1
|
Child SJ, Greninger AL, Geballe AP. Rapid adaptation to human protein kinase R by a unique genomic rearrangement in rhesus cytomegalovirus. PLoS Pathog 2021; 17:e1009088. [PMID: 33497413 PMCID: PMC7864422 DOI: 10.1371/journal.ppat.1009088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/05/2021] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Cytomegaloviruses (CMVs) are generally unable to cross species barriers, in part because prolonged coevolution with one host species limits their ability to evade restriction factors in other species. However, the limitation in host range is incomplete. For example, rhesus CMV (RhCMV) can replicate in human cells, albeit much less efficiently than in rhesus cells. Previously we reported that the protein kinase R (PKR) antagonist encoded by RhCMV, rTRS1, has limited activity against human PKR but is nonetheless necessary and sufficient to enable RhCMV replication in human fibroblasts (HF). We now show that knockout of PKR in human cells or treatment with the eIF2B agonist ISRIB, which overcomes the translational inhibition resulting from PKR activation, augments RhCMV replication in HF, indicating that human PKR contributes to the inefficiency of RhCMV replication in HF. Serial passage of RhCMV in HF reproducibly selected for viruses with improved ability to replicate in human cells. The evolved viruses contain an inverted duplication of the terminal 6.8 kb of the genome, including rTRS1. The duplication replaces ~11.8 kb just downstream of an internal sequence element, pac1-like, which is very similar to the pac1 cleavage and packaging signal found near the terminus of the genome. Plaque-purified evolved viruses produced at least twice as much rTRS1 as the parental RhCMV and blocked the PKR pathway more effectively in HF. Southern blots revealed that unlike the parental RhCMV, viruses with the inverted duplication isomerize in a manner similar to HCMV and other herpesviruses that have internal repeat sequences. The apparent ease with which this duplication event occurs raises the possibility that the pac1-like site, which is conserved in Old World monkey CMV genomes, may serve a function in facilitating rapid adaptation to evolutionary obstacles.
Collapse
Affiliation(s)
- Stephanie J. Child
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Alexander L. Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Adam P. Geballe
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Departments of Medicine and Microbiology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
2
|
B Cell-Specific Transcription Activator PAX5 Recruits p300 To Support EBNA1-Driven Transcription. J Virol 2020; 94:JVI.02028-19. [PMID: 31941781 DOI: 10.1128/jvi.02028-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
The binding of Epstein-Barr Virus (EBV) nuclear antigen 1 (EBNA1) to the latent replication origin (oriP) triggers multiple downstream events to support virus-induced pathogenesis and tumorigenesis. Although EBV is widely recognized as a B-lymphotropic infectious agent, little is known about how tissue-specific factors are involved in the establishment of latency. Here, we showed that EBNA1 binds B cell activator PAX5 to promote EBNA1/oriP-dependent binding and transcription. In addition to showing that short hairpin RNA (shRNA)-mediated PAX5 knockdown substantially abrogated the above EBNA1-dependent functions, two mini-EBV reporter plasmids were used to perform nonlytic nano-luciferase (nLuc) activity and chromatin immunoprecipitation (ChIP) assays to show how EBNA1 cooperates with PAX5 to activate the transcription at the oriP site. The expression plasmids of two PAX5 mutants, V26G (EBNA1 binding mutant) and P80R (which remained EBNA1 associated), were used to assess their capability to restore the defects caused by PAX5 depletion in EBNA1/oriP-mediated binding, transcription, and maintenance of the genome copy number of the mini-EBV episome reporter in BJAB cells stably expressing EBNA1 or that of the EBV genome in EBV-infected BJAB cells. Since p300 is known to be associated with PAX5, we showed that the loss of function of the P80R mutant in support of EBNA1/oriP-mediated transcription under PAX5 depletion conditions was linked to its defective binding to p300. ChIP-quantitative PCR (qPCR) confirmed that P80R indeed failed to recruit p300 to the oriP DNA. Our discovery suggests that EBV has evolved an exquisite strategy to take advantage of tissue-specific factors to enable the establishment of viral latency.IMPORTANCE Although B cells are known to be the primary target for EBV infection, there is limited knowledge regarding the mechanism that determines this preferable tissue tropism. An in-depth understanding of the potential link of tissue-specific factors with the viral genes and their functioning is key to deciphering how EBV induces persistent infection in the distinct types of host cells. In this study, a substantial protein-protein interaction mediated by the B cell-specific activator PAX5 and EBNA1 was identified as the general requirement for the binding of EBNA1 to the latent replication origin and for downstream events. Of importance, the EBNA1-PAX5-p300 network is directly linked to EBNA1-dependent transcription. These findings suggest that targeting the viral gene-associated tissue-specific factors may lead to new therapeutic strategies for EBV-associated malignancies.
Collapse
|
3
|
A Guinea pig cytomegalovirus resistant to the DNA maturation inhibitor BDCRB. Antiviral Res 2018; 154:44-50. [PMID: 29649495 DOI: 10.1016/j.antiviral.2018.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 11/20/2022]
Abstract
Herpesvirus DNA packaging is an essential step in virion morphogenesis and an important target for antiviral development. The halogenated benzimidazole 2-bromo-5,6-dichloro-1-β-d-ribofuranosyl-1H-benzimidazole (BDCRB) was the first compound found to selectively disrupt DNA packaging. It has activity against human cytomegalovirus as well as guinea pig cytomegalovirus. The latter provides a useful small animal model for congenital cytomegalovirus infection. To better understand the mechanism by which BDCRB acts, a guinea pig cytomegalovirus resistant to BDCRB was derived and characterized. An L406P substitution occurred within GP89, a subunit of the complex that cleaves and packages DNA, but transfer of this mutation to an otherwise wild type genetic background did not confer significant BDCRB resistance. The resistant virus also had a 13.4-kb deletion that also appeared to be unrelated to BDCRB-resistance as a virus with a similar spontaneous deletion was sensitive to BDCRB. Lastly, the BDCRB-resistant virus exhibited a dramatic increase in the number of reiterated terminal repeats at both genomic termini. The mechanism that underlies this change in genome structure is not known but may relate to the duplication of terminal repeats that is associated with DNA cleavage and packaging. A model is presented in which BDCRB impairs the ability of terminase to recognize cleavage site sequences, but repeat arrays overcome this impairment by presenting terminase with multiple opportunities to recognize the correct cleavage site sequences that lie within the repeats. Further elucidation of this phenomenon should prove valuable for understanding the molecular basis of herpesvirus DNA maturation and the mechanism of action of this class of drugs.
Collapse
|
4
|
Alam Z, Al-Mahdi Z, Zhu Y, McKee Z, Parris DS, Parikh HI, Kellogg GE, Kuchta A, McVoy MA. Anti-cytomegalovirus activity of the anthraquinone atanyl blue PRL. Antiviral Res 2014; 114:86-95. [PMID: 25499125 PMCID: PMC4289655 DOI: 10.1016/j.antiviral.2014.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 11/28/2022]
Abstract
The anthraquinone atanyl blue PRL inhibits human cytomegalovirus replication. The block to viral replication appears early after entry and substantially reduces viral immediate early gene expression. In vitro, atanyl blue PRL inhibits the nuclease activity of purified viral alkaline nuclease, UL98. The antiviral activity of atanyl blue PRL may be manifested through inhibition of UL98’s nuclease activity.
Human cytomegalovirus (CMV) causes significant disease in immunocompromised patients and serious birth defects if acquired in utero. Available CMV antivirals target the viral DNA polymerase, have significant toxicities, and suffer from resistance. New drugs targeting different pathways would be beneficial. The anthraquinone emodin is proposed to inhibit herpes simplex virus by blocking the viral nuclease. Emodin and related anthraquinones are also reported to inhibit CMV. In the present study, emodin reduced CMV infectious yield with an EC50 of 4.9 μM but was cytotoxic at concentrations only twofold higher. Related anthraquinones acid blue 40 and alizarin violet R inhibited CMV at only high concentrations (238–265 μM) that were also cytotoxic. However, atanyl blue PRL inhibited infectious yield of CMV with an EC50 of 6.3 μM, significantly below its 50% cytotoxic concentration of 216 μM. Atanyl blue PRL reduced CMV infectivity and inhibited spread. When added up to 1 h after infection, it dramatically reduced CMV immediate early protein expression and blocked viral DNA synthesis. However, it had no antiviral activity when added 24 h after infection. Interestingly, atanyl blue PRL inhibited nuclease activities of purified CMV UL98 protein with IC50 of 4.5 and 9.3 μM. These results indicate that atanyl blue PRL targets very early post-entry events in CMV replication and suggest it may act through inhibition of UL98, making it a novel CMV inhibitor. This compound may provide valuable insights into molecular events that occur at the earliest times post-infection and serve as a lead structure for antiviral development.
Collapse
Affiliation(s)
- Zohaib Alam
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zainab Al-Mahdi
- Medical Science Department, College of Nursing, University of Babylon, Babylon, Iraq
| | - Yali Zhu
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Zachary McKee
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Deborah S Parris
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Hardik I Parikh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Glen E Kellogg
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Alison Kuchta
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
5
|
Abstract
Viruses employ a variety of strategies to usurp and control cellular activities through the orchestrated recruitment of macromolecules to specific cytoplasmic or nuclear compartments. Formation of such specialized virus-induced cellular microenvironments, which have been termed viroplasms, virus factories, or virus replication centers, complexes, or compartments, depends on molecular interactions between viral and cellular factors that participate in viral genome expression and replication and are in some cases associated with sites of virion assembly. These virus-induced compartments function not only to recruit and concentrate factors required for essential steps of the viral replication cycle but also to control the cellular mechanisms of antiviral defense. In this review, we summarize characteristic features of viral replication compartments from different virus families and discuss similarities in the viral and cellular activities that are associated with their assembly and the functions they facilitate for viral replication.
Collapse
|
6
|
Bacterial artificial chromosome clones of viruses comprising the towne cytomegalovirus vaccine. J Biomed Biotechnol 2011; 2012:428498. [PMID: 22187535 PMCID: PMC3236503 DOI: 10.1155/2012/428498] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 08/24/2011] [Indexed: 12/18/2022] Open
Abstract
Bacterial artificial chromosome (BAC) clones have proven invaluable for genetic manipulation of herpesvirus genomes. BAC cloning can also be useful for capturing representative genomes that comprise a viral stock or mixture. The Towne live attenuated cytomegalovirus vaccine was developed in the 1970s by serial passage in cultured fibroblasts. Although its safety, immunogenicity, and efficacy have been evaluated in nearly a thousand human subjects, the vaccine itself has been little studied. Instead, genetic composition and in vitro growth properties have been inferred from studies of laboratory stocks that may not always accurately represent the viruses that comprise the vaccine. Here we describe the use of BAC cloning to define the genotypic and phenotypic properties of viruses from the Towne vaccine. Given the extensive safety history of the Towne vaccine, these BACs provide a logical starting point for the development of next-generation rationally engineered cytomegalovirus vaccines.
Collapse
|
7
|
A 128-base-pair sequence containing the pac1 and a presumed cryptic pac2 sequence includes cis elements sufficient to mediate efficient genome maturation of human cytomegalovirus. J Virol 2011; 85:4432-9. [PMID: 21345955 DOI: 10.1128/jvi.02307-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus DNA replication proceeds via concatemeric replicative intermediates that are comprised of head-to-tail linked genomes. Genome maturation is carried out by the terminase, an enzyme complex that mediates both the insertion of concatemer DNA into capsids and its subsequent cleavage to release genomes within these capsids. This cleavage is sequence specific, but the governing cis-acting DNA sequences are only partially characterized. Two highly conserved motifs, the pac1 and pac2 motifs, lie near the ends of herpesvirus genomes and are known to be critical for genome maturation. In murine cytomegalovirus, poorly conserved sequences distal to the pac2 motif up to 150 bp from the point of cleavage are also important for cleavage. Here, we sought to identify the cleavage/packaging signals of human cytomegalovirus. Our results show that a previously proposed pac2-like poly(A) tract is dispensable for cleavage/packaging function and suggest that human cytomegalovirus may utilize a cryptic pac2 motif that lacks a poly(A) tract characteristic of pac2 motifs in other herpesviruses. Additional distal sequences 47 to 100 bp from the point of cleavage were found to enhance cleavage efficiency. These results should facilitate the identification of trans-acting factors that bind to these cis elements and elucidation of their functions. Such information will be critical for understanding the molecular basis of this complex process.
Collapse
|
8
|
Sauer A, Wang JB, Hahn G, McVoy MA. A human cytomegalovirus deleted of internal repeats replicates with near wild type efficiency but fails to undergo genome isomerization. Virology 2010; 401:90-5. [PMID: 20211481 PMCID: PMC2849842 DOI: 10.1016/j.virol.2010.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 06/28/2009] [Accepted: 02/10/2010] [Indexed: 01/30/2023]
Abstract
The class E genome of human cytomegalovirus (HCMV) contains long and short segments that invert due to recombination between flanking inverted repeats, causing the genome to isomerize into four distinct isomers. To determine if isomerization is important for HCMV replication, one copy of each repeat was deleted. The resulting virus replicated in cultured human fibroblasts with only a slight growth impairment. Restriction and Southern analyses confirmed that its genome is locked in the prototypic arrangement and unable to isomerize. We conclude that efficient replication of HCMV in fibroblasts does not require (i) the ability to undergo genome isomerization, (ii) genes that lie partially within the deleted repeats, or (iii) diploidy of genes that lie wholly within repeats. The simple genomic structure of this virus should facilitate studies of genome circularization, latency or persistence, and concatemer packaging as such studies are hindered by the complexities imposed by isomerization.
Collapse
Affiliation(s)
- Anne Sauer
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond Virginia 23298-0163, USA
| | - Jian Ben Wang
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond Virginia 23298-0163, USA
| | - Gabriele Hahn
- Institut für Laboratoriumsmedizin, Abteilung Mikrobiologie, Klinikum Ingolstadt, Krumenauerstr. 25, 85049 Ingolstadt, Germany
| | - Michael A. McVoy
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond Virginia 23298-0163, USA
| |
Collapse
|
9
|
Cui X, McGregor A, Schleiss MR, McVoy MA. The impact of genome length on replication and genome stability of the herpesvirus guinea pig cytomegalovirus. Virology 2009; 386:132-8. [PMID: 19174305 DOI: 10.1016/j.virol.2008.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 11/25/2008] [Accepted: 12/22/2008] [Indexed: 11/18/2022]
Abstract
The impact of genome length on replication and genome stability was assessed for guinea pig cytomegalovirus (GPCMV), a member of the Herpesviridae. The 233-kb genome could be decreased by 15.1 kb without discernable impact on viral replication efficiency in vitro. Viruses with genomes under-length by up to 31 kb replicated with decreased efficiencies but this appeared to arise from the loss of augmenting viral genes rather than decreased genome length. Two deletions that were non-lethal on their own were lethal when combined, suggesting that the resulting 40.1 kb under-length genome fell below a minimum packageable size. Genomes over-length by 8.8 kb gave rise to spontaneous deletions just to the right of the major immediate early locus, the same region that undergoes deletions during fibroblast passage of human and rhesus cytomegaloviruses. These results suggest that genome integrity should be confirmed for herpesvirus mutants in which genome length is increased even modestly.
Collapse
Affiliation(s)
- Xiaohong Cui
- Department of Pediatrics, Virginia Commonwealth University School of Medicine P.O. Box 980163, Richmond Virginia 23298-0163, USA
| | | | | | | |
Collapse
|
10
|
Schleiss MR, McGregor A, Choi KY, Date SV, Cui X, McVoy MA. Analysis of the nucleotide sequence of the guinea pig cytomegalovirus (GPCMV) genome. Virol J 2008; 5:139. [PMID: 19014498 PMCID: PMC2614972 DOI: 10.1186/1743-422x-5-139] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 11/12/2008] [Indexed: 11/10/2022] Open
Abstract
In this report we describe the genomic sequence of guinea pig cytomegalovirus (GPCMV) assembled from a tissue culture-derived bacterial artificial chromosome clone, plasmid clones of viral restriction fragments, and direct PCR sequencing of viral DNA. The GPCMV genome is 232,678 bp, excluding the terminal repeats, and has a GC content of 55%. A total of 105 open reading frames (ORFs) of > 100 amino acids with sequence and/or positional homology to other CMV ORFs were annotated. Positional and sequence homologs of human cytomegalovirus open reading frames UL23 through UL122 were identified. Homology with other cytomegaloviruses was most prominent in the central ~60% of the genome, with divergence of sequence and lack of conserved homologs at the respective genomic termini. Of interest, the GPCMV genome was found in many cases to bear stronger phylogenetic similarity to primate CMVs than to rodent CMVs. The sequence of GPCMV should facilitate vaccine and pathogenesis studies in this model of congenital CMV infection.
Collapse
Affiliation(s)
- Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Cui X, McGregor A, Schleiss MR, McVoy MA. Cloning the complete guinea pig cytomegalovirus genome as an infectious bacterial artificial chromosome with excisable origin of replication. J Virol Methods 2008; 149:231-9. [PMID: 18359520 DOI: 10.1016/j.jviromet.2008.01.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 01/25/2008] [Accepted: 01/31/2008] [Indexed: 01/05/2023]
Abstract
Congenital human cytomegalovirus infections are the major infectious cause of birth defects in the United States. How this virus crosses the placenta and causes fetal disease is poorly understood. Guinea pig cytomegalovirus (GPCMV) is a related virus that provides an important model for studying cytomegaloviral congenital transmission and pathogenesis. In order to facilitate genetic analysis of GPCMV, the 232kb GPCMV genome was cloned as an infectious bacterial artificial chromosome (BAC). The BAC vector sequences were flanked by LoxP sites to allow efficient excision using Cre recombinase. All initial clones contained spontaneous deletions of viral sequences and reconstituted mutant viruses with impaired growth kinetics in vitro. The deletions in one BAC were repaired using Escherichia coli genetics. The resulting repaired BAC reconstituted a virus with in vitro replication kinetics identical to the wild type parental virus; moreover, its genome was indistinguishable from that of the wild type parental virus by restriction pattern analysis using multiple restriction enzymes. These results suggest that the repaired BAC is an authentic representation of the complete GPCMV genome. It should provide a valuable tool for evaluating the impact of genetic modifications on the safety and efficacy of live attenuated vaccines and for identifying genes important for congenital transmission and fetal disease.
Collapse
Affiliation(s)
- Xiaohong Cui
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, P.O. Box 980163, Richmond, VA, 23298-0163, United States
| | | | | | | |
Collapse
|
12
|
Definition of the minimal cis-acting sequences necessary for genome maturation of the herpesvirus murine cytomegalovirus. J Virol 2007; 82:2394-404. [PMID: 18094152 DOI: 10.1128/jvi.00063-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus DNA replication proceeds via concatemeric replicative intermediates that are comprised of head-to-tail-linked genomes. Genome maturation is carried out by the terminase, a protein complex that mediates both insertion of concatemer DNA into capsids and its subsequent cleavage to release genomes within these capsids. This cleavage is sequence specific, but the governing cis-acting DNA sequences are only partially characterized. Two highly conserved motifs called pac1 and pac2 lie near the ends of herpesvirus genomes and are known to be critical for genome maturation. However, the potential importance of other sequences has not been fully investigated. We have undertaken to define all of the sequences necessary for efficient genome maturation for a herpesvirus by inserting ectopic cleavage sites into the murine cytomegalovirus genome and assessing their ability to mediate genome maturation. A combination of deletion and substitution mutations revealed that the minimal cleavage site is large ( approximately 180 bp) and complex. Sequences distal of pac1 (relative to the point of cleavage) were dispensable, suggesting that pac1 may be the sole cis-acting element on this side of the cleavage site. In contrast, a region distal to pac2 up to 150 bp from the point of cleavage was essential. Scanning substitutions revealed that the pac2 side of the cleavage site is complex and may contain multiple cis-acting sequence elements in addition to pac2. These results should facilitate the identification of trans-acting factors that bind to these elements and the elucidation of their functions. Such information will be critical for understanding the molecular basis of this complex process.
Collapse
|
13
|
Abstract
For many years, the generally accepted model for the replication of the double-stranded DNA genome of herpes simplex virus type 1 (HSV-1) incorporated initial circularization of linear molecules in the cell nucleus. Ensuing DNA synthesis resulted in the generation of head-to-tail concatemers which were subsequently cleaved into monomeric units and packaged into the nascent viral capsid. Recently, however, it has been proposed that circularization of HSV-1 genomes does not occur at the onset of lytic infection and moreover that this event is specifically inhibited by the HSV-1 transcriptional transactivator, ICP0 (S.A. Jackson and N.A. DeLuca, Proc. Natl. Acad. Sci. USA 100:7871-7876, 2003). To further investigate genome circularization, we have generated HSV-1 derivatives in which the viral a sequences, which contain the cleavage-packaging signals, have been replaced by a minimal packaging element located in the thymidine kinase gene. In contrast to wild-type HSV-1, fusion of the genomic termini of these viruses produces a novel fragment in circular or concatemeric DNA which can be detected by Southern blot hybridization. Utilizing these viruses, we demonstrate that fusion of the genomic termini occurred rapidly upon infection and in the presence of inhibitors of viral DNA or protein synthesis. We provide evidence indicating that the end joining represented circularization rather than concatemerization of input molecules and that circularized molecules functioned as templates for replication. Since the termini of these viruses lack direct repeats, our findings indicate that circularization can be mediated by direct end-to-end ligation of linear input genomes.
Collapse
Affiliation(s)
- Blair L Strang
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church St., Glasgow G11 5JR, United Kingdom
| | | |
Collapse
|
14
|
McVoy MA, Nixon DE. Impact of 2-bromo-5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole riboside and inhibitors of DNA, RNA, and protein synthesis on human cytomegalovirus genome maturation. J Virol 2005; 79:11115-27. [PMID: 16103162 PMCID: PMC1193602 DOI: 10.1128/jvi.79.17.11115-11127.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus genome maturation is a complex process in which concatemeric DNA molecules are translocated into capsids and cleaved at specific sequences to produce encapsidated-unit genomes. Bacteriophage studies further suggest that important ancillary processes, such as RNA transcription and DNA synthesis, concerned with repeat duplication, recombination, branch resolution, or damage repair may also be involved with the genome maturation process. To gain insight into the biochemical activities needed for herpesvirus genome maturation, 2-bromo-5,6-dichloro-1-beta-d-ribofuranosyl benzimidazole riboside (BDCRB) was used to allow the accumulation of human cytomegalovirus concatemeric DNA while the formation of new genomes was being blocked. Genome formation was restored upon BDCRB removal, and addition of various inhibitors during this time window permitted evaluation of their effects on genome maturation. Inhibitors of protein synthesis, RNA transcription, and the viral DNA polymerase only modestly reduced genome formation, demonstrating that these activities are not required for genome maturation. In contrast, drugs that inhibit both viral and host DNA polymerases potently blocked genome formation. Radioisotope incorporation in the presence of a viral DNA polymerase inhibitor further suggested that significant host-mediated DNA synthesis occurs throughout the viral genome. These results indicate a role for host DNA polymerases in genome maturation and are consistent with a need for terminal repeat duplication, debranching, or damage repair concomitant with DNA packaging or cleavage. Similarities to previously reported effects of BDCRB on guinea pig cytomegalovirus were also noted; however, BDCRB induced low-level formation of a supergenomic species called monomer+ DNA that is unique to human cytomegalovirus. Analysis of monomer+ DNA suggested a model for its formation in which BDCRB permits limited packaging of concatemeric DNA but induces skipping of cleavage sites.
Collapse
Affiliation(s)
- Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, 23298-0163, USA.
| | | |
Collapse
|
15
|
McGregor A, Liu F, Schleiss MR. Molecular, biological, and in vivo characterization of the guinea pig cytomegalovirus (CMV) homologs of the human CMV matrix proteins pp71 (UL82) and pp65 (UL83). J Virol 2004; 78:9872-89. [PMID: 15331722 PMCID: PMC515002 DOI: 10.1128/jvi.78.18.9872-9889.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently identified the genes encoding the guinea pig cytomegalovirus (GPCMV) homologs of the upper and lower matrix proteins of human CMV, pp71 (UL82) and pp65 (UL83), which we designated GP82 and GP83, respectively. Transient-expression studies with a GP82 plasmid demonstrated that the encoded protein targets the nucleus and that the infectivity and plaquing efficiency of cotransfected GPCMV viral DNA was enhanced by GP82. The transactivation function of GP82 was not limited to GPCMV, but was also observed for a heterologous virus, herpes simplex virus type 1 (HSV-1). This was confirmed by its ability to complement the growth of an HSV-1 VP16 transactivation-defective mutant virus in an HSV viral DNA cotransfection assay. Study of a GP82 "knockout" virus (and its attendant rescuant), generated on a GPCMV bacterial artificial chromosome construct, confirmed the essential nature of the gene. Conventional homologous recombination was used to generate a GP83 mutant to examine the role of GP83 in the viral life cycle. Comparison of the one-step growth kinetics of the GP83 mutant (vAM409) and wild-type GPCMV indicated that GP83 protein is not required for viral replication in tissue culture. The role of GP83 in vivo was examined by comparing the pathogenesis of wild-type GPCMV, vAM409, and a control virus, vAM403, in guinea pigs. The vAM409 mutant was significantly attenuated for dissemination in immunocompromised strain 2 guinea pigs, suggesting that the GP83 protein is essential for full pathogenicity in vivo.
Collapse
Affiliation(s)
- Alistair McGregor
- Division of Infectious Diseases, Children's Hospital Medical Center Research Foundation, University of Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
16
|
Nixon DE, McVoy MA. Dramatic effects of 2-bromo-5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole riboside on the genome structure, packaging, and egress of guinea pig cytomegalovirus. J Virol 2004; 78:1623-35. [PMID: 14747528 PMCID: PMC369448 DOI: 10.1128/jvi.78.4.1623-1635.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The halogenated benzimidazoles BDCRB (2-bromo-5,6-dichloro-1-beta-D-riborfuranosyl benzimidazole riboside) and TCRB (2,5,6-trichloro-1-beta-D-riborfuranosyl benzimidazole riboside) were the first compounds shown to inhibit cleavage and packaging of herpesvirus genomes. Both inhibit the formation of unit length human cytomegalovirus (HCMV) genomes by a poorly understood mechanism (M. R. Underwood et al., J. Virol. 72:717-715, 1998; P. M. Krosky et al., J. Virol. 72:4721-4728, 1998). Because the simple genome structure of guinea pig cytomegalovirus (GPCMV) provides a useful model for the study of herpesvirus DNA packaging, we investigated the effects of BDCRB on GPCMV. GPCMV proved to be sensitive to BDCRB (50% inhibitory concentration = 4.7 microM), although somewhat less so than HCMV. In striking contrast to HCMV, however, a dose of BDCRB sufficient to reduce GPCMV titers by 3 logs (50 microM) had no effect on the quantity of GPCMV genomic DNA that was formed in infected cells. Electron microscopy revealed that this DNA was in fact packaged within intranuclear capsids, but these capsids failed to egress from the nucleus and failed to protect the DNA from nuclease digestion. The terminal structure of genomes formed in the presence of BDCRB was also altered. Genomes with ends lacking a terminal repeat at the right end, which normally exist in an equimolar ratio with those having one copy of the repeat at the right end, were selectively eliminated by BDCRB treatment. At the left end, BDCRB treatment appeared to induce heterogeneous truncations such that 2.7 to 4.9 kb of left-end-terminal sequences were missing. These findings suggest that BDCRB induces premature cleavage events that result in truncated genomes packaged within capsids that are permeable to nuclease. Based on these and other observations, we propose a model for duplication of herpesvirus terminal repeats during the cleavage and packaging process that is similar to one proposed for bacteriophage T7 (Y. B. Chung, C. Nardone, and D. C. Hinkle, J. Mol. Biol. 216:939-948, 1990).
Collapse
Affiliation(s)
- Daniel E Nixon
- Department of Medicine, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, Virginia 23298-0163, USA
| | | |
Collapse
|
17
|
Schynts F, McVoy MA, Meurens F, Detry B, Epstein AL, Thiry E. The structures of bovine herpesvirus 1 virion and concatemeric DNA: implications for cleavage and packaging of herpesvirus genomes. Virology 2003; 314:326-35. [PMID: 14517085 DOI: 10.1016/s0042-6822(03)00437-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Herpesvirus genomes are often characterized by the presence of direct and inverted repeats that delineate their grouping into six structural classes. Class D genomes consist of a long (L) segment and a short (S) segment. The latter is flanked by large inverted repeats. DNA replication produces concatemers of head-to-tail linked genomes that are cleaved into unit genomes during the process of packaging DNA into capsids. Packaged class D genomes are an equimolar mixture of two isomers in which S is in either of two orientations, presumably a consequence of homologous recombination between the inverted repeats. The L segment remains predominantly fixed in a prototype (P) orientation; however, low levels of genomes having inverted L (I(L)) segments have been reported for some class D herpesviruses. Inefficient formation of class D I(L) genomes has been attributed to infrequent L segment inversion, but recent detection of frequent inverted L segments in equine herpesvirus 1 concatemers [Virology 229 (1997) 415-420] suggests that the defect may be at the level of cleavage and packaging rather than inversion. In this study, the structures of virion and concatemeric DNA of another class D herpesvirus, bovine herpesvirus 1, were determined. Virion DNA contained low levels of I(L) genomes, whereas concatemeric DNA contained significant amounts of L segments in both P and I(L) orientations. However, concatemeric termini exhibited a preponderance of L termini derived from P isomers which was comparable to the preponderance of P genomes found in virion DNA. Thus, the defect in formation of I(L) genomes appears to lie at the level of concatemer cleavage. These results have important implications for the mechanisms by which herpesvirus DNA cleavage and packaging occur.
Collapse
Affiliation(s)
- Frédéric Schynts
- Department of Infectious and Parasitic Diseases, Laboratory of Virology, Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | | | | | | | | | | |
Collapse
|
18
|
Chang WLW, Barry PA. Cloning of the full-length rhesus cytomegalovirus genome as an infectious and self-excisable bacterial artificial chromosome for analysis of viral pathogenesis. J Virol 2003; 77:5073-83. [PMID: 12692210 PMCID: PMC153942 DOI: 10.1128/jvi.77.9.5073-5083.2003] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rigorous investigation of many functions encoded by cytomegaloviruses (CMVs) requires analysis in the context of virus-host interactions. To facilitate the construction of rhesus CMV (RhCMV) mutants for in vivo studies, a bacterial artificial chromosome (BAC) containing an enhanced green fluorescent protein (EGFP) cassette was engineered into the intergenic region between unique short 1 (US1) and US2 of the full-length viral genome by Cre/lox-mediated recombination. Infectious virions were recovered from rhesus fibroblasts transfected with pRhCMV/BAC-EGFP. However, peak virus yields of cells infected with reconstituted progeny were 10-fold lower than wild-type RhCMV, suggesting that inclusion of the 9-kb BAC sequence impeded viral replication. Accordingly, pRhCMV/BAC-EGFP was further modified to enable efficient excision of the BAC vector from the viral genome after transfection into mammalian cells. Allelic exchange was performed in bacteria to substitute the cre recombinase gene for egfp. Transfection of rhesus fibroblasts with pRhCMV/BAC-Cre resulted in a pure progeny population lacking the vector backbone without the need of further manipulation. The genomic structure of the BAC-reconstituted virus, RhCMV-loxP(r), was identical to that of wild-type RhCMV except for the residual loxP site. The presence of the loxP sequence did not alter the expression profiles of neighboring open reading frames. In addition, RhCMV-loxP(r) replicated with wild-type kinetics both in tissue culture and seronegative immunocompetent macaques. Restriction analysis of the viral genome present within individual BAC clones and virions revealed that (i) RhCMV exhibits a simple genome structure and that (ii) there is a variable number of a 750-bp iterative sequence present at the S terminus.
Collapse
Affiliation(s)
- W L William Chang
- Center for Comparative Medicine and Department of Medical Pathology, University of California, Davis 95616, USA.
| | | |
Collapse
|
19
|
Lacayo J, Sato H, Kamiya H, McVoy MA. Down-regulation of surface major histocompatibility complex class I by guinea pig cytomegalovirus. J Gen Virol 2003; 84:75-81. [PMID: 12533702 DOI: 10.1099/vir.0.18675-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Live attenuated strains of human cytomegalovirus are under development as vaccines to prevent birth defects resulting from congenital infections. These strains encode four proteins that inhibit surface expression of MHC class I, presumably to evade cytotoxic T-cell recognition and, perhaps, attenuate induction of immunity. To initiate studies of the role of class I down-regulation on congenital infection and vaccine efficacy, the ability of guinea pig cytomegalovirus to down-regulate class I was examined. Surface class I was specifically down-regulated on infected cells up to 8-fold. Sensitivity to UV irradiation and insensitivity to a viral DNA synthesis inhibitor revealed that immediate early or early viral gene(s) are responsible. Identification of these genes will permit future experiments to evaluate the role of class I down-regulation in congenital cytomegalovirus disease and its impact on vaccine efficacy. These findings should be pertinent to understanding human cytomegalovirus disease and may help guide the design of candidate vaccines.
Collapse
Affiliation(s)
- Juan Lacayo
- Departments of Microbiology & Immunology and Pediatrics, Medical College of Virginia Campus of Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, Virginia 23298-01632, USA
| | - Hiroshi Sato
- Department of Parasitology, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Haruo Kamiya
- Department of Parasitology, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Michael A McVoy
- Departments of Microbiology & Immunology and Pediatrics, Medical College of Virginia Campus of Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, Virginia 23298-01632, USA
| |
Collapse
|
20
|
Schleiss MR. Animal models of congenital cytomegalovirus infection: an overview of progress in the characterization of guinea pig cytomegalovirus (GPCMV). J Clin Virol 2002; 25 Suppl 2:S37-49. [PMID: 12361755 DOI: 10.1016/s1386-6532(02)00100-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The strict species-specificity of cytomegalovirus (CMV) precludes preclinical evaluation of human CMV (HCMV) vaccines in animal models and necessitates the study of nonhuman CMVs. Among the CMVs of small mammals, the guinea pig cytomegalovirus (GPCMV) has unique advantages, due to its ability to cross the placenta, causing infection in utero. OBJECTIVE AND STUDY DESIGNS: Progress in GPCMV studies has been hampered by a lack of detailed molecular characterization of the viral genome. Therefore, recent efforts have been undertaken to characterize the GPCMV genome, and apply this information to in vivo subunit vaccine studies. RESULTS Progress in the sequencing of the GPCMV genome has revealed the presence of both highly conserved as well as novel open reading frames (ORFs). Cloning of GPCMV vaccine candidates, such as the glycoprotein B (gB) and UL83 proteins, has facilitated subunit vaccine evaluation. Protein vaccines and DNA vaccines have shown evidence of protection in pregnancy/challenge experiments. In addition, the GPCMV genome has proved amenable to cloning as a bacterial artificial chromosome (BAC) in Escherichia coli, and BAC-derived recombinants retain the ability to replicate in vivo. CONCLUSIONS Progress has been made in molecular characterization of GPCMV. Insights from these studies should prove germane to the understanding of the correlates of protective immunity for the fetus in vaccine studies, and should assist in prioritization of vaccine strategies in HCMV vaccine trials.
Collapse
Affiliation(s)
- Mark R Schleiss
- Division of Infectious Diseases, Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
| |
Collapse
|
21
|
Nixon DE, McVoy MA. Terminally repeated sequences on a herpesvirus genome are deleted following circularization but are reconstituted by duplication during cleavage and packaging of concatemeric DNA. J Virol 2002; 76:2009-13. [PMID: 11799198 PMCID: PMC135902 DOI: 10.1128/jvi.76.4.2009-2013.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The mechanisms underlying cleavage of herpesvirus genomes from replicative concatemers are unknown. Evidence from herpes simplex virus type 1 suggests that cleavage occurs by a nonduplicative process; however, additional evidence suggests that terminal repeats may also be duplicated during the cleavage process. This issue has been difficult to resolve due to the variable numbers of reiterated terminal repeats that the herpes simplex virus type 1 genome can contain. Guinea pig cytomegalovirus is a herpesvirus with a simple terminal repeat arrangement that defines two genome types. Type II genomes have a single copy of a 1-kb terminal repeat at both their left and right termini, whereas type I genomes have only one copy at their left termini and lack the repeat at their right termini. In a previous study, we constructed a recombinant guinea pig cytomegalovirus in which certain cis elements were disrupted such that only type II genomes were produced. Here we show that double repeats that are formed by circularization of infecting genomes are rapidly converted to single repeats, such that the junctions between genomes within replicative concatemers formed late in infection almost exclusively contain single copies of the terminal repeat. Therefore, for the recombinant virus, each cleavage event begins with a single repeat within a concatemer yet produces two repeats, one at each of the resulting termini, demonstrating that terminal repeat duplication occurs in conjunction with cleavage. For wild-type guinea pig cytomegalovirus, the formation of type I genomes further suggests that cleavage can also occur by a nonduplicative process and that duplicative and nonduplicative cleavage can occur concurrently. Other herpesviruses having terminal repeats, such as the herpes simplex viruses and human cytomegalovirus, may also utilize repeat duplication and deletion; however, the biological importance of these events remains unknown.
Collapse
Affiliation(s)
- Daniel E Nixon
- Department of Medicine, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, Virginia 23298-0163, USA
| | | |
Collapse
|
22
|
Meier JL. Reactivation of the human cytomegalovirus major immediate-early regulatory region and viral replication in embryonal NTera2 cells: role of trichostatin A, retinoic acid, and deletion of the 21-base-pair repeats and modulator. J Virol 2001; 75:1581-93. [PMID: 11160656 PMCID: PMC114067 DOI: 10.1128/jvi.75.4.1581-1593.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2000] [Accepted: 11/14/2000] [Indexed: 01/29/2023] Open
Abstract
Inactivity of the human cytomegalovirus (HCMV) major immediate-early regulatory region (MIERR), which is composed of promoter, enhancer, unique region, and modulator, is linked to lack of HCMV replication in latently infected cells and in other nonpermissive cell types, including human embryonal NTera2 carcinoma (NT2) cells. I refined the embryonal NT2 cell model to enable characterization of the unknown mechanistic basis for silencing of HCMV MIERR-dependent transcription and viral replication in nonpermissive cells. These infected NT2 cells contain nonreplicating viral genomes with electrophoretic mobility equivalent to a supercoiled, bacterial artificial chromosome of comparable molecular weight. MIERR-dependent transcription is minimal to negligible. Increasing the availability of positive-acting transcription factors by retinoic acid (RA) treatment after infection is largely insufficient in reactivating the MIERR. In contrast, trichostatin A (TSA), a histone deacetylase inhibitor, reactivates MIERR-dependent transcription. Contrary to prior findings produced from transfected MIERR segments, deletion of the 21-bp repeats and modulator from the MIERR in the viral genome does not relieve MIERR silencing. To demonstrate that MIERR silencing likely results from enhancer inactivity, I examined an HCMV with a heterologous MIERR promoter that is enhancer dependent but exempt from IE2 p86-mediated negative autoregulation. This heterologous promoter, like its neighboring native MIERR promoter, exhibits immediate-early transcriptional kinetics in fibroblasts. In embryonal NT2 cells, the heterologous MIERR promoter is transcriptionally inactive. This silence is relieved by TSA but not by RA. Remarkably, TSA-induced reactivation of MIERR-dependent transcription from quiescent viral genomes is followed by release of infectious virus. I conclude that a mechanism of active repression imposes a block to MIERR-dependent transcription and viral replication in embryonal NT2 cells. Because TSA overcomes the block, viral gene silencing may involve histone deacetylase-based modification of viral chromatin, which might account for the covalently closed circular conformation of quiescent HCMV genomes.
Collapse
Affiliation(s)
- J L Meier
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA.
| |
Collapse
|
23
|
Yao XD, Elias P. Recombination during early herpes simplex virus type 1 infection is mediated by cellular proteins. J Biol Chem 2001; 276:2905-13. [PMID: 11069901 DOI: 10.1074/jbc.m005627200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination was examined in cells infected with herpes simplex virus type I. Circular and linear DNA with directly repeated sequences was introduced as recombination substrates into cells. Recombination was measured either by origin-dependent amplification of recombination products or by recombination-dependent expression of luciferase from a disrupted gene. Homologous recombination in baby hamster kidney cells converted linear DNA to circular templates for DNA replication and luciferase expression in the complete absence of virus. The products of homologous recombination were efficiently amplified by the viral replication apparatus. The efficiency of recombination was dependent on the structure of the substrate as well as the cell type. Linear DNA with the direct repeats at internal positions failed to recombine in Balb/c 3T3 cells and induced p53-dependent apoptosis. In contrast, linear DNA with directly repeated sequences precisely at the ends recombined and replicated in 3T3 cells. Homologous recombination in baby hamster kidney cells did not depend on the position of the repeated sequences. We conclude that homologous recombination is independent of viral gene functions and that it is likely to be carried out by cellular proteins. We suggest that homologous recombination between directly repeated sequences in the linear herpes simplex virus type 1 chromosome may help to avoid p53-dependent apoptosis and to promote viral DNA replication.
Collapse
Affiliation(s)
- X D Yao
- Department of Molecular Biology and Genetics, College of Biological Science, University of Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
24
|
McGregor A, Schleiss MR. Molecular cloning of the guinea pig cytomegalovirus (GPCMV) genome as an infectious bacterial artificial chromosome (BAC) in Escherichia coli. Mol Genet Metab 2001; 72:15-26. [PMID: 11161824 DOI: 10.1006/mgme.2000.3102] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since cytomegalovirus (CMV) infection is highly species-specific, it is necessary to study animal cytomegaloviruses to assess viral factors which contribute to pathogenesis. The generation of recombinant viruses carrying reporter genes would provide useful tools for studying the genetics of CMV pathogenicity in vivo. We evaluated whether the guinea pig cytomegalovirus (GPCMV) was amenable to such manipulation. Metabolic selection using the guanosylphosphoribosityl transferase (gpt) gene facilitated recovery of a recombinant virus, vAM403, containing a gpt/green fluorescent protein (eGFP) cassette introduced into the HindIII "N" region of the viral genome. This virus had replication kinetics identical to wild-type virus. We next attempted to clone the GPCMV genome as a bacterial artificial chromosome (BAC). A BAC plasmid containing a gpt/eGFP cassette and the chloramphenicol resistance marker was introduced into HindIII "N" to generate another GPCMV recombinant, vAMBGPCMV. Circular viral DNA isolated from vAMBGPCMV-infected cells was used to transform Escherichia coli. Restriction profiles revealed that the GPCMV genome had been cloned as a BAC plasmid, and transfection of BAC plasmid DNA confirmed that the BAC clone was infectious. A novel strategy based on a unique PmeI site was devised to quickly modify the BAC GPCMV plasmid. Recombinants retained the capability to replicate and express reporter genes in guinea pigs, suggesting that these viruses will be useful for in vivo pathogenesis studies.
Collapse
MESH Headings
- Animals
- Blotting, Southern
- Cell Division
- Chromosomes, Artificial, Bacterial
- Cloning, Molecular
- Cytomegalovirus/genetics
- DNA, Viral/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Escherichia coli/metabolism
- Fibroblasts/metabolism
- Genome
- Green Fluorescent Proteins
- Guinea Pigs
- Kinetics
- Luminescent Proteins/genetics
- Microscopy, Fluorescence
- Models, Genetic
- Mutagenesis, Insertional
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Plasmids/metabolism
- Recombination, Genetic
- Sequence Analysis, DNA
- Species Specificity
- Time Factors
- Transfection
- Virus Replication
Collapse
Affiliation(s)
- A McGregor
- Division of Infectious Diseases, Children's Hospital Medical Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
25
|
McVoy MA, Ramnarain D. Machinery to support genome segment inversion exists in a herpesvirus which does not naturally contain invertible elements. J Virol 2000; 74:4882-7. [PMID: 10775628 PMCID: PMC112012 DOI: 10.1128/jvi.74.10.4882-4887.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many herpesviruses, genome segments flanked by inverted repeats invert during DNA replication. It is not known whether this inversion is a consequence of an inherently recombinagenic replicative mechanism common to all herpesviruses or whether the replication enzymes of viruses with invertible segments have specifically evolved additional enzymatic activities to drive inversion. By artificially inserting a fusion of terminal sequences into the genome of a virus which normally lacks invertible elements (murine cytomegalovirus), we created a genome composed of long and short segments flanked by 1,359- and 543-bp inverted repeats. Analysis of genomic DNA from this virus revealed that inversion of both segments generates equimolar amounts of four isomers during the viral propagation necessary to produce DNA for analysis from a single viral particle. We conclude that a herpesvirus which naturally lacks invertible elements is able to support efficient segment inversion. Thus, the potential to invert is probably inherent in the replication machinery of all herpesviruses, irrespective of genome structure, and therefore genomes with invertible elements could have evolved simply by acquisition of inverted repeats and without concomitant evolution of enzymatic activities to mediate inversion. Furthermore, the recombinagenicity of herpesvirus DNA replication must have some importance independent of genome segment inversion.
Collapse
Affiliation(s)
- M A McVoy
- Department of Pediatrics, Medical College of Virginia/Virginia Commonwealth University, Richmond, Virginia 23298-0163, USA.
| | | |
Collapse
|
26
|
McVoy MA, Nixon DE, Hur JK, Adler SP. The ends on herpesvirus DNA replicative concatemers contain pac2 cis cleavage/packaging elements and their formation is controlled by terminal cis sequences. J Virol 2000; 74:1587-92. [PMID: 10627574 PMCID: PMC111498 DOI: 10.1128/jvi.74.3.1587-1592.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/1999] [Accepted: 10/25/1999] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses have large double-stranded linear DNA genomes that are formed by site-specific cleavage from complex concatemeric intermediates. In this process, only one of the two genomic ends are formed on the concatemer. Although the mechanism underlying this asymmetry is not known, one explanation is that single genomes are cleaved off of concatemer ends in a preferred direction. This implies that cis elements control the direction of packaging. Two highly conserved cis elements named pac1 and pac2 lie near opposite ends of herpesvirus genomes and are important for cleavage and packaging. By comparison of published reports and by analysis of two additional herpesviruses, we found that pac2 elements lie near the ends formed on replicative concatemers of four herpesviruses: herpes simplex virus type 1, equine herpesvirus 1, guinea pig cytomegalovirus, and murine cytomegalovirus. Formation of pac2 ends on concatemers depended on terminal cis sequences, since ectopic cleavage sites engineered into the murine cytomegalovirus genome mediated formation of pac2 ends on concatemers regardless of the orientation of their insertion. These findings are consistent with a model in which pac2 elements at concatemer ends impart a directionality to concatemer packaging by binding proteins that initiate insertion of concatemer ends into empty capsids.
Collapse
Affiliation(s)
- M A McVoy
- Department of Pediatrics, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, Virginia 23298-0163, USA.
| | | | | | | |
Collapse
|
27
|
McVoy MA, Mocarski ES. Tetracycline-mediated regulation of gene expression within the human cytomegalovirus genome. Virology 1999; 258:295-303. [PMID: 10366566 DOI: 10.1006/viro.1999.9724] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To evaluate the utility of tetracycline gene regulation in the study of human cytomegalovirus gene functions, expression of luciferase under the control of tetracycline-regulatable promoters was studied following transient plasmid transfections and from within recombinant human cytomegalovirus genomes. The tetracycline-regulatable promoter PhCMV*-1 contains sequences from the human cytomegalovirus ie1/ie2 promoter and seven upstream tet operator sites which bind the activator protein tTA only in the absence of tetracycline (Gossen and Bujard (1992). Proc. Natl. Acad. Sci. USA 89, 5547-5551). Two modifications of PhCMV*-1 were also studied: P1129, in which the tet operator sites were reduced from seven to one; and P1125, in which human cytomegalovirus sequences were replaced by adenovirus major late promoter and terminal deoxynucleotidyltransferase initiator sequences. In transient assays, PhCMV*-1 and P1125 exhibited modest differential regulation but were strongly activated by viral infection. P1129 exhibited less viral activation and narrower regulation. In the viral genome, PhCMV*-1 exhibited regulation up to 7-fold during late times of infection, whereas P1125 displayed nearly 100-fold regulation. Regulation of P1125 was fully reversed within 12 to 24 h of adding or removing tetracycline. These results suggest that P1125 may provide sufficient conditional expression to effectively regulate human cytomegalovirus late genes.
Collapse
Affiliation(s)
- M A McVoy
- Department of Pediatrics, Medical College of Virginia Campus of Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, Virginia, 23298-0163, USA.
| | | |
Collapse
|
28
|
McVoy MA, Nixon DE, Adler SP, Mocarski ES. Sequences within the herpesvirus-conserved pac1 and pac2 motifs are required for cleavage and packaging of the murine cytomegalovirus genome. J Virol 1998; 72:48-56. [PMID: 9420199 PMCID: PMC109348 DOI: 10.1128/jvi.72.1.48-56.1998] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The DNA sequence motifs pac1 [an A-rich region flanked by poly(C) runs] and pac2 (CGCGGCG near an A-rich region) are conserved near herpesvirus genomic termini and are believed to mediate cleavage of genomes from replicative concatemers. To determine their importance in the cleavage process, we constructed a number of recombinant murine cytomegaloviruses with a second cleavage site inserted at an ectopic location within the viral genome. Cleavage at a wild-type ectopic site occurred as frequently as at the natural cleavage site, whereas mutation of this ectopic site revealed that some of the conserved motifs of pac1 and pac2 were essential for cleavage whereas others were not. Within pac1, the left poly(C) region was very important for cleavage and packaging but the A-rich region was not. Within pac2, the A-rich region and adjacent sequences were essential for cleavage and packaging and the CGCGGCG region contributed to, but was not strictly essential for, efficient cleavage and packaging. A second A-rich region was not important at all. Furthermore, mutations that prevented cleavage also blocked duplication and deletion of the murine cytomegalovirus 30-bp terminal repeat at the ectopic site, suggesting that repeat duplication and deletion are consequences of cleavage. Given that the processes of genome cleavage and packaging appear to be highly conserved among herpesviruses, these findings should be relevant to other members of this family.
Collapse
Affiliation(s)
- M A McVoy
- Department of Pediatrics, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0163, USA.
| | | | | | | |
Collapse
|