1
|
Benhaghnazar RL, Medina-Kauwe L. Adenovirus-Derived Nano-Capsid Platforms for Targeted Delivery and Penetration of Macromolecules into Resistant and Metastatic Tumors. Cancers (Basel) 2023; 15:3240. [PMID: 37370850 PMCID: PMC10296971 DOI: 10.3390/cancers15123240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Macromolecular therapeutics such as nucleic acids, peptides, and proteins have the potential to overcome treatment barriers for cancer. For example, nucleic acid or peptide biologics may offer an alternative strategy for attacking otherwise undruggable therapeutic targets such as transcription factors and similar oncologic drivers. Delivery of biological therapeutics into tumor cells requires a robust system of cell penetration to access therapeutic targets within the cell interior. A highly effective means of accomplishing this may be borrowed from cell-penetrating pathogens such as viruses. In particular, the cell entry function of the adenovirus penton base capsid protein has been effective at penetrating tumor cells for the intracellular deposition of macromolecular therapies and membrane-impermeable drugs. Here, we provide an overview describing the evolution of tumor-targeted penton-base-derived nano-capsids as a framework for discussing the requirements for overcoming key barriers to macromolecular delivery. The development and pre-clinical testing of these proteins for therapeutic delivery has begun to also uncover the elusive mechanism underlying the membrane-penetrating function of the penton base. An understanding of this mechanism may unlock the potential for macromolecular therapeutics to be effectively delivered into cancer cells and to provide a treatment option for tumors resisting current clinical therapies.
Collapse
Affiliation(s)
| | - Lali Medina-Kauwe
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Alonso-Valenteen F, Pacheco S, Srinivas D, Rentsendorj A, Chu D, Lubow J, Sims J, Miao T, Mikhael S, Hwang JY, Abrol R, Medina Kauwe LK. HER3-targeted protein chimera forms endosomolytic capsomeres and self-assembles into stealth nucleocapsids for systemic tumor homing of RNA interference in vivo. Nucleic Acids Res 2019; 47:11020-11043. [PMID: 31617560 PMCID: PMC6868389 DOI: 10.1093/nar/gkz900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/12/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
RNA interference represents a potent intervention for cancer treatment but requires a robust delivery agent for transporting gene-modulating molecules, such as small interfering RNAs (siRNAs). Although numerous molecular approaches for siRNA delivery are adequate in vitro, delivery to therapeutic targets in vivo is limited by payload integrity, cell targeting, efficient cell uptake, and membrane penetration. We constructed nonviral biomaterials to transport small nucleic acids to cell targets, including tumor cells, on the basis of the self-assembling and cell-penetrating activities of the adenovirus capsid penton base. Our recombinant penton base chimera contains polypeptide domains designed for noncovalent assembly with anionic molecules and tumor homing. Here, structural modeling, molecular dynamics simulations, and functional assays suggest that it forms pentameric units resembling viral capsomeres that assemble into larger capsid-like structures when combined with siRNA cargo. Pentamerization forms a barrel lined with charged residues mediating pH-responsive dissociation and exposing masked domains, providing insight on the endosomolytic mechanism. The therapeutic impact was examined on tumors expressing high levels of HER3/ErbB3 that are resistant to clinical inhibitors. Our findings suggest that our construct may utilize ligand mimicry to avoid host attack and target the siRNA to HER3+ tumors by forming multivalent capsid-like structures.
Collapse
Affiliation(s)
- Felix Alonso-Valenteen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sayuri Pacheco
- Department of Chemistry and Biochemistry, California State University, Northridge, CA 91330, USA
| | - Dustin Srinivas
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Altan Rentsendorj
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David Chu
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jay Lubow
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jessica Sims
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tianxin Miao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Simoun Mikhael
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jae Youn Hwang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Ravinder Abrol
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Chemistry and Biochemistry, California State University, Northridge, CA 91330, USA
| | - Lali K Medina Kauwe
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Penton-dodecahedral particles trigger opening of intercellular junctions and facilitate viral spread during adenovirus serotype 3 infection of epithelial cells. PLoS Pathog 2013; 9:e1003718. [PMID: 24204268 PMCID: PMC3814681 DOI: 10.1371/journal.ppat.1003718] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022] Open
Abstract
Human adenovirus serotypes Ad3, Ad7, Ad11, and Ad14 use the epithelial junction protein desmoglein 2 (DSG2) as a receptor for infection. During Ad infection, the fiber and penton base capsid proteins are produced in vast excess and form hetero-oligomers, called pentons. It has been shown for Ad3 that pentons self-assemble into penton-dodecahedra (PtDd). Our previous studies with recombinant purified Ad3 PtDd (produced in insect cells) showed that PtDd bind to DSG2 and trigger intracellular signaling resulting in the transient opening of junctions between epithelial cells. So far, a definitive proof for a function of Ad3 PtDd in the viral life cycle is elusive. Based on the recently published 3D structure of recombinant Ad3 PtDd, we generated a penton base mutant Ad3 vector (mu-Ad3GFP). mu-Ad3GFP is identical to its wild-type counterpart (wt-Ad3GFP) in the efficiency of progeny virus production; however, it is disabled in the production of PtDd. For infection studies we used polarized epithelial cancer cells or cell spheroids. We showed that in wt-Ad3GFP infected cultures, PtDd were released from cells before viral cytolysis and triggered the restructuring of epithelial junctions. This in turn facilitated lateral viral spread of de novo produced virions. These events were nearly absent in mu-Ad3GFP infected cultures. Our in vitro findings were consolidated in mice carrying xenograft tumors derived from human epithelial cancer cells. Furthermore, we provide first evidence that PtDd are also formed by another DSG2-interacting Ad serotype, the newly emerged, highly pathogenic Ad14 strain (Ad14p1). The central finding of this study is that a subgroup of Ads has evolved to generate PtDd as a strategy to achieve penetration into and dissemination in epithelial tissues. Our findings are relevant for basic and applied virology, specifically for cancer virotherapy. We have recently reported that a group of human Ads uses DSG2 as a receptor for infection. Among the DSG2-interacting Ads is serotype 3, which is widely distributed in the human population. During Ad3 infection, subviral particles (PtDd) formed by two capsid proteins are produced in vast excess and released early in infection. In this study, we demonstrate that PtDd trigger the opening of epithelial junctions and thus support the lateral spread of Ad3 progeny virus in epithelial tissues. Our study contributes to a better understanding of Ad3 infection and pathology. It also has implications for Ad-mediated gene transfer into epithelial tissues and tumors.
Collapse
|
4
|
Abstract
The outer shell of the adenovirus capsid comprises three major types of protein (hexon, penton base and fiber) that perform the majority of functions facilitating the early stages of adenovirus infection. These stages include initial cell-surface binding followed by receptor-mediated endocytosis, endosomal penetration and cytosolic entry, and intracellular trafficking toward the nucleus. Numerous studies have shown that the penton base contributes to several of these steps and have supported the development of this protein into a delivery agent for therapeutic molecules. Studies revealing that the fiber and hexon bear unexpected properties of cell entry and/or nuclear homing have supported the development of these capsid proteins, as well into potential delivery vehicles. This review summarizes the findings to date of the protein-cell activities of these capsid proteins in the absence of the whole virus and their potential for therapeutic application with regard to the delivery of foreign molecules.
Collapse
|
5
|
Corjon S, Gonzalez G, Henning P, Grichine A, Lindholm L, Boulanger P, Fender P, Hong SS. Cell entry and trafficking of human adenovirus bound to blood factor X is determined by the fiber serotype and not hexon:heparan sulfate interaction. PLoS One 2011; 6:e18205. [PMID: 21637339 PMCID: PMC3102659 DOI: 10.1371/journal.pone.0018205] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/28/2011] [Indexed: 01/29/2023] Open
Abstract
Human adenovirus serotype 5 (HAdV5)-based vectors administered intravenously accumulate in the liver as the result of their direct binding to blood coagulation factor X (FX) and subsequent interaction of the FX-HAdV5 complex with heparan sulfate proteoglycan (HSPG) at the surface of liver cells. Intriguingly, the serotype 35 fiber-pseudotyped vector HAdV5F35 has liver transduction efficiencies 4-logs lower than HAdV5, even though both vectors carry the same hexon capsomeres. In order to reconcile this apparent paradox, we investigated the possible role of other viral capsid proteins on the FX/HSPG-mediated cellular uptake of HAdV5-based vectors. Using CAR- and CD46-negative CHO cells varying in HSPG expression, we confirmed that FX bound to serotype 5 hexon protein and to HAdV5 and HAdV5F35 virions via its Gla-domain, and enhanced the binding of both vectors to surface-immobilized hypersulfated heparin and cellular HSPG. Using penton mutants, we found that the positive effect of FX on HAdV5 binding to HSPG and cell transduction did not depend on the penton base RGD and fiber shaft KKTK motifs. However, we found that FX had no enhancing effect on the HAdV5F35-mediated cell transduction, but a negative effect which did not involve the cell attachment or endocytic step, but the intracellular trafficking and nuclear import of the FX-HAdV5F35 complex. By cellular imaging, HAdV5F35 particles were observed to accumulate in the late endosomal compartment, and were released in significant amounts into the extracellular medium via exocytosis. We showed that the stability of serotype 5 hexon:FX interaction was higher at low pH compared to neutral pH, which could account for the retention of FX-HAdV5F35 complexes in the late endosomes. Our results suggested that, despite the high affinity interaction of hexon capsomeres to FX and cell surface HSPG, the adenoviral fiber acted as the dominant determinant of the internalization and trafficking pathway of HAdV5-based vectors.
Collapse
Affiliation(s)
- Stéphanie Corjon
- University Lyon 1, INRA UMR 754, Retrovirus
and Comparative Pathology, Lyon, France
| | - Gaëlle Gonzalez
- University Lyon 1, INRA UMR 754, Retrovirus
and Comparative Pathology, Lyon, France
| | - Petra Henning
- Department of Microbiology and Immunology,
University of Göteborg, Institute for Biomedicine, Göteborg,
Sweden
| | - Alexei Grichine
- Institut Albert Bonniot, CRI INSERM-UJF U-823,
La Tronche, France
| | | | - Pierre Boulanger
- University Lyon 1, INRA UMR 754, Retrovirus
and Comparative Pathology, Lyon, France
| | - Pascal Fender
- Unit for Virus-Host Interaction, UMI-3265,
CNRS-EMBL-UJF, Grenoble, France
| | - Saw-See Hong
- University Lyon 1, INRA UMR 754, Retrovirus
and Comparative Pathology, Lyon, France
| |
Collapse
|
6
|
Granio O, Ashbourne Excoffon KJD, Henning P, Melin P, Norez C, Gonzalez G, Karp PH, Magnusson MK, Habib N, Lindholm L, Becq F, Boulanger P, Zabner J, Hong SS. Adenovirus 5-fiber 35 chimeric vector mediates efficient apical correction of the cystic fibrosis transmembrane conductance regulator defect in cystic fibrosis primary airway epithelia. Hum Gene Ther 2010; 21:251-69. [PMID: 19788389 DOI: 10.1089/hum.2009.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In vivo gene transfer to the human respiratory tract by adenovirus serotype 5 (Ad5) vectors has revealed their limitations related to inefficient gene transfer, host antiviral response, and innate adenoviral toxicity. In the present work, we compared the cytotoxicity and efficiency of Ad5 and a chimeric Ad5F35 vector with respect to CFTR gene transfer to cystic fibrosis (CF) and non-CF human airway epithelial cells. We found that high doses of Ad5 vector had an adverse effect on the function of exogenous and endogenous CFTR. Results obtained with Ad5 capsid mutants suggested that the RGD motifs on the penton base capsomers were responsible for the negative effect on CFTR function. This negative interference did not result from a lower level of biosynthesis and/or altered cellular trafficking of the CFTR protein, but rather from an indirect mechanism of functional blockage of CFTR, related to the RGD integrin-mediated endocytic pathway of Ad5. No negative interference with CFTR was observed for Ad5F35, an Ad5-based vector pseudotyped with fibers from Ad35, a serotype that uses another cell entry pathway. In vitro, Ad5F35 vector expressing the GFP-tagged CFTR (Ad5F35-GFP-CFTR) showed a 30-fold higher efficiency of transduction and chloride channel correction in CFTR-deficient cells, compared with Ad5GFP-CFTR. Ex vivo, Ad5F35-GFP-CFTR had the capacity to transduce efficiently reconstituted airway epithelia from patients with CF (CF-HAE) via the apical surface, restored chloride channel function at relatively low vector doses, and showed relatively stable expression of GFP-CFTR for several weeks.
Collapse
Affiliation(s)
- Ophélia Granio
- Université Lyon I, Faculté de Médecine Claude Bernard and IFR Laennec, Laboratoire de Virologie et Pathologie Humaine, CNRS FRE 3011, 69372 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hofmayer S, Madisch I, Darr S, Rehren F, Heim A. Unique sequence features of the Human adenovirus 31 complete genomic sequence are conserved in clinical isolates. BMC Genomics 2009; 10:557. [PMID: 19939241 PMCID: PMC2794291 DOI: 10.1186/1471-2164-10-557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 11/25/2009] [Indexed: 11/25/2022] Open
Abstract
Background Human adenoviruses (HAdV) are causing a broad spectrum of diseases. One of the most severe forms of adenovirus infection is a disseminated disease resulting in significant morbidity and mortality. Several reports in recent years have identified HAdV-31 from species A (HAdV-A31) as a cause of disseminated disease in children following haematopoetic stem cell transplantation (hSCT) and liver transplantation. We sequenced and analyzed the complete genome of the HAdV-A31 prototype strain to uncover unique sequence motifs associated with its high virulence. Moreover, we sequenced coding regions known to be essential for tropism and virulence (early transcription units E1A, E3, E4, the fiber knob and the penton base) of HAdV-A31 clinical isolates from patients with disseminated disease. Results The genome size of HAdV-A31 is 33763 base pairs (bp) in length with a GC content of 46.36%. Nucleotide alignment to the closely related HAdV-A12 revealed an overall homology of 84.2%. The genome organization into early, intermediate and late regions is similar to HAdV-A12. Sequence analysis of the prototype strain showed unique sequence features such as an immunoglobulin-like domain in the species A specific gene product E3 CR1 beta and a potentially integrin binding RGD motif in the C-terminal region of the protein IX. These features were conserved in all analyzed clinical isolates. Overall, amino acid sequences of clinical isolates were highly conserved compared to the prototype (99.2 to 100%), but a synonymous/non synonymous ratio (S/N) of 2.36 in E3 CR1 beta suggested positive selection. Conclusion Unique sequence features of HAdV-A31 may enhance its ability to escape the host's immune surveillance and may facilitate a promiscuous tropism for various tissues. Moderate evolution of clinical isolates did not indicate the emergence of new HAdV-A31 subtypes in the recent years.
Collapse
Affiliation(s)
- Soeren Hofmayer
- Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Germany.
| | | | | | | | | |
Collapse
|
8
|
Improved adenovirus type 5 vector-mediated transduction of resistant cells by piggybacking on coxsackie B-adenovirus receptor-pseudotyped baculovirus. J Virol 2009; 83:6048-66. [PMID: 19357170 DOI: 10.1128/jvi.00012-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Taking advantage of the wide tropism of baculoviruses (BVs), we constructed a recombinant BV (BV(CAR)) pseudotyped with human coxsackie B-adenovirus receptor (CAR), the high-affinity attachment receptor for adenovirus type 5 (Ad5), and used the strategy of piggybacking Ad5-green fluorescent protein (Ad5GFP) vector on BV(CAR) to transduce various cells refractory to Ad5 infection. We found that transduction of all cells tested, including human primary cells and cancer cell lines, was significantly improved using the BV(CAR)-Ad5GFP biviral complex compared to that obtained with Ad5GFP or BV(CAR)GFP alone. We determined the optimal conditions for the formation of the complex and found that a high level of BV(CAR)-Ad5GFP-mediated transduction occurred at relatively low adenovirus vector doses, compared with transduction by Ad5GFP alone. The increase in transduction was dependent on the direct coupling of BV(CAR) to Ad5GFP via CAR-fiber knob interaction, and the cell attachment of the BV(CAR)-Ad5GFP complex was mediated by the baculoviral envelope glycoprotein gp64. Analysis of the virus-cell binding reaction indicated that the presence of BV(CAR) in the complex provided kinetic benefits to Ad5GFP compared to the effects with Ad5GFP alone. The endocytic pathway of BV(CAR)-Ad5GFP did not require Ad5 penton base RGD-integrin interaction. Biodistribution of BV(CAR)-Ad5Luc complex in vivo was studied by intravenous administration to nude BALB/c mice and compared to Ad5Luc injected alone. No significant difference in viscerotropism was found between the two inocula, and the liver remained the preferred localization. In vitro, coagulation factor X drastically increased the Ad5GFP-mediated transduction of CAR-negative cells but had no effect on the efficiency of transduction by the BV(CAR)-Ad5GFP complex. Various situations in vitro or ex vivo in which our BV(CAR)-Ad5 duo could be advantageously used as gene transfer biviral vector are discussed.
Collapse
|
9
|
Franqueville L, Henning P, Magnusson M, Vigne E, Schoehn G, Blair-Zajdel ME, Habib N, Lindholm L, Blair GE, Hong SS, Boulanger P. Protein crystals in Adenovirus type 5-infected cells: requirements for intranuclear crystallogenesis, structural and functional analysis. PLoS One 2008; 3:e2894. [PMID: 18682854 PMCID: PMC2488365 DOI: 10.1371/journal.pone.0002894] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 07/10/2008] [Indexed: 12/13/2022] Open
Abstract
Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489-492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors.
Collapse
Affiliation(s)
- Laure Franqueville
- Université Lyon I, Faculté de Médecine Laënnec, Laboratoire de Virologie et Pathologie Humaine, CNRS-FRE-3011, Lyon, France
| | - Petra Henning
- Institute for Biomedicine, Department of Microbiology and Immunology, University of Göteborg, Göteborg, Sweden
- Got-A-Gene AB, Östra Kyviksvägen 18, Kullavik, Sweden
| | - Maria Magnusson
- Institute for Biomedicine, Department of Microbiology and Immunology, University of Göteborg, Göteborg, Sweden
- Got-A-Gene AB, Östra Kyviksvägen 18, Kullavik, Sweden
| | - Emmanuelle Vigne
- Sanofi-Avantis, Centre de Recherches de Vitry, Vitry-sur-Seine, France
| | - Guy Schoehn
- Université de Grenoble Joseph Fourier (UJF), Unit for Virus-Host Cell Interactions, UMR-5233 UJF-EMBL-CNRS, and Institut de Biologie Structurale Jean-Pierre Ebel, UMR-5075 CEA-CNRS-UJF, Grenoble, France
| | | | - Nagy Habib
- Department of Surgical Oncology and Technology, Imperial College, Hammersmith Hospital Campus, London, United Kingdom
| | - Leif Lindholm
- Got-A-Gene AB, Östra Kyviksvägen 18, Kullavik, Sweden
| | - G. Eric Blair
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Saw See Hong
- Université Lyon I, Faculté de Médecine Laënnec, Laboratoire de Virologie et Pathologie Humaine, CNRS-FRE-3011, Lyon, France
| | - Pierre Boulanger
- Université Lyon I, Faculté de Médecine Laënnec, Laboratoire de Virologie et Pathologie Humaine, CNRS-FRE-3011, Lyon, France
- Laboratoire de Virologie Médicale, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
10
|
Waszak P, Franqueville L, Franco-Motoya ML, Rosa-Calatrava M, Boucherat O, Lindholm L, Delacourt C, Boulanger P. Toxicity of Fiber- and Penton Base–modified Adenovirus Type 5 Vectors on Lung Development in Newborn Rats. Mol Ther 2007; 15:2008-16. [PMID: 17653105 DOI: 10.1038/sj.mt.6300254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transient overexpression of genes involved in lung regulation might prevent alveolar developmental disorders (ADDs) in premature neonates. However, adenovirus 5 (Ad5) vectors per se, and not isolated capsid proteins, induce ADDs after tracheal administration to newborn rats. To test the hypothesis that Ad5 capsid components are mainly responsible for ADDs, we evaluated newborn rats' lung development by morphometry after tracheal administration of a panel of Ad5 vectors with mutations in the fiber or penton base. Three distinct patterns of lung response were observed on postnatal day (PD) 21: (i) emphysematous-like lesions, common to Ad5 overexposing RGD motifs; (ii) altered septation, representative of the wild-type capsid Ad5 lesion; (iii) absence of lung toxicity, shown by Ad5 vectors with fibers shortened to seven repeats. None of these patterns correlated with the degree of lung inflammation or gene transduction. In contrast, a more impaired elastogenesis associated with emphysema was preceded by a significantly increased level of activated caspase 3 on PD11. Moreover, the altered septation was associated with a persistent and significant increase in terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive alveolar septal cells on PD21. Our results underline the deleterious effects of Ad-induced apoptosis, which is not only responsible for limited transgene expression but also involved in lung development disorders.
Collapse
Affiliation(s)
- Paul Waszak
- Laboratoire de Virologie et Pathologie Humaine, CNRS FRE 3011, Université de Lyon, Faculté de Médecine RTH Laënnec, Lyon, France.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Magnusson MK, Henning P, Myhre S, Wikman M, Uil TG, Friedman M, Andersson KME, Hong SS, Hoeben RC, Habib NA, Ståhl S, Boulanger P, Lindholm L. Adenovirus 5 vector genetically re-targeted by an Affibody molecule with specificity for tumor antigen HER2/neu. Cancer Gene Ther 2007; 14:468-79. [PMID: 17273181 DOI: 10.1038/sj.cgt.7701027] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order to use adenovirus (Ad) type 5 (Ad5) for cancer gene therapy, Ad needs to be de-targeted from its native receptors and re-targeted to a tumor antigen. A limiting factor for this has been to find a ligand that (i) binds a relevant target, (ii) is able to fold correctly in the reducing environment of the cytoplasm and (iii) when incorporated at an optimal position on the virion results in a virus with a low physical particle to plaque-forming units ratio to diminish the viral load to be administered to a future patient. Here, we present a solution to these problems by producing a genetically re-targeted Ad with a tandem repeat of the HER2/neu reactive Affibody molecule (ZH) in the HI-loop of a Coxsackie B virus and Ad receptor (CAR) binding ablated fiber genetically modified to contain sequences for flexible linkers between the ZH and the knob sequences. ZH is an Affibody molecule specific for the extracellular domain of human epidermal growth factor receptor 2 (HER2/neu) that is overexpressed in inter alia breast and ovarian carcinomas. The virus presented here exhibits near wild-type growth characteristics, infects cells via HER2/neu instead of CAR and represents an important step toward the development of genetically re-targeted adenoviruses with clinical relevance.
Collapse
|
12
|
Henning P, Lundgren E, Carlsson M, Frykholm K, Johannisson J, Magnusson MK, Tång E, Franqueville L, Hong SS, Lindholm L, Boulanger P. Adenovirus type 5 fiber knob domain has a critical role in fiber protein synthesis and encapsidation. J Gen Virol 2006; 87:3151-3160. [PMID: 17030847 DOI: 10.1099/vir.0.81992-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Adenovirus serotype 5 (Ad5) vectors carrying knobless fibers designed to remove their natural tropism were found to have a lower fiber content than recombinant Ad5 with wild-type (WT) capsid, implying a role for the knob-coding sequence or/and the knob domain in fiber encapsidation. Experimental data using a variety of fiber gene constructs showed that the defect did not occur at the fiber mRNA level, but at the protein level. Knobless fiber proteins were found to be synthesized at a significant slower rate compared with knob-carrying fibers, and the trimerization process of knobless fibers paralleled their slow rate of synthesis. A recombinant Ad5 diploid for the fiber gene (referred to as Ad5/R7-ZZwt/E1 : WT-fiber) was constructed to analyse the possible rescue of the knobless low-fiber-content phenotype by co-expression of WT fiber. Ad5/R7-ZZwt/E1 : WT-fiber contained a knobless fiber gene in its natural location (L5) in the viral genome and an additional WT fiber gene in an ectopic position in E1. Knobless fiber was still synthesized at low levels compared with the co-expressed E1 : WT fiber and the recovery of the two fiber species in virus progeny reflected their respective amounts in the infected cells. Our results suggested that deletion of the fiber knob domain had a negative effect on the translation of the fiber mRNA and on the intracellular concentration of fiber protein. They also suggested that the knob control of fiber protein synthesis and encapsidation occurred as aciseffect, which was not modified by WT fiber protein providedin transby the same Ad5 genome.
Collapse
Affiliation(s)
- Petra Henning
- Institute for Biomedicine, Department of Microbiology and Immunology, University of Göteborg, PO Box 435, SE 40530 Göteborg, Sweden
- Got-A-Gene AB, Östra Kyviksvägen 18, SE 42930 Kullavik, Sweden
| | - Emma Lundgren
- Got-A-Gene AB, Östra Kyviksvägen 18, SE 42930 Kullavik, Sweden
| | | | | | | | - Maria K Magnusson
- Institute for Biomedicine, Department of Microbiology and Immunology, University of Göteborg, PO Box 435, SE 40530 Göteborg, Sweden
- Got-A-Gene AB, Östra Kyviksvägen 18, SE 42930 Kullavik, Sweden
| | - Erika Tång
- Got-A-Gene AB, Östra Kyviksvägen 18, SE 42930 Kullavik, Sweden
| | - Laure Franqueville
- Laboratoire de Virologie et Pathogénèse Virale, Université Claude Bernard de Lyon and CNRS UMR-5537, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Saw See Hong
- Laboratoire de Virologie et Pathogénèse Virale, Université Claude Bernard de Lyon and CNRS UMR-5537, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Leif Lindholm
- Got-A-Gene AB, Östra Kyviksvägen 18, SE 42930 Kullavik, Sweden
| | - Pierre Boulanger
- Laboratoire de Virologie Médicale, Domaine Rockefeller, Hospices Civils de Lyon, 8 Avenue Rockefeller, 69373 Lyon Cedex 08, France
- Laboratoire de Virologie et Pathogénèse Virale, Université Claude Bernard de Lyon and CNRS UMR-5537, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| |
Collapse
|
13
|
Myhre S, Henning P, Granio O, Tylö AS, Nygren PA, Olofsson S, Boulanger P, Lindholm L, Hong SS. Decreased immune reactivity towards a knobless, affibody-targeted adenovirus type 5 vector. Gene Ther 2006; 14:376-81. [PMID: 17036056 DOI: 10.1038/sj.gt.3302875] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study, a prototype Adenovirus type 5 (Ad5) vector deleted of the fiber knob domain and carrying an Affibody molecule as the targeting ligand showed decreased susceptibility to human pre-existing antibodies. This vector, Ad5/R7-Z(taq)Z(taq), has short fibers carrying seven shaft repeats, a non-native trimerization signal and an affibody molecule (Z(taq)) reactive to Taq polymerase. Ad5/R7-Z(taq)Z(taq) could be specifically targeted to 293 cells stably expressing membrane-bound anti-Z(taq) idiotypic affibody called Z(ztaq) (293Z(ztaq)). Sera from 50 blood donors were analyzed for neutralization activity (NA) against the parental Ad5/Fiwt vector and knobless Ad5/R7-Z(taq)Z(taq) on 293Z(ztaq) cells. Twenty-three sera had NA titers (> or =1:64) against Ad5/Fiwt (46%) and only two against Ad5/R7-Z(taq)Z(taq) (4%). Characterization of sera with NA titers showed that the knob domain is one of the targets of the antibodies. Neutralization assays using sera pre-adsorbed on knob and hexon proteins showed that the NA of the sera was carried mainly by anti-knob and anti-hexon antibodies, but in certain sera the anti-hexon antibodies represent the major population of the neutralizing antibodies (NAbs). Our results suggested that a combination of knob deletion and hexon switching could be an effective strategy for Ad vectors to better evade the anti-Ad NAbs.
Collapse
Affiliation(s)
- S Myhre
- Got-A-Gene AB, Ostra Kyviksvägen 18, Kullavik, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rentsendorj A, Xie J, MacVeigh M, Agadjanian H, Bass S, Kim DH, Rossi J, Hamm-Alvarez SF, Medina-Kauwe LK. Typical and atypical trafficking pathways of Ad5 penton base recombinant protein: implications for gene transfer. Gene Ther 2006; 13:821-36. [PMID: 16482205 DOI: 10.1038/sj.gt.3302729] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adenovirus (Ad) penton base protein facilitates viral infection by binding cell surface integrins, triggering receptor-mediated endocytosis and mediating endosomal penetration. Given these multiple functions, recombinant penton base proteins have been utilized as non-viral vehicles for gene transfer by our lab and others. Although we have previously demonstrated that penton base-derived vectors undergo integrin-specific binding and cell entry, less than desirable levels of gene expression have led us to re-evaluate the recombinant penton base as an agent for gene delivery. To do so, we have examined here the intracellular trafficking of an Ad serotype 5 (Ad5) recombinant penton base protein (PB). Here, we not only observed that PB utilizes a similar, typical trafficking pathway of whole Ad, but also found that PB entered HeLa cells through pathways not yet identified as contributing to cell entry by the whole virus. We show by high-resolution confocal microscopy and biochemical methods that binding to alphav-integrins is a requirement for cell entry, but that early internalization stages did not substantially pass through clathrin-positive and early endosomal compartments. Moreover, a subpopulation of internalized protein localized with caveolin-positive compartments and Golgi markers, suggesting that a certain percentage of proteins pass through non-clathrin-mediated pathways. Similar to the virus, trafficking toward the nucleus was affected by disruption of microtubules and dynein. The majority of penton base molecules avoided the lysosome while facilitating early vesicle release of low molecular weight dextran molecules. In further support of a vesicle escape capacity, a subpopulation of internalized penton base appeared to enter the nucleus, as observed by high-resolution confocal microscopy and cell fractionation. As a confirmation of these findings, we demonstrate that a recombinant penton base facilitated cytosolic entry of an siRNA molecule as observed by RNA interference of a marker gene. Based on our findings here, we suggest that whereas soluble penton base proteins may enter cells through clathrin- and non-clathrin-mediated pathways, vesicle escape and nuclear delivery appear to be supported by a clathrin-mediated pathway. As our previous efforts have focused on utilizing recombinant penton base proteins as delivery agents for therapeutics, these findings allow us to evaluate the use of the penton base as a cell entry and intracellular trafficking agent, and may be of interest concerning the development of vectors for efficient delivery of therapeutics to cells.
Collapse
Affiliation(s)
- A Rentsendorj
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Toh ML, Hong SS, van de Loo F, Franqueville L, Lindholm L, van den Berg W, Boulanger P, Miossec P. Enhancement of adenovirus-mediated gene delivery to rheumatoid arthritis synoviocytes and synovium by fiber modifications: role of arginine-glycine-aspartic acid (RGD)- and non-RGD-binding integrins. THE JOURNAL OF IMMUNOLOGY 2006; 175:7687-98. [PMID: 16301679 DOI: 10.4049/jimmunol.175.11.7687] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) do not express the coxsackie-adenovirus (Ad) receptor and are poorly permissive to Ad serotype 5 (Ad5). Genetically modified, coxsackie-Ad receptor-independent Ad5 vectors were studied for gene delivery in human RA FLS and synovium explants and murine collagen-induced arthritis. Short-fiber Ad5 vectors with seven fiber shaft repeats Ad5GFP-R7-knob, Ad5GFP-R7-arginine-glycine-aspartic acid (RGD) (RGD-liganded), and Ad5GFPDeltaknob (knob-deleted) were compared with Ad5GFP-FiWT, a conventional wild-type (WT) Ad5 vector. Gene transfer by Ad5GFP-R7-knob and Ad5GFP-R7-RGD was 40- to 50-fold and 25-fold higher, respectively, than Ad5GFP-FiWT in FLS. Ad5GFPDeltaknob was more efficacious than its knob-bearing version Ad5GFP-R7-knob in FLS transduction. Virus attachment and entry required RGD- and LDV-binding integrins including alpha(v), alpha(v)beta3, a(v)beta5, and beta1. Ad5GFP-R7-knob infection of FLS was partially neutralized by synovial fluid (SF), but remained 30- to 40-fold higher than Ad5GFP-FiWT in the presence of SF. Ad5GFPDeltaknob was partially neutralized by SF at low virus input, but escaped viral neutralization by SF at higher virus input. Gene transfer to human synovium ex vivo explants and murine collagen-induced arthritis in vivo was also more efficient with short fiber-modified vectors (with and without the knob domain) than Ad5GFPFiWT. Gene transfer by short fiber-modified vectors was enhanced by inflammatory cytokines in vitro and in the presence of inflammation in murine synovium in vivo. Our data indicated that the highly efficient gene delivery RA was mediated by RGD- and non-RGD-binding integrins and enhanced by inflammation. Short fiber modifications with knob ablation may be a strategy to enhance gene delivery, reducing vector dose and vector-induced inflammation and toxicity.
Collapse
Affiliation(s)
- Myew-Ling Toh
- Department of Immunology and Rheumatology, Mixed Unit Civil Hospital of Lyon-BioMérieux, Edouard Herriot Hospital, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hong SS, Szolajska E, Schoehn G, Franqueville L, Myhre S, Lindholm L, Ruigrok RWH, Boulanger P, Chroboczek J. The 100K-chaperone protein from adenovirus serotype 2 (Subgroup C) assists in trimerization and nuclear localization of hexons from subgroups C and B adenoviruses. J Mol Biol 2005; 352:125-38. [PMID: 16081097 DOI: 10.1016/j.jmb.2005.06.070] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2005] [Revised: 06/24/2005] [Accepted: 06/29/2005] [Indexed: 10/25/2022]
Abstract
Recombinant hexons from subgroup C adenoviruses (Ad2 and Ad5) and from a member of subgroup B (Ad3) adenoviruses have been expressed in insect cells. When expressed alone, all three hexons were found to be insoluble and accumulated as inclusion bodies in the cytoplasm. However, co-expression of recombinant Ad2, Ad5 or Ad3 hexon with Ad2 L4-100K protein resulted in the formation of soluble trimeric hexons. EM analysis of hexons revealed that they were indistinguishable from native hexon capsomers isolated from Ad2-infected human cells, or released from partially disrupted adenovirions. This suggests that 100K acts as a chaperone for hexon folding and self-assembly into capsomer in insect cells. Since 100K protein assists in the trimerization of subgroup C hexon, and of subgroup B hexon protein, it implies that it functions in a manner that is both homo- and heterotypic. During the course of recombinant protein expression, the 100K protein was found in association with hexon monomers and trimers within the cytoplasm. In the nucleus, however, 100K was found in complexes with hexon trimers exclusively. EM observation of purified 100K protein samples showed a dumb-bell-shaped molecule compatible with a monomeric protein. EM analysis of hexon-100K protein complexes showed that interaction of hexon with the 100K protein occurred via one of the globular domains of the 100K protein molecule. Our data confirm the role of the 100K protein as a scaffold protein for hexon, and provide evidence suggesting its function in hexon nuclear import in insect cells.
Collapse
Affiliation(s)
- Saw See Hong
- Laboratoire de Virologie et Pathogénèse Virale, CNRS UMR 5537, Faculté de Médecine RTH Laennec, Institut Fédératif de Recherche IFR-62, 69372 Lyon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Henning P, Andersson KME, Frykholm K, Ali A, Magnusson MK, Nygren PA, Granio O, Hong SS, Boulanger P, Lindholm L. Tumor cell targeted gene delivery by adenovirus 5 vectors carrying knobless fibers with antibody-binding domains. Gene Ther 2005; 12:211-24. [PMID: 15510176 DOI: 10.1038/sj.gt.3302408] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most human carcinoma cell lines lack the high-affinity receptors for adenovirus serotype 5 (Ad5) at their surface and are nonpermissive to Ad5. We therefore tested the efficiency of retargeting Ad5 to alternative cellular receptors via immunoglobulin (Ig)-binding domains inserted at the extremity of short-shafted, knobless fibers. The two recombinant Ad5's constructed, Ad5/R7-Z(wt)-Z(wt) and Ad5/R7-C2-C2, carried tandem Ig-binding domains from Staphylococcal protein A (abbreviated Z(wt)) and from Streptococcal protein G (C2), respectively. Both viruses bound their specific Ig isotypes with the expected affinity. They transduced human carcinoma cells independently of the CAR pathway, via cell surface receptors targeted by specific monoclonal antibodies, that is, EGF-R on A549, HT29 and SW1116, HER-2/neu on SK-OV-3 and SK-BR-3, CA242 (epitope recognized by the monoclonal antibody C242) antigen on HT29 and SW1116, and PSMA (prostate-specific membrane antigen) expressed on HEK-293 cells, respectively. However, Colo201 and Colo205 cells were neither transduced by targeting CA242 or EGF-R nor were LNCaP cells transduced by targeting PSMA. Our results suggested that one given surface receptor could mediate transduction of certain cells but not others, indicating that factors and steps other than cell surface expression and virus-receptor interaction are additional determinants of Ad5-mediated transduction of tumor cells. Using penton base RGD mutants, we found that one of these limiting steps was virus endocytosis.
Collapse
|
18
|
Zubieta C, Schoehn G, Chroboczek J, Cusack S. The structure of the human adenovirus 2 penton. Mol Cell 2005; 17:121-35. [PMID: 15629723 DOI: 10.1016/j.molcel.2004.11.041] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 11/10/2004] [Accepted: 11/24/2004] [Indexed: 01/14/2023]
Abstract
The adenovirus penton, a noncovalent complex of the pentameric penton base and trimeric fiber proteins, comprises the vertices of the adenovirus capsid and contains all necessary components for viral attachment and internalization. The 3.3 A resolution crystal structure of human adenovirus 2 (hAd2) penton base shows that the monomer has a basal jellyroll domain and a distal irregular domain formed by two long insertions, a similar topology to the adenovirus hexon. The Arg-Gly-Asp (RGD) motif, required for interactions with cellular integrins, occurs on a flexible surface loop. The complex of penton base with bound N-terminal fiber peptide, determined at 3.5 A resolution, shows that the universal fiber motif FNPVYPY binds at the interface of adjacent penton base monomers and results in a localized structural rearrangement in the insertion domain of the penton base. These results give insight into the structure and assembly of the adenovirus capsid and will be of use for gene-therapy applications.
Collapse
MESH Headings
- Adenoviruses, Human/chemistry
- Adenoviruses, Human/classification
- Adenoviruses, Human/genetics
- Adenoviruses, Human/ultrastructure
- Amino Acid Sequence
- Base Sequence
- Capsid Proteins/chemistry
- Capsid Proteins/genetics
- Capsid Proteins/ultrastructure
- Crystallography, X-Ray
- DNA, Viral/genetics
- Detergents
- Humans
- Microscopy, Electron
- Models, Molecular
- Molecular Sequence Data
- Protein Conformation
- Protein Structure, Quaternary
- Sequence Homology, Amino Acid
- Static Electricity
Collapse
Affiliation(s)
- Chloe Zubieta
- European Molecular Biology Laboratory, Grenoble Outstation, BP 181, 38042 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
19
|
Gaden F, Franqueville L, Magnusson MK, Hong SS, Merten MD, Lindholm L, Boulanger P. Gene transduction and cell entry pathway of fiber-modified adenovirus type 5 vectors carrying novel endocytic peptide ligands selected on human tracheal glandular cells. J Virol 2004; 78:7227-47. [PMID: 15194799 PMCID: PMC421659 DOI: 10.1128/jvi.78.13.7227-7247.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monolayers of cystic fibrosis transmembrane conductance regulator (CFTR)-deficient human tracheal glandular cells (CF-KM4) were subjected to phage biopanning, and cell-internalized phages were isolated and sequenced, in order to identify CF-KM4-specific peptide ligands that would confer upon adenovirus type 5 (Ad5) vector a novel cell target specificity and/or higher efficiency of gene delivery into airway cells of patients with cystic fibrosis (CF). Three different ligands, corresponding to prototypes of the most represented families of phagotopes recovered from intracellular phages, were designed and individually inserted into Ad5-green fluorescent protein (GFP) (AdGFP) vectors at the extremities of short fiber shafts (seven repeats [R7]) terminated by scissile knobs. Only one vector, carrying the decapeptide GHPRQMSHVY (abbreviated as QM10), showed an enhanced gene transduction of CF-KM4 cells compared to control nonliganded vector with fibers of the same length (AdGFP-R7-knob). The enhancement in gene transfer efficiency was not specific to CF-KM4 cells but was observed in other mammalian cell lines tested. The QM10-liganded vector was referred to as AdGFP-QM10-knob in its knobbed version and as AdGFP-QM10 in its proteolytically deknobbed version. AdGFP-QM10 was found to transduce cells with a higher efficiency than its knob-bearing version, AdGFP-QM10-knob. Consistent with this, competition experiments indicated that the presence of knob domains was not an absolute requirement for cell attachment of the QM10-liganded vector and that the knobless AdGFP-QM10 used alternative cell-binding domains on its capsid, including penton base capsomer, via a site(s) different from its RGD motifs. The QM10-mediated effect on gene transduction seemed to take place at the step of endocytosis in both quantitative and qualitative manners. Virions of AdGFP-QM10 were endocytosed in higher numbers than virions of the control vector and were directed to a compartment different from the early endosomes targeted by members of species C Ad. AdGFP-QM10 was found to accumulate in late endosomal and low-pH compartments, suggesting that QM10 acted as an endocytic ligand of the lysosomal pathway. These results validated the concept of detargeting and retargeting Ad vectors via our deknobbing system and redirecting Ad vectors to an alternative endocytic pathway via a peptide ligand inserted in the fiber shaft domain.
Collapse
Affiliation(s)
- Florence Gaden
- Laboratoire de Virologie et Pathogénèse Virale, Faculté de Médecine de Lyon, and Insititut Fédératif de Recherche RTH Laennec, 6372 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Piersanti S, Cherubini G, Martina Y, Salone B, Avitabile D, Grosso F, Cundari E, Di Zenzo G, Saggio I. Mammalian cell transduction and internalization properties of lambda phages displaying the full-length adenoviral penton base or its central domain. J Mol Med (Berl) 2004; 82:467-76. [PMID: 15150649 DOI: 10.1007/s00109-004-0543-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Accepted: 03/08/2004] [Indexed: 02/01/2023]
Abstract
In recent years a strong effort has been devoted to the search for new, safe and efficient gene therapy vectors. Phage lambda is a promising backbone for the development of new vectors: its genome can host large inserts, DNA is protected from degradation by the capsid and the ligand-exposed D and V proteins can be extensively modified. Current phage-based vectors are inefficient and/or receptor-independent transducers. To produce new, receptor-selective and transduction-efficient vectors for mammalian cells we engineered lambda by inserting into its genome a GFP expression cassette, and by displaying the penton base (Pb) of adenovirus or its central region (amino acids 286-393). The Pb mediates attachment, entry and endosomal escape of adenovirus in mammalian cells, and its central region (amino acids 286-393) includes the principal receptor-binding motif ((340)RGD(342)). Both the phage chimerae lambda Pb and lambda Pb (286-393) were able to transduce cell lines and primary cultures of human fibroblasts. Competition experiments showed that the transduction pathway was receptor-dependent. We also describe the different trafficking properties of lambda Pb and lambda Pb (286-393). Bafilomycin, which blocks endosome maturation, influenced the intracellular distribution of lambda Pb (286-393), but not that of lambda Pb. The proteasome inhibitor MG-132 improved the efficiency of lambda Pb (286-393)-mediated transduction, but not that of lambda Pb. In summary, this work shows the feasibility of using lambda phage as an efficient vector for gene transfer into mammalian cells. We show that lambda Pb and lambda Pb (286-393) can both mediate receptor-dependent transduction; while only lambda Pb is able to promote endosomal escape and proteasome resistance of phage particles.
Collapse
Affiliation(s)
- Stefania Piersanti
- Department of Genetics and Molecular Biology, University La Sapienza and Parco Scientifico Biomedico di Roma, S. Raffaele, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Salone B, Martina Y, Piersanti S, Cundari E, Cherubini G, Franqueville L, Failla CM, Boulanger P, Saggio I. Integrin alpha3beta1 is an alternative cellular receptor for adenovirus serotype 5. J Virol 2004; 77:13448-54. [PMID: 14645603 PMCID: PMC296057 DOI: 10.1128/jvi.77.24.13448-13454.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many adenovirus serotypes enter cells by high-affinity binding to the coxsackievirus-adenovirus receptor (CAR) and integrin-mediated internalization. In the present study, we analyzed the possible receptor function of alpha3beta1 for adenovirus serotype 5 (Ad5). We found that penton base and integrin alpha3beta1 could interact in vitro. In vivo, both Ad5-cell binding and virus-mediated transduction were inhibited in the presence of anti-alpha3 and anti-beta1 function-blocking antibodies, and this occurred in both CAR-positive and CAR-negative cell lines. Peptide library screenings and data from binding experiments with wild-type and mutant penton base proteins suggest that the Arg-Gly-Asp (RGD) in the penton base protein, the best known integrin binding motif, is only part of the binding interface with alpha3beta1, which involved multiple additional contact sites.
Collapse
Affiliation(s)
- Barbara Salone
- Department of Genetics and Molecular Biology, University of Rome "La Sapienza," Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Key proteins of the icosahedral-shaped adenovirus (Ad) capsid mediate infection, and interact with cellular proteins to coordinate stepwise events of cell entry that produce successful gene transfer. Infection is mediated predominantly by the penton and fiber capsid proteins. The fiber initiates cell binding while the penton binds integrin coreceptors, triggering integrin-mediated endocytosis. Penton integrin signaling precedes viral escape from the endosomal vesicle. After cell binding, the virus undergoes stepwise disassembly of the capsid, shedding proteins during cell entry. Intracellular trafficking of the remaining capsid shell is mediated by the interaction of naked particles with the cytoskeleton. The capsid translocates toward the nucleus, with the majority of capsid proteins accumulating at the nuclear periphery, while viral DNA and associated protein VII are extruded through the nuclear pore. This discussion will encompass the current knowledge on Ad cell entry and trafficking, with an emphasis on the contribution of Ad capsid proteins to these processes. A greater understanding of the highly effective Ad cell entry pathway may lend itself to the development of safer drug and gene delivery alternatives utilizing similar pathways.
Collapse
Affiliation(s)
- Lali K Medina-Kauwe
- Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Institute for Genetic Medicine, 2250 Alcazar Street, CSC240, Los Angeles, CA 90033, USA.
| |
Collapse
|
23
|
Hong SS, Habib NA, Franqueville L, Jensen S, Boulanger PA. Identification of adenovirus (ad) penton base neutralizing epitopes by use of sera from patients who had received conditionally replicative ad (addl1520) for treatment of liver tumors. J Virol 2003; 77:10366-75. [PMID: 12970421 PMCID: PMC228409 DOI: 10.1128/jvi.77.19.10366-10375.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sera from 17 patients with primary and secondary liver tumors who had been administered oncolytic adenovirus (Ad) mutant Addl1520 were analyzed for anti-Ad neutralization titers and antibodies to the Ad major capsid proteins hexon, penton base (Pb), and fiber. The antibodies recognized mainly conformational epitopes in hexon and both linear and conformational epitopes in Pb and fiber. Pb-specific antibodies were isolated from serum samples that had been obtained prior to and during the course of the treatment of four of these patients. We found that the Pb antibodies had a significant contribution toward anti-Ad neutralization, and this mainly occurred at the step of virus internalization. The Pb antigenic epitopes were determined by phage biopanning and were mapped to 10 discrete regions, which made up three major immunodominant domains within residues 51 to 120, 193 to 230, and 311 to 408, respectively. One of these domains (residues 311 to 408) overlapped the highly conserved, integrin-binding RGD (Arg-Gly-Asp) motif. The contribution of antibodies directed to RGD and other epitopes in Ad neutralization activity was determined indirectly by using a phage-mediated depletion assay. Our results suggested that circulating RGD antibodies were not prevalent and were poorly neutralizing and that other peptide motifs within residues 51 to 60, 216 to 226, and 311 to 408 in Pb sequence represented major target sites for neutralizing antibodies.
Collapse
Affiliation(s)
- Saw See Hong
- Laboratoire de Virologie et Pathogénèse Virale, CNRS UMR 5537, Faculté de Médecine and Institut Fédératif de Recherche RTH Laennec, 69372 Lyon, France.
| | | | | | | | | |
Collapse
|
24
|
Trotman LC, Achermann DP, Keller S, Straub M, Greber UF. Non-classical export of an adenovirus structural protein. Traffic 2003; 4:390-402. [PMID: 12753648 DOI: 10.1034/j.1600-0854.2003.00094.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The icosahedral capsids of Adenoviruses (Ads) consist of the hexon and stabilizing proteins building the facettes, and of the vertex protein penton base (Pb) anchoring the protruding fibers. The fibers bind to the Coxsackie virus B Ad cell surface receptor (CAR) and Pb to integrins. Here we describe a novel property of the Ad2 Pb. Pb was found to leave the infected cell and, upon exit, it attached to the surrounding noninfected cells forming a radial gradient with highest Pb levels on cells adjacent to the infected cell. The producer cells remained intact until at least 30 h post infection. At this point, Pb was not recovered from the extracellular medium, suggesting that its cell-cell spread might not involve free Pb. When viral particles were released at late stages of infection, soluble Pb was found in the extracellular medium and it randomly bound to noninfected cells. Nonlytic export of Pb occurred upon transient transfection with plasmid DNA, but plasmid-encoded fiber was not exported, indicating that cell-cell spread of Pb is autonomous of infection. Pb export was not affected by Brefeldin A-induced disruption of the Golgi apparatus, suggesting that it occurred via a nonclassical mechanism. Interestingly, the coexpression of Pb and fiber leads to both Pb and fiber export, termed 'protein abduction'. We suggest that fiber abduction might support viral dissemination in infected tissues by interfering with tissue integrity.
Collapse
Affiliation(s)
- Lloyd C Trotman
- Zoologisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Hong SS, Magnusson MK, Henning P, Lindholm L, Boulanger PA. Adenovirus stripping: a versatile method to generate adenovirus vectors with new cell target specificity. Mol Ther 2003; 7:692-9. [PMID: 12718912 DOI: 10.1016/s1525-0016(03)00067-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We developed a new type of adenovirus type 5 (Ad5)-derived vector with genetically modified fiber proteins whose knob domains could be stripped off due to the insertion of a single Factor Xa cleavage site in the fiber shaft, between a cellular ligand and the knob domain. This Ad vector did not require a specific cell line for propagation and could be grown in HEK-293 cells. Stripping off the knob domains removed the endogenous cell-binding moiety of Ad but retained the new cell ligand for retargeting purposes. As experimental models for cell ligands, we used two peptides with different sequence complexities: (i) the integrin-binding tripeptide RGD and (ii) a 58-residue oligopeptide termed affibody (Zwt). Zwt binds specifically to the human IgG1 Fc domain or to its Fc3(1) homolog. The modified fibers were efficiently encapsidated into virions, and the Factor Xa sites were fully accessible to proteolysis. In vitro binding assays using recombinant Fc3(1) protein and Ad5-mediated gene transduction of Fc3(1)-expressing cells demonstrated that the proteolytically deknobbed Ad5-Zwt vector was functional and specific for receptor targeting.
Collapse
Affiliation(s)
- Saw See Hong
- Laboratoire de Virologie et Pathogénèse Virale, CNRS UMR-5537, Faculté de Médecine RTH Laennec and Institut Fédératif de Recherche IFR-62, 7, Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | | | | | | | | |
Collapse
|
26
|
Gaden F, Franqueville L, Hong SS, Legrand V, Figarella C, Boulanger P. Mechanism of restriction of normal and cystic fibrosis transmembrane conductance regulator-deficient human tracheal gland cells to adenovirus infection and ad-mediated gene transfer. Am J Respir Cell Mol Biol 2002; 27:628-40. [PMID: 12397023 DOI: 10.1165/rcmb.4841] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CF-KM4 (cystic fibrosis transmebrane conductance regulator-deficient) and MM-39 (healthy) cells, two serous cell lines from submucosal tracheal glands, were found to be poorly susceptible to adenovirus (Ad)5 infection and Ad5-mediated gene transduction. The major limiting steps apparently resided in the primary events of Ad5 interaction, i.e., cell attachment and entry. Both CF-KM4 and MM-39 cells failed to express the Coxsackie-Ad receptor (CAR), and experimental data suggested that alpha[2-->6]-linked sialic acid residues of sialoglycoproteins (SAGP) in CF-KM4 cells, and heparan sulfate glycosaminoglycans (HS-GAG) in MM-39, were used as receptors by Ad5 virions. Ad5 attached to SAGP and HS-GAG receptors via its fiber knob domain, but entered the cells via a penton base- and Arg-Gly-Asp (RGD)-integrin-independent pathway. The block to Ad5-mediated gene transfer in MM-39 and KM4 cells could be overcome by conferring to the vector a novel cell-binding specificity. Thus, Ad5 vectors carrying a stretch of 7-lysine residues genetically inserted at the C-terminus of the fiber knob were found to transduce MM-39 cells with a 10- to 20-fold higher efficiency than the original vectors, but the transduction of CF-KM4 was not significantly improved. Retargeting Ad5 to integrin receptors via RGD peptide ligands, inserted at the extremity of the fiber shaft, resulted in a transducing efficiency of 20- and 50-fold higher in MM-39 and KM4 cells, respectively, compared with Ad5 vectors carrying fibers terminated by their natural knob domain.
Collapse
Affiliation(s)
- Florence Gaden
- Laboratoire de Virologie et Pathogénèse Virale, Faculté de Médecine RTH Laennec, Lyon, France
| | | | | | | | | | | |
Collapse
|
27
|
Molinier-Frenkel V, Lengagne R, Gaden F, Hong SS, Choppin J, Gahery-Ségard H, Boulanger P, Guillet JG. Adenovirus hexon protein is a potent adjuvant for activation of a cellular immune response. J Virol 2002; 76:127-35. [PMID: 11739678 PMCID: PMC135719 DOI: 10.1128/jvi.76.1.127-135.2002] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The capacity of recombinant adenoviruses (rAd) to induce immunization against their transgene products has been well documented. In the present study, we evaluated the vaccinal adjuvant role of rAd independently of its vector function. BALB/c mice received one subcutaneous injection of a mixture of six lipopeptides (LP6) used as a model immunogen, along with AdE1 degrees (10(9) particles), a first-generation rAd empty vector. Although coinjected with a suboptimal dose of lipopeptides, AdE1 degrees significantly improved the effectiveness of the vaccination, even in the absence of booster immunization. In contrast to mice that received LP6 alone or LP6 plus a mock adjuvant, mice injected with AdE1 degrees plus LP6 developed both a polyspecific T-helper type 1 response and an effector CD8 T-cell response specific to at least two class I-restricted epitopes. The helper response was still observed when immunization was performed using LP6 plus a mixture of soluble capsid components released from detergent-disrupted virions. When mice were immunized with LP6 and each individual capsid component, i.e., hexon, penton base, or fiber, the results obtained suggested that hexon protein was responsible for the adjuvant effect exerted by disrupted Ad particles on the helper response to the immunogen. Our results thus have some important implications not only in vaccinology but also for gene therapy using rAd vectors.
Collapse
Affiliation(s)
- Valérie Molinier-Frenkel
- Laboratoire d'Immunologie des Pathologies Infectieuses et Tumorales, INSERM U445, Institut Cochin de Génétique Moléculaire, Hôpital Cochin, 75014 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Medina-Kauwe LK, Maguire M, Kasahara N, Kedes L. Nonviral gene delivery to human breast cancer cells by targeted Ad5 penton proteins. Gene Ther 2001; 8:1753-61. [PMID: 11803394 DOI: 10.1038/sj.gt.3301583] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2001] [Accepted: 08/31/2001] [Indexed: 11/09/2022]
Abstract
The capsid proteins of adenovirus serotype 5 (Ad5) are key to the virus' highly efficient cell binding and entry mechanism. In particular, the penton base plays a significant role in both viral internalization and endosome penetration. We have produced an adenovirus penton fusion protein (HerPBK10) containing moieties for DNA transport and targeted delivery to breast cancer cells. HerPBK10 binds DNA through a polylysine appendage, while the EGF-like domain of the heregulin-alpha(1) isoform is used as the targeting ligand. This ligand binds with high affinity to HER2/3 or HER2/4 heterodimers, which are overexpressed on certain aggressive breast cancers. In addition, this ligand is rapidly internalized after binding, thus adding to the utility of heregulin for targeting. HerPBK10 binds MDA-MB-453 breast cancer cells in a receptor-specific manner, and mediates the entry of a reporter plasmid in MDA-MB-453 cells in culture. Delivery can be competed by excess heregulin peptide, thus confirming receptor specificity. Importantly, the penton segment appears to contribute significantly to enhanced delivery. Complexes containing HerPBK10 and DNA have been optimized to provide targeted gene delivery to breast cancer cells in vitro. We demonstrate that delivery can be accomplished in the presence of serum, thus suggesting a potential use for in vivo delivery.
Collapse
Affiliation(s)
- L K Medina-Kauwe
- Institute for Genetic Medicine and Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
29
|
Magnusson MK, Hong SS, Boulanger P, Lindholm L. Genetic retargeting of adenovirus: novel strategy employing "deknobbing" of the fiber. J Virol 2001; 75:7280-9. [PMID: 11462000 PMCID: PMC114963 DOI: 10.1128/jvi.75.16.7280-7289.2001] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For efficient and versatile use of adenovirus (Ad) as an in vivo gene therapy vector, modulation of the viral tropism is highly desirable. In this study, a novel method to genetically alter the Ad fiber tropism is described. The knob and the last 15 shaft repeats of the fiber gene were deleted and replaced with an external trimerization motif and a new cell-binding ligand, in this case the integrin-binding motif RGD. The corresponding recombinant fiber retained the basic biological functions of the natural fiber, i.e., trimerization, nuclear import, penton formation, and ligand binding. The recombinant fiber bound to integrins but failed to react with antiknob antibody. For virus production, the recombinant fiber gene was rescued into the Ad genome at the exact position of the wild-type (WT) fiber to make use of the native regulation of fiber expression. The recombinant virus Ad5/FibR7-RGD yielded plaques on 293 cells, but the spread through the monolayer was two to three times delayed compared to WT, and the ratio of infectious to physical particles was 20 times lower. Studies on virus tropism showed that Ad5/FibR7-RGD was able to infect cells which did not express the coxsackie-adenovirus receptor (CAR), but did express integrins. Ad5/FibR7-RGD virus infectivity was unchanged in the presence of antiknob antibody, which neutralized the WT virus. Ad5/FibR7-RGD virus showed an expanded tropism, which is useful when gene transfer to cells not expressing CAR is needed. The described method should also make possible the construction of Ad genetically retargeted via ligands other than RGD.
Collapse
Affiliation(s)
- M K Magnusson
- Department of Medical Microbiology and Immunology, University of Göteborg, Göteborg, Sweden
| | | | | | | |
Collapse
|
30
|
Medina-Kauwe LK, Kasahara N, Kedes L. 3PO, a novel nonviral gene delivery system using engineered Ad5 penton proteins. Gene Ther 2001; 8:795-803. [PMID: 11420644 DOI: 10.1038/sj.gt.3301448] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2000] [Accepted: 01/31/2001] [Indexed: 11/09/2022]
Abstract
This study describes the development of 3PO, a nonviral, protein-based gene delivery vector which utilizes the highly evolved cell-binding, cell-entry and intracellular transport functions of the adenovirus serotype 5 (Ad5) capsid penton protein. A penton fusion protein containing a polylysine sequence was produced by recombinant methods and tested for gene delivery capability. As the protein itself is known to bind integrins through a conserved consensus motif, the penton inherently possesses the ability to bind and enter cells through receptor-mediated internalization. The ability to lyse the cellular endosome encapsulating internalized receptors is also attributed to the penton. The recombinant protein gains the additional function of DNA binding and transport with the appendage of a polylysine motif. This protein retains the ability to form pentamers and mediates delivery of a reporter gene to cultured cells. Interference by oligopeptides bearing the integrin binding motif suggests that delivery is mediated specifically through integrin receptor binding and internalization. The addition of protamine to penton-DNA complexes allows gene delivery in the presence of serum.
Collapse
Affiliation(s)
- L K Medina-Kauwe
- Institute for Genetic Medicine and Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
31
|
Hong SS, Bardy M, Monteil M, Gay B, Denesvre C, Tournier J, Martin G, Eloit M, Boulanger P. Immunoreactive domains and integrin-binding motifs in adenovirus penton base capsomer. Viral Immunol 2001; 13:353-71. [PMID: 11016599 DOI: 10.1089/08828240050144671] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A panel of nine independent mouse monoclonal antibodies (MAbs) against penton base capsomers of subgenus C adenovirus serotypes 2 (Ad2) and 5 (Ad5) were isolated and characterized. Two of them (1D2 and 5A5), raised against Ad5 virion as the immunogen, bound to sodium dodecyl sulfate (SDS)-resistant and subgenus C-specific epitopes that were not present in subgenus B Ad3 penton base. The 1D2 and 5A5 epitopes were mapped to two distinct regions that did not belong to the main variable region carrying the integrin-binding RGD motif at position 340. For the other seven MAbs, raised against recombinant Ad2 penton base protein (9S-pentamers), the epitopes were sensitive to SDS-denaturation, but reacted with native Ad2, Ad5, and Ad3 penton base. The epitopes recognized by the nine MAbs and by polyclonal antipenton base antibodies defined three major immunoreactive regions. One (I) mapped to the N-terminal domain (residues 116-165); the other two regions were almost symmetrically disposed on both sides of the integrin-binding RGD motif at position 340, within residues 248-270 (II), and within residues 368-427 (III) in the C-terminal domain. Region II overlapped the fiber-binding site in penton base (residues 254-260). None of the MAbs showed any detectable virus neutralization effect, but they all slightly augmented the efficiency of Ad-mediated gene transfer. Although none of their epitopes included the RGD-340 tripeptide, substitutions of the arginine residue in the RGD motif abolished the reactivity of six individual and distant epitopes, suggesting a major conformational role for the RGD-containing domain.
Collapse
Affiliation(s)
- S S Hong
- Laboratoire de Virologie et Pathogénèse Virale, Faculté de Médecine, Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bal HP, Chroboczek J, Schoehn G, Ruigrok RW, Dewhurst S. Adenovirus type 7 penton purification of soluble pentamers from Escherichia coli and development of an integrin-dependent gene delivery system. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6074-81. [PMID: 10998069 DOI: 10.1046/j.1432-1327.2000.01684.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenoviral gene therapy vectors suffer from the disadvantages of toxicity and immunogenicity associated with the expression of adenoviral genes from the vector backbone. We report here an alternative strategy for gene delivery that utilizes a single component of the adenoviral type 7 capsid, the penton base (Ad7PB). The Ad7PB gene was sequenced and its amino-acid composition was deduced from its nucleotide sequence. The penton was expressed in Escherichia coli as a soluble C-terminal fusion with glutathione S-transferase (GST-Ad7PB) and was purified by single-step affinity chromatography. Both GST-Ad7PB and cleaved (GST-free) Ad7PB retained the ability to fold into pentamers as observed by electron microscopy. GST-Ad7PB was able to bind a synthetic peptide (FK20) derived from the Ad type 7 fiber and retard DNA through a polylysine chain present at the C-terminus of this linker peptide. GST-Ad7PB was an effective cell transfecting agent when assayed on 293 cells. Transfection was not dependent upon the presence of lysosomotropic agents indicating efficient endosome escape capability. Excess of an RGD-containing peptide derived from Ad7PB was able to inhibit transfection indicating specific integrin-mediated uptake of the GST-Ad7PB-FK20-DNA complexes. We propose that Ad7 pentons can be developed into integrin-specific gene delivery agents.
Collapse
Affiliation(s)
- H P Bal
- Department of Microbiology and Immunology, University of Rochester Medical Center, NY 14642, USA
| | | | | | | | | |
Collapse
|
33
|
Shim S, Yoon CS, Han JK. A novel gene family with a developmentally regulated expression in Xenopus laevis. Biochem Biophys Res Commun 2000; 267:558-64. [PMID: 10631101 DOI: 10.1006/bbrc.1999.1899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have isolated a new maternal gene called 4G2. 4G2 cDNA encodes a predicted protein of 501 amino acids, and its apparent molecular mass of 61 kDa was determined by SDS-PAGE of 4G2 recombinant protein expressed in E. coli or in vitro translated in rabbit reticulocyte lysate. Amino acid analysis of 4G2 revealed the RGD and LDV motif with a potential cell attachment activity. The open reading frames (ORF) also contained a consensus bipartite nuclear localization signal (NLS). There were number of expressed tag sequences (ESTs) from Drosophila, zebrafish, chicken, mouse, and human origin that encode a high degree of identity to the predicted 4G2 protein, thereby suggesting that 4G2 may constitute a novel gene family whose function has not been elucidated. We also present evidence that 4G2 transcript is maternally synthesized in stage IV oocyte, localized to animal hemisphere of egg, and zygotically reactivated in mid-neurula stage.
Collapse
Affiliation(s)
- S Shim
- Department of Life Science, Pohang University of Science and Technology, San 31 Hyoja-Dong, Pohang, Kyungbuk, 790-784, South Korea
| | | | | |
Collapse
|
34
|
Hong SS, Galaup A, Peytavi R, Chazal N, Boulanger P. Enhancement of adenovirus-mediated gene delivery by use of an oligopeptide with dual binding specificity. Hum Gene Ther 1999; 10:2577-86. [PMID: 10566886 DOI: 10.1089/10430349950016627] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The efficiency of human adenovirus serotype 5 (Ad5) transgene delivery was tested on several human and animal cell lines in vitro, by using a bimodular 35-mer oligopeptide carrying two peptide domains with different ligand specificities. One domain mimicked the fiber knob-binding region of the alpha2 domain of human MHC-1 molecules (MH20), and the other corresponded to the gastrin-releasing peptide (GRP). Two synthetic peptides with different configurations were analyzed in Ad-mediated gene transfer assays using Ad5Luc3 vector carrying the luciferase reporter gene. One peptide (GRP-MH20) had the GRP domain on the N-terminal side of MH20, while the other (MH20-GRP), the C-terminally amidified GRP, was on the C-terminal side of MH20. The GRP-MH20 peptide, but not MH20-GRP, was capable of enhancing luciferase gene delivery to Ad-susceptible cells in a GRP receptor-dependent manner. More importantly, GRP-MH20 could also confer susceptibility to Ad infection to normal or cancer cells that lack fiber receptors for the virus. Our data suggested that GRP receptors could function efficiently as alternative attachment receptors for Ad5, but that Ad5 bound to GRP receptors still depended, at least partially, on the penton base-mediated endocytotic pathway for subsequent cell entry. Gene delivery by a human adenovirus serotype 5 (Ad5) vector was assayed with a bimodular oligopeptide carrying two peptide domains of different binding specificities. One domain was a high-affinity peptide ligand of the Ad5 fiber knob (MH20), and the other corresponded to the gastrin-releasing peptide (GRP). The synthetic peptide GRP-MH20 was found to be capable of enhancing Ad-mediated gene transfer to Ad-susceptible cells in a GRP receptor-dependent manner. More importantly, GRP-MH20 could also confer susceptibility to Ad infection to normal or cancer cells that lack fiber receptors. Our data suggested that GRP receptors could function efficiently as alternative attachment receptors for Ad5, but virus bound to GRP receptors still depended partially on the penton base-mediated pathway for cell entry.
Collapse
Affiliation(s)
- S S Hong
- Laboratoire de Virologie et Pathogénèse Virale, CNRS UMR-5537, Faculté de Médecine R.T.H. Laennec, Lyon, France
| | | | | | | | | |
Collapse
|
35
|
Hong SS, Gay B, Karayan L, Dabauvalle MC, Boulanger P. Cellular uptake and nuclear delivery of recombinant adenovirus penton base. Virology 1999; 262:163-77. [PMID: 10489350 DOI: 10.1006/viro.1999.9864] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An Ad2 capsid component, the penton base, expressed as recombinant protein, was found to be capable of affecting the entire entry pathway of adenovirion in HeLa cells, i.e., cell attachment, endocytosis, vesicular escape, intracytoplasmic movement, and translocation through the nuclear pore complex. Data with pentamerization-defective mutants suggested that none of these successive steps depended upon penton base pentamer status, indicating that the peptide domains responsible for these functions were carried by the monomer. Observations performed with wild-type (WT) and an integrin-binding-site double-mutant (K288E340) suggested that the penton base could enter the cell via an alternative, RGD- and LDV-independent, pathway. Of three mutants that were found to be defective in nuclear addressing in insect cells, only one, W165H, was also altered in nuclear transport in HeLa cells. The other two, W119H and RRR547EQQ, showed a WT pattern of nuclear localization in HeLa cells, suggesting that the region including tryptophan-119 and the basic signal at position 547 did not act as a nuclear localization signal in the human cell context. The integrity of cellular structures and the cytoskeleton seemed to be required for the vectorial movement and nuclear import of WT penton base, as suggested by experiments using permeabilized HeLa cells, isolated nuclear membranes, and cytoskeleton-targeted drugs.
Collapse
Affiliation(s)
- S S Hong
- Laboratoire de Virologie et Pathogénèse Virale, CNRS UMR 5537, Faculté de Médecine RTH Laennec, Rue Guillaume Paradin, Lyon, 69008, France
| | | | | | | | | |
Collapse
|
36
|
Davison E, Kirby I, Elliott T, Santis G. The human HLA-A*0201 allele, expressed in hamster cells, is not a high-affinity receptor for adenovirus type 5 fiber. J Virol 1999; 73:4513-7. [PMID: 10196358 PMCID: PMC104347 DOI: 10.1128/jvi.73.5.4513-4517.1999] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coxsackie B virus and adenovirus receptor (CAR) and the major histocompatibility complex (MHC) class I alpha2 domain have been identified as high-affinity cell receptors for adenovirus type 5 (Ad5) fiber. In this study we show that CAR but not MHC class I allele HLA-A*0201 binds to Ad5 with high affinity when expressed on hamster cells. When both receptors are coexpressed on the cell surface of hamster cells, Ad5 fiber bind to a single high-affinity receptor, which is CAR.
Collapse
Affiliation(s)
- E Davison
- Department of Respiratory Medicine & Allergy, The Guy's, King's College and St. Thomas' Hospitals School of Medicine, Thomas Guy House, Guy's Hospital, London SE1 9RT, United Kingdom
| | | | | | | |
Collapse
|