer S, Caviness K, Zaidi SSA, Caposio P, Goodrum F. Stabilization of the human cytomegalovirus UL136p33 reactivation determinant overcomes the requirement for UL135 for replication in hematopoietic cells. J Virol 2023; 97:e0014823. [PMID: 37565749 PMCID: PMC10506481 DOI: 10.1128/jvi.00148-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a beta herpesvirus that persists indefinitely in the human host through a latent infection. The polycistronic UL133-UL138 gene locus of HCMV encodes genes regulating latency and reactivation. While UL138 is pro-latency, restricting virus replication in CD34+ hematopoietic progenitor cells (HPCs), UL135 overcomes this restriction and is required for reactivation. By contrast, UL136 is expressed with later kinetics and encodes multiple proteins with differential roles in latency and reactivation. Like UL135, the largest UL136 isoform, UL136p33, is required for reactivation from latency in HPCs; viruses failing to express either protein are unresponsive to reactivation stimuli. Furthermore, UL136p33 is unstable, and its instability is important for the establishment of latency, and sufficient accumulation of UL136p33 is a checkpoint for reactivation. We hypothesized that stabilizing UL136p33 might overcome the requirement of UL135 for replication. We generated recombinant viruses lacking UL135 that expressed a stabilized variant of UL136p33. Stabilizing UL136p33 did not impact the replication of the UL135 mutant virus in fibroblasts. However, in the context of infection in HPCs, stabilization of UL136p33 strikingly compensated for the loss of UL135, resulting in increased replication in CD34+ HPCs and in humanized NOD-scid IL2Rγcnull (huNSG) mice. This finding suggests that while UL135 is essential for replication in HPCs, it functions largely at steps preceding the accumulation of UL136p33, and that stabilized expression of UL136p33 largely overcomes the requirement for UL135. Taken together, our genetic evidence indicates an epistatic relationship between UL136p33 and UL135, whereby UL135 may initiate events early in reactivation that drive the accumulation of UL136p33 to a threshold required for productive reactivation. IMPORTANCE Human cytomegalovirus (HCMV) is one of nine human herpesviruses and a significant human pathogen. While HCMV establishes a lifelong latent infection that is typically asymptomatic in healthy individuals, its reactivation from latency can have devastating consequences in the immunocompromised. Defining viral genes important in the establishment of or reactivation from latency is important to defining the molecular basis of latent and replicative states and in controlling infection and CMV disease. Here we define a genetic relationship between two viral genes in controlling virus reactivation from latency using primary human hematopoietic progenitor cells and humanized mouse models.
Collapse
Affiliation(s)
- Melissa A. Moy
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Donna Collins-McMillen
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Lindsey Crawford
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Christopher Parkins
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Sebastian Zeltzer
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Katie Caviness
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Genetics, University of Arizona, Tucson, Arizona, USA
| | | | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Felicia Goodrum
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Genetics, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Bahnamiri MM, Roller RJ. DISTINCT ROLES OF VIRAL US3 AND UL13 PROTEIN KINASES IN HERPES VIRUS SIMPLEX TYPE 1 (HSV-1) NUCLEAR EGRESS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533584. [PMID: 36993506 PMCID: PMC10055267 DOI: 10.1101/2023.03.20.533584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Herpesviruses transport nucleocapsids from the nucleus to the cytoplasm by capsid envelopment into the inner nuclear membrane and de-envelopment from the outer nuclear membrane, a process that is coordinated by nuclear egress complex (NEC) proteins, pUL34, and pUL31. Both pUL31 and pUL34 are phosphorylated by the virus-encoded protein kinase, pUS3, and phosphorylation of pUL31 regulates NEC localization at the nuclear rim. pUS3 also controls apoptosis and many other viral and cellular functions in addition to nuclear egress, and the regulation of these various activities in infected cells is not well understood. It has been previously proposed that pUS3 activity is selectively regulated by another viral protein kinase, pUL13 such that its activity in nuclear egress is pUL13-dependent, but apoptosis regulation is not, suggesting that pUL13 might regulate pUS3 activity on specific substrates. We compared HSV-1 UL13 kinase-dead and US3 kinase-dead mutant infections and found that pUL13 kinase activity does not regulate the substrate choice of pUS3 in any defined classes of pUS3 substrates and that pUL13 kinase activity is not important for promoting de-envelopment during nuclear egress. We also find that mutation of all pUL13 phosphorylation motifs in pUS3, individually or in aggregate, does not affect the localization of the NEC, suggesting that pUL13 regulates NEC localization independent of pUS3. Finally, we show that pUL13 co-localizes with pUL31 inside the nucleus in large aggregates, further suggesting a direct effect of pUL13 on the NEC and suggesting a novel mechanism for both UL31 and UL13 in the DNA damage response pathway. IMPORTANCE Herpes simplex virus infections are regulated by two virus-encoded protein kinases, pUS3 and pUL13, which each regulate multiple processes in the infected cell, including capsid transport from the nucleus to the cytoplasm. Regulation of the activity of these kinases on their various substrates is poorly understood, but importantly, kinases are attractive targets for the generation of inhibitors. It has been previously suggested that pUS3 activity on specific substrates is differentially regulated by pUL13 and, specifically, that pUL13 regulates capsid egress from the nucleus by phosphorylation of pUS3. In this study, we determined that pUL13 and pUS3 have different effects on nuclear egress and that pUL13 may interact directly with the nuclear egress apparatus with implications both for virus assembly and egress and, possibly, the host cell DNA- damage response.
Collapse
|
6
|
Ponnuraj N, Akbar H, Arrington JV, Spatz SJ, Nagarajan B, Desai UR, Jarosinski KW. The alphaherpesvirus conserved pUS10 is important for natural infection and its expression is regulated by the conserved Herpesviridae protein kinase (CHPK). PLoS Pathog 2023; 19:e1010959. [PMID: 36749787 PMCID: PMC9946255 DOI: 10.1371/journal.ppat.1010959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/22/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Conserved Herpesviridae protein kinases (CHPK) are conserved among all members of the Herpesviridae. Herpesviruses lacking CHPK propagate in cell culture at varying degrees, depending on the virus and cell culture system. CHPK is dispensable for Marek's disease herpesvirus (MDV) replication in cell culture and experimental infection in chickens; however, CHPK-particularly its kinase activity-is essential for horizontal transmission in chickens, also known as natural infection. To address the importance of CHPK during natural infection in chickens, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) based proteomics of samples collected from live chickens. Comparing modification of viral proteins in feather follicle epithelial (FFE) cells infected with wildtype or a CHPK-null virus, we identified the US10 protein (pUS10) as a potential target for CHPK in vivo. When expression of pUS10 was evaluated in cell culture and in FFE skin cells during in vivo infection, pUS10 was severely reduced or abrogated in cells infected with CHPK mutant or CHPK-null viruses, respectively, indicating a potential role for pUS10 in transmission. To test this hypothesis, US10 was deleted from the MDV genome, and the reconstituted virus was tested for replication, horizontal transmission, and disease induction. Our results showed that removal of US10 had no effect on the ability of MDV to transmit in experimentally infected chickens, but disease induction in naturally infected chickens was significantly reduced. These results show CHPK is necessary for pUS10 expression both in cell culture and in the host, and pUS10 is important for disease induction during natural infection.
Collapse
Affiliation(s)
- Nagendraprabhu Ponnuraj
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Haji Akbar
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Justine V. Arrington
- Protein Sciences Facility, Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Stephen J. Spatz
- US National Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, United States of America
| | - Balaji Nagarajan
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Umesh R. Desai
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Keith W. Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
7
|
Moy MA, Collins-McMillen D, Crawford L, Parkins C, Zeltzer S, Caviness K, Caposio P, Goodrum F. UL135 and UL136 Epistasis Controls Reactivation of Human Cytomegalovirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525282. [PMID: 36747736 PMCID: PMC9900790 DOI: 10.1101/2023.01.24.525282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human cytomegalovirus (HCMV) is beta herpesvirus that persists indefinitely in the human host through a protracted, latent infection. The polycistronic UL133-UL138 gene locus of HCMV encodes genes regulating latency and reactivation. While UL138 is pro-latency, restricting virus replication in CD34+ hematopoietic progenitor cells (HPCs), UL135 overcomes this restriction for reactivation. By contrast, UL136 is expressed with later kinetics and encodes multiple protein isoforms with differential roles in latency and reactivation. Like UL135, the largest UL136 isoform, UL136p33, is required for reactivation from latency in hematopoietic cells. Furthermore, UL136p33 is unstable, and its instability is important for the establishment of latency and sufficient accumulation of UL136p33 is a checkpoint for reactivation. We hypothesized that stabilizing UL136p33 might overcome the requirement of UL135 for reactivation. To test this, we generated recombinant viruses lacking UL135 that expressed a stabilized variant of UL136p33. Stabilizing UL136p33 did not impact replication of the UL135-mutant virus in fibroblasts. However, in the context of infection in hematopoietic cells, stabilization of UL136p33 strikingly compensated for the loss of UL135, resulting in increased replication in CD34+ HPCs and in humanized NOD- scid IL2Rγ c null (NSG) mice. This finding suggests that while UL135 is essential for reactivation, it functions at steps preceding the accumulation of UL136p33 and that stabilized expression of UL136p33 largely overcomes the requirement for UL135 in reactivation. Taken together, our genetic evidence indicates an epistatic relationship between UL136p33 and UL135 whereby UL135 may initiate events early in reactivation that will result in the accumulation of UL136p33 to a threshold required for productive reactivation. SIGNIFICANCE Human cytomegalovirus (HCMV) is one of nine human herpesviruses and a significant human pathogen. While HCMV establishes a life-long latent infection that is typically asymptomatic in healthy individuals, its reactivation from latency can have devastating consequences in the immune compromised. Defining virus-host and virus-virus interactions important for HCMV latency, reactivation and replication is critical to defining the molecular basis of latent and replicative states and in controlling infection and CMV disease. Here we define a genetic relationship between two viral genes in controlling virus reactivation from latency using primary human hematopoietic progenitor cell and humanized mouse models.
Collapse
|
8
|
The Conserved Herpesviridae Protein Kinase (CHPK) of Gallid alphaherpesvirus 3 (GaHV3) Is Required for Horizontal Spread and Natural Infection in Chickens. Viruses 2022; 14:v14030586. [PMID: 35336996 PMCID: PMC8955875 DOI: 10.3390/v14030586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
We have formerly identified the conserved herpesvirus protein kinase (CHPK) as essential for horizontal transmission of Marek’s disease virus (MDV). Thus far, it has been confirmed that the mutation of the invariant lysine (K) of CHPKs abrogates kinase activity and that CHPK activity is required for MDV horizontal transmission. Since CHPK is conserved among all members of the Herpesviridae, we hypothesized that CHPK, and specifically its kinase activity, is important for the horizontal transmission of other herpesviruses. To test this hypothesis, we utilized our experimental and natural infection model in chickens with MD vaccine strain 301B/1 of Gallid alphaherpesvirus 3 (GaHV3). First, we mutated the invariant lysine (K) 157 of 301B/1 CHPK to alanine (A) and determined whether it was required for horizontal transmission. To confirm the requirement of 301B/1 CHPK activity for transmission, a rescued virus was generated in which the A157 was changed back to a K (A157K). Despite both the CHPK mutant (K157A) and rescuant (A157K) viruses having replication defects in vivo, only the CHPK mutant (K157A) was unable to spread to contact chickens, while both wild-type and rescuant (A157K) viruses transmitted efficiently, confirming the importance of CHPK activity for horizontal spread. The data confirm that CHPK is required for GaHV3 transmission and suggest that the requirement of avian CHPKs for natural infection is conserved.
Collapse
|
9
|
Functional Relevance of the Interaction between Human Cyclins and the Cytomegalovirus-Encoded CDK-Like Protein Kinase pUL97. Viruses 2021; 13:v13071248. [PMID: 34198986 PMCID: PMC8310212 DOI: 10.3390/v13071248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
The replication of human cytomegalovirus (HCMV) is characterized by a complex network of virus–host interaction. This involves the regulatory viral protein kinase pUL97, which represents a viral cyclin-dependent kinase ortholog (vCDK) combining typical structural and functional features of host CDKs. Notably, pUL97 interacts with the three human cyclin types T1, H and B1, whereby the binding region of cyclin T1 and the region conferring oligomerization of pUL97 were both assigned to amino acids 231–280. Here, we addressed the question of whether recombinant HCMVs harboring deletions in this region were impaired in cyclin interaction, kinase functionality or viral replication. To this end, recombinant HCMVs were generated by traceless BACmid mutagenesis and were phenotypically characterized using a methodological platform based on qPCR, coimmunoprecipitation, in vitro kinase assay (IVKA), Phos-tag Western blot and confocal imaging analysis. Combined data illustrate the following: (i) infection kinetics of all three recombinant HCMVs, i.e., ORF-UL97 ∆231–255, ∆256–280 and ∆231–280, showed impaired replication efficiency compared to the wild type, amongst which the largest deletion exhibited the most pronounced defect; (ii) specifically, this mutant ∆231–280 showed a loss of interaction with cyclin T1, as demonstrated by CoIP and confocal imaging; (iii) IVKA and Phos-tag analyses revealed strongly affected kinase activity for ∆231–280, with strong impairment of both autophosphorylation and substrate phosphorylation, but less pronounced impairments for ∆231–255 and ∆256–280; and (iv) a bioinformatic assessment of the pUL97–cyclin T1 complex led to the refinement of our current binding model. Thus, the results provide initial evidence for the functional importance of the pUL97–cyclin interaction concerning kinase activity and viral replication fitness.
Collapse
|
10
|
Piret J, Boivin G. Antiviral Drugs Against Herpesviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:1-30. [PMID: 34258735 DOI: 10.1007/978-981-16-0267-2_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of the nucleoside analogue, acyclovir, represented a milestone in the management of infections caused by herpes simplex virus and varicella-zoster virus. Ganciclovir, another nucleoside analogue, was then used for the management of systemic and organ-specific human cytomegalovirus diseases. The pyrophosphate analogue, foscarnet, and the nucleotide analogue, cidofovir, have been approved subsequently and constitute the second-line antiviral drugs. However, the viral DNA polymerase is the ultimate target of all these antiviral agents with a possible emergence of cross-resistance between these drugs. Recently, letermovir that targets the viral terminase complex was approved for the prophylaxis of human cytomegalovirus infections in hematopoietic stem cell transplant recipients. Other viral targets such as the protein kinase and the helicase-primase complex are also evaluated for the development of novel potent inhibitors against herpesviruses.
Collapse
Affiliation(s)
| | - Guy Boivin
- CHU de Québec-Laval University, Quebec City, QC, Canada.
| |
Collapse
|
11
|
De Meo S, Dell'Oste V, Molfetta R, Tassinari V, Lotti LV, Vespa S, Pignoloni B, Covino DA, Fantuzzi L, Bona R, Zingoni A, Nardone I, Biolatti M, Coscia A, Paolini R, Benkirane M, Edfors F, Sandalova T, Achour A, Hiscott J, Landolfo S, Santoni A, Cerboni C. SAMHD1 phosphorylation and cytoplasmic relocalization after human cytomegalovirus infection limits its antiviral activity. PLoS Pathog 2020; 16:e1008855. [PMID: 32986788 PMCID: PMC7544099 DOI: 10.1371/journal.ppat.1008855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 10/08/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
SAMHD1 is a host restriction factor that functions to restrict both retroviruses and DNA viruses, based on its nuclear deoxynucleotide triphosphate (dNTP) hydrolase activity that limits availability of intracellular dNTP pools. In the present study, we demonstrate that SAMHD1 expression was increased following human cytomegalovirus (HCMV) infection, with only a modest effect on infectious virus production. SAMHD1 was rapidly phosphorylated at residue T592 after infection by cellular cyclin-dependent kinases, especially Cdk2, and by the viral kinase pUL97, resulting in a significant fraction of phosho-SAMHD1 being relocalized to the cytoplasm of infected fibroblasts, in association with viral particles and dense bodies. Thus, our findings indicate that HCMV-dependent SAMHD1 cytoplasmic delocalization and inactivation may represent a potential novel mechanism of HCMV evasion from host antiviral restriction activities.
Collapse
Affiliation(s)
- Simone De Meo
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Dell'Oste
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Tassinari
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Simone Vespa
- Laboratory of General Pathology, Center of Aging Science and Translational Medicine (CeSI-MeT) and Department of Medical, Oral and Biotechnological Sciences G. d'Annunzio University, Chieti, Italy
| | - Benedetta Pignoloni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Laura Fantuzzi
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta Bona
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Ilaria Nardone
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Alessandra Coscia
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Monsef Benkirane
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS-Université de Montpellier, Montpellier, France
| | - Fredrik Edfors
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - John Hiscott
- Istituto Pasteur Italia-Cenci Bolognetti Foundation, Rome, Italy
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Angela Santoni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
- IRCCS, Neuromed, Pozzilli, Isernia, Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
12
|
Wang YQ, Zhao XY. Human Cytomegalovirus Primary Infection and Reactivation: Insights From Virion-Carried Molecules. Front Microbiol 2020; 11:1511. [PMID: 32765441 PMCID: PMC7378892 DOI: 10.3389/fmicb.2020.01511] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous beta-herpesvirus, is able to establish lifelong latency after initial infection. Periodical reactivation occurs after immunosuppression, remaining a major cause of death in immunocompromised patients. HCMV has to reach a structural and functional balance with the host at its earliest entry. Virion-carried mediators are considered to play pivotal roles in viral adaptation into a new cellular environment upon entry. Additionally, one clear difference between primary infection and reactivation is the idea that virion-packaged factors are already formed such that those molecules can be used swiftly by the virus. In contrast, virion-carried mediators have to be transcribed and translated; thus, they are not readily available during reactivation. Hence, understanding virion-carried molecules helps to elucidate HCMV reactivation. In this article, the impact of virion-packaged molecules on viral structure, biological behavior, and viral life cycle will be reviewed.
Collapse
Affiliation(s)
- Yu-Qing Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,PKU-THU Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
13
|
Couté Y, Kraut A, Zimmermann C, Büscher N, Hesse AM, Bruley C, De Andrea M, Wangen C, Hahn F, Marschall M, Plachter B. Mass Spectrometry-Based Characterization of the Virion Proteome, Phosphoproteome, and Associated Kinase Activity of Human Cytomegalovirus. Microorganisms 2020; 8:microorganisms8060820. [PMID: 32486127 PMCID: PMC7357008 DOI: 10.3390/microorganisms8060820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
The assembly of human cytomegalovirus (HCMV) virions is an orchestrated process that requires, as an essential prerequisite, the complex crosstalk between viral structural proteins. Currently, however, the mechanisms governing the successive steps in the constitution of virion protein complexes remain elusive. Protein phosphorylation is a key regulator determining the sequential changes in the conformation, binding, dynamics, and stability of proteins in the course of multiprotein assembly. In this review, we present a comprehensive map of the HCMV virion proteome, including a refined view on the virion phosphoproteome, based on previous publications supplemented by new results. Thus, a novel dataset of viral and cellular proteins contained in HCMV virions is generated, providing a basis for future analyses of individual phosphorylation steps and sites involved in the orchestrated assembly of HCMV virion-specific multiprotein complexes. Finally, we present the current knowledge on the activity of pUL97, the HCMV-encoded and virion-associated kinase, in phosphorylating viral and host proteins.
Collapse
Affiliation(s)
- Yohann Couté
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France; (A.K.); (A.-M.H.); (C.B.)
- Correspondence: (Y.C.); (B.P.); Tel.: +33-4-38789461 (Y.C.); +49-6131-179232 (B.P.)
| | - Alexandra Kraut
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France; (A.K.); (A.-M.H.); (C.B.)
| | - Christine Zimmermann
- Institute for Virology and Forschungszentrum für Immuntherapie, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany; (C.Z.); (N.B.)
| | - Nicole Büscher
- Institute for Virology and Forschungszentrum für Immuntherapie, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany; (C.Z.); (N.B.)
| | - Anne-Marie Hesse
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France; (A.K.); (A.-M.H.); (C.B.)
| | - Christophe Bruley
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France; (A.K.); (A.-M.H.); (C.B.)
| | - Marco De Andrea
- Department of Public Health and Pediatric Sciences, Turin Medical School, University of Turin, 10126 Turin, and CAAD – Center for Translational Research on Autoimmune and Allergic Disease, Novara Medical School, 28100 Novara, Italy;
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (F.H.); (M.M.)
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (F.H.); (M.M.)
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (F.H.); (M.M.)
| | - Bodo Plachter
- Institute for Virology and Forschungszentrum für Immuntherapie, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany; (C.Z.); (N.B.)
- Correspondence: (Y.C.); (B.P.); Tel.: +33-4-38789461 (Y.C.); +49-6131-179232 (B.P.)
| |
Collapse
|
14
|
Manska S, Octaviano R, Rossetto CC. 5-Ethynyl-2'-deoxycytidine and 5-ethynyl-2'-deoxyuridine are differentially incorporated in cells infected with HSV-1, HCMV, and KSHV viruses. J Biol Chem 2020; 295:5871-5890. [PMID: 32205447 PMCID: PMC7196651 DOI: 10.1074/jbc.ra119.012378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/18/2020] [Indexed: 11/06/2022] Open
Abstract
Nucleoside analogues are a valuable experimental tool. Incorporation of these molecules into newly synthesized DNA (i.e. pulse-labeling) is used to monitor cell proliferation or to isolate nascent DNA. Some of the most common nucleoside analogues used for pulse-labeling of DNA in cells are the deoxypyrimidine analogues 5-ethynyl-2'-deoxyuridine (EdU) and 5-ethynyl-2'-deoxycytidine (EdC). Click chemistry enables conjugation of an azide molecule tagged with a fluorescent dye or biotin to the alkyne of the analog, which can then be used to detect incorporation of EdU and EdC into DNA. The use of EdC is often recommended because of the potential cytotoxicity associated with EdU during longer incubations. Here, by comparing the relative incorporation efficiencies of EdU and EdC during short 30-min pulses, we demonstrate significantly lower incorporation of EdC than of EdU in noninfected human fibroblast cells or in cells infected with either human cytomegalovirus or Kaposi's sarcoma-associated herpesvirus. Interestingly, cells infected with herpes simplex virus type-1 (HSV-1) incorporated EdC and EdU at similar levels during short pulses. Of note, exogenous expression of HSV-1 thymidine kinase increased the incorporation efficiency of EdC. These results highlight the limitations when using substituted pyrimidine analogues in pulse-labeling and suggest that EdU is the preferable nucleoside analogue for short pulse-labeling experiments, resulting in increased recovery and sensitivity for downstream applications. This is an important discovery that may help to better characterize the biochemical properties of different nucleoside analogues with a given kinase, ultimately leading to significant differences in labeling efficiency of nascent DNA.
Collapse
Affiliation(s)
- Salomé Manska
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557
| | - Rionna Octaviano
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557
| | - Cyprian C Rossetto
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557.
| |
Collapse
|
15
|
The Cytomegalovirus Protein Kinase pUL97:Host Interactions, Regulatory Mechanisms and Antiviral Drug Targeting. Microorganisms 2020; 8:microorganisms8040515. [PMID: 32260430 PMCID: PMC7232230 DOI: 10.3390/microorganisms8040515] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) expresses a variety of viral regulatory proteins that undergo close interaction with host factors including viral-cellular multiprotein complexes. The HCMV protein kinase pUL97 represents a viral cyclin-dependent kinase ortholog (vCDK) that determines the efficiency of HCMV replication via phosphorylation of viral and cellular substrates. A hierarchy of functional importance of individual pUL97-mediated phosphorylation events has been discussed; however, the most pronounced pUL97-dependent phenotype could be assigned to viral nuclear egress, as illustrated by deletion of the UL97 gene or pharmacological pUL97 inhibition. Despite earlier data pointing to a cyclin-independent functionality, experimental evidence increasingly emphasized the role of pUL97-cyclin complexes. Consequently, the knowledge about pUL97 involvement in host interaction, viral nuclear egress and additional replicative steps led to the postulation of pUL97 as an antiviral target. Indeed, validation experiments in vitro and in vivo confirmed the sustainability of this approach. Consequently, current investigations of pUL97 in antiviral treatment go beyond the known pUL97-mediated ganciclovir prodrug activation and henceforward include pUL97-specific kinase inhibitors. Among a number of interesting small molecules analyzed in experimental and preclinical stages, maribavir is presently investigated in clinical studies and, in the near future, might represent a first kinase inhibitor applied in the field of antiviral therapy.
Collapse
|
16
|
Expression of the Conserved Herpesvirus Protein Kinase (CHPK) of Marek's Disease Alphaherpesvirus in the Skin Reveals a Mechanistic Importance for CHPK during Interindividual Spread in Chickens. J Virol 2020; 94:JVI.01522-19. [PMID: 31801854 DOI: 10.1128/jvi.01522-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023] Open
Abstract
The Herpesviridae encode many conserved genes, including the conserved herpesvirus protein kinase (CHPK) that has multifunctional properties. In most cases, herpesviruses lacking CHPK can propagate in cell culture to various degrees, depending on the virus and cell culture system. However, in the natural animal model system of Marek's disease alphaherpesvirus (MDV) in chickens, CHPK is absolutely required for interindividual spread from chicken to chicken. The lack of biological reagents for chicken and MDV has limited our understanding of this important gene during interindividual spread. Here, we engineered epitope-tagged proteins in the context of virus infection in order to detect CHPK in the host. Using immunofluorescence assays and Western blotting during infection in cell culture and in chickens, we determined that the invariant lysine 170 (K170) of MDV CHPK is required for interindividual spread and autophosphorylation of CHPK and that mutation to methionine (M170) results in instability of the CHPK protein. Using these newly generated viruses allowed us to examine the expression of CHPK in infected chickens, and these results showed that mutant CHPK localization and late viral protein expression were severely affected in feather follicles wherein MDV is shed, providing important information on the requirement of CHPK for interindividual spread.IMPORTANCE Marek's disease in chickens is caused by Gallid alphaherpesvirus 2, better known as Marek's disease alphaherpesvirus (MDV). Current vaccines only reduce tumor formation but do not block interindividual spread from chicken to chicken. Understanding MDV interindividual spread provides important information for the development of potential therapies to protect against Marek's disease while also providing a reliable natural host in order to study herpesvirus replication and pathogenesis in animals. Here, we studied the conserved Herpesviridae protein kinase (CHPK) in cell culture and during infection in chickens. We determined that MDV CHPK is not required for cell-to-cell spread, for disease induction, and for oncogenicity. However, it is required for interindividual spread, and mutation of the invariant lysine (K170) results in stability issues and aberrant expression in chickens. This study is important because it addresses the critical role CHPK orthologs play in the natural host.
Collapse
|
17
|
Piret J, Boivin G. Clinical development of letermovir and maribavir: Overview of human cytomegalovirus drug resistance. Antiviral Res 2019; 163:91-105. [PMID: 30690043 DOI: 10.1016/j.antiviral.2019.01.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/28/2023]
Abstract
The prevention and treatment of human cytomegalovirus (HCMV) infections is based on the use of antiviral agents that currently target the viral DNA polymerase and that may cause serious side effects. The search for novel inhibitors against HCMV infection led to the discovery of new molecular targets, the viral terminase complex and the viral pUL97 kinase. The most advanced compounds consist of letermovir (LMV) and maribavir (MBV). LMV inhibits the cleavage of viral DNA and its packaging into capsids by targeting the HCMV terminase complex. LMV is safe and well tolerated and exhibits pharmacokinetic properties that allow once daily dosing. LMV showed efficacy in a phase III prophylaxis study in hematopoietic stem cell transplant (HSCT) recipients seropositive for HCMV. LMV was recently approved under the trade name Prevymis™ for prophylaxis of HCMV infection in adult seropositive recipients of an allogeneic HSCT. Amino acid substitutions conferring resistance to LMV selected in vitro map primarily to the pUL56 and rarely to the pUL89 and pUL51 subunits of the HCMV terminase complex. MBV is an inhibitor of the viral pUL97 kinase activity and interferes with the morphogenesis and nuclear egress of nascent viral particles. MBV is safe and well tolerated and has an excellent oral bioavailability. MBV was effective for the treatment of HCMV infections (including those that are refractory or drug-resistant) in transplant recipients in two phase II studies and is further evaluated in two phase III trials. Mutations conferring resistance to MBV map to the UL97 gene and can cause cross-resistance to ganciclovir. MBV-resistant mutations also emerged in the UL27 gene in vitro and could compensate for the inhibition of pUL97 kinase activity by MBV. Thus, LMV and probably MBV will broaden the armamentarium of antiviral drugs available for the prevention and treatment of HCMV infections.
Collapse
Affiliation(s)
- Jocelyne Piret
- Research Center in Infectious Diseases, CHU of Quebec and Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU of Quebec and Laval University, Quebec City, QC, Canada.
| |
Collapse
|
18
|
Hu X, Wang M, Chen S, Jia R, Zhu D, Liu M, Yang Q, Sun K, Chen X, Cheng A. The duck enteritis virus early protein, UL13, found in both nucleus and cytoplasm, influences viral replication in cell culture. Poult Sci 2018; 96:2899-2907. [PMID: 28371814 DOI: 10.3382/ps/pex043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 02/26/2017] [Indexed: 11/20/2022] Open
Abstract
The UL13 protein of the duck enteritis virus (DEV), predicted to encode a Ser/Thr protein kinase, belongs to the family of conserved herpesvirus protein kinases (CHPK), which plays an important role in herpesvirus proliferation. In this study, truncated UL13 was expressed as a fusion protein of approximately 44 kDa using a prokaryotic expression system, and this protein was used to generate a specific anti-UL13 antibody. This antibody detected UL13 starting at 4 h post infection in duck embryonic fibroblast cells and identified UL13 to be present in both the cytoplasm and the nucleus. UL13 RNA was found to be transcribed starting at 2 h post infection, and the synthesis of the UL13 mRNA was found to be sensitive to the protein synthesis inhibitor cycloheximide (CHX) and tolerant of the DNA polymerase inhibitor ganciclovir (GCV). Its nuclear location and status as an early gene suggested that DEV UL13 might play important roles in DEV replication, which was confirmed by comparing the proliferation of a UL13-knockout mutant virus, a revertant virus, and the parent virus in cell culture. The specific mechanisms of UL13 in viral replication need to be further studied.
Collapse
Affiliation(s)
- X Hu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China
| | - M Wang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China
| | - S Chen
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China
| | - R Jia
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China
| | - D Zhu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China
| | - M Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China
| | - Q Yang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China
| | - K Sun
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China
| | - X Chen
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China
| | - A Cheng
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P.R. China
| |
Collapse
|
19
|
Jarosinski KW. Interindividual Spread of Herpesviruses. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:195-224. [PMID: 28528445 DOI: 10.1007/978-3-319-53168-7_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interindividual spread of herpesviruses is essential for the virus life cycle and maintenance in host populations. For most herpesviruses, the virus-host relationship is close, having coevolved over millions of years resulting in comparatively high species specificity. The mechanisms governing interindividual spread or horizontal transmission are very complex, involving conserved herpesviral and cellular proteins during the attachment, entry, replication, and egress processes of infection. Also likely, specific herpesviruses have evolved unique viral and cellular interactions during cospeciation that are dependent on their relationship. Multiple steps are required for interindividual spread including virus assembly in infected cells; release into the environment, followed by virus attachment; and entry into new hosts. Should any of these steps be compromised, transmission is rendered impossible. This review will focus mainly on the natural virus-host model of Marek's disease virus (MDV) in chickens in order to delineate important steps during interindividual spread.
Collapse
Affiliation(s)
- Keith W Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
20
|
Goulidaki N, Alarifi S, Alkahtani SH, Al-Qahtani A, Spandidos DA, Stournaras C, Sourvinos G. RhoB is a component of the human cytomegalovirus assembly complex and is required for efficient viral production. Cell Cycle 2016; 14:2748-63. [PMID: 26114383 DOI: 10.1080/15384101.2015.1066535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human Cytomegalovirus (HCMV), an ubiquitous β-herpesvirus, is a significant pathogen that causes medically severe diseases in immunocompromised individuals and in congenitally infected neonates. RhoB belongs to the family of Rho GTPases, which regulates diverse cellular processes. Rho proteins are implicated in the entry and egress from the host cell of mainly α- and γ-herpesviruses, whereas β-herpesviruses are the least studied in this regard. Here, we studied the role of RhoB GTPase during HCMV lytic infection. Microscopy analysis, both in fixed and live infected cells showed that RhoB was translocated to the assembly complex/compartment (AC) of HCMV, a cytoplasmic zone in infected cells where many viral structural proteins are known to accumulate and assembly of new virions takes place. Furthermore, RhoB was localized at the AC even when the expression of the late HCMV AC proteins was inhibited. At the very late stages of infection, cellular projections were formed containing RhoB and HCMV virions, potentially contributing to the successful viral spread. Interestingly, the knockdown of RhoB in HCMV-infected cells resulted in a significant reduction of the virus titer and could also affect the accumulation of AC viral proteins at this subcellular compartment. RhoB knockdown also affected actin fibers' structure. Actin reorganization was observed at late stages of infection originating from the viral AC and surrounding the cellular projections, implying a potential interplay between RhoB and actin during HCMV assembly and egress. In conclusion, our results demonstrate for the first time that RhoB is a constituent of the viral AC and is required for HCMV productive infection.
Collapse
Affiliation(s)
- Nektaria Goulidaki
- a Laboratory of Virology ; Medical School ; University of Crete ; Heraklion, Crete , Greece
| | | | | | | | | | | | | |
Collapse
|
21
|
Gershburg S, Geltz J, Peterson KE, Halford WP, Gershburg E. The UL13 and US3 Protein Kinases of Herpes Simplex Virus 1 Cooperate to Promote the Assembly and Release of Mature, Infectious Virions. PLoS One 2015; 10:e0131420. [PMID: 26115119 PMCID: PMC4482649 DOI: 10.1371/journal.pone.0131420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/02/2015] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) encodes two bona fide serine/threonine protein kinases, the US3 and UL13 gene products. HSV-1 ΔUS3 mutants replicate with wild-type efficiency in cultured cells, and HSV-1 ΔUL13 mutants exhibit <10-fold reduction in infectious viral titers. Given these modest phenotypes, it remains unclear how the US3 and UL13 protein kinases contribute to HSV-1 replication. In the current study, we designed a panel of HSV-1 mutants, in which portions of UL13 and US3 genes were replaced by expression cassettes encoding mCherry protein or green fluorescent protein (GFP), respectively, and analyzed DNA replication, protein expression, and spread of these mutants in several cell types. Loss of US3 function alone had largely negligible effect on viral DNA accumulation, gene expression, virion release, and spread. Loss of UL13 function alone also had no appreciable effects on viral DNA levels. However, loss of UL13 function did result in a measurable decrease in the steady-state levels of two viral glycoproteins (gC and gD), release of total and infectious virions, and viral spread. Disruption of both genes did not affect the accumulation of viral DNA, but resulted in further reduction in gC and gD steady-state levels, and attenuation of viral spread and infectious virion release. These data show that the UL13 kinase plays an important role in the late phase of HSV-1 infection, likely by affecting virion assembly and/or release. Moreover, the data suggest that the combined activities of the US3 and UL13 protein kinases are critical to the efficient assembly and release of infectious virions from HSV-1-infected cells.
Collapse
Affiliation(s)
- Svetlana Gershburg
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
| | - Joshua Geltz
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
| | - Karin E. Peterson
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT 59840, United States of America
| | - William P. Halford
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
| | - Edward Gershburg
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
- * E-mail:
| |
Collapse
|
22
|
Oberstein A, Perlman DH, Shenk T, Terry LJ. Human cytomegalovirus pUL97 kinase induces global changes in the infected cell phosphoproteome. Proteomics 2015; 15:2006-22. [PMID: 25867546 DOI: 10.1002/pmic.201400607] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/12/2015] [Accepted: 04/09/2015] [Indexed: 12/12/2022]
Abstract
Replication of human cytomegalovirus (HCMV) is regulated in part by cellular kinases and the single viral Ser/Thr kinase, pUL97. The virus-coded kinase augments the replication of HCMV by enabling nuclear egress and altering cell cycle progression. These roles are accomplished through direct phosphorylation of nuclear lamins and the retinoblastoma protein, respectively. In an effort to identify additional pUL97 substrates, we analyzed the phosphoproteome of SILAC-labeled human fibroblasts during infection with either wild-type HCMV or a pUL97 kinase-dead mutant virus. Phosphopeptides were enriched over a titanium dioxide matrix and analyzed by high-resolution MS. We identified 157 unambiguous phosphosites from 106 cellular and 17 viral proteins whose phosphorylation required UL97. Analysis of peptides containing these sites allowed the identification of several candidate pUL97 phosphorylation motifs, including a completely novel phosphorylation motif, LxSP. Substrates harboring the LxSP motif were enriched in nucleocytoplasmic transport functions, including a number of components of the nuclear pore complex. These results extend the known functions of pUL97 and suggest that modulation of nuclear pore function may be important during HCMV replication.
Collapse
Affiliation(s)
- Adam Oberstein
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David H Perlman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Thomas Shenk
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Laura J Terry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
23
|
Fürstberger A, Maucher M, Kestler HA. Extended pairwise local alignment of wild card DNA/RNA sequences using dynamic programming. J STAT COMPUT SIM 2014. [DOI: 10.1080/00949655.2014.928294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
An epistatic relationship between the viral protein kinase UL97 and the UL133-UL138 latency locus during the human cytomegalovirus lytic cycle. J Virol 2014; 88:6047-60. [PMID: 24623439 DOI: 10.1128/jvi.00447-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED We report that UL133-UL138 (UL133/8), a transcriptional unit within the ULb' region (ULb') of the human cytomegalovirus (HCMV) genome, and UL97, a viral protein kinase encoded by HCMV, play epistatic roles in facilitating progression of the viral lytic cycle. In studies with HCMV strain TB40/E, pharmacological blockade or genetic ablation of UL97 significantly reduced the levels of mRNA and protein for IE2 and viral early and early-late genes during a second wave of viral gene expression that commenced at between 24 and 48 h postinfection. These effects were accompanied by significant defects in viral DNA synthesis and viral replication. Interestingly, deletion of UL133/8 likewise caused significant defects in viral DNA synthesis, viral gene expression, and viral replication, which were not exacerbated upon UL97 inhibition. When UL133/8 was restored to HCMV laboratory strain AD169, which otherwise lacks the locus, the resulting recombinant virus replicated similarly to the parental virus. However, during UL97 inhibitor treatment, the virus in which UL133/8 was restored showed significantly exacerbated defects in viral DNA synthesis, viral gene expression, and production of infectious progeny virus, thus recapitulating the differences between wild-type TB40/E and its UL133/8-null derivative. Phenotypic evaluation of mutants null for specific open reading frames within UL133/8 revealed a role for UL135 in promoting viral gene expression, viral DNA synthesis, and viral replication, which depended on UL97. Taken together, our findings suggest that UL97 and UL135 play interdependent roles in promoting the progression of a second phase of the viral lytic cycle and that these roles are crucial for efficient viral replication. IMPORTANCE A unique feature of the herpesviruses, such as human cytomegalovirus (HCMV), is that they can undergo latency, a state during which the virus silences its gene expression, which allows lifelong viral persistence in immunocompetent hosts. We have uncovered an unexpected link between a cluster of HCMV genes involved in latency, UL133-UL138, and a virally encoded protein kinase, UL97, which plays crucial roles in manipulating the cell cycle during HCMV lytic replication. Although viral immediate early (IE) gene expression is essential for HCMV lytic replication, the activation of IE gene expression in latently infected cells is not sufficient to result in production of infectious virus. Our findings here and in an accompanying study (M. Umashankar, M. Rak, F. Bughio, P. Zagallo, K. Caviness, and F. D. Goodrum, J. Virol. 88:5987-6002, 2014) show that proteins expressed from the UL133-UL138 latency locus and UL97 play interdependent roles in overcoming checkpoints that restrict the viral lytic replication cycle, findings which suggest intriguing implications for establishment of and reactivation from HCMV latency.
Collapse
|
25
|
Differential properties of cytomegalovirus pUL97 kinase isoforms affect viral replication and maribavir susceptibility. J Virol 2014; 88:4776-85. [PMID: 24522923 DOI: 10.1128/jvi.00192-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The human cytomegalovirus (HCMV)-encoded kinase pUL97 is required for efficient viral replication. Previous studies described two isoforms of pUL97, the full-length isoform (M1) and a smaller isoform likely resulting from translation initiation at codon 74 (M74). Here, we report the detection of a third pUL97 isoform during viral infection resulting from translation initiation at codon 157 (isoform M157). The consistent expression of isoform M157 as a minor component of pUL97 during infection with clinical and laboratory-adapted HCMV strains was suppressed when codon 157 was mutagenized. Viral mutants expressing specific isoforms were generated to compare their growth and drug susceptibility phenotypes, as well as pUL97 intracellular localization patterns and kinase activities. The exclusive expression of isoform M157 resulted in substantially reduced viral growth and resistance to the pUL97 inhibitor maribavir while retaining susceptibility to ganciclovir. Confocal imaging demonstrated reduced nuclear import of amino-terminal deletion isoforms compared to isoform M1. Isoform M157 showed reduced efficiency of various substrate protein interactions and autophosphorylation, whereas Rb phosphorylation was preserved. These results reveal differential properties of pUL97 isoforms that affect viral replication, with implications for the antiviral efficacy of maribavir. IMPORTANCE The HCMV UL97 kinase performs important functions in viral replication that are targeted by the antiviral drug maribavir. Here, we describe a naturally occurring short isoform of the kinase that when expressed by itself in a recombinant virus results in altered intracellular localization, impaired growth, and high-level resistance to maribavir compared to those of the predominant full-length counterpart. This is another factor to consider in explaining why maribavir appears to have variable antiviral activity in cell culture and in vivo.
Collapse
|
26
|
Held C, Webel R, Palmisano R, Hutterer C, Marschall M, Wittenberg T. Using multi-channel level sets to measure the cytoplasmic localization of HCMV pUL97 in GFP-B-gal fusion constructs. J Virol Methods 2014; 199:61-7. [PMID: 24445057 DOI: 10.1016/j.jviromet.2013.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/26/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
Abstract
Human cytomegalovirus UL97-encoded protein kinase (pUL97) phosphorylates cellular and viral proteins and is critical for viral replication. To quantify the efficiency of nuclear translocation and to elucidate the role of putative nuclear localization signal (NLS) elements, immunofluorescence analysis of different pUL97 expression constructs was performed. Since manual quantitation of respective expression levels lacks objectivity and reproducibility, and is time-consuming as well, a computer-based model is established. This model enables objective quantitation of the degree of cytoplasmic localization λ. To determine the degree of cytoplasmic localization of different pUL97-GFP-β-gal fusion proteins automatically, a multi-channel segmentation of the nucleus and cytoplasm of transfected HeLa cells is performed in DAPI and GFP micrographs. A watershed transform-based segmentation scheme is used for the segmentation of the cell nuclei. Subsequently, the cytoplasm is segmented using a fast marching level set method. Based on the segmentation of cell nuclei and cytoplasm, λ can be determined for each HeLa cell by quantitation of the ratio of average signal intensity outside and inside the nucleus. The degree of cytoplasmic localization of an individual construct is then determined by evaluating the average and standard deviation of λ for the corresponding HeLa cells. Evaluation demonstrates that nuclear transport of pUL97 is a multilayered mechanism resulting in different efficiencies of nuclear translocation between a small and a large isoform and objective quantitation of the cytoplasmic localization is possible with a high accuracy (96.7% and 94.3%).
Collapse
Affiliation(s)
- Christian Held
- Department of Image Processing and Biomedical Engineering, Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany.
| | - Rike Webel
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Germany.
| | - Ralf Palmisano
- Optical Imaging Center Erlangen, OICE, Erlangen, Germany.
| | - Corina Hutterer
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Germany.
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Germany.
| | - Thomas Wittenberg
- Department of Image Processing and Biomedical Engineering, Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany.
| |
Collapse
|
27
|
Komatsu TE, Pikis A, Naeger LK, Harrington PR. Resistance of human cytomegalovirus to ganciclovir/valganciclovir: A comprehensive review of putative resistance pathways. Antiviral Res 2014; 101:12-25. [DOI: 10.1016/j.antiviral.2013.10.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/20/2013] [Accepted: 10/21/2013] [Indexed: 11/26/2022]
|
28
|
Bommer M, Michel D. Prevention of cytomegalovirus disease in patients with impaired cell-mediated immunity – is there a need for maribavir? Expert Opin Orphan Drugs 2013. [DOI: 10.1517/21678707.2013.842166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Resistance of human cytomegalovirus to cyclopropavir maps to a base pair deletion in the open reading frame of UL97. Antimicrob Agents Chemother 2013; 57:4343-8. [PMID: 23817384 DOI: 10.1128/aac.00214-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen in the human population, affecting many immunologically immature and immunocompromised patients, and can result in severe complications, such as interstitial pneumonia and mental retardation. Current chemotherapies for the treatment of HCMV infections include ganciclovir (GCV), foscarnet, and cidofovir. However, the high incidences of adverse effects (neutropenia and nephrotoxicity) limit the use of these drugs. Cyclopropavir (CPV), a guanosine nucleoside analog, is 10-fold more active against HCMV than GCV (50% effective concentrations [EC50s] = 0.46 and 4.1 μM, respectively). We hypothesize that the mechanism of action of CPV is similar to that of GCV: phosphorylation to a monophosphate by viral pUL97 protein kinase with further phosphorylation to a triphosphate by endogenous kinases, resulting in inhibition of viral DNA synthesis. To test this hypothesis, we isolated a CPV-resistant virus, sequenced its genome, and discovered that bp 498 of UL97 was deleted. This mutation caused a frameshift in UL97 resulting in a truncated protein that lacks a kinase domain. To determine if this base pair deletion was responsible for drug resistance, the mutation was engineered into the wild-type viral genome, which was then exposed to increasing concentrations of CPV. The results demonstrate that the engineered virus was approximately 72-fold more resistant to CPV (EC50 = 25.8 ± 3.1 μM) than the wild-type virus (EC50 = 0.36 ± 0.11 μM). We conclude, therefore, that this mutation is sufficient for drug resistance and that pUL97 is involved in the mechanism of action of CPV.
Collapse
|
30
|
Gill RB, James SH, Prichard MN. Human cytomegalovirus UL97 kinase alters the accumulation of CDK1. J Gen Virol 2012; 93:1743-1755. [PMID: 22552942 PMCID: PMC3541764 DOI: 10.1099/vir.0.039214-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 04/30/2012] [Indexed: 12/14/2022] Open
Abstract
The UL97 protein kinase is a serine/threonine kinase expressed by human cytomegalovirus (CMV) that phosphorylates ganciclovir. An investigation of the subcellular localization of pUL97 in infected cells indicated that, early in infection, pUL97 localized to focal sites in the nucleus that transitioned to subnuclear compartments and eventually throughout the entire nucleus. When UL97 kinase activity was eliminated with a K355M mutation or pharmacologically inhibited with maribavir, the expansion and redistribution of pUL97 foci within the nucleus was delayed, nuclear reorganization did not occur and assembly complexes in the cytoplasm failed to form normally. As UL97 kinase and its homologues appear to be functionally related to CDK1, a known regulator of nuclear structural organization, the effects of the UL97 kinase on CDK1 were investigated. Expression of CDK1 in infected cells appeared to be induced by UL97 kinase activity at the level of transcription and was not tied to other virus life-cycle events, such as viral DNA replication or virion assembly. These results suggest that, in addition to phosphorylating CDK1 targets, the UL97 kinase modifies G₂/M cell-cycle checkpoint regulators, specifically CDK1, to promote virus replication.
Collapse
Affiliation(s)
- Rachel B. Gill
- Department of Cell Biology, 1900 University Blvd, Birmingham, AL 35294, USA
| | - Scott H. James
- Department of Pediatrics, University of Alabama at Birmingham, 1600 6th Avenue South, Birmingham, AL 35233, USA
| | - Mark N. Prichard
- Department of Cell Biology, 1900 University Blvd, Birmingham, AL 35294, USA
- Department of Pediatrics, University of Alabama at Birmingham, 1600 6th Avenue South, Birmingham, AL 35233, USA
| |
Collapse
|
31
|
Wagner S, Arnold F, Wu Z, Schubert A, Walliser C, Tadagaki K, Jockers R, Mertens T, Michel D. The 7-transmembrane protein homologue UL78 of the human cytomegalovirus forms oligomers and traffics between the plasma membrane and different intracellular compartments. Arch Virol 2012; 157:935-49. [PMID: 22327422 DOI: 10.1007/s00705-012-1246-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/29/2011] [Indexed: 12/22/2022]
Abstract
The human cytomegalovirus (HCMV) UL78 ORF is considered to encode an orphan 7-transmembrane receptor. However, until now, the UL78 protein (pUL78) has not been characterized. Here, we have investigated the expression of pUL78 and found it mainly associated with the endoplasmic reticulum. However, we provide evidence that pUL78 is also localized on the cell surface from where it is quickly endocytosed. Colocalization with adaptin and EEA-1 implies that at least a small amount of pUL78 is transported to the trans Golgi network and early endosomes. Using a bimolecular fluorescence complementation assay and co-immunoprecipitation experiments, we were able to find homomeric and heteromeric structure formations of pUL78 and the US28 protein, respectively. However, the absence of pUL78 had no effect on the accumulation of inositol phosphate triggered by the US28 protein. In summary, our results suggest that the UL78 protein of HCMV traffics between the cell surface and cytoplasm, from where it might be recycled via early endosomes.
Collapse
Affiliation(s)
- Svenja Wagner
- Institut für Virologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Human cytomegalovirus UL97 kinase and nonkinase functions mediate viral cytoplasmic secondary envelopment. J Virol 2011; 85:3375-84. [PMID: 21248036 DOI: 10.1128/jvi.01952-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have revealed critical roles for the human cytomegalovirus (HCMV) UL97 kinase in viral nuclear maturation events. We have shown recently that UL97 affects the morphology of the viral cytoplasmic assembly compartment (AC) (M. Azzeh, A. Honigman, A. Taraboulos, A. Rouvinski, and D. G. Wolf, Virology 354:69-79, 2006). Here, we employed a comprehensive ultrastructural analysis to dissect the impact of UL97 on cytoplasmic steps of HCMV assembly. Using UL97 deletion (ΔUL97) and kinase-null (K355M) mutants, as well as the UL97 kinase inhibitor NGIC-I, we demonstrated that the loss of UL97 kinase activity resulted in a unique combination of cytoplasmic features: (i) the formation of pp65-rich aberrant cytoplasmic tegument aggregates, (ii) distorted intracytoplasmic membranes, which replaced the normal architecture of the AC, and (iv) a paucity of cytoplasmic tegumented capsids and dense bodies (DBs). We further showed that these abnormal assembly intermediates did not result from impaired nuclear capsid maturation and egress per se by using 2-bromo-5,6-dichloro-1-(β-d-ribofuranosyl) benzimidizole (BDCRB) to induce the artificial inhibition of nuclear maturation and the nucleocytoplasmic translocation of capsids. The specific abrogation of UL97 kinase activity under low-multiplicity-of-infection conditions resulted in the improved release of extracellular virus compared to that of ΔUL97, despite similar rates of viral DNA accumulation and similar effects on nuclear capsid maturation and egress. The only ultrastructural correlate of the growth difference was a higher number of cytoplasmic DBs, tegumented capsids, and clustered viral particles observed upon the specific abrogation of UL97 kinase activity compared to that of ΔUL97. These combined findings reveal a novel role for UL97 in HCMV cytoplasmic secondary envelopment steps, with a further distinction of kinase-mediated function in the formation of the virus-induced AC and a nonkinase function enhancing the efficacy of viral tegumentation and release.
Collapse
|
33
|
Abstract
The study of human cytomegalovirus (HCMV) antiviral drug resistance has enhanced knowledge of the virological targets and the mechanisms of antiviral activity. The currently approved drugs, ganciclovir (GCV), foscarnet (FOS), and cidofovir (CDV), target the viral DNA polymerase. GCV anabolism also requires phosphorylation by the virus-encoded UL97 kinase. GCV resistance mutations have been identified in both genes, while FOS and CDV mutations occur only in the DNA polymerase gene. Confirmation of resistance mutations requires phenotypic analysis; however, phenotypic assays are too time-consuming for diagnostic purposes. Genotypic assays based on sequencing provide more rapid results but are dependent on prior validation by phenotypic methods. Reports from many laboratories have produced an evolving list of confirmed resistance mutations, although differences in interpretation have led to some confusion. Recombinant phenotyping methods performed in a few research laboratories have resolved some of the conflicting results. Treatment options for drug-resistant HCMV infections are complex and have not been subjected to controlled clinical trials, although consensus guidelines have been proposed. This review summarizes the virological and clinical data pertaining to HCMV antiviral drug resistance.
Collapse
|
34
|
Guo H, Shen S, Wang L, Deng H. Role of tegument proteins in herpesvirus assembly and egress. Protein Cell 2010; 1:987-98. [PMID: 21153516 DOI: 10.1007/s13238-010-0120-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022] Open
Abstract
Morphogenesis and maturation of viral particles is an essential step of viral replication. An infectious herpesviral particle has a multilayered architecture, and contains a large DNA genome, a capsid shell, a tegument and an envelope spiked with glycoproteins. Unique to herpesviruses, tegument is a structure that occupies the space between the nucleocapsid and the envelope and contains many virus encoded proteins called tegument proteins. Historically the tegument has been described as an amorphous structure, but increasing evidence supports the notion that there is an ordered addition of tegument during virion assembly, which is consistent with the important roles of tegument proteins in the assembly and egress of herpesviral particles. In this review we first give an overview of the herpesvirus assembly and egress process. We then discuss the roles of selected tegument proteins in each step of the process, i.e., primary envelopment, de-envelopment, secondary envelopment and transport of viral particles. We also suggest key issues that should be addressed in the near future.
Collapse
Affiliation(s)
- Haitao Guo
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
35
|
Shannon-Lowe CD, Emery VC. The effects of maribavir on the autophosphorylation of ganciclovir resistant mutants of the cytomegalovirus UL97 protein. HERPESVIRIDAE 2010; 1:4. [PMID: 21429239 PMCID: PMC3050433 DOI: 10.1186/2042-4280-1-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/07/2010] [Indexed: 11/21/2022]
Abstract
Background The UL97 protein kinase of human cytomegalovirus phosphorylates the antiviral drug ganciclovir and is the target of maribavir action. A detailed enzyme kinetic analysis of maribavir on the various enzymatic functions of wild type and ganciclovir resistant forms of UL97 is required. Methods Wild type and site directed mutant forms of the human cytomegalovirus UL97 gene product were expressed using recombinant baculoviruses and the purified products used to assess the effects of maribavir on the ganciclovir (GCV) kinase and protein kinase (PK) activities. Results Maribavir was a potent inhibitor of the autophosporylation of the wild type and all the major GCV resistant UL97 mutants analysed (M460I, H520Q, A594V and L595F) with a mean IC50 of 35 nM. The M460I mutation resulted in hypersensitivity to maribavir with an IC50 of 4.8 nM. A maribavir resistant mutant of UL97 (L397R) was functionally compromised as both a GCV kinase and a protein kinase (~ 10% of wild type levels). Enzyme kinetic experiments demonstrated that maribavir was a competitive inhibitor of ATP with a Ki of 10 nM. Discussion Maribavir is a potent competitive inhibitor of the UL97 protein kinase function and shows increased activity against the M460I GCV-resistant mutant which may impact on the management of GCV drug resistance in patients.
Collapse
Affiliation(s)
- Claire D Shannon-Lowe
- Department of Infection, Centre for Virology, UCL (Royal Free Campus Campus), Rowland Hill Street, Hampstead, London NW3 2QG, UK.
| | | |
Collapse
|
36
|
Abstract
Phosphorylation represents one the most abundant and important posttranslational modifications of proteins, including viral proteins. Virus-encoded serine/threonine protein kinases appear to be a feature that is unique to large DNA viruses. Although the importance of these kinases for virus replication in cell culture is variable, they invariably play important roles in virus virulence. The current review provides an overview of the different viral serine/threonine protein kinases of several large DNA viruses and discusses their function, importance, and potential as antiviral drug targets.
Collapse
|
37
|
Webel R, Milbradt J, Auerochs S, Schregel V, Held C, Nöbauer K, Razzazi-Fazeli E, Jardin C, Wittenberg T, Sticht H, Marschall M. Two isoforms of the protein kinase pUL97 of human cytomegalovirus are differentially regulated in their nuclear translocation. J Gen Virol 2010; 92:638-49. [PMID: 21084499 DOI: 10.1099/vir.0.026799-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pUL97 protein kinase encoded by human cytomegalovirus is a multifunctional determinant of the efficiency of viral replication and phosphorylates viral as well as cellular substrate proteins. Here, we report that pUL97 is expressed in two isoforms with molecular masses of approximately 90 and 100 kDa. ORF UL97 comprises an unusual coding strategy in that five in-frame ATG start codons are contained within the N-terminal 157 aa. Site-directed mutagenesis, transient expression of point and deletion mutants and proteomic analyses accumulated evidence that the formation of the large and small isoforms result from alternative initiation of translation, with the start points being at amino acids 1 and 74, respectively. In vitro kinase assays demonstrated that catalytic activity, in terms of autophosphorylation and histone substrate phosphorylation, was indistinguishable for the two isoforms. An analysis of the intracellular distribution of pUL97 by confocal laser-scanning microscopy demonstrated that both isoforms have a pronounced nuclear localization. Surprisingly, mapping experiments performed to identify the nuclear localization signal (NLS) of pUL97 strongly suggest that the mechanism of nuclear transport is distinct for the two isoforms. While the extreme N terminus (large isoform) comprises a highly efficient, bipartite NLS (amino acids 6-35), a second sequence apparently conferring a less efficient mode of nuclear translocation was identified downstream of amino acid 74 (small and large isoforms). Taken together, the findings argue for a complex mechanism of nuclear translocation for pUL97 which might be linked with fine-regulatory differences between the two isoforms.
Collapse
Affiliation(s)
- Rike Webel
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Key motifs in EBV (Epstein-Barr virus)-encoded protein kinase for phosphorylation activity and nuclear localization. Biochem J 2010; 431:227-35. [PMID: 20704565 DOI: 10.1042/bj20100558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A sole EBV (Epstein-Barr virus)-encoded protein kinase (EBV-PK) (the BGLF4 gene product) plays important roles in viral infection. Although a number of targets of this protein have been identified, the kinase itself remains largely unstudied with regard to its enzymology and structure. In the present study, site-directed mutagenesis has been employed to generate mutations targeting residues involved in nuclear localization of the EBV-PK, core residues in subdomain III of the protein kinase domain conserved in most protein kinases or residues in subdomain VIa conserved only within the HPK (herpesvirus-encoded protein kinase) group. Deletion of amino acids 389-391 resulted in exclusive cytoplasmic localization of the protein, indicating the involvement of this region in nuclear translocation of the EBV-PK. Mutations at the amino acids Glu113 (core component), Phe175, Leu178, Phe184, Leu185 and Asn186 (conserved in HPKs) resulted in loss of EBV-PK autophosphorylation, protein substrate [EBV EA-D (early antigen diffused)] phosphorylation, and ability to facilitate ganciclovir phosphorylation. These results reiterate the unique features of this group of kinases and present an opportunity for designing more specific antiviral compounds.
Collapse
|
39
|
Cyclin-dependent kinase-like function is shared by the beta- and gamma- subset of the conserved herpesvirus protein kinases. PLoS Pathog 2010; 6:e1001092. [PMID: 20838604 PMCID: PMC2936540 DOI: 10.1371/journal.ppat.1001092] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 08/09/2010] [Indexed: 11/19/2022] Open
Abstract
The UL97 protein of human cytomegalovirus (HCMV, or HHV-5 (human herpesvirus 5)), is a kinase that phosphorylates the cellular retinoblastoma (Rb) tumor suppressor and lamin A/C proteins that are also substrates of cellular cyclin-dependent kinases (Cdks). A functional complementation assay has further shown that UL97 has authentic Cdk-like activity. The other seven human herpesviruses each encode a kinase with sequence and positional homology to UL97. These UL97-homologous proteins have been termed the conserved herpesvirus protein kinases (CHPKs) to distinguish them from other human herpesvirus-encoded kinases. To determine if the Cdk-like activities of UL97 were shared by all of the CHPKs, we individually expressed epitope-tagged alleles of each protein in human Saos-2 cells to test for Rb phosphorylation, human U-2 OS cells to monitor nuclear lamina disruption and lamin A phosphorylation, or S. cerevisiae cdc28-13 mutant cells to directly assay for Cdk function. We found that the ability to phosphorylate Rb and lamin A, and to disrupt the nuclear lamina, was shared by all CHPKs from the beta- and gamma-herpesvirus families, but not by their alpha-herpesvirus homologs. Similarly, all but one of the beta and gamma CHPKs displayed bona fide Cdk activity in S. cerevisiae, while the alpha proteins did not. Thus, we have identified novel virally-encoded Cdk-like kinases, a nomenclature we abbreviate as v-Cdks. Interestingly, we found that other, non-Cdk-related activities reported for UL97 (dispersion of promyelocytic leukemia protein nuclear bodies (PML-NBs) and disruption of cytoplasmic or nuclear aggresomes) showed weak conservation among the CHPKs that, in general, did not segregate to specific viral families. Therefore, the genomic and evolutionary conservation of these kinases has not been fully maintained at the functional level. Our data indicate that these related kinases, some of which are targets of approved or developmental antiviral drugs, are likely to serve both overlapping and non-overlapping functions during viral infections.
Collapse
|
40
|
Deville-Bonne D, El Amri C, Meyer P, Chen Y, Agrofoglio LA, Janin J. Human and viral nucleoside/nucleotide kinases involved in antiviral drug activation: structural and catalytic properties. Antiviral Res 2010; 86:101-20. [PMID: 20417378 DOI: 10.1016/j.antiviral.2010.02.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/31/2010] [Accepted: 02/01/2010] [Indexed: 12/11/2022]
Abstract
Antiviral nucleoside and nucleotide analogs, essential for the treatment of viral infections in the absence of efficient vaccines, are prodrug forms of the active compounds that target the viral DNA polymerase or reverse transcriptase. The activation process requires several successive phosphorylation steps catalyzed by different kinases, which are present in the host cell or encoded by some of the viruses. These activation reactions often are rate-limiting steps and are thus open to improvement. We review here the structural and enzymatic properties of the enzymes that carry out the activation of analogs used in therapy against human immunodeficiency virus and against DNA viruses such as hepatitis B, herpes and poxviruses. Four major classes of drugs are considered: thymidine analogs, non-natural L-nucleosides, acyclic nucleoside analogs and acyclic nucleoside phosphonate analogs. Their efficiency as drugs depends both on the low specificity of the viral polymerase that allows their incorporation into DNA, but also on the ability of human/viral kinases to provide the activated triphosphate active forms at a high concentration at the right place. Two distinct modes of action are considered, depending on the origin of the kinase (human or viral). If the human kinases are house-keeping enzymes that belong to the metabolic salvage pathway, herpes and poxviruses encode for related enzymes. The structures, substrate specificities and catalytic properties of each of these kinases are discussed in relation to drug activation.
Collapse
Affiliation(s)
- Dominique Deville-Bonne
- Enzymologie Moléculaire et Fonctionnelle, UR4 Université Pierre et Marie Curie, 7 quai St Bernard, 75252 Paris Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
41
|
Inactivation and disassembly of the anaphase-promoting complex during human cytomegalovirus infection is associated with degradation of the APC5 and APC4 subunits and does not require UL97-mediated phosphorylation of Cdh1. J Virol 2010; 84:10832-43. [PMID: 20686030 DOI: 10.1128/jvi.01260-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of quiescent cells by human cytomegalovirus (HCMV) elicits severe cell cycle deregulation, resulting in a G(1)/S arrest, which can be partly attributed to the inactivation of the anaphase-promoting complex (APC). As we previously reported, the premature phosphorylation of its coactivator Cdh1 and/or the dissociation of the core complex can account for the inactivation. We have expanded on these results and further delineated the key components required for disabling the APC during HCMV infection. The viral protein kinase UL97 was hypothesized to phosphorylate Cdh1, and consistent with this, phosphatase assays utilizing a virus with a UL97 deletion mutation (ΔUL97 virus) indicated that Cdh1 is hypophosphorylated at early times in the infection. Mass spectrometry analysis demonstrated that UL97 can phosphorylate Cdh1 in vitro, and the majority of the sites identified correlated with previously characterized cyclin-dependent kinase (Cdk) consensus sites. Analysis of the APC core complex during ΔUL97 virus infection showed APC dissociation occurring at the same time as during infection with wild-type virus, suggesting that the UL97-mediated phosphorylation of Cdh1 is not required for this to occur. Further investigation of the APC subunits showed a proteasome-dependent loss of the APC5 and APC4 subunits that was temporally associated with the disassembly of the APC. Immediate early viral gene expression was not sufficient for the degradation of APC4 and APC5, indicating that a viral early gene product(s), possibly in association with a de novo-synthesized cellular protein(s), is involved.
Collapse
|
42
|
Stereoselective phosphorylation of cyclopropavir by pUL97 and competitive inhibition by maribavir. Antimicrob Agents Chemother 2010; 54:3093-8. [PMID: 20547817 DOI: 10.1128/aac.00468-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that can cause severe disease in immunologically immature and immunocompromised individuals. Cyclopropavir (CPV) is a guanine nucleoside analog active against human and murine cytomegaloviruses in cell culture and efficacious in mice by oral administration. Previous studies established that the mechanism of action of CPV involves inhibition of viral DNA synthesis. Based upon this action and the structural similarity of CPV to ganciclovir (GCV), we hypothesized that CPV must be phosphorylated to a triphosphate to inhibit HCMV DNA synthesis and that pUL97 is the enzyme responsible for the initial phosphorylation of CPV to a monophosphate (CPV-MP). We found that purified pUL97 phosphorylated CPV 45-fold more extensively than GCV, a known pUL97 substrate and the current standard of treatment for HCMV infections. Kinetic studies with CPV as the substrate for pUL97 demonstrated a Km of 1,750+/-210 microM. Introduction of 1.0 or 10 nM maribavir, a known pUL97 inhibitor, and subsequent Lineweaver-Burk analysis demonstrated competitive inhibition of CPV phosphorylation, with a Ki of 3.0+/-0.3 nM. Incubation of CPV with pUL97 combined with GMP kinase [known to preferentially phosphorylate the (+)-enantiomer of CPV-MP] established that pUL97 stereoselectively phosphorylates CPV to its (+)-monophosphate. These results elucidate the mechanism of CPV phosphorylation and help explain its selective antiviral action.
Collapse
|
43
|
Wang JT, Chuang YC, Chen KL, Lu CC, Doong SL, Cheng HH, Chen YL, Liu TY, Chang Y, Han CH, Yeh SW, Chen MR. Characterization of Epstein-Barr virus BGLF4 kinase expression control at the transcriptional and translational levels. J Gen Virol 2010; 91:2186-96. [PMID: 20444992 DOI: 10.1099/vir.0.019729-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The BGLF4 protein of Epstein-Barr virus (EBV) is a serine/threonine protein kinase that phosphorylates several viral and cellular substrates at cellular cyclin-dependent kinase target sites. BGLF4 is required for efficient viral DNA replication and release of mature virions. It also stimulates the transactivation activity of the immediate-early transactivator Zta (BZLF1) and suppresses the transactivation activities of BMRF1 and EBNA-2. This study aimed to characterize further the regulation of BGLF4 expression at the transcriptional and translational levels. It was shown that BGLF4 was expressed with early kinetics and reached maximal levels after DNA replication. The promoter activity of BGLF4 was upregulated mainly by the immediate-early transactivator Rta, rather than Zta, as revealed by Zta-specific short hairpin RNA in EBV-positive cells and by luciferase reporter assays. By rapid amplification of 5' cDNA ends, two major transcriptional start sites were identified at 201 and 255 nt upstream of the first in-frame ATG of BGLF4 in P3HR1 cells. An additional transcript initiated from -468 was detected in Akata cells. The translation initiation site of BGLF4 was confirmed by mutagenesis, in vitro translation and transient transfection. The translation regulatory effect mediated by the long 5'-untranslated region (5'UTR) of BGLF4 was demonstrated by dual reporter assays in 293T and EBV-positive NA cells. These results suggested that different promoter usage and 5'UTR-mediated translation enhancement may ensure the proper expression of BGLF4 at various stages of virus replication.
Collapse
Affiliation(s)
- Jiin-Tarng Wang
- Department of Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
RASCAL is a new human cytomegalovirus-encoded protein that localizes to the nuclear lamina and in cytoplasmic vesicles at late times postinfection. J Virol 2010; 84:6483-96. [PMID: 20392852 DOI: 10.1128/jvi.02462-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The products of numerous open reading frames (ORFs) present in the genome of human cytomegalovirus (CMV) have not been characterized. Here, we describe the identification of a new CMV protein localizing to the nuclear envelope and in cytoplasmic vesicles at late times postinfection. Based on this distinctive localization pattern, we called this new protein nuclear rim-associated cytomegaloviral protein, or RASCAL. Two RASCAL isoforms exist, a short version of 97 amino acids encoded by the majority of CMV strains and a longer version of 176 amino acids encoded by the Towne, Toledo, HAN20, and HAN38 strains. Both isoforms colocalize with lamin B in deep intranuclear invaginations of the inner nuclear membrane (INM) and in novel cytoplasmic vesicular structures possibly derived from the nuclear envelope. INM infoldings have been previously described as sites of nucleocapsid egress, which is mediated by the localized disruption of the nuclear lamina, promoted by the activities of viral and cellular kinases recruited by the lamina-associated proteins UL50 and UL53. RASCAL accumulation at the nuclear membrane required the presence of UL50 but not of UL53. RASCAL and UL50 also appeared to specifically interact, suggesting that RASCAL is a new component of the nuclear egress complex (NEC) and possibly involved in mediating nucleocapsid egress from the nucleus. Finally, the presence of RASCAL within cytoplasmic vesicles raises the intriguing possibility that this protein might participate in additional steps of virion maturation occurring after capsid release from the nucleus.
Collapse
|
45
|
Milbradt J, Webel R, Auerochs S, Sticht H, Marschall M. Novel mode of phosphorylation-triggered reorganization of the nuclear lamina during nuclear egress of human cytomegalovirus. J Biol Chem 2010; 285:13979-89. [PMID: 20202933 DOI: 10.1074/jbc.m109.063628] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleocytoplasmic egress of viral capsids is a rate-limiting step in the replication of the human cytomegalovirus (HCMV). As reported recently, an HCMV-specific nuclear egress complex is composed of viral and cellular proteins, in particular protein kinases with the capacity to induce destabilization of the nuclear lamina. Viral protein kinase pUL97 and cellular protein kinase C (PKC) play important roles by phosphorylating several types of nuclear lamins. Using pUL97 mutants, we show that the lamin-phosphorylating activity of pUL97 is associated with a reorganization of nuclear lamin A/C. Either pUL97 or PKC has the potential to induce distinct punctate lamina-depleted areas at the periphery of the nuclear envelope, which were detectable in transiently transfected and HCMV-infected cells. Using recombinant HCMV, which produces green fluorescent protein-labeled viral capsids, the direct transition of viral capsids through these areas could be visualized. This process was sensitive to an inhibitor of pUL97/PKC activity. The pUL97-mediated phosphorylation of lamin A/C at Ser(22) generated a novel binding motif for the peptidyl-prolyl cis/trans-isomerase Pin1. In HCMV-infected fibroblasts, the physiological localization of Pin1 was altered, leading to recruitment of Pin1 to viral replication centers and to the nuclear lamina. The local increase in Pin1 peptidyl-prolyl cis/trans-isomerase activity may promote conformational modulation of lamins. Thus, we postulate a novel phosphorylation-triggered mechanism for the reorganization of the nuclear lamina in HCMV-infected cells.
Collapse
Affiliation(s)
- Jens Milbradt
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, D-91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
46
|
Prichard MN. Function of human cytomegalovirus UL97 kinase in viral infection and its inhibition by maribavir. Rev Med Virol 2009; 19:215-29. [PMID: 19434630 DOI: 10.1002/rmv.615] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The serine/threonine kinase expressed by human cytomegalovirus from gene UL97 phosphorylates the antiviral drug ganciclovir, but its biological function is the phosphorylation of its natural viral and cellular protein substrates which affect viral replication at many levels. The UL97 kinase null phenotype is therefore complex, as is the mechanism of action of maribavir, a highly specific inhibitor of its enzymatic activity. Studies that utilise the drug corroborate results from genetic approaches and together have elucidated many functions of the UL97 kinase that are critical for viral replication. The kinase phosphorylates eukaryotic elongation factor 1delta, the carboxyl terminal domain of the large subunit of RNA polymerase II, the retinoblastoma tumour suppressor and lamins A and C. Each of these is also phosphorylated and regulated by cdc2/cyclin-dependent kinase 1, suggesting that the viral kinase may perform a similar function. These and other activities of the UL97 kinase appear to stimulate the cell cycle to support viral DNA synthesis, enhance the expression of viral genes, promote virion morphogenesis and facilitate the egress of mature capsids from the nucleus. In the absence of UL97 kinase activity, viral DNA synthesis is inefficient and structural proteins are sequestered in nuclear aggresomes, reducing the efficiency of virion morphogenesis. Mature capsids that do form fail to egress the nucleus as the nuclear lamina are not dispersed by the kinase. The critical functions performed by the UL97 kinase illustrate its importance in viral replication and confirm that the kinase is a target for the development of antiviral therapies.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama 35233, USA.
| |
Collapse
|
47
|
Cui Z, Zhang K, Zhang Z, Liu Y, Zhou Y, Wei H, Zhang XE. Visualization of the dynamic multimerization of human Cytomegalovirus pp65 in punctuate nuclear foci. Virology 2009; 392:169-77. [DOI: 10.1016/j.virol.2009.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/06/2009] [Accepted: 06/11/2009] [Indexed: 11/24/2022]
|
48
|
Schreiber A, Härter G, Schubert A, Bunjes D, Mertens T, Michel D. Antiviral treatment of cytomegalovirus infection and resistant strains. Expert Opin Pharmacother 2009; 10:191-209. [PMID: 19236193 DOI: 10.1517/14656560802678138] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review discusses the management of resistant cytomegalovirus and prevention strategies for fatal therapy failures. Five drugs, ganciclovir/valganciclovir, cidofovir, foscarnet and fomivirsen, have been approved so far for the treatment of human cytomegalovirus (HCMV) diseases. Except for fomivirsen, all of the approved drugs share the same target molecule, the viral DNA polymerase. The emergence of drug-resistant HCMV has also been reported for all of them. For optimal care of patients, the clinical virologist has to provide the most meaningful assays for monitoring of therapy and early detection of emerging drug-resistant HCMV. Additionally, a quantitative drug monitoring would be helpful. New antiviral agents are urgently needed with less adverse effects, good oral bioavailability and possibly novel targets or mechanisms of action to avoid cross-resistance and to improve the ability to suppress the selection of resistant virus strains by combination therapy. Compounds like maribavir, leflunomide and artesunate, which exhibit anti-HCMV activity in vitro and in patients need to be evaluated in clinical studies. Besides these, new therapy approaches like immunotherapy or new diagnostic techniques like pyrosequencing have to be considered in the future.
Collapse
Affiliation(s)
- Andreas Schreiber
- Universitätsklinikum Ulm, Institut für Virologie, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Thomas M, Rechter S, Milbradt J, Auerochs S, Müller R, Stamminger T, Marschall M. Cytomegaloviral protein kinase pUL97 interacts with the nuclear mRNA export factor pUL69 to modulate its intranuclear localization and activity. J Gen Virol 2009; 90:567-578. [PMID: 19218201 DOI: 10.1099/vir.0.005827-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus encodes a number of phosphorylation-regulated proteins, including the autophosphorylating protein kinase pUL97 and the nuclear mRNA export factor pUL69. Recently, it was reported that the kinase inhibitor roscovitine induces an intranuclear aggregation of pUL69 in infected fibroblasts. Here, we demonstrate that pUL97-specific kinase inhibitors induce a similar pUL69 aggregation. Furthermore, a direct pUL69-pUL97 interaction was demonstrated by coimmunoprecipitation analyses. Deletion mapping identified the domains required for interaction in both proteins (1-140/478-532 in pUL69 and 231-336 in pUL97). Further analysis of the immunoprecipitates by in vitro kinase assays demonstrated the phosphorylation of pUL69 by pUL97. However, catalytically inactive mutants of pUL97 and interaction-negative fragments of pUL69 were phosphorylation-negative. Moreover, an analysis of the pUL69-mediated nuclear RNA export indicated a correlation of the export efficiency with the presence of active pUL97 kinase. These data suggest a specific pUL69-pUL97 interaction and pUL97-mediated phosphorylation which influences the regulatory activities of pUL69.
Collapse
Affiliation(s)
- Marco Thomas
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Sabine Rechter
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Jens Milbradt
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Sabrina Auerochs
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Regina Müller
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| |
Collapse
|
50
|
Gill RB, Frederick SL, Hartline CB, Chou S, Prichard MN. Conserved retinoblastoma protein-binding motif in human cytomegalovirus UL97 kinase minimally impacts viral replication but affects susceptibility to maribavir. Virol J 2009; 6:9. [PMID: 19159461 PMCID: PMC2636770 DOI: 10.1186/1743-422x-6-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 01/21/2009] [Indexed: 11/10/2022] Open
Abstract
The UL97 kinase has been shown to phosphorylate and inactivate the retinoblastoma protein (Rb) and has three consensus Rb-binding motifs that might contribute to this activity. Recombinant viruses containing mutations in the Rb-binding motifs generally replicated well in human foreskin fibroblasts with only a slight delay in replication kinetics. Their susceptibility to the specific UL97 kinase inhibitor, maribavir, was also examined. Mutation of the amino terminal motif, which is involved in the inactivation of Rb, also renders the virus hypersensitive to the drug and suggests that the motif may play a role in its mechanism of action.
Collapse
Affiliation(s)
- Rachel B Gill
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL, USA.
| | | | | | | | | |
Collapse
|