1
|
Jami R, Mérour E, Lamoureux A, Bernard J, Millet JK, Biacchesi S. Deciphering the Fine-Tuning of the Retinoic Acid-Inducible Gene-I Pathway in Teleost Fish and Beyond. Front Immunol 2021; 12:679242. [PMID: 33995423 PMCID: PMC8113963 DOI: 10.3389/fimmu.2021.679242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Interferons are the first lines of defense against viral pathogen invasion during the early stages of infection. Their synthesis is tightly regulated to prevent excessive immune responses and possible deleterious effects on the host organism itself. The RIG-I-like receptor signaling cascade is one of the major pathways leading to the production of interferons. This pathway amplifies danger signals and mounts an appropriate innate response but also needs to be finely regulated to allow a rapid return to immune homeostasis. Recent advances have characterized different cellular factors involved in the control of the RIG-I pathway. This has been most extensively studied in mammalian species; however, some inconsistencies remain to be resolved. The IFN system is remarkably well conserved in vertebrates and teleost fish possess all functional orthologs of mammalian RIG-I-like receptors as well as most downstream signaling molecules. Orthologs of almost all mammalian regulatory components described to date exist in teleost fish, such as the widely used zebrafish, making fish attractive and powerful models to study in detail the regulation and evolution of the RIG-I pathway.
Collapse
Affiliation(s)
- Raphaël Jami
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Emilie Mérour
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Annie Lamoureux
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Julie Bernard
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Jean K Millet
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | |
Collapse
|
2
|
Interferon regulatory factor 1 restricts gammaherpesvirus replication in primary immune cells. J Virol 2014; 88:6993-7004. [PMID: 24719409 DOI: 10.1128/jvi.00638-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Gammaherpesviruses are ubiquitous pathogens that establish a lifelong infection and are associated with cancer. In spite of the high seroprevalence of infection, the risk factors that predispose the host toward gammaherpesvirus-induced malignancies are still poorly understood. Interferon (IFN) regulatory factor 1 (IRF-1) is a tumor suppressor that is also involved in the regulation of innate and adaptive immune responses. On the basis of its biology, IRF-1 represents a plausible host factor to attenuate gammaherpesvirus infection and tumorigenesis. In this study, we show that IRF-1 restricts gammaherpesvirus replication in primary macrophages, a physiologically relevant immune cell type. In spite of the known role of IRF-1 in stimulating type I IFN expression, induction of a global type I IFN response was similar in IRF-1-deficient and -proficient macrophages during gammaherpesvirus infection. However, IRF-1 was required for optimal expression of cholesterol-25-hydroxylase, a host enzyme that restricted gammaherpesvirus replication in primary macrophages and contributed to the antiviral effects of IRF-1. In summary, the current study provides an insight into the mechanism by which IRF-1 attenuates gammaherpesvirus replication in primary immune cells, a mechanism that is likely to contribute to the antiviral effects of IRF-1 in other virus systems. IMPORTANCE Interferon regulatory factor 1 (IRF-1) is a transcription factor that regulates innate and adaptive immune responses and functions as a tumor suppressor. IRF-1 restricts the replication of diverse viruses; however, the mechanisms responsible for the antiviral effects of IRF-1 are still poorly understood. Gammaherpesviruses are ubiquitous pathogens that are associated with the induction of several malignancies. Here we show that IRF-1 expression attenuates gammaherpesvirus replication in primary macrophages, in part by increasing expression of cholesterol-25-hydroxylase (CH25H). CH25H and its product, 25-hydroxycholesterol, restrict replication of diverse virus families. Thus, our findings offer an insight into the mechanism by which IRF-1 attenuates the replication of gammaherpesviruses, a mechanism that is likely to be applicable to other virus systems.
Collapse
|
3
|
Gu J, Zhang Y, Lian X, Sun H, Wang J, Liu W, Meng G, Li P, Zhu D, Jin Y, Cao R. Functional analysis of the interferon-stimulated response element of porcine circovirus type 2 and its role during viral replication in vitro and in vivo. Virol J 2012; 9:152. [PMID: 22871036 PMCID: PMC3487966 DOI: 10.1186/1743-422x-9-152] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 07/27/2012] [Indexed: 12/03/2022] Open
Abstract
Background Porcine circovirus type 2 (PCV2) is associated with post-weaning multi-systemic wasting syndrome (PMWS) in young weaned pigs. Immune stimulation was found to activate the replication of PCV2 and exacerbate the clinical outcome of the infection. Proper amount of interferon-α (IFN-α) is able to enhance PCV2 infection and production in Porcine kidney-15 (PK-15) cells when administered after inoculation. Methods In the present study, luciferase reporter assays, construction of mutant viruses, Analysis the replication efficiency and the response to IFN-α treatment in PK-15 cells and animal experiments were carried out to analyze the function of interferon-stimulated response element (ISRE) of PCV2 and its role during viral replication in vitro and in vivo. Results A functional viral ISRE sequence, 5′-CTGAAAACGAAAGA-3′, was identified in Rep gene promoter (Prep) of PCV2. PCV2 Prep is composed of two mini promoters, the proximal one span the sequence +1 to -106, containing an ISRE while the distal mini promoter is composed of three tandem GC box like sites locate at -85 to -194. It was demonstrated that viral ISRE is necessary for porcine IFN-α initiated luciferase expression enhancement and it plays an important role in affecting the replication efficiency of PCV2 in vivo and in vitro. Conclusions These findings provide a theoretical basis for the Phenomenon of immunostimulation is able to enhance PCV2 infection, and improve the understanding of the complicated mechanisms involved in the host and pathogen interactions of PCV2.
Collapse
Affiliation(s)
- Jinyan Gu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agriculture University, Nanjing 210095, Jiangsu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Mandal P, Krueger BE, Oldenburg D, Andry KA, Beard RS, White DW, Barton ES. A gammaherpesvirus cooperates with interferon-alpha/beta-induced IRF2 to halt viral replication, control reactivation, and minimize host lethality. PLoS Pathog 2011; 7:e1002371. [PMID: 22114555 PMCID: PMC3219715 DOI: 10.1371/journal.ppat.1002371] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/26/2011] [Indexed: 02/06/2023] Open
Abstract
The gammaherpesviruses, including Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), establish latency in memory B lymphocytes and promote lymphoproliferative disease in immunocompromised individuals. The precise immune mechanisms that prevent gammaherpesvirus reactivation and tumorigenesis are poorly defined. Murine gammaherpesvirus 68 (MHV68) is closely related to EBV and KSHV, and type I (alpha/beta) interferons (IFNαβ) regulate MHV68 reactivation from both B cells and macrophages by unknown mechanisms. Here we demonstrate that IFNβ is highly upregulated during latent infection, in the absence of detectable MHV68 replication. We identify an interferon-stimulated response element (ISRE) in the MHV68 M2 gene promoter that is bound by the IFNαβ-induced transcriptional repressor IRF2 during latency in vivo. The M2 protein regulates B cell signaling to promote establishment of latency and reactivation. Virus lacking the M2 ISRE (ISREΔ) overexpresses M2 mRNA and displays uncontrolled acute replication in vivo, higher latent viral load, and aberrantly high reactivation from latency. These phenotypes of the ISREΔ mutant are B-cell-specific, require IRF2, and correlate with a significant increase in virulence in a model of acute viral pneumonia. We therefore identify a mechanism by which a gammaherpesvirus subverts host IFNαβ signaling in a surprisingly cooperative manner, to directly repress viral replication and reactivation and enforce latency, thereby minimizing acute host disease. Since we find ISREs 5′ to the major lymphocyte latency genes of multiple rodent, primate, and human gammaherpesviruses, we propose that cooperative subversion of IFNαβ-induced IRFs to promote latent infection is an ancient strategy that ensures a stable, minimally-pathogenic virus-host relationship. Herpesviruses establish life-long infection in a non-replicating state termed latency. During immune compromise, herpesviruses can reactivate and cause severe disease, including cancer. We investigated mechanisms by which interferons alpha/beta (IFNαβ), a family of antiviral immune genes, inhibit reactivation of murine gammaherpesvirus 68 (MHV68). MHV68 is related to Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, human gammaherpesviruses associated with multiple cancers. We made the surprising discovery that during latency, MHV68 cooperates with IFNαβ to inhibit its own replication. Specifically, a viral gene required for reactivation has evolved to be directly repressed by an IFNαβ-induced transcription factor, IRF2. Once virus replication has triggered sufficient IFNαβ production, expression of this viral gene is reduced and reactivation efficiency decreases. This strategy safeguards the health of the host, since a mutant virus that cannot respond to IRF2 replicates uncontrollably and is more virulent. Viral sensing of IFNαβ is also potentially subversive, since it allows MHV68 to detect periods of localized immune quiescence during which it can reactivate and spread to a new host. Thus, we highlight a novel path of virus-host coevolution, toward cooperative subversion of the antiviral immune response. These observations may illuminate new targets for drugs to inhibit herpesvirus reactivation or eliminate herpesvirus-associated tumors.
Collapse
Affiliation(s)
- Pratyusha Mandal
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Bridgette E. Krueger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Darby Oldenburg
- Department of Health Professions, University of Wisconsin La Crosse, La Crosse, Wisconsin, United States of America
- Rheumatology Research Laboratory, Gundersen Lutheran Medical Center, La Crosse, Wisconsin, United States of America
| | - Katherine A. Andry
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - R. Suzanne Beard
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Douglas W. White
- Rheumatology Research Laboratory, Gundersen Lutheran Medical Center, La Crosse, Wisconsin, United States of America
- Department of Microbiology, University of Wisconsin La Crosse, La Crosse, Wisconsin, United States of America
| | - Erik S. Barton
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
5
|
Comabella M, Kakalacheva K, Río J, Münz C, Montalban X, Lünemann JD. EBV-specific immune responses in patients with multiple sclerosis responding to IFNβ therapy. Mult Scler 2011; 18:605-9. [DOI: 10.1177/1352458511426816] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Symptomatic primary infection with the human γ-herpesvirus Epstein–Barr virus (EBV) and elevated immune responses to EBV are associated with the development and progression of multiple sclerosis (MS). Interferon-beta (IFNβ), first-line treatment for relapse-onset MS, exhibits complex immunoregulatory and antiviral activities. Objective: To determine EBV-specific immune responses in patients with MS during IFNβ therapy. Methods: We evaluated cellular and humoral immune responses to EBV- and human cytomegalovirus (HCMV)-encoded antigens in patients with MS before and 1 year after IFNβ treatment by ELISA and flow cytometry. Twenty-eight patients with MS who showed a clinical response to IFNβ as defined by the absence of relapses and lack of progression on the Expanded Disability Status Scale score during the first 2 years of treatment were included. Results: Clinically effective IFNβ-therapy was associated with a downregulation of proliferative T cell responses to the latent EBV nuclear antigen-1 (EBNA1). EBNA1-specific IgG responses as well as cellular and humoral immune responses to MHC class I restricted EBV antigens expressed during lytic replication and viral B cell transformation were similar before and after IFNβ therapy. Although HCMV-specific IgG levels slightly decreased, proliferative T-cell responses towards HCMV antigens remained unchanged during IFNβ therapy. Conclusion: Clinically effective IFNβ therapy is associated with a reduction of proliferative T-cell responses to EBNA1.
Collapse
Affiliation(s)
- Manuel Comabella
- Centre d’Esclerosi Múltiple de Catalunya, CEM-Cat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
| | - Kristina Kakalacheva
- Institute of Experimental Immunology, Department of Neuroinflammation University of Zürich, Zürich, Switzerland
| | - Jordi Río
- Centre d’Esclerosi Múltiple de Catalunya, CEM-Cat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
| | - Christian Münz
- Institute of Experimental Immunology, Department of Neuroinflammation University of Zürich, Zürich, Switzerland
| | - Xavier Montalban
- Centre d’Esclerosi Múltiple de Catalunya, CEM-Cat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
| | - Jan D Lünemann
- Institute of Experimental Immunology, Department of Neuroinflammation University of Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Kis-Toth K, Szanto A, Thai TH, Tsokos GC. Cytosolic DNA-activated human dendritic cells are potent activators of the adaptive immune response. THE JOURNAL OF IMMUNOLOGY 2011; 187:1222-34. [PMID: 21709148 DOI: 10.4049/jimmunol.1100469] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recent studies in cell lines and genetically engineered mice have demonstrated that cytosolic dsDNA could activate dendritic cells (DCs) to become effector APCs. Recognition of DNA might be a major factor in antimicrobial immune responses against cytosolic pathogens and also in human autoimmune diseases such as systemic lupus erythematosus. However, the role of cytosolic dsDNA in human DC activation and its effects on effector T and B cells are still elusive. In this study, we demonstrate that intracellular dsDNA is a potent activator of human monocyte-derived DCs as well as primary DCs. Activation by dsDNA depends on NF-κB activation, partially on the adaptor molecule IFN-promoter stimulator-1 and the novel cytosolic dsDNA receptor IFI16, but not on the previously recognized dsDNA sentinels absent in melanoma 2, DNA-dependent activator of IFN regulatory factor 3, RNA polymerase III, or high-mobility group boxes. More importantly, we report for the first time, to our knowledge, that human dsDNA-activated DCs, rather than LPS- or inflammatory cytokine mixture-activated DCs, represent the most potent inducers of naive CD4(+) T cells to promote Th1-type cytokine production and generate CD4(+) and CD8(+) cytotoxic T cells. dsDNA-DCs, but not LPS- or mixture-activated DCs, induce B cells to produce complement-fixing IgG1 and IgG3 Abs. We propose that cytosolic dsDNA represents a novel, more effective approach to generate DCs to enhance vaccine effectiveness in reprogramming the adaptive immune system to eradicate infectious agents, autoimmunity, allergy, and cancer.
Collapse
Affiliation(s)
- Katalin Kis-Toth
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard University Medical School Boston, MA 02115, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Interferon regulatory factor 7 (IRF7) was originally identified in the context of Epstein-Barr virus (EBV) infection, and has since emerged as the crucial regulator of type I interferons (IFNs) against pathogenic infections, which activate IRF7 by triggering signaling cascades from pathogen recognition receptors (PRRs) that recognize pathogenic nucleic acids. Moreover, IRF7 is a multifunctional transcription factor, underscored by the fact that it is associated with EBV latency, in which IRF7 is induced as well as activated by the EBV principal oncoprotein latent membrane protein-1 (LMP1). Aberrant production of type I IFNs is associated with many types of diseases such as cancers and autoimmune disorders. Thus, tight regulation of IRF7 expression and activity is imperative in dictating appropriate type I IFN production for normal IFN-mediated physiological functions. Posttranslational modifications have important roles in regulation of IRF7 activity, exemplified by phosphorylation, which is indicative of its activation. Furthermore, mounting evidence has shed light on the importance of regulatory ubiquitination in activation of IRF7. Albeit these exciting findings have been made in the past decade since its discovery, many questions related to IRF7 remain to be addressed.
Collapse
|
8
|
Differential regulation of human papillomavirus type 8 by interferon regulatory factors 3 and 7. J Virol 2010; 85:178-88. [PMID: 20980500 DOI: 10.1128/jvi.00998-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The genus β human papillomavirus (HPV) type 8 is associated with nonmelanoma skin cancer in patients with epidermodysplasia verruciformis, and evidence for its protumorigenic potential in the general population increases. To date, strategies to suppress genus β HPV infections are limited. Interferon regulatory factors IRF-3 and IRF-7 play key roles in the activation of the innate immune response to viral infections. In this study, we show for the first time that both IRF-3 and IRF-7 regulate transcription of a papillomavirus, but with opposing effects. IRF-7, expressed in the suprabasal layers of human epidermis, increased HPV8 late promoter activity via direct binding to viral DNA. UV-B light-induced activation of the HPV8 promoter involved IRF-7 as a downstream effector. In contrast, IRF-3, expressed in all layers of human epidermis, induced strong HPV8 suppression in primary keratinocytes. IRF-3-mediated suppression prevailed over IRF-7-induced HPV8 transcription. Unlike the E6 oncoprotein of the mucosal high-risk HPV16, the HPV8 E6 protein did not bind to IRF-3 and only weakly antagonized its activity. Strong antiviral activity was also observed, when keratinocytes were treated with potent IRF-3 activators, poly(I:C) or RNA bearing 5' phosphates. In conclusion, we show that IRF-3 activation induces a state of cell-autonomous immunity against HPV in primary human keratinocytes. Our study suggests that local application of IRF-3-activating compounds might constitute an attractive novel therapeutic strategy against HPV8-associated diseases, particularly in epidermodysplasia verruciformis patients.
Collapse
|
9
|
d'Hérouël AF, Birgersdotter A, Werner M. FR-like EBNA1 binding repeats in the human genome. Virology 2010; 405:524-9. [DOI: 10.1016/j.virol.2010.06.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 02/15/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
|
10
|
Abstract
A20 possesses both deubiquitinase (DUB) and ubiquitin E3 ligase activities that are required for termination of Toll-like receptor (TLR) signaling leading to NF-kappaB activation and for blockage of tumor necrosis factor (TNF)-induced cytotoxicity and apoptosis. A20 is induced by the Epstein-Barr virus (EBV) oncoprotein LMP1. However, its dual ubiquitin-editing activities have not been investigated in the context of either EBV infection or IRF7 responses. Both A20 and IRF7 have oncogenic properties. We have recently shown that LMP1 activates IRF7 through K63-linked ubiquitination which requires RIP1 and TRAF6, but how this ubiquitination event is regulated has not been studied. Here, we show that A20 negatively regulates IRF7 transcriptional activity induced by LMP1. Deletion or mutation of A20 C-terminal zinc finger motifs had no effect on the inhibition of IRF7 activity, whereas DUB-deficient truncation or point mutation ablated the ability of A20 to inhibit IRF7. Correspondingly, the A20 N-terminal DUB domain, but not the C-terminal E3 ligase domain, interacts physically with IRF7. Transient expression of A20 reduced K63-linked ubiquitination of IRF7 in vivo, but an in vitro deubiquitination assay with purified constituents shows that IRF7 did not act as a substrate for A20 DUB activity. Moreover, A20 interacts with IRF7 endogenously in latently EBV-infected type 3 Raji cells, in which expression of both A20 and IRF7 is constitutively induced by the considerable level of endogenous LMP1. Knockdown of endogenous A20 in Raji cells by expression of A20 short hairpin RNA (shRNA) vectors increases endogenous IRF7 activity and ubiquitination, as well as the protein level of LMP1, a target of IRF7. Thus, A20 negatively regulates LMP1-stimulated IRF7 ubiquitination and activity in EBV latency, and its DUB activity is indispensable for this function. Finally, we discussed the regulation and function of IRFs in EBV latency.
Collapse
|
11
|
Murine gammaherpesvirus 68 has evolved gamma interferon and stat1-repressible promoters for the lytic switch gene 50. J Virol 2010; 84:3711-7. [PMID: 20071569 DOI: 10.1128/jvi.02099-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytokines regulate viral gene expression with important consequences for viral replication and pathogenesis. Gamma interferon (IFN-gamma) is a key regulator of chronic murine gammaherpesvirus 68 (gammaHV68) infection and a potent inhibitor of gammaHV68 reactivation from latency. Macrophages are the cell type that is responsive to the IFN-gamma-mediated control of gammaHV68 reactivation; however, the molecular mechanism of this IFN-gamma action is undefined. Here we report that IFN-gamma inhibits lytic replication of gammaHV68 in primary bone marrow-derived macrophages and decreases transcript levels for the essential lytic switch gene 50. Interestingly, IFN-gamma suppresses the activity of the two known gene 50 promoters, demonstrating that an inflammatory cytokine can directly regulate the promoters for the gammaHV68 lytic switch gene. Stat1, but not IFN-alpha/beta signaling, is required for IFN-gamma action. Moreover, Stat1 deficiency increases basal gammaHV68 replication, gene 50 expression, and promoter activity. Together, these data identify IFN-gamma and Stat1 as being negative regulators of the gammaHV68 lytic cycle and raise the possibility that gammaHV68 maintains IFN-gamma/Stat1-responsive gene 50 promoters to facilitate cell-extrinsic control over the interchange between the lytic and latent cycles.
Collapse
|
12
|
Yoshioka M, Crum MM, Sample JT. Autorepression of Epstein-Barr virus nuclear antigen 1 expression by inhibition of pre-mRNA processing. J Virol 2008; 82:1679-87. [PMID: 18077719 PMCID: PMC2258721 DOI: 10.1128/jvi.02142-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 11/28/2007] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) latent infection, and its associated oncogenic potential, is dependent on genome maintenance functions of EBV nuclear antigen 1 (EBNA-1), one of six EBNAs expressed from a common promoter (Wp and then Cp) upon infection of naive B cells. Subsequent host-mediated silencing, however, necessitates the expression of EBNA-1 from the EBNA-1-specific promoter Qp to ensure against genome loss during cell division, including EBV-associated malignancy. Here we addressed the mechanism by which EBNA-1 represses Qp through binding downstream of the transcription start site and the role of this autoregulatory function in EBV latency. Our results revealed that EBNA-1 does not inhibit transcription from Qp, as previously predicted, but acts post- or cotranscriptionally to block the processing of primary transcripts. This does not, however, require the RGG motifs responsible for strong but nonspecific RNA binding by EBNA-1. Within isogenic B-cell lines using either Cp/Wp or Qp, EBNA-1 occupancy of Qp is equivalent, suggesting that autoregulation occurs, albeit to different degrees, during full and restricted EBV latency programs. Finally, in cell lines using Cp or Wp for EBNA expression, unprocessed transcripts from Qp are detectable in the absence of corresponding mRNAs, providing further evidence that this novel mechanism of EBNA-1 action functions during latency. This posttranscriptional mechanism of regulation would provide an efficient means to monitor and regulate EBNA-1 expression from Qp, ensuring levels adequate for genome maintenance but, perhaps more importantly, below an immunogenic threshold above which latently infected cells may be at risk for elimination by EBNA-1-specific cytotoxic T cells.
Collapse
MESH Headings
- Base Sequence
- Down-Regulation
- Epstein-Barr Virus Nuclear Antigens/chemistry
- Epstein-Barr Virus Nuclear Antigens/genetics
- Epstein-Barr Virus Nuclear Antigens/immunology
- Feedback, Physiological
- Gene Expression Regulation, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/immunology
- Humans
- Molecular Sequence Data
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- RNA, Viral/metabolism
- Transcription, Genetic
- Virus Latency/genetics
Collapse
Affiliation(s)
- Mikio Yoshioka
- Department of Microbiology and Immunology-H107, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, 500 University Dr., P.O. Box 850, Hershey, PA 17033, USA
| | | | | |
Collapse
|
13
|
Cell cycle association of the retinoblastoma protein Rb and the histone demethylase LSD1 with the Epstein-Barr virus latency promoter Cp. J Virol 2008; 82:3428-37. [PMID: 18216119 DOI: 10.1128/jvi.01412-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Epstein-Barr virus C promoter (Cp) regulates the major multicistronic transcript encoding the EBNA-LP, 1, 2, and 3 genes required for B-cell proliferation during latency. The growth-transforming potential of these viral genes suggests that they must be tightly regulated with the host cell cycle and differentiation process. To better understand Cp regulation, we used DNA affinity purification to identify cellular and viral proteins that bind to Cp in latently infected cells. Several previously unknown factors were identified, including the cell cycle regulatory proteins E2F1 and Rb. E2F1 bound to a specific site in Cp located in the core Cp region 3' of the known EBNA2-responsive RBP-Jk (CSL, CBF1) binding site. The histone H3 K4 demethylase LSD1 (BCC110) was also identified by DNA affinity and was shown to form a stable complex with Rb. Coimmunoprecipitation assays demonstrated that E2F1, Rb, and LSD1 bind to Cp in a cell cycle-dependent manner. Rb and LSD1 binding to Cp increased after the S phase, corresponding to a decrease in histone H3 K4 methylation and Cp transcription. Coimmunoprecipitation and immunofluorescence assays reveal that LSD1 interacts with Rb. Surprisingly, LSD1 did not coimmunoprecipitate with E2F1, suggesting that it associates with Rb independently of E2F1. Depletion of LSD1 by small interfering RNAs inhibited Cp basal transcription levels, and overexpression of LSD1 altered the cell cycle profile in p53-positive (p53(+)), but not p53-negative (p53(-)), HCT cells. These findings indicate that Cp is a cell cycle-regulated promoter that is under the control of Rb and the histone demethylase LSD1 in multiple latency types.
Collapse
|
14
|
Bakos A, Banati F, Koroknai A, Takacs M, Salamon D, Minarovits-Kormuta S, Schwarzmann F, Wolf H, Niller HH, Minarovits J. High-resolution analysis of CpG methylation and in vivo protein-DNA interactions at the alternative Epstein-Barr virus latency promoters Qp and Cp in the nasopharyngeal carcinoma cell line C666-1. Virus Genes 2007; 35:195-202. [PMID: 17510783 DOI: 10.1007/s11262-007-0095-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 03/08/2007] [Indexed: 12/11/2022]
Abstract
Transcripts for the Epstein-Barr virus (EBV) encoded nuclear antigens (EBNAs) are initiated at alternative promoters (Wp, Cp, for EBNA 1-6 transcripts and Qp, for EBNA 1 transcripts only) located in the BamHI W, C or Q fragment of the viral genome. To understand the host-cell dependent expression of EBNAs in EBV-associated tumors (lymphomas and carcinomas) and in vitro transformed cell lines, it is necessary to analyse the regulatory mechanisms governing the activity of the alternative promoters of EBNA transcripts. Such studies focused mainly on lymphoid cell lines carrying latent EBV genomes, due to the lack of EBV-associated carcinoma cell lines maintaining latent EBV genomes during cultivation in tissue culture. We took advantage of the unique nasopharyngeal carcinoma cell line, C666-1, harboring EBV genomes, and undertook a detailed analysis of CpG methylation patterns and in vivo protein-DNA interactions at the latency promoters Qp and Cp. We found that the active, unmethylated Qp was marked with strong footprints of cellular transcription factors and the viral protein EBNA 1. In contrast, we could not detect binding of relevant transcription factors to the methylated, silent Cp. We concluded that the epigenetic marks at Qp and Cp in C666-1 cells of epithelial origin resemble those of group I Burkitt's lymphoma cell lines.
Collapse
Affiliation(s)
- Agnes Bakos
- Microbiological Research Group, National Center for Epidemiology, Pihenö u. 1, 1529 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Geiger TR, Martin JM. The Epstein-Barr virus-encoded LMP-1 oncoprotein negatively affects Tyk2 phosphorylation and interferon signaling in human B cells. J Virol 2006; 80:11638-50. [PMID: 16987978 PMCID: PMC1642610 DOI: 10.1128/jvi.01570-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) establishes a persistent infection in the human host and is associated with a variety of human cancers. Persistent infection results from a balance between the host immune response and viral immune evasion mechanisms. EBV infection is controlled initially by the innate immune response and later by T-cell-mediated adaptive immunity. EBV has evolved mechanisms to evade the host immune response so that it can persist for the lifetime of the host. Latent membrane protein 1 (LMP-1) is the EBV oncoprotein essential for B-cell immortalization by EBV. We show here that LMP-1 interacts with Tyk2, a signaling intermediate in the alpha interferon (IFN-alpha) signaling pathway, via a previously uncharacterized LMP-1 signaling domain. LMP-1 prevents Tyk2 phosphorylation and inhibits IFN-alpha-stimulated STAT2 nuclear translocation and interferon-stimulated response element transcriptional activity. Long-term culture of EBV+ lymphoblastoid cells in IFN-alpha is associated with outgrowth of a population expressing elevated LMP-1 protein levels, suggesting that cells expressing higher levels of LMP-1 survive the antiproliferative selective pressure imposed by IFN-alpha. These results show that LMP-1 can protect EBV+ cells from the IFN-alpha-stimulated antiviral/antiproliferative response and suggest that chronic IFN-alpha treatment may encourage the outgrowth of cells expressing elevated, and therefore potentially oncogenic, LMP-1 levels in EBV+ individuals.
Collapse
Affiliation(s)
- Timothy R Geiger
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Campus Box 347, Boulder, CO 80309, USA
| | | |
Collapse
|
16
|
Caipang CMA, Hirono I, Aoki T. Induction of antiviral state in fish cells by Japanese flounder, Paralichthys olivaceus, interferon regulatory factor-1. FISH & SHELLFISH IMMUNOLOGY 2005; 19:79-91. [PMID: 15722233 DOI: 10.1016/j.fsi.2004.12.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 12/02/2004] [Indexed: 05/24/2023]
Abstract
Interferon regulatory factor-1 (IRF-1) mediates an antiviral state in cells by regulating the expression of the interferon (IFN-alpha/beta) system. To elucidate the role of IRF-1 in fish during virus infections, we constructed a recombinant plasmid of the Japanese flounder, Paralichthys olivaceus IRF-1 (JF IRF-1) under the control of the cytomegalovirus (CMV) immediate/early enhancer promoter. The antiviral mechanism of JF IRF-1 was studied using transfection experiments in a homologous cell line. Here, we show that cell supernatants obtained from transiently transfected cells enhanced cell viability of a heterologous cell line upon incubation, reduced the titers of hirame rhabdovirus (HIRRV) and viral hemorrhagic septicemia virus (VHSV), and possessed cytokine-like activity, as shown by their ability to protect cells against virus infections. The supernatants also inhibited the replication of the rhabdoviruses during the early stages of infection as indicated by the reduction of viral titers in the presence of the supernatants obtained from the transfected cells. Further analysis showed that the cell culture supernatants contain cytokine-like substances that possess acid-labile and temperature-resistant properties. These results indicate that JF IRF-1 induces an antiviral state in cells by mediating the production of cytokine-like substances. Thus, JF IRF-1 might be useful as an adjuvant in the development of DNA vaccines against commercially important viral pathogens in Japanese flounder aquaculture.
Collapse
Affiliation(s)
- Christopher Marlowe A Caipang
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | | | | |
Collapse
|
17
|
Chen H, Huang J, Wu FY, Liao G, Hutt-Fletcher L, Hayward SD. Regulation of expression of the Epstein-Barr virus BamHI-A rightward transcripts. J Virol 2005; 79:1724-33. [PMID: 15650197 PMCID: PMC544122 DOI: 10.1128/jvi.79.3.1724-1733.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 09/09/2004] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) BamHI-A rightward transcripts, or BARTs, are a family of mRNAs expressed in all EBV latency programs, including EBV-infected B cells in healthy carriers. Despite their ubiquitous expression, the regulation and biological function of BARTs are still unclear. In this study, the BART 5' termini were characterized by using a procedure that selects capped, full-length mRNAs. Two TATA-less promoter regions, designated P1 and P2, were mapped. P1 had relatively high basal activity in both epithelial and B cells, whereas P2 exhibited higher activity in epithelial cells. Upon EBV infection of B cells, transcription from P1 was detected soon after infection, while expression from P2 was delayed. Promoter-reporter assays in transiently transfected cells revealed that P1 and P2 were differentially regulated. Interferon regulatory factor 7 (IRF7) and IRF5 negatively regulated P1 activity. c-Myc and C/EBP family members positively regulated P2. Regulation of P2 by C/EBPs was characterized by electrophoretic mobility shift assay, chromatin immunoprecipitation, and reporter assays. More-abundant BART expression in epithelial cells correlated with the relative expression of positive and negative regulators in these cells.
Collapse
Affiliation(s)
- Honglin Chen
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
EBV was the first human virus to be directly implicated in carcinogenesis. It infects >90% of the world's population. Although most humans coexist with the virus without serious sequelae, a small proportion will develop tumors. Normal host populations can have vastly different susceptibility to EBV-related tumors as demonstrated by geographical and immunological variations in the prevalence of these cancers. EBV has been implicated in the pathogenesis of Burkitt's lymphoma, Hodgkin's disease, non-Hodgkin's lymphoma, nasopharyngeal carcinoma, and lymphomas, as well as leiomyosarcomas arising in immunocompromised individuals. The presence of this virus has also been associated with epithelial malignancies arising in the gastric region and the breast, although some of this work remains in dispute. EBV uses its viral proteins, the actions of which mimic several growth factors, transcription factors, and antiapoptotic factors, to usurp control of the cellular pathways that regulate diverse homeostatic cellular functions. Recent advances in antiviral therapeutics, application of monoclonal antibodies, and generation of EBV-specific CTLs are beginning to show promise in the treatment of EBV-related disorders.
Collapse
Affiliation(s)
- Matthew P Thompson
- Department of Bioimmunotherapy, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|
19
|
Kennedy G, Komano J, Sugden B. Epstein-Barr virus provides a survival factor to Burkitt's lymphomas. Proc Natl Acad Sci U S A 2003; 100:14269-74. [PMID: 14603034 PMCID: PMC283581 DOI: 10.1073/pnas.2336099100] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) has been causally associated with at least five human malignancies. The exact contributions made by EBV to these cancers remain unknown. We demonstrate that one viral protein found in all EBV-associated malignancies, Epstein-Barr nuclear antigen 1 (EBNA-1), is required for survival of one of these cancers, EBV-positive Burkitt's lymphoma. Inhibition of EBNA-1 decreases survival of these tumor cells by inducing apoptosis. Expression of EBNA-1 in uninfected cells also can inhibit apoptosis induced by expression of p53 in the absence of the EBV genome. Our findings demonstrate that EBNA-1 is critical for the continued survival of EBV-associated Burkitt's lymphoma, and, by extension, for the other B cell tumors with which EBV is associated. Efficient inhibitors of EBNA-1's functions would likely prove useful in the therapy of EBV-associated malignancies.
Collapse
Affiliation(s)
- Gregory Kennedy
- McArdle Laboratory for Cancer Research and Department of Surgery, University of Wisconsin, 1400 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
20
|
Paulson EJ, Fingeroth JD, Yates JL, Speck SH. Methylation of the EBV genome and establishment of restricted latency in low-passage EBV-infected 293 epithelial cells. Virology 2002; 299:109-21. [PMID: 12167346 DOI: 10.1006/viro.2002.1457] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epstein-Barr virus (EBV) encodes multiple latency programs: a growth-transforming program (type III) latency program and restricted-latency (types I and II) programs. During type III latency, EBV expresses six nuclear antigens, all of which are encoded by a single complex transcriptional unit driven by two linked promoters, Cp and Wp, while restricted viral latency is characterized by the expression of a single nuclear antigen, EBNA1, whose expression is driven from a distinct transcription unit under the control of the Qp promoter. EBV infection of the 293 epithelial cell line frequently leads to the establishment of a type I/II latent infection. Here we report that during the initial stages of virus infection of the 293 cell line, both Cp and Wp are active. However, analysis of four established, low-passage EBV-infected 293 cell lines revealed that three of these exhibited Qp-driven transcription of the EBNA 1 gene and little or no detectable Cp and Wp activity, while the fourth cell line exhibited Cp activity. Notably, all four cell lines contained the necessary transcription factors to drive transcription initiation from Cp and Wp when transiently transfected with unmethylated reporter constructs. Furthermore, in the cell lines exhibiting restricted EBV latency the viral genomes were extensively methylated around Cp and Wp, but not Qp. In contrast, in the cell line exhibiting Cp activity the viral genomes were hypomethylated around Cp, Wp, and Qp. Taken together, these results provide evidence that the establishment of a restricted latent infection in the 293 epithelial cell line is not due to a failure to initiate the growth-transforming (type III) latency program, but rather may arise from a selection against the type III latency program. Furthermore, these results are consistent with the hypothesis that methylation of Cp and Wp is required for entry into the type I or II latency programs.
Collapse
Affiliation(s)
- Emily J Paulson
- Immunology Graduate Program, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
21
|
Bonder CS, Davies KVL, Liu X, Hertzog PJ, Woodcock JM, Finlay-Jones JJ, Hart PH. Endogenous interferon-alpha production by differentiating human monocytes regulates expression and function of the IL-2/IL-4 receptor gamma chain. Cytokine 2002; 17:187-96. [PMID: 11991671 DOI: 10.1006/cyto.2001.0994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro monocyte-derived macrophages (MDMac) and synovial fluid macrophages from inflamed joints differ from monocytes in their responses to interleukin 4 (IL-4). While IL-4 can suppress LPS-induced interleukin beta (IL-beta) and tumour necrosis factor alpha (TNF-alpha) production by monocytes, IL-4 can suppress LPS-induced IL-1 beta, but not TNFalpha production by the more differentiated cells. Recently we reported a correlation between the ability of IL-4 to regulate TNFalpha production by monocytes and the expression of the IL-4 receptor gamma chain or gamma common (gamma c chain). Like MDMac, interferon alpha (IFNalpha)-treated monocytes expressed less IL-4 receptor gamma c chain, reduced levels of IL-4-activated STAT6 and IL-4 could not suppress LPS-induced TNFalpha production. In addition, like monocytes and MDMac, IFNalpha-treated monocytes expressed normal levels of the IL-4 receptor alpha chain and IL-4 significantly suppressed LPS-induced IL-1 beta production. With addition of IFNalpha-neutralizing antibodies, the ability of IL-4 to suppress LPS-induced TNFalpha production with prolonged monocyte culture was restored. Detection of IFNalpha in synovial fluids from inflamed joints further implicates IFNalpha in the inability of IL-4 to suppress TNFalpha production by synovial fluid macrophages. This study identifies a mechanism for the differential expression of gamma c and varied responses to IL-4 by human monocytes compared with MDMac.
Collapse
Affiliation(s)
- Claudine S Bonder
- Department of Microbiology and Infectious Diseases, School of Medicine, Flinders University, Adelaide, GPO Box 2100, Australia 5001
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Interferon (IFN) regulatory factors (IRF) are a family of transcription factors with multiple functions. IRF-7 was initially cloned within the biologic context of Epstein-Barr virus (EBV) latency and discovered to have an intimate relation with the EBV primary oncogenic protein, latent membrane protein-1 (LMP-1). EBV regulates and uses IRF-7 as a secondary mediator for several target genes involved in latency and immune regulation. Other than its functions in EBV latency, IRF-7 has been identified as one of the major players in virally induced IFN production that is central to innate immunity. Thus, IRF-7 plays important roles in a variety of biologic systems.
Collapse
Affiliation(s)
- Luwen Zhang
- Nebraska Center for Virology, UNL Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | | |
Collapse
|
23
|
Zhang L, Pagano JS. Interferon regulatory factor 7: a key cellular mediator of LMP-1 in EBV latency and transformation. Semin Cancer Biol 2001; 11:445-53. [PMID: 11669606 DOI: 10.1006/scbi.2001.0411] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interferon regulatory factor 7 (IRF-7) was cloned within the biological context of Epstein-Barr virus (EBV) latency, and has an intimate relation with EBV. EBV latent membrane protein 1 (LMP-1) regulates IRF-7 both by inducing the expression of IRF-7 and by activating IRF-7 protein through phosphorylation and nuclear translocation in a post-translational manner. The activated IRF-7 then functions to regulate both EBV and cellular target genes involved in latency, transformation and immune regulation. IRF-7 appears to be a key cellular latency protein involved in both the pathogenesis and persistence of EBV infection.
Collapse
MESH Headings
- Cell Transformation, Viral/immunology
- Cell Transformation, Viral/physiology
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/immunology
- Herpesvirus 4, Human/metabolism
- Herpesvirus 4, Human/physiology
- Humans
- Interferon Regulatory Factor-7
- Models, Biological
- Oncogenes/physiology
- Promoter Regions, Genetic/genetics
- Protein Processing, Post-Translational
- Viral Matrix Proteins/chemistry
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/metabolism
- Virus Latency/physiology
Collapse
Affiliation(s)
- L Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599-7295, USA.
| | | |
Collapse
|
24
|
Pajic A, Polack A, Staege MS, Spitkovsky D, Baier B, Bornkamm GW, Laux G. Elevated expression of c-myc in lymphoblastoid cells does not support an Epstein-Barr virus latency III-to-I switch. J Gen Virol 2001; 82:3051-3055. [PMID: 11714983 DOI: 10.1099/0022-1317-82-12-3051] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) transforms primary B cells in vitro. Established cell lines adopt a lymphoblastoid phenotype (LCL). In contrast, EBV-positive Burkitt's lymphoma (BL) cells, in which the proto-oncogene c-myc is constitutively activated, do not express a lymphoblastoid phenotype in vivo. The two different phenotypes are paralleled by two distinct programmes of EBV latent gene expression termed latency type I in BL cells and type III in LCL. Human B cell lines were established from a conditional LCL (EREB2-5) by overexpression of c-myc and inactivation of EBV nuclear protein 2 (EBNA2). These cells (A1 and P493-6) adopted a BL phenotype in the absence of EBNA2. However, the EBV latency I promoter Qp was not activated. Instead, the latency III promoter Cp remained active. These data suggest that the induction of a BL phenotype by overexpression of c-myc in an LCL is not necessarily paralleled by an EBV latency III-to-I switch.
Collapse
Affiliation(s)
- Alexander Pajic
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Klinische Molekularbiologie und Tumorgenetik, Marchioninistr. 25, D-81377 München, Germany1
| | - Axel Polack
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Klinische Molekularbiologie und Tumorgenetik, Marchioninistr. 25, D-81377 München, Germany1
| | - Martin S Staege
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Klinische Molekularbiologie und Tumorgenetik, Marchioninistr. 25, D-81377 München, Germany1
| | - Dimitry Spitkovsky
- Deutsches Krebsforschungszentrum (DKFZ), Forschungsschwerpunkt Angewandte Tumorvirologie, D-69120 Heidelberg, Germany2
| | - Barbara Baier
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Klinische Molekularbiologie und Tumorgenetik, Marchioninistr. 25, D-81377 München, Germany1
| | - Georg W Bornkamm
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Klinische Molekularbiologie und Tumorgenetik, Marchioninistr. 25, D-81377 München, Germany1
| | - Gerhard Laux
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Klinische Molekularbiologie und Tumorgenetik, Marchioninistr. 25, D-81377 München, Germany1
| |
Collapse
|
25
|
Barnes BJ, Moore PA, Pitha PM. Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon alpha genes. J Biol Chem 2001; 276:23382-90. [PMID: 11303025 DOI: 10.1074/jbc.m101216200] [Citation(s) in RCA: 298] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Interferon regulatory factor (IRF) genes encode DNA-binding proteins that are involved in the innate immune response to infection. Two of these proteins, IRF-3 and IRF-7, serve as direct transducers of virus-mediated signaling and play critical roles in the induction of type I interferon genes. We have now shown that another factor, IRF-5, participates in the induction of interferon A (IFNA) and IFNB genes and can replace the requirement for IRF-7 in the induction of IFNA genes. We demonstrate that, despite the functional similarity, IRF-5 possesses unique characteristics and does not have a redundant role. Thus, 1) activation of IRF-5 by phosphorylation is virus-specific, and its in vivo association with the IFNA promoter can be detected only in cells infected with NDV, not Sendai virus, while both viruses activate IRF-3 and IRF-7, and 2) NDV infection of IRF-5-overexpressing cells preferentially induced the IFNA8 subtype, while IFNA1 was primarily induced in IRF-7 expressing cells. These data indicate that multiple signaling pathways induced by infection may be differentially recognized by members of the IRF family and modulate transcription of individual IFNA genes in a virus and cell type-specific manner.
Collapse
Affiliation(s)
- B J Barnes
- Oncology Center and the Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | |
Collapse
|
26
|
Xie R, van Wijnen AJ, van Der Meijden C, Luong MX, Stein JL, Stein GS. The cell cycle control element of histone H4 gene transcription is maximally responsive to interferon regulatory factor pairs IRF-1/IRF-3 and IRF-1/IRF-7. J Biol Chem 2001; 276:18624-32. [PMID: 11278666 DOI: 10.1074/jbc.m010391200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon regulatory factors (IRFs) are transcriptional mediators of interferon-responsive signaling pathways that are involved in antiviral defense, immune response, and cell growth regulation. To investigate the role of IRF proteins in the regulation of histone H4 gene transcription, we compared the transcriptional contributions of IRF-1, IRF-2, IRF-3, and IRF-7 using transient transfection assays with H4 promoter/luciferase (Luc) reporter genes. These IRF proteins up-regulate reporter gene expression but IRF-1, IRF-3, and IRF-7 are more potent activators of the H4 promoter than IRF-2. Forced expression of different IRF combinations reveals that IRF-2 reduces IRF-1 or IRF-3 dependent activation, but does not affect IRF-7 function. Thus, IRF-2 may have a dual function in histone H4 gene transcription by acting as a weak activator at low dosage and a competitive inhibitor of other strongly activating IRFs at high levels. IRF-1/IRF-3 and IRF-1/IRF-7 pairs each mediate the highest levels of site II-dependent promoter activity and can up-regulate transcription by 120-150-fold. We also find that interferon gamma up-regulates IRF-1 and site II-dependent promoter activity. This up-regulation is not observed when the IRF site is mutated or if cells are preloaded with IRF-1. Our results indicate that IRF-1, IRF-2, IRF-3, and IRF-7 can all regulate histone H4 gene expression. The pairwise utilization of distinct IRF factors provides a flexible transcriptional mechanism for integration of diverse growth-related signaling pathways.
Collapse
Affiliation(s)
- R Xie
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | |
Collapse
|
27
|
Salamon D, Takacs M, Ujvari D, Uhlig J, Wolf H, Minarovits J, Niller HH. Protein-DNA binding and CpG methylation at nucleotide resolution of latency-associated promoters Qp, Cp, and LMP1p of Epstein-Barr virus. J Virol 2001; 75:2584-96. [PMID: 11222681 PMCID: PMC115881 DOI: 10.1128/jvi.75.6.2584-2596.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr viral (EBV) latency-associated promoters Qp, Cp, and LMP1p are crucial for the regulated expression of the EBNA and LMP transcripts in dependence of the latency type. By transient transfection and in vitro binding analyses, many promoter elements and transcription factors have previously been shown to be involved in the activities of these promoters. However, the latency promoters have only partially been examined at the nucleotide level in vivo. Therefore, we undertook a comprehensive analysis of in vivo protein binding and CpG methylation patterns at these promoters in five representative cell lines and correlated the results with the known in vitro binding data and activities of these promoters from previous transfection experiments. Promoter activity inversely correlated with the methylation state of promoters, although Qp was a remarkable exception. Novel protein binding data were obtained for all promoters. For Cp, binding correlated well with promoter activity; for LMP1p and Qp, binding patterns looked similar regardless of promoter activity.
Collapse
Affiliation(s)
- D Salamon
- Microbiological Research Group, National Center for Epidemiology, H-1529 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhang L, Pagano JS. Interferon regulatory factor 7 mediates activation of Tap-2 by Epstein-Barr virus latent membrane protein 1. J Virol 2001; 75:341-50. [PMID: 11119603 PMCID: PMC113927 DOI: 10.1128/jvi.75.1.341-350.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transporter associated with antigen processing 2 (Tap-2) is responsible for ATP-dependent transport of peptides from the cytosol to the endoplasmic reticulum, where peptides bind to newly synthesized human leukocyte antigen (HLA) class I molecules, which are essential for cellular immune responses. Epstein-Barr virus (EBV) latent membrane protein 1 (LMP-1) has been shown to induce the expression of Tap-2. In this study, the induction of endogenous Tap-2 by LMP-1 is shown to be associated with and requires the expression of interferon regulatory factor 7 (IRF-7). In DG75 Burkitt's lymphoma (BL) cells, in which LMP-1 induces the expression of IRF-7, LMP-1 induced endogenous Tap-2, and ectopic expression of IRF-7 could enhance the induction. In Akata BL cells, in which LMP-1 could not induce IRF-7, LMP-1 could not induce Tap-2. Addition of IRF-7, which complements the defect in Akata cells, could stimulate the expression of Tap-2. Furthermore, LMP-1 and IRF-7A but not other IRF-7 splicing variants could activate endogenous Tap-2. A Tap-2 promoter reporter construct could be activated by the overexpression of IRF-7A. The activation could be specifically enhanced by LMP-1 and was dependent on an intact interferon-stimulated response element (ISRE) present in the Tap-2 promoter. Also, IRF-7 can bind to the Tap-2 promoter under physiological conditions in vivo, as shown by formaldehyde cross-linking, as well as to the Tap-2 ISRE in vitro, as shown by gel mobility shift assays. Furthermore, LMP-1 facilitates the phosphorylation and nuclear translocation of IRF-7. These data point to the role of IRF-7 as a secondary mediator of LMP-1-activated signal transduction for Tap-2 as follows: LMP-1 stimulates the expression of IRF-7 and facilitates its phosphorylation and nuclear translocation, and then the activated IRF-7 mediates the activation of the cellular Tap-2 gene. The induction of Tap-2 by IRF-7 and LMP-1 may have an important implication for the immune response to EBV and its persistence in vivo.
Collapse
Affiliation(s)
- L Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7265, USA.
| | | |
Collapse
|
29
|
Lin R, Mamane Y, Hiscott J. Multiple regulatory domains control IRF-7 activity in response to virus infection. J Biol Chem 2000; 275:34320-7. [PMID: 10893229 DOI: 10.1074/jbc.m002814200] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent studies implicate the interferon regulatory factors (IRF), IRF-3 and IRF-7, as key activators of Type 1 interferon genes, as well as the RANTES (regulated on activation normal T cell expressed) chemokine gene. Both IRF-3 and IRF-7 are regulated in part by virus-induced C-terminal phosphorylation, leading to nuclear translocation, stimulation of DNA binding, and transcriptional activities. Structure-function studies with IRF-7 suggested a complex organization of the C-terminal region, with a constitutive activation domain located between amino acids 150-246, an accessory inducibility region at the very end of IRF-7 between amino acids 467 and 503, and an inhibitory region (amino acids 341-467) adjacent to the C-terminal end that interferes with transactivation. Furthermore, an element that increases basal and virus-inducible activity is located between amino acids 278 and 305. A transcriptionally active form of IRF-7 was also generated by substitution of Ser-477 and Ser-479 residues with the phosphomimetic Asp. IRF-7, particularly IRF-7(S477D/S479D), was a strong transactivator of type I interferon and RANTES chemokine gene expression. Unlike wild type IRF-3, IRF-7 overexpression was able to stimulate inteferon gene expression in the absence of virus infection. Using tagged versions of IRF-7 and IRF-3, the formation of homo- and heterodimers was detected by co-immunoprecipitation. These results demonstrate that IRF-3 and IRF-7 transcription factors possess distinct structural characteristics that impart complementary rather than redundant functional roles in cytokine gene activation.
Collapse
Affiliation(s)
- R Lin
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Montreal H3T 1E2, Canada.
| | | | | |
Collapse
|
30
|
Hida S, Ogasawara K, Sato K, Abe M, Takayanagi H, Yokochi T, Sato T, Hirose S, Shirai T, Taki S, Taniguchi T. CD8(+) T cell-mediated skin disease in mice lacking IRF-2, the transcriptional attenuator of interferon-alpha/beta signaling. Immunity 2000; 13:643-55. [PMID: 11114377 DOI: 10.1016/s1074-7613(00)00064-9] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The balanced action of cytokines is known to be critical for the maintenance of homeostatic immune responses. Here, we report the development of an inflammatory skin disease involving CD8(+) T cells, in mice lacking the transcription factor, interferon regulatory factor-2 (IRF-2). CD8(+) T cells exhibit in vitro hyper-responsiveness to antigen stimulation, accompanied with a notable upregulation of the expression of genes induced by interferon-alpha/beta (IFN-alpha/beta). Furthermore, both disease development and CD8(+) T cell abnormality are suppressed by the introduction of nullizygosity to the genes that positively regulate the IFN-alpha/beta signaling pathway. IRF-2 may represent a unique negative regulator, attenuating IFN-alpha/beta-induced gene transcription, which is necessary for balancing the beneficial and harmful effects of IFN-alpha/beta signaling in the immune system.
Collapse
Affiliation(s)
- S Hida
- Department of Immunology, Faculty of Medicine and Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Koenig Merediz SA, Schmidt M, Hoppe GJ, Alfken J, Meraro D, Levi BZ, Neubauer A, Wittig B. Cloning of an interferon regulatory factor 2 isoform with different regulatory ability. Nucleic Acids Res 2000; 28:4219-24. [PMID: 11058120 PMCID: PMC113119 DOI: 10.1093/nar/28.21.4219] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interferons (IFNs) are a family of multifunctional proteins involved in immune activation, regulation of cell growth and antiviral response. They exert their functions by induction of several IFN-stimulated genes, including IFN regulatory factors (IRFs), a family of transcriptional regulators. One of these factors, IRF-2, was initially cloned as an antagonistic counterpart to IRF-1 with oncogenic potential. Here we describe a second isoform of IRF-2, termed IRF-2s, cloned from human and murine cells. This isoform lacks two amino acids located C-terminal of the DNA-binding domain, which is conserved in all IRF family members, leading to a change in the predicted secondary structure. Both isoforms have similar binding affinities to known target sequences in electrophoretic mobility shift assays. Using reporter gene constructs with the type IV promoter region of the MHC class II transactivator (CIITA), which is the essential factor for IFN-gamma-induced MHC class II expression, we show that the short isoform IRF-2s exhibits a weaker activation ability compared to IRF-2. Thus, our data present the first evidence of two IRF-2 isoforms with different regulatory ability.
Collapse
Affiliation(s)
- S A Koenig Merediz
- Abteilung für Molekularbiologie, Biochemie und Bioinformatik, Fachbereich Humanmedizin, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Carbone A, Gloghini A, Cozzi MR, Capello D, Steffan A, Monini P, De Marco L, Gaidano G. Expression of MUM1/IRF4 selectively clusters with primary effusion lymphoma among lymphomatous effusions: implications for disease histogenesis and pathogenesis. Br J Haematol 2000. [DOI: 10.1111/j.1365-2141.2000.02329.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Carbone A, Gloghini A, Cozzi MR, Capello D, Steffan A, Monini P, De Marco L, Gaidano G. Expression of MUM1/IRF4 selectively clusters with primary effusion lymphoma among lymphomatous effusions: implications for disease histogenesis and pathogenesis. Br J Haematol 2000; 111:247-57. [PMID: 11091208 DOI: 10.1046/j.1365-2141.2000.02329.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Primary effusion lymphoma (PEL) is a peculiar B-cell lymphoma characterized by infection by human herpesvirus type-8/Kaposi sarcoma-associated herpesvirus (HHV-8/KSHV) and by preferential growth in the serous body cavities. Histogenetic studies have suggested that PEL originates from B cells at a late stage of differentiation. In this study, we have investigated PEL for the expression status of MUM1/IRF4 (multiple myeloma 1/interferon regulatory factor 4) protein, which is involved in physiological B-cell maturation and represents a histogenetic marker of late B-cell differentiation. Using multiple detection assays, all cases of PEL (n = 22) were found to express MUM1/IRF4 molecules. MUM1/IRF4 expression was a selective feature of PEL among lymphomas involving the serous body cavities as secondary lymphomatous effusions generally failed to express the protein. In reactive lymphoid tissues, MUM1/ IRF4 expression clustered with advanced stages of B-cell differentiation. Comparison of MUM1/IRF4 expression with that of other histogenetic markers defined two phenotypic variants of PEL, i.e. MUM1/IRF4+, CD138/syndecan-1+, B-cell antigen- (20 out of 22 cases) and MUM1/IRF4+, CD138/syndecan-1-, B-cell antigen+ (2 out of 22 cases), suggesting a certain degree of heterogeneity in the disease histogenesis. The implications of these data are threefold. First, MUM1/IRF4 expression corroborates the notion that PEL originates from post-germinal centre, preterminally differentiated B-cells. Second, MUM1/IRF4 may help in the differential diagnosis of PEL among other lymphomas involving the serous body cavities. Finally, MUM1/IRF4 may interact with HHV-8/KSHV-encoded interferon regulatory factors (IRFs) and thus contribute to PEL escape from interferon-mediated control of viral infection.
Collapse
Affiliation(s)
- A Carbone
- Division of Pathology, Centro di Riferimento Oncologico, IRCCS, Istituto Nazionale Tumori, Aviano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lin R, Génin P, Mamane Y, Hiscott J. Selective DNA binding and association with the CREB binding protein coactivator contribute to differential activation of alpha/beta interferon genes by interferon regulatory factors 3 and 7. Mol Cell Biol 2000; 20:6342-53. [PMID: 10938111 PMCID: PMC86109 DOI: 10.1128/mcb.20.17.6342-6353.2000] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies implicate the interferon (IFN) regulatory factors (IRF) IRF-3 and IRF-7 as key activators of the alpha/beta IFN (IFN-alpha/beta) genes as well as the RANTES chemokine gene. Using coexpression analysis, the human IFNB, IFNA1, and RANTES promoters were stimulated by IRF-3 coexpression, whereas the IFNA4, IFNA7, and IFNA14 promoters were preferentially induced by IRF-7 only. Chimeric proteins containing combinations of different IRF-7 and IRF-3 domains were also tested, and the results provided evidence of distinct DNA binding properties of IRF-3 and IRF-7, as well as a preferential association of IRF-3 with the CREB binding protein (CBP) coactivator. Interestingly, some of these fusion proteins led to supraphysiological levels of IFN promoter activation. DNA binding site selection studies demonstrated that IRF-3 and IRF-7 bound to the 5'-GAAANNGAAANN-3' consensus motif found in many virus-inducible genes; however, a single nucleotide substitution in either of the GAAA half-site motifs eliminated IRF-3 binding and transactivation activity but did not affect IRF-7 interaction or transactivation activity. These studies demonstrate that IRF-3 possesses a restricted DNA binding site specificity and interacts with CBP, whereas IRF-7 has a broader DNA binding specificity that contributes to its capacity to stimulate delayed-type IFN gene expression. These results provide an explanation for the differential regulation of IFN-alpha/beta gene expression by IRF-3 and IRF-7 and suggest that these factors have complementary rather than redundant roles in the activation of the IFN-alpha/beta genes.
Collapse
Affiliation(s)
- R Lin
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada H3T 1E2.
| | | | | | | |
Collapse
|
35
|
Génin P, Algarté M, Roof P, Lin R, Hiscott J. Regulation of RANTES chemokine gene expression requires cooperativity between NF-kappa B and IFN-regulatory factor transcription factors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5352-61. [PMID: 10799898 DOI: 10.4049/jimmunol.164.10.5352] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Virus infection of host cells activates a set of cellular genes, including cytokines, IFNs, and chemokines, involved in antiviral defense and immune activation. Previous studies demonstrated that virus-induced transcriptional activation of a member of the human CC-chemokine RANTES required activation of the latent transcription factors IFN-regulatory factor (IRF)-3 and NF-kappa B via posttranslational phosphorylation. In the present study, we further characterized the regulatory control of RANTES transcription during virus infection using in vivo genomic footprinting analyses. IRF-3, the related IRF-7, and NF-kappa B are identified as important in vivo binding factors required for the cooperative induction of RANTES transcription after virus infection. Using fibroblastic or myeloid cells, we demonstrate that the kinetics and strength of RANTES virus-induced transcription are highly dependent on the preexistence of IRFs and NF-kappa B. Use of dominant negative mutants of either I kappa B-alpha or IRF-3 demonstrate that disruption of either pathway dramatically abolishes the ability of the other to bind and activate RANTES expression. Furthermore, coexpression of IRF-3, IRF-7, and p65/p50 leads to synergistic activation of RANTES promoter transcription. These studies reveal a model of virus-mediated RANTES promoter activation that involves cooperative synergism between IRF-3/IRF-7 and NF-kappa B factors.
Collapse
Affiliation(s)
- P Génin
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Departments of Microbiology, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
36
|
Zhang L, Pagano JS. Interferon regulatory factor 7 is induced by Epstein-Barr virus latent membrane protein 1. J Virol 2000; 74:1061-8. [PMID: 10627515 PMCID: PMC111439 DOI: 10.1128/jvi.74.3.1061-1068.2000] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection by Epstein-Barr virus (EBV) generates several types of latency with different profiles of gene expression but with expression of Epstein-Barr nuclear antigen 1 (EBNA-1) in common. The BamHI Q promoter (Qp) is used for the transcription of EBNA-1 mRNA in type I latency, which is an EBV infection state exemplified by Burkitt's lymphoma (BL). However, Qp is inactive in type III latency, and other promoters (C/Wp) are used for transcription of EBNA-1, which raises the question of how usage of these promoters is governed. Interferon (IFN) regulatory factor 7 (IRF-7) was identified first as a negative regulator of Qp. Expression of IRF-7 is associated with EBV type III latency, where Qp is inactive, but not with type I latency, raising the possibility that a viral gene product(s) expressed in type III latency might induce IRF-7 and repress Qp. Here, detailed analysis of the expression of IRF-7 revealed that it is associated with the expression of EBV latent membrane protein 1 (LMP-1) and that LMP-1 stimulates the expression of IRF-7 in type III latency in which Qp is inactive. In contrast, LMP-1 is not expressed in type I latency cells in which Qp is active. LMP-1 represses the constitutive activity of Qp reporter constructs. Mutational analysis of Qp reporter constructs revealed that the Qp IFN-stimulated response element (ISRE) is essential for the repression by LMP-1. Furthermore, LMP-1 reduced EBNA-1 mRNA derived from Qp only in type I cells in which IRF-7 could be induced. Finally, IFN-alpha, but not IFN-gamma, repressed endogenous Qp activity, which is consistent with the ability of IFN-alpha to induce IRF-7. Thus, IRF-7 may mediate repression of Qp by LMP-1. The induction of IRF-7 by LMP-1 may be relevant to the silencing of Qp in EBV type III latency.
Collapse
MESH Headings
- Blotting, Western
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Epstein-Barr Virus Nuclear Antigens/genetics
- Epstein-Barr Virus Nuclear Antigens/metabolism
- Gene Expression Regulation, Viral
- Genes, Reporter
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/physiology
- Humans
- Interferon Regulatory Factor-7
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/metabolism
- Virus Latency/genetics
Collapse
Affiliation(s)
- L Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA.
| | | |
Collapse
|
37
|
Nakao K, Nakata K, Yamashita M, Tamada Y, Hamasaki K, Ishikawa H, Kato Y, Eguchi K, Ishii N. p48 (ISGF-3gamma) is involved in interferon-alpha-induced suppression of hepatitis B virus enhancer-1 activity. J Biol Chem 1999; 274:28075-8. [PMID: 10497156 DOI: 10.1074/jbc.274.40.28075] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interferon-alpha (IFN-alpha) suppresses hepatitis B virus (HBV) gene expression by reducing its enhancer-1 activity. IFN-alpha induces transcription factors, interferon-stimulated gene factor 3 (ISGF3), and interferon regulatory factor-1 (IRF-1), which activate interferon-inducible gene expression through binding to the interferon-stimulated regulatory element (ISRE) "AGTTTCNNTTTCNC" in the gene promoters. We found the ISRE-like sequence "AGGCTTTCACTTTCTC" in the HBV enhancer-1 region and elucidated the role of this sequence. Gel mobility shift assay showed binding of in vitro translated IRF-1 and in vitro translated p48 (ISGF3-gamma), which is a component of ISGF3 to this sequence. However, nuclear extracts binding to this sequence from human hepatoma cells (HuH-7) treated with IFN-alpha contained only the protein consisted of p48. In transfection experiments, IFN-alpha suppressed the HBV enhancer-1 activity, and overexpression of p48 enhanced this inhibitory effect. Both mutation and deletion of the ISRE-like sequence in the HBV enhancer-1 region reduced the suppressive effect of IFN-alpha. Our results suggest that the ISRE-like sequence in the HBV enhancer-1 can interact with the protein containing p48 and mediate the IFN-alpha-induced suppression of the enhancer activity.
Collapse
Affiliation(s)
- K Nakao
- Health Research Center, Nagasaki University School of Medicine, 1-7-1, Sakamoto, Nagasaki 852-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ruf IK, Sample J. Repression of Epstein-Barr virus EBNA-1 gene transcription by pRb during restricted latency. J Virol 1999; 73:7943-51. [PMID: 10482541 PMCID: PMC112808 DOI: 10.1128/jvi.73.10.7943-7951.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the restricted programs of Epstein-Barr virus (EBV) latency in EBV-associated tumors and a subpopulation of latently infected B cells in healthy EBV carriers, transcription of the EBV nuclear antigen 1 (EBNA-1) gene is mediated by the promoter Qp. Previously, two noncanonical E2F binding sites were identified within Qp. The role of E2F in the regulation of Qp, however, has been controversial and is undefined. Here we demonstrate that an E2F factor(s) within Burkitt lymphoma (BL) cells binds to a G/C-rich element [GGCG(C/G)] within the previously identified binding sites in Qp and prototypical E2F response elements. Furthermore, Qp-driven reporter gene expression could be efficiently repressed through either E2F binding site by the tumor suppressor pRb, a potent transcriptional repressor targeted to promoters during G(0) and the early G(1) phase of the cell cycle via its interaction with E2F; a mutant pRb (pRb(706)) lacking E2F binding capability was unable to repress Qp. However, we did not observe cell cycle variation in the expression of either EBNA-1 mRNA or protein in exponentially growing BL cells, consistent with previous predictions that Qp is constitutively active in these cells and with the extremely long t(1/2) of EBNA-1. By contrast, within G(0)/G(1) in growth-arrested BL cells, EBNA-1 mRNA levels were twofold lower than in S phase, similar to the two- to eightfold differences in cell cycle expression of some cyclin mRNAs. Thus, although regulation of Qp is coupled to the cell cycle, this clearly has no impact on the level of EBNA-1 expressed in proliferating cells. We conclude, therefore, that the most important contribution of E2F to the regulation of Qp is to direct the pRb-mediated suppression of EBNA-1 expression within resting B cells, the principal reservoir of latent EBV. This would provide a means to restrict unneeded and potentially deleterious expression of EBNA-1 in a nonproliferating cell and to coordinate the activation of EBNA-1 expression necessary for EBV genome replication and maintenance upon reentry of the cell cycle in response to proliferative signals.
Collapse
Affiliation(s)
- I K Ruf
- Program in Viral Oncogenesis and Tumor Immunology, Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
39
|
Nguyen H, Teskey L, Lin R, Hiscott J. Identification of the secretory leukocyte protease inhibitor (SLPI) as a target of IRF-1 regulation. Oncogene 1999; 18:5455-63. [PMID: 10498899 DOI: 10.1038/sj.onc.1202924] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interferon Regulatory Factor (IRF)-1 is a multifunctional transcription factor, involved in cell growth regulation, pathogen response and immune activation. To identify novel gene targets that may contribute to IRF-1 mediated activities, RNA fingerprinting was performed using NIH3T3 cells that inducibly express a hybrid form of IRF-1 under tetracycline regulated control. Secretory leukocyte protease inhibitor (SLPI) - a regulator of inflammation and an inhibitor of the LPS response - was identified as a gene repressed after doxycycline induced IRF-1 expression. Preliminary analysis of the human SLPI promoter identified an ISRE-like site located within the -221 to -200 region to which IRF-1 binds and a second, putative IRF-1 binding site upstream of the TATA box. Furthermore, co-transfection studies demonstrated that SLPI expression was inhibited by IRF-1 co-expression. The identification of SLPI as a target of IRF-1 regulation reveals a unique involvement of IRF-1 in repression of gene transcription and assigns a novel role for IRF-1 in inflammation.
Collapse
Affiliation(s)
- H Nguyen
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | |
Collapse
|
40
|
Mamane Y, Heylbroeck C, Génin P, Algarté M, Servant MJ, LePage C, DeLuca C, Kwon H, Lin R, Hiscott J. Interferon regulatory factors: the next generation. Gene 1999; 237:1-14. [PMID: 10524230 DOI: 10.1016/s0378-1119(99)00262-0] [Citation(s) in RCA: 429] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Interferons are a large family of multifunctional secreted proteins involved in antiviral defense, cell growth regulation and immune activation. Viral infection induces transcription of multiple IFN genes, a response that is in part mediated by the interferon regulatory factors (IRFs). The initially characterized members IRF-1 and IRF-2 are now part of a growing family of transcriptional regulators that has expanded to nine members. The functions of the IRFs have also expanded to include distinct roles in biological processes such as pathogen response, cytokine signaling, cell growth regulation and hematopoietic development. The aim of this review is to provide an update on the novel discoveries in the area of IRF transcription factors and the important roles of the new generation of IRFs--particularly IRF-3, IRF-4 and IRF-7.
Collapse
Affiliation(s)
- Y Mamane
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen H, Lee JM, Wang Y, Huang DP, Ambinder RF, Hayward SD. The Epstein-Barr virus latency BamHI-Q promoter is positively regulated by STATs and Zta interference with JAK/STAT activation leads to loss of BamHI-Q promoter activity. Proc Natl Acad Sci U S A 1999; 96:9339-44. [PMID: 10430944 PMCID: PMC17784 DOI: 10.1073/pnas.96.16.9339] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Epstein-Barr virus (EBV)-associated tumors in nonimmunocompromised patients, EBV gene expression is highly restricted. EBV-encoded nuclear antigen (EBNA)-1 is expressed, whereas the immunogenic and proliferative EBNAs are not. This pattern of EBNA expression is generated by usage of the BamHI-Q promoter (Qp). We have determined that the JAK/STAT pathway positively regulates Qp activity. In transient-transfection assays, a Qp-CAT reporter was activated by cotransfected JAK-1 and by treatment of cells with the cytokine IL-6. The ability of Qp to bind signal transducer and activator of transcription (STAT) proteins was directly demonstrated by electrophoretic mobility-shift assay, and mutation of potential STAT-binding sites reduced Qp responsiveness to Janus kinase (JAK)-1. Consistent with a role for STATs in Qp function, Qp using Burkitt's lymphoma Rael cells and cultured nasopharyngeal carcinoma (NPC) cells contained nuclear STAT protein. We investigated whether the inability to maintain EBV-positive NPC cell lines in culture was related to Qp activity. Passaging of the NPC cell line HK666 led to activation of expression of BZLF1, which encodes Zta and loss of Qp function. Transient expression assays linked Zta expression to the down-regulation of Qp. Cotransfection of Zta reduced Qp activity in reporter assays. This negative regulation required Zta DNA-binding activity. We provide evidence that Zta up-regulation of p53 leads to p53-mediated interference with JAK/STAT activation of Qp. The data imply that JAK/STAT signaling has a role in EBV-associated malignancies.
Collapse
Affiliation(s)
- H Chen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
42
|
Haelens A, Verrijdt G, Schoenmakers E, Alen P, Peeters B, Rombauts W, Claessens F. The first exon of the human sc gene contains an androgen responsive unit and an interferon regulatory factor element. Mol Cell Endocrinol 1999; 153:91-102. [PMID: 10459857 DOI: 10.1016/s0303-7207(99)00079-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Secretory component (SC) plays a key role in the transport of IgA and IgM to the lumina of many glands. The gene is constitutively expressed, but can be modulated by hormonal and immunological stimuli. Recently, the promoter and the first exon of the human sc gene have been cloned. The first exon contains a putative androgen/glucocorticoid response element (ARE/GRE) and an Interferon Regulatory Factor Element (IRF-E). Here we show that the ARE/GRE can bind the DNA-binding domain (DBD) of both the androgen (AR) and glucocorticoid receptor (GR) with a preference for the AR-DBD. In transient transfection experiments, this element confers higher responsiveness to androgens than to glucocorticoids. The IRF-E can function as an IRF-2, but surprisingly not as an IRF-I responsive element. We postulate that these two regulatory elements play a key role in the complex regulation of the sc gene in vivo.
Collapse
Affiliation(s)
- A Haelens
- Division of Biochemistry, Faculty of Medicine, University of Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
43
|
Husain SM, Usherwood EJ, Dyson H, Coleclough C, Coppola MA, Woodland DL, Blackman MA, Stewart JP, Sample JT. Murine gammaherpesvirus M2 gene is latency-associated and its protein a target for CD8(+) T lymphocytes. Proc Natl Acad Sci U S A 1999; 96:7508-13. [PMID: 10377445 PMCID: PMC22116 DOI: 10.1073/pnas.96.13.7508] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/1999] [Accepted: 04/15/1999] [Indexed: 11/18/2022] Open
Abstract
Murine gammaherpesvirus 68 (MHV-68) infection of mice is a potential model with which to address fundamental aspects of the pathobiology and host control of gammaherpesvirus latency. Control of MHV-68 infection, like that of Epstein-Barr virus, is strongly dependent on the cellular immune system. However, the molecular biology of MHV-68 latency is largely undefined. A screen of the MHV-68 genome for potential latency-associated mRNAs revealed that the region encompassing and flanking the genomic terminal repeats is transcriptionally active in the latently infected murine B-cell tumor line S11. Transcription of one MHV-68 gene, that encoding the hypothetical M2 protein, was detected in virtually all latently infected S11 cells and in splenocytes of latently infected mice, but not in lytically infected fibroblasts. Furthermore, an epitope was identified in the predicted M2 protein that is recognized by CD8(+) T cells from infected mice and a cytotoxic T lymphocyte line that recognizes this epitope killed S11 cells, indicating that the M2 protein is expressed during latent infection and is a target for the host cytotoxic T lymphocyte response. This work therefore provides essential information for modeling MHV-68 latency and strategies of immunotherapy against gammaherpesvirus-related diseases in a highly tractable animal model.
Collapse
Affiliation(s)
- S M Husain
- Department of Virology and Molecular Biology, Program in Viral Oncogenesis and Tumor Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Interferon-γ Prevents Apoptosis in Epstein-Barr Virus-Infected Natural Killer Cell Leukemia in an Autocrine Fashion. Blood 1999. [DOI: 10.1182/blood.v93.10.3494.410k14_3494_3504] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The significant function of cytokines includes maintenance of cell survival as well as induction of cell differentiation and/or proliferation. We demonstrate here that interferon-γ (IFN-γ) plays a role for progression of Epstein-Barr virus (EBV)-infected natural killer cell leukemia (NK leukemia) through maintaining cell survival. NK leukemia cells obtained from 7 patients had clonal episomal forms of EBV, indicating that the leukemic cells were of clonal origin. Although normal NK cells constitutively expressed Bcl-2, the EBV-infected NK leukemia cells lacked endogenous Bcl-2 expression and were hypersensitive to apoptosis in vitro. The addition of IFN-γ to the culture significantly inhibited their spontaneous apoptosis without inducing cell proliferation or upregulation of Bcl-2. The NK leukemia cells constitutively secreted IFN-γ, and the patients’ sera contained a high concentration of IFN-γ, levels that were high enough to prevent NK leukemia cells from apoptosis. Bcl-XL was not involved in the IFN-γ–induced NK leukemia cell survival. These data suggest that the acquisition of IFN-γ–mediated autocrine survival signals, other than Bcl-2 or BCL-XL, might be important for the development of EBV-infected NK leukemia.
Collapse
|
45
|
Zhang L, Pagano JS. Interferon regulatory factor 2 represses the Epstein-Barr virus BamHI Q latency promoter in type III latency. Mol Cell Biol 1999; 19:3216-23. [PMID: 10082588 PMCID: PMC84115 DOI: 10.1128/mcb.19.4.3216] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA-1) is the essential protein for maintenance of the EBV episome and establishment of latency. The BamHI Q promoter (Qp) is used for the transcription of EBNA-1 mRNA in type I and type II latency, which are EBV infection states exemplified by Burkitt's lymphoma and nasopharyngeal carcinoma. However, Qp is inactive in type III latency, and other promoters (the BamHI C promoter and/or the BamHI W promoter) are used for EBNA-1. The involvement of interferon regulatory factors (IRFs) in the regulation of Qp is suggested by the presence of an essential interferon-stimulated response element (ISRE) in the promoter. In this work, expression of IRF-2 is shown to be inversely associated with Qp status, i.e., IRF-2 levels are high in type III latency (when Qp is inactive) and low in type I latency (when Qp is active). Also, IRF-2 is identified by electrophoretic mobility shift assay as the major protein binding to the Qp ISRE in type III latency. In transient transfection assays, IRF-2 represses the activity of Qp-reporter constructs. Overexpression of IRF-2 in a type I latency cell line did not activate the endogenous Qp but marginally reduced the EBNA-1 mRNA level. Switching from type III latency (Qp inactive) to type II latency (Qp active), as produced by cell fusion, is directly associated with greatly reduced expression of IRF-2. These data strongly suggest that IRF-2 is a negative regulator of Qp and may contribute to the silencing of Qp in type III latency.
Collapse
Affiliation(s)
- L Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA.
| | | |
Collapse
|
46
|
Davenport MG, Pagano JS. Expression of EBNA-1 mRNA is regulated by cell cycle during Epstein-Barr virus type I latency. J Virol 1999; 73:3154-61. [PMID: 10074167 PMCID: PMC104077 DOI: 10.1128/jvi.73.4.3154-3161.1999] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of EBNA-1 protein is required for the establishment and maintenance of the Epstein-Barr virus (EBV) genome during latent infection. During type I latency, the BamHI Q promoter (Qp) gives rise to EBNA-1 expression. The dominant regulatory mechanism for Qp appears to be mediated through the Q locus, located immediately downstream of the transcription start site. Binding of EBNA-1 to the Q locus represses Qp constitutive activity, and repression has been reported to be overcome by an E2F family member that binds to the Q locus and displaces EBNA-1 (N. S. Sung, J. Wilson, M. Davenport, N. D. Sista, and J. S. Pagano, Mol. Cell. Biol. 14:7144-7152, 1994). These data suggest that the final outcome of Qp activity is reciprocally controlled by EBNA-1 and E2F. Since E2F activity is cell cycle regulated, Qp activity and EBNA-1 expression are predicted to be regulated in a cell cycle-dependent manner. Proliferation of the type I latently infected cell line, Akata, was synchronized with the use of the G2/M blocking agent nocodazole. From 65 to 75% of cells could be made to peak in S phase without evidence of viral reactivation. Following release from G2/M block, EBNA-1 mRNA levels declined as the synchronized cells entered the G1 phase of the cell cycle. As cells proceeded into S phase, EBNA-1 mRNA levels increased parallel to the peak in cell numbers in S phase. However, EBNA-1 protein levels showed no detectable change during the cell cycle, most likely due to the protein's long half-life as estimated by inhibition of protein synthesis by cycloheximide. Finally, in Qp luciferase reporter assays, the activity of Qp was shown to be regulated by cell cycle and to be dependent on the E2F sites within the Q locus. These findings demonstrate that transcriptional activity of Qp is cell cycle regulated and indicated that E2F serves as the stimulus for this regulation.
Collapse
Affiliation(s)
- M G Davenport
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
47
|
Ruf IK, Moghaddam A, Wang F, Sample J. Mechanisms that regulate Epstein-Barr virus EBNA-1 gene transcription during restricted latency are conserved among lymphocryptoviruses of Old World primates. J Virol 1999; 73:1980-9. [PMID: 9971778 PMCID: PMC104440 DOI: 10.1128/jvi.73.3.1980-1989.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/1998] [Accepted: 11/23/1998] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV), the only known human lymphocryptovirus (LCV), displays a remarkable degree of genetic and biologic identity to LCVs that infect Old World primates. Within their natural hosts, infection by these viruses recapitulates many key aspects of EBV infection, including the establishment of long-term latency within B lymphocytes, and is therefore a potentially valuable animal model of EBV infection. However, it is unclear whether these LCVs have adopted or maintained the same mechanisms used by EBV to express essential viral proteins, such as EBNA-1, in the face of cell-mediated repression of EBV gene expression that occurs upon establishment of the asymptomatic carrier state. To address this issue, we determined whether the endogenous LCVs of baboon (Cercopithecine herpesvirus 12) and rhesus macaque (Cercopithecine herpesvirus 15) have the functional equivalent of the EBV promoter Qp, which mediates exclusive expression of EBNA-1 during the restricted programs of EBV latency associated with the carrier state. Our results indicate that (i) both the baboon and rhesus macaque LCVs have a genomic locus that is highly homologous to the EBV Qp region, (ii) key cis-regulatory elements of Qp are conserved in these LCV genomes and compose promoters that are functionally indistinguishable from EBV Qp, and (iii) EBNA-1 transcripts identical in structure to EBV Qp-specific EBNA-1 mRNAs are present in nonhuman LCV-infected cells, demonstrating that these Qp homologs are indeed utilized as alternative EBNA-1 promoters. These observations indicate that the molecular mechanisms which regulate EBV gene expression during restricted latency have been conserved among the LCVs. The contribution of these mechanisms to viral persistence in vivo can now be experimentally tested in nonhuman primate models of LCV infection.
Collapse
Affiliation(s)
- I K Ruf
- Program in Viral Oncogenesis and Tumor Immunology, Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
48
|
Sarid R, Wiezorek JS, Moore PS, Chang Y. Characterization and cell cycle regulation of the major Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) latent genes and their promoter. J Virol 1999; 73:1438-46. [PMID: 9882349 PMCID: PMC103968 DOI: 10.1128/jvi.73.2.1438-1446.1999] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retinoblastoma tumor suppressor protein (pRB) inhibition by tumor virus oncoproteins has been attributed to the need for these viruses to promote lytic viral nucleic acid synthesis by unscheduled entry into the S phase of the cell cycle. Kaposi's sarcoma-associated herpesvirus (KSHV or HHV8) encodes a functional cyclin (vCYC) which is expressed during latency and can direct phosphorylation of pRB. We mapped the two major latent transcripts encoding vCYC, latent transcript 1 (LT1) and LT2, by cDNA sequencing, 5' rapid amplification of cDNA ends, and primer extension analyses. Both LT1 and LT2 transcripts are spliced, originate from the same start site, and encode ORF K13 (vFLIP) as well as ORF72 (vCYC). The latency-associated nuclear antigen (LANA, ORF73) is encoded by LT1 but spliced from LT2. While differential expression of the two transcripts was not found, the promoter controlling LT1/LT2 transcription is regulated in a cell cycle-dependent manner. Activities of both KSHV LT1/LT2 and huCYC D1 luciferase promoter reporters transfected into NIH 3T3 cells increase 11- and 4-fold, respectively, after release from cell cycle arrest by serum starvation. Further, vCYC and huCYC D2 mRNA levels are low in naturally infected BCBL-1 cells arrested in late G1 with L-mimosine but increase in parallel during a 24-h period after release from cell cycle arrest. Cell cycle regulation of KSHV vCYC expression mimics cellular D cyclin regulation and may maintain infected cell cycling. This is consistent with an alternative hypothesis that tumor viruses have developed specific responses to innate cellular defenses against latent virus infection that include pRB-induced cell cycle arrest.
Collapse
Affiliation(s)
- R Sarid
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, USA
| | | | | | | |
Collapse
|
49
|
Kanda K, Kempkes B, Bornkamm GW, von Gabain A, Decker T. The Epstein-Barr virus nuclear antigen 2 (EBNA2), a protein required for B lymphocyte immortalization, induces the synthesis of type I interferon in Burkitt's lymphoma cell lines. Biol Chem 1999; 380:213-21. [PMID: 10195428 DOI: 10.1515/bc.1999.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Epstein-Barr virus nuclear antigen 2 (EBNA2), a protein involved in cell transformation, interferes with the cellular response to type I interferons (IFN-alpha/beta). We investigated the function of conditionally expressed EBNA2 in the context of the IFN response in Burkitt's lymphoma cell lines. Expression of EBNA2 led to the transcriptional activation of both endogenous or transfected IFN-stimulated genes (ISGs), genes which contain within their promoters either the interferon-stimulated response element (ISRE) or the gamma interferon activation site (GAS). In search of a molecular mechanism for the transcriptional induction of ISGs, we observed an EBNA2-dependent synthesis of IFN-beta mRNA at low levels and the secretion of low amounts of IFN. A transfected IFN-beta promoter responded to EBNA2 activation, and a sequence closely resembling a RBP-Jkappa binding site was pinpointed as a potential target of EBNA2 activity. EBNA2-dependent transcriptional induction of the IFN-beta promoter occurred in EBV-negative Burkitt's lymphoma cells, indicating that other EBV genes were not required for the induction of IFN-beta synthesis.
Collapse
Affiliation(s)
- K Kanda
- Vienna Biocenter, Institute for Microbiology and Genetics, University of Vienna, Austria
| | | | | | | | | |
Collapse
|
50
|
Gupta S, Xia D, Jiang M, Lee S, Pernis AB. Signaling Pathways Mediated by the TNF- and Cytokine-Receptor Families Target a Common cis-Element of the IFN Regulatory Factor 1 Promoter. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.11.5997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
CD40 activation of B cells is strongly influenced by the presence of cytokines. However, the molecular basis for the interplay between these distinct stimuli is not clearly delineated. IFN regulatory factor 1 (IRF-1) is a transcription factor activated by either CD40 or cytokines. We have found that these different sets of signals target a common cis-acting element in the promoter of this gene, the IRF-1 gamma-activated site (GAS). Targeting of the IRF-1 GAS is not confined to activation via CD40 but extends to other stimuli that mimic the CD40 signaling cascade, like TNF-α and EBV. In contrast to induction of STATs by cytokines, the IRF-1 GAS-binding complex activated by CD40, TNF-α, or EBV contains Rel proteins, specifically p50 and p65. In this system, simultaneous exposure to CD40L together with either IL-4 or IFN-γ does not lead to the activation of novel Rel/STAT complexes. Given the importance of IRF-1 in a variety of biologic functions from proliferation to apoptosis, our findings support the notion that modulation of IRF-1 levels may be a critical control point in B cell activation.
Collapse
Affiliation(s)
- Sanjay Gupta
- Department of Medicine, Columbia University, New York, NY 10032
| | - Dengfeng Xia
- Department of Medicine, Columbia University, New York, NY 10032
| | - Man Jiang
- Department of Medicine, Columbia University, New York, NY 10032
| | - Sangjin Lee
- Department of Medicine, Columbia University, New York, NY 10032
| | | |
Collapse
|