1
|
White J, Choi YB, Zhang J, Vo MT, He C, Shaikh K, Harhaj EW. Phosphorylation of the selective autophagy receptor TAX1BP1 by TBK1 and IKBKE/IKKi promotes ATG8-family protein-dependent clearance of MAVS aggregates. Autophagy 2024:1-18. [PMID: 39193925 DOI: 10.1080/15548627.2024.2394306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
TAX1BP1 is a selective macroautophagy/autophagy receptor that inhibits NFKB and RIGI-like receptor (RLR) signaling to prevent excessive inflammation and maintain homeostasis. Selective autophagy receptors such as SQSTM1/p62 and OPTN are phosphorylated by the kinase TBK1 to stimulate their selective autophagy function. However, it is unknown if TAX1BP1 is regulated by TBK1 or other kinases under basal conditions or during RNA virus infection. Here, we found that TBK1 and IKBKE/IKKi function redundantly to phosphorylate TAX1BP1 and regulate its autophagic turnover through canonical macroautophagy. TAX1BP1 phosphorylation promotes its localization to lysosomes, resulting in its degradation. Additionally, we found that during vesicular stomatitis virus infection, TAX1BP1 is targeted to lysosomes in an ATG8-family protein-independent manner. Furthermore, TAX1BP1 plays a critical role in the clearance of MAVS aggregates, and phosphorylation of TAX1BP1 controls its MAVS aggrephagy function. Together, our data support a model whereby TBK1 and IKBKE license TAX1BP1-selective autophagy function to inhibit MAVS and RLR signaling.Abbreviations: ATG: autophagy related; BafA1: bafilomycin A1; CALCOCO2: calcium binding and coiled-coil domain 2; GFP: green fluorescent protein; IFA: indirect immunofluorescence assay; IFN: interferon; IκB: inhibitor of nuclear factor kappa B; IKK: IκB kinase; IRF: interferon regulatory factor; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MEF: mouse embryonic fibroblast; MOI: multiplicity of infection; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; NFKB: nuclear factor kappa B; OPTN: optineurin; Poly(I:C): polyinosinic-polycytidylic acid; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RIGI: RNA sensor RIG-I; RLR: RIGI-like receptor; SDD-AGE: semi-denaturing detergent-agarose gel electrophoresis; SeV: Sendai virus; SLR: SQSTM1-like receptor; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TNF: tumor necrosis factor; TRAF: TNF receptor associated factor; VSV: vesicular stomatitis virus; ZnF: zinc finger.
Collapse
Affiliation(s)
- Jesse White
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jiawen Zhang
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Mai Tram Vo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chaoxia He
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kashif Shaikh
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
2
|
Gibbs VJ, Lin YH, Ghuge AA, Anderson RA, Schiemann AH, Conaglen L, Sansom BJM, da Silva RC, Sattlegger E. GCN2 in Viral Defence and the Subversive Tactics Employed by Viruses. J Mol Biol 2024; 436:168594. [PMID: 38724002 DOI: 10.1016/j.jmb.2024.168594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 06/10/2024]
Abstract
The recent SARS-CoV-2 pandemic and associated COVID19 disease illustrates the important role of viral defence mechanisms in ensuring survival and recovery of the host or patient. Viruses absolutely depend on the host's protein synthesis machinery to replicate, meaning that impeding translation is a powerful way to counteract viruses. One major approach used by cells to obstruct protein synthesis is to phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α). Mammals possess four different eIF2α-kinases: PKR, HRI, PEK/PERK, and GCN2. While PKR is currently considered the principal eIF2α-kinase involved in viral defence, the other eIF2α-kinases have also been found to play significant roles. Unsurprisingly, viruses have developed mechanisms to counteract the actions of eIF2α-kinases, or even to exploit them to their benefit. While some of these virulence factors are specific to one eIF2α-kinase, such as GCN2, others target all eIF2α-kinases. This review critically evaluates the current knowledge of viral mechanisms targeting the eIF2α-kinase GCN2. A detailed and in-depth understanding of the molecular mechanisms by which viruses evade host defence mechanisms will help to inform the development of powerful anti-viral measures.
Collapse
Affiliation(s)
- Victoria J Gibbs
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Yu H Lin
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Aditi A Ghuge
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Reuben A Anderson
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Anja H Schiemann
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Layla Conaglen
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Bianca J M Sansom
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Richard C da Silva
- School of Natural Sciences, Massey University, Auckland, New Zealand; Genome Biology and Epigenetics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Evelyn Sattlegger
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand; School of Natural Sciences, Massey University, Auckland, New Zealand; Maurice Wilkins Centre for Molecular BioDiscovery, Palmerston North, New Zealand.
| |
Collapse
|
3
|
Zhang M, Wang Y, Gong X, Wang Y, Zhang Y, Tang Y, Zhou X, Liu H, Huang Y, Zhang J, Pan L. Mechanistic insights into the interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins. Proc Natl Acad Sci U S A 2024; 121:e2315550121. [PMID: 38437556 PMCID: PMC10945755 DOI: 10.1073/pnas.2315550121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
TAX1BP1, a multifunctional autophagy adaptor, plays critical roles in different autophagy processes. As an autophagy receptor, TAX1BP1 can interact with RB1CC1, NAP1, and mammalian ATG8 family proteins to drive selective autophagy for relevant substrates. However, the mechanistic bases underpinning the specific interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins remain elusive. Here, we find that there are two distinct binding sites between TAX1BP1 and RB1CC1. In addition to the previously reported TAX1BP1 SKICH (skeletal muscle and kidney enriched inositol phosphatase (SKIP) carboxyl homology)/RB1CC1 coiled-coil interaction, the first coiled-coil domain of TAX1BP1 can directly bind to the extreme C-terminal coiled-coil and Claw region of RB1CC1. We determine the crystal structure of the TAX1BP1 SKICH/RB1CC1 coiled-coil complex and unravel the detailed binding mechanism of TAX1BP1 SKICH with RB1CC1. Moreover, we demonstrate that RB1CC1 and NAP1 are competitive in binding to the TAX1BP1 SKICH domain, but the presence of NAP1's FIP200-interacting region (FIR) motif can stabilize the ternary TAX1BP1/NAP1/RB1CC1 complex formation. Finally, we elucidate the molecular mechanism governing the selective interactions of TAX1BP1 with ATG8 family members by solving the structure of GABARAP in complex with the non-canonical LIR (LC3-interacting region) motif of TAX1BP1, which unveils a unique binding mode between LIR and ATG8 family protein. Collectively, our findings provide mechanistic insights into the interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins and are valuable for further understanding the working mode and function of TAX1BP1 in autophagy.
Collapse
Affiliation(s)
- Mingfang Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Yingli Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Xinyu Gong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Yaru Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| | - Yuchao Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Yubin Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Xindi Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Haobo Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Yichao Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Jing Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan610068, China
| | - Lifeng Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan610068, China
| |
Collapse
|
4
|
Örd T, Örd D, Adler P, Örd T. Genome-wide census of ATF4 binding sites and functional profiling of trait-associated genetic variants overlapping ATF4 binding motifs. PLoS Genet 2023; 19:e1011014. [PMID: 37906604 PMCID: PMC10637723 DOI: 10.1371/journal.pgen.1011014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/10/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
Activating Transcription Factor 4 (ATF4) is an important regulator of gene expression in stress responses and developmental processes in many cell types. Here, we catalogued ATF4 binding sites in the human genome and identified overlaps with trait-associated genetic variants. We probed these genetic variants for allelic regulatory activity using a massively parallel reporter assay (MPRA) in HepG2 hepatoma cells exposed to tunicamycin to induce endoplasmic reticulum stress and ATF4 upregulation. The results revealed that in the majority of cases, the MPRA allelic activity of these SNPs was in agreement with the nucleotide preference seen in the ATF4 binding motif from ChIP-Seq. Luciferase and electrophoretic mobility shift assays in additional cellular models further confirmed ATF4-dependent regulatory effects for the SNPs rs532446 (GADD45A intronic; linked to hematological parameters), rs7011846 (LPL upstream; myocardial infarction), rs2718215 (diastolic blood pressure), rs281758 (psychiatric disorders) and rs6491544 (educational attainment). CRISPR-Cas9 disruption and/or deletion of the regulatory elements harboring rs532446 and rs7011846 led to the downregulation of GADD45A and LPL, respectively. Thus, these SNPs could represent examples of GWAS genetic variants that affect gene expression by altering ATF4-mediated transcriptional activation.
Collapse
Affiliation(s)
- Tiit Örd
- Institute of Genomics, University of Tartu, Tartu, Estonia
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Daima Örd
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Priit Adler
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Tõnis Örd
- Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
5
|
White J, Suklabaidya S, Vo MT, Choi YB, Harhaj EW. Multifaceted roles of TAX1BP1 in autophagy. Autophagy 2023; 19:44-53. [PMID: 35470757 PMCID: PMC9809930 DOI: 10.1080/15548627.2022.2070331] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
TAX1BP1 is a selective macroautophagy/autophagy receptor that plays a central role in host defense to pathogens and in regulating the innate immune system. TAX1BP1 facilitates the xenophagic clearance of pathogenic bacteria such as Salmonella typhimurium and Mycobacterium tuberculosis and regulates TLR3 (toll-like receptor 3)-TLR4 and DDX58/RIG-I-like receptor (RLR) signaling by targeting TICAM1 and MAVS for autophagic degradation respectively. In addition to these canonical autophagy receptor functions, TAX1BP1 can also exert multiple accessory functions that influence the biogenesis and maturation of autophagosomes. In this review, we will discuss and integrate recent findings related to the autophagy function of TAX1BP1 and highlight outstanding questions regarding its functions in autophagy and regulation of innate immunity and host defense.Abbreviations: ATG: autophagy related; CALCOCO: calcium binding and coiled-coil domain; CC: coiled-coil; CHUK/IKKα: conserved helix-loop-helix ubiquitous kinase; CLIR: noncanonical LC3-interacting region; GABARAP: gamma-aminobutyric acid receptor associated protein; HTLV-1: human T-lymphotropic virus 1; IFN: interferon; IL1B/IL1β: interleukin 1 beta; LIR: LC3-interacting region; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK/JNK: mitogen-activated protein kinase; mATG8: mammalian Atg8 homolog; MAVS: mitochondrial antiviral signaling protein; MEF: mouse embryonic fibroblast; MTB: Mycobacterium tuberculosis; MYD88: myeloid differentiation primary response gene 88; NBR1: NBR1, autophagy cargo receptor; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; OPTN: optineurin; Poly(I:C): polyinosinic:polycytidylic acid; PTM: post-translational modification; RB1CC1: RB1-inducible coiled-coil 1; RIPK: receptor (TNFRSF)-interacting serine-threonine kinase; RLR: DDX58/RIG-I-like receptor; RSV: respiratory syncytia virus; SKICH: SKIP carboxyl homology; SLR: SQSTM1 like receptor; SQSTM1: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; TBK1: TANK-binding kinase 1; TICAM1: toll-like receptor adaptor molecule 1; TLR: toll-like receptor; TNF: tumor necrosis factor; TNFAIP3: TNF alpha induced protein 3; TNFR: tumor necrosis factor receptor; TOM1: target of myb1 trafficking protein; TRAF: TNF receptor-associated factor; TRIM32: tripartite motif-containing 32; UBD: ubiquitin binding domain; ZF: zinc finger.
Collapse
Affiliation(s)
- Jesse White
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, USA
| | - Sujit Suklabaidya
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, USA
| | - Mai Tram Vo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Edward W. Harhaj
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
6
|
Descamps D, Peres de Oliveira A, Gonnin L, Madrières S, Fix J, Drajac C, Marquant Q, Bouguyon E, Pietralunga V, Iha H, Morais Ventura A, Tangy F, Vidalain PO, Eléouët JF, Galloux M. Depletion of TAX1BP1 Amplifies Innate Immune Responses during Respiratory Syncytial Virus Infection. J Virol 2021; 95:e0091221. [PMID: 34431698 PMCID: PMC8549506 DOI: 10.1128/jvi.00912-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the main cause of acute respiratory infections in young children and also has a major impact on the elderly and immunocompromised people. In the absence of a vaccine or efficient treatment, a better understanding of RSV interactions with the host antiviral response during infection is needed. Previous studies revealed that cytoplasmic inclusion bodies (IBs), where viral replication and transcription occur, could play a major role in the control of innate immunity during infection by recruiting cellular proteins involved in the host antiviral response. We recently showed that the morphogenesis of IBs relies on a liquid-liquid-phase separation mechanism depending on the interaction between viral nucleoprotein (N) and phosphoprotein (P). These scaffold proteins are expected to play a central role in the recruitment of cellular proteins to IBs. Here, we performed a yeast two-hybrid screen using RSV N protein as bait and identified the cellular protein TAX1BP1 as a potential partner of this viral protein. This interaction was validated by pulldown and immunoprecipitation assays. We showed that TAX1BP1 suppression has only a limited impact on RSV infection in cell cultures. However, RSV replication is decreased in TAX1BP1-deficient (TAX1BP1 knockout [TAX1BP1KO]) mice, whereas the production of inflammatory and antiviral cytokines is enhanced. In vitro infection of wild-type or TAX1BP1KO alveolar macrophages confirmed that the innate immune response to RSV infection is enhanced in the absence of TAX1BP1. Altogether, our results suggest that RSV could hijack TAX1BP1 to restrain the host immune response during infection. IMPORTANCE Respiratory syncytial virus (RSV), which is the leading cause of lower respiratory tract illness in infants, remains a medical problem in the absence of a vaccine or efficient treatment. This virus is also recognized as a main pathogen in the elderly and immunocompromised people, and the occurrence of coinfections (with other respiratory viruses and bacteria) amplifies the risks of developing respiratory distress. In this context, a better understanding of the pathogenesis associated with viral respiratory infections, which depends on both viral replication and the host immune response, is needed. The present study reveals that the cellular protein TAX1BP1, which interacts with the RSV nucleoprotein N, participates in the control of the innate immune response during RSV infection, suggesting that the N-TAX1BP1 interaction represents a new target for the development of antivirals.
Collapse
Affiliation(s)
| | - Andressa Peres de Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Lorène Gonnin
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Sarah Madrières
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Jenna Fix
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Carole Drajac
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Quentin Marquant
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Edwige Bouguyon
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Hidekatsu Iha
- Department of Infectious Diseases, Faculty of Medicine, Oita University Idaiga-oka, Hasama Yufu, Japan
| | - Armando Morais Ventura
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Pierre-Olivier Vidalain
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
- CIRI, Centre International de Recherche en Infectiologie, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | | | - Marie Galloux
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| |
Collapse
|
7
|
Lee SD, Yu KL, Park SH, Jung YM, Kim MJ, You JC. Understanding of the functional role(s) of the Activating Transcription Factor 4(ATF4) in HIV regulation and production. BMB Rep 2018; 51:388-393. [PMID: 29636121 PMCID: PMC6130831 DOI: 10.5483/bmbrep.2018.51.8.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Indexed: 11/20/2022] Open
Abstract
The activating transcription factor (ATF) 4 belongs to the ATF/CREB (cAMP Response Element Binding bZIP [Basic Leucine Zipper]) transcription factor family, and plays a central role in the UPR (Unfolded Protein Response) process in cells. The induction of ATF4 expression has previously been shown to increase the replication of HIV-1. However, the detailed mechanism underlying this effect and the factors involved in the regulation of ATF4 function are still unknown. Here, we demonstrate first that knocking out ATF4 using siRNA shows a strong negative effect on HIV-1 production, indicating that ATF4 is a functional positive cellular factor in HIV-1 production. To determine the mechanism by which ATF4 regulates the HIV-1 life cycle, we assessed the effect of the overexpression of wild type ATF4 and its various derivatives on HIV-1 LTR-mediated transcriptional activation and the production of HIV-1 particles. This effect was studied through co-transfection experiments with either reporter vectors or proviral DNA. We found that the N-terminal domains of ATF4 are involved in HIV-1 LTR-mediated transcriptional activation, and thus in HIV-1 production. [BMB Reports 2018; 51(8): 388-393].
Collapse
Affiliation(s)
- Seong-Deok Lee
- National Research Laboratory for Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Kyung-Lee Yu
- National Research Laboratory for Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seong-Hyun Park
- National Research Laboratory for Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yu-Mi Jung
- National Research Laboratory for Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | | | - Ji-Chang You
- National Research Laboratory for Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 06591; Avixgen Inc., Seoul 06649, Korea
| |
Collapse
|
8
|
Hu S, Wang Y, Gong Y, Liu J, Li Y, Pan L. Mechanistic Insights into Recognitions of Ubiquitin and Myosin VI by Autophagy Receptor TAX1BP1. J Mol Biol 2018; 430:3283-3296. [DOI: 10.1016/j.jmb.2018.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/01/2018] [Accepted: 06/18/2018] [Indexed: 12/29/2022]
|
9
|
Goodwin JM, Dowdle WE, DeJesus R, Wang Z, Bergman P, Kobylarz M, Lindeman A, Xavier RJ, McAllister G, Nyfeler B, Hoffman G, Murphy LO. Autophagy-Independent Lysosomal Targeting Regulated by ULK1/2-FIP200 and ATG9. Cell Rep 2017; 20:2341-2356. [PMID: 28877469 PMCID: PMC5699710 DOI: 10.1016/j.celrep.2017.08.034] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/26/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
Iron is vital for many homeostatic processes, and its liberation from ferritin nanocages occurs in the lysosome. Studies indicate that ferritin and its binding partner nuclear receptor coactivator-4 (NCOA4) are targeted to lysosomes by a form of selective autophagy. By using genome-scale functional screening, we identify an alternative lysosomal transport pathway for ferritin that requires FIP200, ATG9A, VPS34, and TAX1BP1 but lacks involvement of the ATG8 lipidation machinery that constitutes classical macroautophagy. TAX1BP1 binds directly to NCOA4 and is required for lysosomal trafficking of ferritin under basal and iron-depleted conditions. Under basal conditions ULK1/2-FIP200 controls ferritin turnover, but its deletion leads to TAX1BP1-dependent activation of TBK1 that regulates redistribution of ATG9A to the Golgi enabling continued trafficking of ferritin. Cells expressing an amyotrophic lateral sclerosis (ALS)-associated TBK1 allele are incapable of degrading ferritin suggesting a molecular mechanism that explains the presence of iron deposits in patient brain biopsies.
Collapse
Affiliation(s)
- Jonathan M Goodwin
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - William E Dowdle
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Rowena DeJesus
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Zuncai Wang
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Philip Bergman
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Marek Kobylarz
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alicia Lindeman
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ramnik J Xavier
- Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Gregory McAllister
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Beat Nyfeler
- Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland.
| | - Gregory Hoffman
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Leon O Murphy
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Whang MI, Tavares RM, Benjamin DI, Kattah MG, Advincula R, Nomura DK, Debnath J, Malynn BA, Ma A. The Ubiquitin Binding Protein TAX1BP1 Mediates Autophagasome Induction and the Metabolic Transition of Activated T Cells. Immunity 2017; 46:405-420. [PMID: 28314591 DOI: 10.1016/j.immuni.2017.02.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/09/2016] [Accepted: 01/10/2017] [Indexed: 01/18/2023]
Abstract
During immune responses, naive T cells transition from small quiescent cells to rapidly cycling cells. We have found that T cells lacking TAX1BP1 exhibit delays in growth of cell size and cell cycling. TAX1BP1-deficient T cells exited G0 but stalled in S phase, due to both bioenergetic and biosynthetic defects. These defects were due to deficiencies in mTOR complex formation and activation. These mTOR defects in turn resulted from defective autophagy induction. TAX1BP1 binding of LC3 and GABARAP via its LC3-interacting region (LIR), but not its ubiquitin-binding domain, supported T cell proliferation. Supplementation of TAX1BP1-deficient T cells with metabolically active L-cysteine rescued mTOR activation and proliferation but not autophagy. These studies reveal that TAX1BP1 drives a specialized form of autophagy, providing critical amino acids that activate mTOR and enable the metabolic transition of activated T cells.
Collapse
Affiliation(s)
- Michael I Whang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0358, USA
| | - Rita M Tavares
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0358, USA
| | - Daniel I Benjamin
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael G Kattah
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0358, USA
| | - Rommel Advincula
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0358, USA
| | - Daniel K Nomura
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jayanta Debnath
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143-0505, USA
| | - Barbara A Malynn
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0358, USA
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0358, USA.
| |
Collapse
|
11
|
TAX1BP1 Restrains Virus-Induced Apoptosis by Facilitating Itch-Mediated Degradation of the Mitochondrial Adaptor MAVS. Mol Cell Biol 2016; 37:MCB.00422-16. [PMID: 27736772 DOI: 10.1128/mcb.00422-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/04/2016] [Indexed: 12/25/2022] Open
Abstract
The host response to RNA virus infection consists of an intrinsic innate immune response and the induction of apoptosis as mechanisms to restrict viral replication. The mitochondrial adaptor molecule MAVS plays critical roles in coordinating both virus-induced type I interferon production and apoptosis; however, the regulation of MAVS-mediated apoptosis is poorly understood. Here, we show that the adaptor protein TAX1BP1 functions as a negative regulator of virus-induced apoptosis. TAX1BP1-deficient cells are highly sensitive to apoptosis in response to infection with the RNA viruses vesicular stomatitis virus and Sendai virus and to transfection with poly(I·C). TAX1BP1 undergoes degradation during RNA virus infection, and loss of TAX1BP1 is associated with apoptotic cell death. TAX1BP1 deficiency augments virus-induced activation of proapoptotic c-Jun N-terminal kinase (JNK) signaling. Virus infection promotes the mitochondrial localization of TAX1BP1 and concomitant interaction with the mitochondrial adaptor MAVS. TAX1BP1 recruits the E3 ligase Itch to MAVS to trigger its ubiquitination and degradation, and loss of TAX1BP1 or Itch results in increased MAVS protein expression. Together, these results indicate that TAX1BP1 functions as an adaptor molecule for Itch to target MAVS during RNA virus infection and thus restrict virus-induced apoptosis.
Collapse
|
12
|
Choi H, Lee SK. TAX1BP1 downregulation by EBV-miR-BART15-3p enhances chemosensitivity of gastric cancer cells to 5-FU. Arch Virol 2016; 162:369-377. [PMID: 27757686 DOI: 10.1007/s00705-016-3109-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNA molecules approximately 19 to 25 nucleotides in length that downregulate the expression of target genes at the post-transcriptional level by binding to the 3'-untranslated region (3'-UTR). Epstein-Barr virus (EBV) generates at least 44 miRNAs, but the functions of most of these miRNAs have not yet been identified. Previously, we reported BRUCE as a target of miR-BART15-3p, a miRNA produced by EBV, but our data suggested that there might be other apoptosis-associated target genes of miR-BART15-3p. Thus, in this study, we searched for new target genes of miR-BART15-3p using in silico analyses. We found a possible seed match site in the 3'-UTR of Tax1-binding protein 1 (TAX1BP1). The luciferase activity of a reporter vector including the 3'-UTR of TAX1BP1 was decreased by miR-BART15-3p. MiR-BART15-3p downregulated the expression of TAX1BP1 mRNA and protein in AGS cells, while an inhibitor against miR-BART15-3p upregulated the expression of TAX1BP1 mRNA and protein in AGS-EBV cells. Mir-BART15-3p modulated NF-κB activity in gastric cancer cell lines. Moreover, miR-BART15-3p strongly promoted chemosensitivity to 5-fluorouracil (5-FU). Our results suggest that miR-BART15-3p targets the anti-apoptotic TAX1BP1 gene in cancer cells, causing increased apoptosis and chemosensitivity to 5-FU.
Collapse
Affiliation(s)
- Hoyun Choi
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Suk Kyeong Lee
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
13
|
Toufaily C, Lokossou AG, Vargas A, Rassart É, Barbeau B. A CRE/AP-1-like motif is essential for induced syncytin-2 expression and fusion in human trophoblast-like model. PLoS One 2015; 10:e0121468. [PMID: 25781974 PMCID: PMC4364025 DOI: 10.1371/journal.pone.0121468] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 02/14/2015] [Indexed: 11/18/2022] Open
Abstract
Syncytin-2 is encoded by the envelope gene of Endogenous Retrovirus-FRD (ERVFRD-1) and plays a critical role in fusion of placental trophoblasts leading to the formation of the multinucleated syncytiotrophoblast. Its expression is consequently regulated in a strict manner. In the present study, we have identified a forskolin-responsive region located between positions -300 to -150 in the Syncytin-2 promoter region. This 150 bp region in the context of a minimal promoter mediated an 80-fold induction of promoter activity following forskolin stimulation. EMSA analyses with competition experiments with nuclear extracts from forskolin-stimulated BeWo cells demonstrated that the -211 to -177 region specifically bound two forskolin-induced complexes, one of them containing a CRE/AP-1-like motif. Site-directed mutagenesis of the CRE/AP-1 binding site in the context of the Syncytin-2 promoter or a heterologous promoter showed that this motif was mostly essential for forskolin-induced promoter activity. Transfection experiments with dominant negative mutants and constitutively activated CREB expression vectors in addition to Chromatin Immunoprecipitation suggested that a CREB family member, CREB2 was binding and acting through the CRE/AP-1 motif. We further demonstrated the binding of JunD to this same motif. Similar to forskolin and soluble cAMP, CREB2 and JunD overexpression induced Syncytin-2 promoter activity in a CRE/AP-1-dependent manner and Syncytin-2 expression. In addition, BeWo cell fusion was induced by both CREB2 and JunD overexpression, while being repressed following silencing of either gene. These results thereby demonstrate that induced expression of Syncytin-2 is highly dependent on the interaction of bZIP-containing transcription factors to a CRE/AP-1 motif and that this element is important for the regulation of Syncytin-2 expression, which results in the formation of the peripheral syncytiotrophoblast layer.
Collapse
Affiliation(s)
- Chirine Toufaily
- Département des Sciences Biologiques and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, Canada
| | - Adjimon Gatien Lokossou
- Département des Sciences Biologiques and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, Canada
| | - Amandine Vargas
- Département des Sciences Biologiques and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, Canada
| | - Éric Rassart
- Département des Sciences Biologiques and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, Canada
| | - Benoit Barbeau
- Département des Sciences Biologiques and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
14
|
Multifaceted role of the ubiquitin ligase Itch in immune regulation. Immunol Cell Biol 2015; 93:452-60. [DOI: 10.1038/icb.2014.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022]
|
15
|
Regulation of HTLV-1 tax stability, cellular trafficking and NF-κB activation by the ubiquitin-proteasome pathway. Viruses 2014; 6:3925-43. [PMID: 25341660 PMCID: PMC4213571 DOI: 10.3390/v6103925] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 12/22/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATLL) in 3%–5% of infected individuals after a long latent period. HTLV-1 Tax is a trans-activating protein that regulates viral gene expression and also modulates cellular signaling pathways to enhance T-cell proliferation and cell survival. The Tax oncoprotein promotes T-cell transformation, in part via constitutive activation of the NF-κB transcription factor; however, the underlying mechanisms remain unknown. Ubiquitination is a type of post-translational modification that occurs in a three-step enzymatic cascade mediated by E1, E2 and E3 enzymes and regulates protein stability as well as signal transduction, protein trafficking and the DNA damage response. Emerging studies indicate that Tax hijacks the ubiquitin machinery to activate ubiquitin-dependent kinases and downstream NF-κB signaling. Tax interacts with the E2 conjugating enzyme Ubc13 and is conjugated on C-terminal lysine residues with lysine 63-linked polyubiquitin chains. Tax K63-linked polyubiquitination may serve as a platform for signaling complexes since this modification is critical for interactions with NEMO and IKK. In addition to NF-κB signaling, mono- and polyubiquitination of Tax also regulate its subcellular trafficking and stability. Here, we review recent advances in the diverse roles of ubiquitin in Tax function and how Tax usurps the ubiquitin-proteasome pathway to promote oncogenesis.
Collapse
|
16
|
Yang Y, Wang G, Huang X, Du Z. Crystallographic and modelling studies suggest that the SKICH domains from different protein families share a common Ig-like fold but harbour substantial structural variations. J Biomol Struct Dyn 2014; 33:1385-98. [PMID: 25187058 DOI: 10.1080/07391102.2014.951688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
TAX1BP1 is a pleiotropic multi-domain protein involved in many important biological processes such as signal transduction, cell growth and apoptosis, transcriptional coactivation, membrane trafficking, neurotransmission and autophagy. The N-terminus of TAX1BP1 contains a SKICH domain implicated in autophagy. SKICH domains are also present in four other proteins including NDP52, CALCOCO1, SKIP and PIPP. The SKICH domains of SKIP and PIPP mediate plasma membrane localisation. The functions of the SKICH domains of NDP52 and CALCOCO1 are not known. Here we report the crystal structure of the TAX1BP1 SKICH domain, which has an Ig-like fold similar to the NDP52 SKICH domain. Extensive pairwise and clustered aromatic π-stacking interactions are present in the TAX1BP1 SKICH domain. The aromatic residues mediating these interactions can be classified into four groups with varying degrees of conservation among different protein families. The interactions mediated by highly conserved residues are found in the interior and one outward face of the Ig-like β-barrel, representing common structural features of the SKICH domains. Three TAX1BP1-specific pairwise interactions locate in the loop regions, each augmented by a proline-aromatic interaction. The three proline-aromatic clusters are linked together by more generic hydrophobic interactions, forming a unique hydrophobic surface at one end of the TAX1BP1 SKICH domain. The structures and homologous models of SKICH domains from different proteins reveal substantial differences in electrostatic surface properties of the domains. Together with existing biochemical data, results from the structural study suggest that an intact SKICH domain is required for the autophagy function of TAX1BP1.
Collapse
Affiliation(s)
- Yang Yang
- a Department of Chemistry and Biochemistry , Southern Illinois University , Carbondale 62901 , IL , USA
| | | | | | | |
Collapse
|
17
|
Yang Y, Wang G, Huang X, Du Z. Expression, purification and crystallization of the SKICH domain of human TAX1BP1. Acta Crystallogr F Struct Biol Commun 2014; 70:619-23. [PMID: 24817723 PMCID: PMC4014332 DOI: 10.1107/s2053230x14006396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/22/2014] [Indexed: 01/12/2023] Open
Abstract
TAX1BP1 is a highly conserved, pleiotropic protein that plays many essential functions in human cells, including negative regulation of inflammatory and antimicrobial responses mediated by NF-κB and IRF3 signaling, inhibition of apoptosis, transcriptional coactivation and autophagy etc. TAX1BP1 contains a SKICH domain at the N-terminus, three coiled-coil domains in the middle and two ubiquitin-binding zinc-finger motifs at the C-terminus. The SKICH domain and the linker sequence between the SKICH domain and the coiled-coil region mediate interaction with ubiquitin-like proteins of the LC3/GABARAP family, which are autophagosome markers. For structure determination of the SKICH domain of TAX1BP1, a protein construct (amino acids 15-148) corresponding to the SKICH domain plus the linker region was expressed, purified and crystallized. A native diffraction data set has been collected to 1.9 Å resolution. A molecular-replacement solution has been found by using the structure of the SKICH domain of NDP52, a paralog of TAX1BP1.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| | - Guan Wang
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| | - Xiaolan Huang
- Department of Computer Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| | - Zhihua Du
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| |
Collapse
|
18
|
Valdiglesias V, Fernández-Tajes J, Méndez J, Pásaro E, Laffon B. The marine toxin okadaic acid induces alterations in the expression level of cancer-related genes in human neuronal cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 92:303-311. [PMID: 23561263 DOI: 10.1016/j.ecoenv.2013.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 06/02/2023]
Abstract
Okadaic acid (OA) is one of the most common and highly distributed marine toxins. It can be accumulated in several molluscs and other marine organisms and cause acute gastrointestinal symptoms after oral consumption by humans, called diarrheic shellfish poisoning. However other toxic effects beyond these gastrointestinal symptoms were also reported. Thus, OA was found to induce important chromosomal abnormalities and other genetic injuries that can lead to severe pathologies, including cancer. Furthermore, the relationship between OA and carcinogenic processes has been previously demonstrated in in vivo studies with rodents, and also suggested in human epidemiological studies. In this context, further research is required to better understand the underlying mechanisms of OA-related tumourigenesis. In a previous study, we identified 247 genes differentially expressed in SHSY5Y neuroblastoma cells exposed to 100nM OA at different times (3, 24 and 48h) by means of suppression subtractive hybridization. These genes were involved in relevant cell functions such as signal transduction, cell cycle, metabolism, and transcription and translation processes. However, due to the high potential percentage of false positives that may be obtained by this approach, results from SSH are recommended to be analyzed by an independent method. In the present study, we selected ten genes related to cancer initiation or progression, directly or indirectly, for further quantitative PCR analysis (ANAPC13, PTTG1, CALM2, CLU, HN1, MALAT1, MAPRE2, MLLT11, SGA-81M and TAX1BP1). Results obtained showed important alterations in the expression patterns of all the genes evaluated at one or more treatment times, providing, for the first time, a possible explanation at the molecular level of the potential relationship between the consumption of OA-contaminated shellfish and the incidence of different cancers in humans. Nevertheless, given the complexity of this process, more exhaustive studies are required before drawing any final conclusion.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Toxicology Unit, Psychobiology Department, University of A Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071 A Coruña, Spain
| | | | | | | | | |
Collapse
|
19
|
Bidoia C. Human T-lymphotropic virus proteins and post-translational modification pathways. World J Virol 2012; 1:115-30. [PMID: 24175216 PMCID: PMC3782272 DOI: 10.5501/wjv.v1.i4.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 06/04/2012] [Accepted: 07/13/2012] [Indexed: 02/05/2023] Open
Abstract
Cell life from the cell cycle to the signaling transduction and response to stimuli is finely tuned by protein post-translational modifications (PTMs). PTMs alter the conformation, the stability, the localization, and hence the pattern of interactions of the targeted protein. Cell pathways involve the activation of enzymes, like kinases, ligases and transferases, that, once activated, act on many proteins simultaneously, altering the state of the cell and triggering the processes they are involved in. Viruses enter a balanced system and hijack the cell, exploiting the potential of PTMs either to activate viral encoded proteins or to alter cellular pathways, with the ultimate consequence to perpetuate through their replication. Human T-lymphotropic virus type 1 (HTLV-1) is known to be highly oncogenic and associates with adult T-cell leukemia/lymphoma, HTLV-1-associated myelopathy/tropical spastic paraparesis and other inflammatory pathological conditions. HTLV-1 protein activity is controlled by PTMs and, in turn, viral activity is associated with the modulation of cellular pathways based on PTMs. More knowledge is acquired about the PTMs involved in the activation of its proteins, like Tax, Rex, p12, p13, p30, HTLV-I basic leucine zipper factor and Gag. However, more has to be understood at the biochemical level in order to counteract the associated fatal outcomes. This review will focus on known PTMs that directly modify HTLV-1 components and on enzymes whose activity is modulated by viral proteins.
Collapse
Affiliation(s)
- Carlo Bidoia
- Carlo Bidoia, Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
20
|
Caselli E, Benedetti S, Gentili V, Grigolato J, Di Luca D. Short communication: activating transcription factor 4 (ATF4) promotes HIV type 1 activation. AIDS Res Hum Retroviruses 2012; 28:907-12. [PMID: 22050711 DOI: 10.1089/aid.2011.0252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Activating transcription factor 4 (ATF4) is a central factor in the cellular response to multiple stresses, including altered metabolic conditions, anoxia and hypoxia, and redox stress. ATF4 is triggered by endoplasmic reticulum stress and consequent unfolded protein response. This report identifies for the first time ATF4 as a transcription factor upregulated by HIV-1 infection. Upregulation of ATF4 enhances HIV replication, by synergistic interactions with HIV Tat. Moreover, in specific cell lines ATF4 has a direct transactivating potential on the LTR, even in the absence of Tat. We also provide evidence that expression of ATF4 induces HIV reactivation in chronically infected cell lines. These results show for the first time that ATF4 induction might have an important role in HIV replication, and suggest that ATF4 might represent a convergent signaling molecule for different stressors important in regulating the HIV-1 cycle.
Collapse
Affiliation(s)
- Elisabetta Caselli
- Section of Microbiology, Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Sabrina Benedetti
- Section of Microbiology, Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Valentina Gentili
- Section of Microbiology, Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Jessica Grigolato
- Section of Microbiology, Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Dario Di Luca
- Section of Microbiology, Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
21
|
Abstract
The nuclear factor-κB (NF-κB) pathway is a critical regulator of innate and adaptive immunity. Noncanonical K63-linked polyubiquitination plays a key regulatory role in NF-κB signaling pathways by functioning as a scaffold to recruit kinase complexes containing ubiquitin-binding domains. Ubiquitination is balanced by deubiquitinases that cleave polyubiquitin chains and oppose the function of E3 ubiquitin ligases. Deubiquitinases therefore play an important role in the termination of NF-κB signaling and the resolution of inflammation. In this review, we focus on NF-κB regulation by deubiquitinases with an emphasis on A20 and CYLD. Deubiquitinases and the ubiquitin/proteasome components that regulate NF-κB may serve as novel therapeutic targets for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Edward W Harhaj
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, The University of Miami, Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
22
|
Shembade N, Harhaj EW. Regulation of NF-κB signaling by the A20 deubiquitinase. Cell Mol Immunol 2012; 9:123-30. [PMID: 22343828 DOI: 10.1038/cmi.2011.59] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The NF-κB transcription factor is a central mediator of inflammatory and innate immune signaling pathways. Activation of NF-κB is achieved by K63-linked polyubiquitination of key signaling molecules which recruit kinase complexes that in turn activate the IκB kinase (IKK). Ubiquitination is a highly dynamic process and is balanced by deubiquitinases that cleave polyubiquitin chains and terminate downstream signaling events. The A20 deubiquitinase is a critical negative regulator of NF-κB and inflammation, since A20-deficient mice develop uncontrolled and spontaneous multi-organ inflammation. Furthermore, specific polymorphisms in the A20 genomic locus predispose humans to autoimmune disease. Recent studies also indicate that A20 is an important tumor suppressor that is inactivated in B-cell lymphomas. Therefore, targeting A20 may form the basis of novel therapies for autoimmune disease and lymphomas.
Collapse
Affiliation(s)
- Noula Shembade
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, The University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | | |
Collapse
|
23
|
Shembade N, Pujari R, Harhaj NS, Abbott DW, Harhaj EW. The kinase IKKα inhibits activation of the transcription factor NF-κB by phosphorylating the regulatory molecule TAX1BP1. Nat Immunol 2011; 12:834-43. [PMID: 21765415 DOI: 10.1038/ni.2066] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Indexed: 12/22/2022]
Abstract
In response to stimulation with proinflammatory cytokines, the deubiquitinase A20 inducibly interacts with the regulatory molecules TAX1BP1, Itch and RNF11 to form the A20 ubiquitin-editing complex. However, the molecular signal that coordinates the assembly of this complex has remained elusive. Here we demonstrate that TAX1BP1 was inducibly phosphorylated on Ser593 and Ser624 in response to proinflammatory stimuli. The kinase IKKα, but not IKKβ, was required for phosphorylation of TAX1BP1 and directly phosphorylated TAX1BP1 in response to stimulation with tumor necrosis factor (TNF) or interleukin 1 (IL-1). TAX1BP1 phosphorylation was pivotal for cytokine-dependent interactions among TAX1BP1, A20, Itch and RNF11 and downregulation of signaling by the transcription factor NF-κB. IKKα therefore serves a key role in the negative feedback of NF-κB canonical signaling by orchestrating assembly of the A20 ubiquitin-editing complex to limit inflammatory gene activation.
Collapse
Affiliation(s)
- Noula Shembade
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, The University of Miami, Miller School of Medicine, Miami, Florida, USA
| | | | | | | | | |
Collapse
|
24
|
Verstrepen L, Verhelst K, Carpentier I, Beyaert R. TAX1BP1, a ubiquitin-binding adaptor protein in innate immunity and beyond. Trends Biochem Sci 2011; 36:347-54. [DOI: 10.1016/j.tibs.2011.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 03/19/2011] [Accepted: 03/22/2011] [Indexed: 12/18/2022]
|
25
|
Kampylafka EI, Routsias JG, Alexopoulos H, Dalakas MC, Moutsopoulos HM, Tzioufas AG. Fine specificity of antibodies against AQP4: epitope mapping reveals intracellular epitopes. J Autoimmun 2011; 36:221-7. [PMID: 21333492 DOI: 10.1016/j.jaut.2011.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 01/22/2023]
Abstract
The autoantibody to aquaporin-4 (AQP4) is a marker and a pathogenetic factor in Neuromyelitis Optica (NMO) (Devic's syndrome). Our aim was to identify B-cell antigenic linear epitopes of the AQP4 protein and investigate similarities with other molecules. To this end, we screened sera from 21 patients positive for anti-AQP4 antibodies (study group), from 23 SLE and 23 pSS patients without neurologic involvement (disease controls) and from 28 healthy individuals (normal controls). Eleven peptides, spanning the entire intracellular and extracellular domains of the AQP4 molecule, were synthesized, and all sera were screened for anti-peptide antibodies by ELISA. Specificity was evaluated by homologous inhibition assays. NMO positive sera exhibited reactivity against 3 different peptides spanning the sequences aa1-22 (AQPpep1) (42.9% of patients), aa88-113 (AQPpep4) (33%) and aa252-275 (AQPpep8) (23.8%). All epitopes were localized in the intracellular domains of AQP4. Homologous inhibition rates were ranging from 71.1% to 84.3%. A 73% sequence homology was observed between AQPpep8' aa257-271, a 15-mer peptide part of the AQPpep8 aa252-275, and the aa219-233 domain of the Tax1-HTLV-1 binding protein (TAX1BP1), a host protein associated with replication of the Human T-Lymphotropic Virus 1 (HTLV-1). Antibodies against the AQP4 and the TAX1BP1 15-mer peptides were detected in 26.3% (N = 5) and 31.6% (N = 6) of NMO positive sera (r(s) = 0.81, P < 0.0001). Healthy controls did not react with these peptides, while homologous and cross-inhibition assays confirmed binding specificity. This first epitope mapping for AQP4 reveals that a significant proportion of anti-AQP4 antibodies target linear epitopes localized in the intracellular domains of the channel. One of the epitopes displays high similarity with a portion of TAX1BP1 protein.
Collapse
Affiliation(s)
- E I Kampylafka
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Nuclear factor-kappa B (NF-κB) is a critical regulator of multiple biological functions including innate and adaptive immunity and cell survival. Activation of NF-κB is tightly regulated to preclude chronic signaling that may lead to persistent inflammation and cancer. Ubiquitination of key signaling molecules by E3 ubiquitin ligases has emerged as an important regulatory mechanism for NF-κB signaling. Deubiquitinases (DUBs) counteract E3 ligases and therefore play a prominent role in the downregulation of NF-κB signaling and homeostasis. Understanding the mechanisms of NF-κB downregulation by specific DUBs such as A20 and CYLD may provide therapeutic opportunities for the treatment of chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Edward W Harhaj
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, The University of Miami, Miller School of Medicine, 1550 NW 10 Avenue, Miami, FL 33136, USA.
| | | |
Collapse
|
27
|
Navratil V, de Chassey B, Meyniel L, Pradezynski F, André P, Rabourdin-Combe C, Lotteau V. System-level comparison of protein-protein interactions between viruses and the human type I interferon system network. J Proteome Res 2010; 9:3527-36. [PMID: 20459142 DOI: 10.1021/pr100326j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Innate immunity has evolved complex molecular pathways to protect organisms from viral infections. One pivotal line of cellular defense is the induction of the antiviral effect of interferon. To circumvent this primary response and achieve their own replication, viruses have developed complex molecular strategies. Here, we provide a systems-level study of the human type I interferon system subversion by the viral proteome, by reconstructing the underlying protein-protein interaction network. At this network level, viruses establish a massive and a gradual attack, from receptors to transcription factors, by interacting preferentially with highly connected and central proteins as well as interferon-induced proteins. We also demonstrate that viruses significantly target 22% of the proteins directly interacting with the type I interferon system network, suggesting the relevance of our network-based method to identify new candidates involved in the regulation of the antiviral response. Finally, based on the comparative analysis of interactome profiles across four viral families, we provide evidence of common and differential targeting strategies.
Collapse
Affiliation(s)
- V Navratil
- Université de Lyon, France, INSERM, U851, 21 Avenue Tony Garnier, Lyon, F-69007, France.
| | | | | | | | | | | | | |
Collapse
|
28
|
Fujita KI, Srinivasula SM. Ubiquitination and TNFR1 signaling. Results Probl Cell Differ 2010; 49:87-114. [PMID: 19582409 DOI: 10.1007/400_2009_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Death receptors are a subset of the tumor necrosis factor receptor (TNFR) family of proteins and share a characteristic cytoplasmic motif called the "death domain". In addition to mediating cell death, these receptors regulate cell proliferation, inflammatory responses, and tumor progression. Receptor occupancy triggers the assembly of several cytoplasmic molecules into distinct complexes, each initiating separate signaling events leading to different biological responses. Post-translational modifications involving ubiquitin, a peptide of 76 amino acids, regulate events at nearly all stages of signaling. All ubiquitin chains function as docking platforms for molecules with specific recognition motifs that either propagate the signal or target the protein for proteasomal degradation. Moreover, enzymes with ubiquitin thioesterase activity (deubiquitinating enzymes, or DUBs) reverse modifications by removing the ubiquitin chains, allowing ubiquitin editing at the molecular level. Ubiquitin protein ligases (E3s), DUBs, and signaling molecules with ubiquitin recognition motifs control TNFR1 mediated cell death and activation of NF-kappaB and JNK. Here, we discuss the current understanding of how these proteins regulate TNFR1 signaling.
Collapse
Affiliation(s)
- Ken-ichi Fujita
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 3016A, 9000 Rockville Pike, Bethesda, MD 20892-4256, USA.
| | | |
Collapse
|
29
|
Shembade N, Harhaj EW. Role of post-translational modifications of HTLV-1 Tax in NF-κB activation. World J Biol Chem 2010; 1:13-20. [PMID: 21540989 PMCID: PMC3083931 DOI: 10.4331/wjbc.v1.i1.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/17/2009] [Accepted: 12/24/2009] [Indexed: 02/05/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the first human retrovirus discovered, is the etiological agent of adult-T-cell leukemia/lymphoma. The HTLV-1 encoded Tax protein is a potent oncoprotein that deregulates gene expression by constitutively activating nuclear factor-κB (NF-κB). Tax activation of NF-κB is critical for the immortalization and survival of HTLV-1-infected T cells. In this review, we summarize the present knowledge on mechanisms underlying Tax-mediated NF-κB activation, with an emphasis on post-translational modifications of Tax.
Collapse
Affiliation(s)
- Noula Shembade
- Noula Shembade, Edward W Harhaj, Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | | |
Collapse
|
30
|
Journo C, Filipe J, About F, Chevalier SA, Afonso PV, Brady JN, Flynn D, Tangy F, Israël A, Vidalain PO, Mahieux R, Weil R. NRP/Optineurin Cooperates with TAX1BP1 to potentiate the activation of NF-kappaB by human T-lymphotropic virus type 1 tax protein. PLoS Pathog 2009; 5:e1000521. [PMID: 19609363 PMCID: PMC2706988 DOI: 10.1371/journal.ppat.1000521] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 06/22/2009] [Indexed: 01/09/2023] Open
Abstract
Nuclear factor (NF)-κB is a major survival pathway engaged by the Human T-Lymphotropic Virus type 1 (HTLV-1) Tax protein. Tax1 activation of NF-κB occurs predominantly in the cytoplasm, where Tax1 binds NF-κB Essential Modulator (NEMO/IKKγ) and triggers the activation of IκB kinases. Several independent studies have shown that Tax1-mediated NF-κB activation is dependent on Tax1 ubiquitination. Here, we identify by co-immunoprecipitation assays NEMO-Related Protein (NRP/Optineurin) as a binding partner for Tax1 in HTLV-1 infected and Tax1/NRP co-expressing cells. Immunofluorescence studies reveal that Tax1, NRP and NEMO colocalize in Golgi-associated structures. The interaction between Tax1 and NRP requires the ubiquitin-binding activity of NRP and the ubiquitination sites of Tax1. In addition, we observe that NRP increases the ubiquitination of Tax1 along with Tax1-dependent NF-κB signaling. Surprisingly, we find that in addition to Tax1, NRP interacts cooperatively with the Tax1 binding protein TAX1BP1, and that NRP and TAX1BP1 cooperate to modulate Tax1 ubiquitination and NF-κB activation. Our data strongly suggest for the first time that NRP is a critical adaptor that regulates the assembly of TAX1BP1 and post-translationally modified forms of Tax1, leading to sustained NF-κB activation. Oncogenic viruses (i.e., viruses that can induce cancer) have usually been found to deregulate several cellular signaling pathways controlling cell survival and proliferation. Among those, the NF-κB pathway is particularly important. In this study, we focus on the Human T-Lymphotropic Virus type 1 (HTLV-1), which infects immune T cells, and is associated with the development of a severe hematological disease, termed adult T cell leukemia. The viral Tax oncoprotein is known to activate the NF-κB pathway, but the precise mechanism is still under investigation. In cells, proteins can undergo modifications that can modulate their function. In the case of Tax, a modified form of the protein (ubiquitinated Tax) is able to activate the NF-κB pathway. Our aim was to identify cellular proteins that participate in the modification of Tax, and in turn in the regulation of its function. We show for the first time that the cellular protein NRP/Optineurin interacts with Tax and increases its ubiquitination, thus leading to an enhanced NF-κB activation. We further demonstrate that TAX1BP1, another cellular protein that had been previously identified as a partner of Tax, also participates in this regulation. Thus, this study uncovers new actors of the virally induced cell signaling.
Collapse
Affiliation(s)
- Chloé Journo
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, CNRS URA 3015, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu Y, Nonnemacher MR, Wigdahl B. CCAAT/enhancer-binding proteins and the pathogenesis of retrovirus infection. Future Microbiol 2009; 4:299-321. [PMID: 19327116 DOI: 10.2217/fmb.09.4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies indicate that two upstream CCAAT/enhancer-binding protein (C/EBP) sites and C/EBPbeta are required for subtype B HIV-1 gene expression in cells of the monocyte-macrophage lineage. The mechanisms of C/EBP regulation of HIV-1 transcription and replication remain unclear. This review focuses on studies concerning the role of C/EBP factors in HIV-1, human T-cell leukemia virus type 1, and SIV transcription in various cell types and tissues cultured in vitro, animal models and during human infection. The structure and function of the C/EBPbeta gene and the related protein isoforms are discussed along with the transcription factors, coactivators, viral proteins, cytokines and chemokines that affect C/EBP function.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Microbiology & Immunology, Center for Molecular Virology & Neuroimmunology, Center for Cancer Biology, Philadelphia, PA 19129, USA
| | | | | |
Collapse
|
32
|
Upregulation of human T-cell leukemia virus type 1 antisense transcription by the viral tax protein. J Virol 2008; 83:2048-54. [PMID: 19073733 DOI: 10.1128/jvi.01264-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several studies have recently demonstrated the existence of human T-cell leukemia virus type 1 (HTLV-1) antisense transcripts, which allow the synthesis of the newly described HBZ protein. Although previous reports have been aimed at understanding the potential role of the HBZ protein in HTLV-1 pathogenesis, little is known as to how this viral gene is regulated. Here, using our K30-3'asLuc reporter construct, we show that the viral Tax protein upregulates antisense transcription through its action on the TRE sequences located in the 3' long terminal repeat. Generation of stable clones in 293T cells demonstrated that Tax-induced HBZ expression is importantly influenced by the integration site in the host genome. The cellular DNA context could thus affect the level of HBZ mRNA expression in infected cells.
Collapse
|
33
|
Clerc I, Polakowski N, André-Arpin C, Cook P, Barbeau B, Mesnard JM, Lemasson I. An interaction between the human T cell leukemia virus type 1 basic leucine zipper factor (HBZ) and the KIX domain of p300/CBP contributes to the down-regulation of tax-dependent viral transcription by HBZ. J Biol Chem 2008; 283:23903-13. [PMID: 18599479 DOI: 10.1074/jbc.m803116200] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activation of human T cell leukemia virus type 1 (HTLV-1) transcription is established through the formation of protein complexes on the viral promoter that are essentially composed of the cellular basic leucine zipper (bZIP) transcription factor cAMP-response element-binding protein (CREB (or certain other members of the ATF/CREB family), the HTLV-1-encoded transactivator Tax, and the pleiotropic cellular coactivators p300/CBP. HTLV-1 bZIP factor (HBZ) is a protein encoded by HTLV-1 that contains a bZIP domain and functions to repress HTLV-1 transcription. HBZ has been shown to repress viral transcription by dimerizing with CREB, which occurs specifically through the bZIP domain in each protein, and preventing CREB from binding to the DNA. However, we previously found that HBZ causes only partial removal of CREB from a chromosomally integrated viral promoter, and more importantly, an HBZ mutant lacking the COOH-terminal bZIP domain retains the ability to repress viral transcription. These results suggest that an additional mechanism contributes to HBZ-mediated repression of HTLV-1 transcription. In this study, we show that HBZ binds directly to the p300 and CBP coactivators. Two LXXLL-like motifs located within the NH(2)-terminal region of HBZ are important for this interaction and specifically mediate binding to the KIX domain of p300/CBP. We provide evidence that this interaction interferes with the ability of Tax to bind p300/CBP and thereby inhibits the association of the coactivators with the viral promoter. Our findings demonstrate that HBZ utilizes a bipartite mechanism to repress viral transcription.
Collapse
Affiliation(s)
- Isabelle Clerc
- Université Montpellier 1 and CNRS, UM5236, Centre d'Etudes d'Agents Pathogènes et Biotechnologies pour la Santé (CPBS), Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Arpin-André C, Mesnard JM. The PDZ domain-binding motif of the human T cell leukemia virus type 1 tax protein induces mislocalization of the tumor suppressor hScrib in T cells. J Biol Chem 2007; 282:33132-41. [PMID: 17855372 DOI: 10.1074/jbc.m702279200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interactions with cellular PDZ domain-containing proteins obviously contribute to the tumorigenic potential of several viral oncoproteins. In this regard, the oncogenic potential of the human T cell leukemia virus type 1 Tax protein correlates with its binding capacity to the tumor suppressor hDlg. Recent results show that hDlg in T cells is associated to a network of scaffolding proteins including another PDZ domain-containing protein termed hScrib. Interestingly, previous studies have revealed complementary activities of both proteins in the control of epithelial cell polarity. Here, we demonstrate that Tax can bind to hScrib and that the resulting Tax/hScrib complex is present in human T cell leukemia virus type 1-infected T cells. By confocal microscopy, we show that Tax modifies the localization of hScrib in transfected COS cells as well as in infected T cell lines and targets hScrib to particular spots exhibiting a granular distribution, mainly distributed in the cytoplasm. Given that Tax sequesters hScrib to these particular structures, we postulate that Tax might inhibit hScrib activity. Providing further support to this idea, we find that transient overexpression of hScrib attenuates T cell receptor-induced NFAT activity but that the presence of Tax counteracts this negative effect on the NFAT pathway. The fact that hDlg and hScrib are both targeted by Tax underlies their importance in T cell function.
Collapse
Affiliation(s)
- Charlotte Arpin-André
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Centre National de la Recherche Scientifique/UM 1/UM 2 UMR 5236/IFR 122, Institut de Biologie, 4 Boulevard Henri IV, Montpellier Cedex 2, France
| | | |
Collapse
|
35
|
Shembade N, Harhaj NS, Liebl DJ, Harhaj EW. Essential role for TAX1BP1 in the termination of TNF-alpha-, IL-1- and LPS-mediated NF-kappaB and JNK signaling. EMBO J 2007; 26:3910-22. [PMID: 17703191 PMCID: PMC1994124 DOI: 10.1038/sj.emboj.7601823] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 07/19/2007] [Indexed: 12/11/2022] Open
Abstract
The NF-kappaB transcription factor is normally transiently activated by proinflammatory cytokines and bacterial lipopolysaccharide (LPS); however, persistent NF-kappaB activation is commonly observed in inflammatory disease and malignancy. The ubiquitin editing enzyme A20 serves an essential role in the termination of TNF-alpha- and LPS-mediated NF-kappaB signaling by inactivating key signaling molecules. However, little is known about how A20 is regulated and if other molecules play a role in the termination of NF-kappaB signaling. Here we demonstrate that Tax1-binding protein 1 (TAX1BP1) is essential for the termination of NF-kappaB and JNK activation in response to TNF-alpha, IL-1 and LPS stimulation. In TAX1BP1-deficient mouse fibroblasts, TNF-alpha-, IL-1- and LPS-mediated IKK and JNK activation is elevated and persistent owing to enhanced ubiquitination of RIP1 and TRAF6. Furthermore, in the absence of TAX1BP1, A20 is impaired in RIP1 binding, deubiquitination of TRAF6 and inhibition of NF-kappaB activation. Thus, TAX1BP1 is pivotal for the termination of NF-kappaB and JNK signaling by functioning as an essential regulator of A20.
Collapse
Affiliation(s)
- Noula Shembade
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - Nicole S Harhaj
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis and Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, USA
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, 1550 NW 10 Avenue, Miami, FL 33136, USA. Tel.: +1 305 243 7893; Fax: +1 305 243 6410; E-mail:
| |
Collapse
|
36
|
Morriswood B, Ryzhakov G, Puri C, Arden SD, Roberts R, Dendrou C, Kendrick-Jones J, Buss F. T6BP and NDP52 are myosin VI binding partners with potential roles in cytokine signalling and cell adhesion. J Cell Sci 2007; 120:2574-85. [PMID: 17635994 PMCID: PMC2621013 DOI: 10.1242/jcs.007005] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Myosin VI has been implicated in many cellular processes including endocytosis, secretion, membrane ruffling and cell motility. We carried out a yeast two-hybrid screen and identified TRAF6-binding protein (T6BP) and nuclear dot protein 52 (NDP52) as myosin VI binding partners. Myosin VI interaction with T6BP and NDP52 was confirmed in vitro and in vivo and the binding sites on each protein were accurately mapped. Immunofluorescence and electron microscopy showed that T6BP, NDP52 and myosin VI are present at the trans side of the Golgi complex, and on vesicles in the perinuclear region. Although the SKICH domain in T6BP and NDP52 does not mediate recruitment into membrane ruffles, loss of T6BP and NDP52 in RNAi knockdown cells results in reduced membrane ruffling activity and increased stress fibre and focal adhesion formation. Furthermore, we observed in these knockdown cells an upregulation of constitutive secretion of alkaline phosphatase, implying that both proteins act as negative regulators of secretory traffic at the Golgi complex. T6BP was also found to inhibit NF-kappaB activation, implicating it in the regulation of TRAF6-mediated cytokine signalling. Thus myosin VI-T6BP interactions may link membrane trafficking pathways with cell adhesion and cytokine-dependent cell signalling.
Collapse
Affiliation(s)
- Brooke Morriswood
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | - Grigory Ryzhakov
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | - Claudia Puri
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 2XY, UK
| | - Susan D. Arden
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 2XY, UK
| | - Rhys Roberts
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | - Calliope Dendrou
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 2XY, UK
| | - John Kendrick-Jones
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
- Author for correspondence (e-mail: )
| | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 2XY, UK
| |
Collapse
|
37
|
Chin KT, Chun ACS, Ching YP, Jeang KT, Jin DY. Human T-cell leukemia virus oncoprotein tax represses nuclear receptor-dependent transcription by targeting coactivator TAX1BP1. Cancer Res 2007; 67:1072-81. [PMID: 17283140 DOI: 10.1158/0008-5472.can-06-3053] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human T-cell leukemia virus type 1 oncoprotein Tax is a transcriptional regulator that interacts with a large number of host cell factors. Here, we report the novel characterization of the interaction of Tax with a human cell protein named Tax1-binding protein 1 (TAX1BP1). We show that TAX1BP1 is a nuclear receptor coactivator that forms a complex with the glucocorticoid receptor. TAX1BP1 and Tax colocalize into intranuclear speckles that partially overlap with but are not identical to the PML oncogenic domains. Tax binds TAX1BP1 directly, induces the dissociation of TAX1BP1 from the glucocorticoid receptor-containing protein complex, and represses the coactivator function of TAX1BP1. Genetic knockout of Tax1bp1 in mice abrogates the influence of Tax on the activation of nuclear receptors. We propose that Tax-TAX1BP1 interaction mechanistically explains the previously reported repression of nuclear receptor activity by Tax.
Collapse
Affiliation(s)
- King-Tung Chin
- Department of Biochemistry, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | | | | | | | | |
Collapse
|
38
|
Ulrich M, Seeber S, Becker CM, Enz R. Tax1-binding protein 1 is expressed in the retina and interacts with the GABA(C) receptor rho1 subunit. Biochem J 2007; 401:429-36. [PMID: 16999686 PMCID: PMC1820818 DOI: 10.1042/bj20061036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Macromolecular signalling complexes that link neurotransmitter receptors to functionally and structurally associated proteins play an important role in the regulation of neurotransmission. Thus the identification of proteins binding to neurotransmitter receptors describes molecular mechanisms of synaptic signal transduction. To identify interacting proteins of GABA(C) (where GABA is gamma-aminobutyric acid) receptors in the retina, we used antibodies specific for GABA(C) receptor rho1-3 subunits. Analysis of immunoprecipitated proteins by MALDI-TOF MS (matrix-assisted laser-desorption ionization-time-of-flight MS) identified the liver regeneration-related protein 2 that is identical with amino acids 253-813 of the Tax1BP1 (Tax1-binding protein 1). A C-terminal region of Tax1BP1 bound to an intracellular domain of the rho1 subunit, but not to other subunits of GABA(C), GABA(A) or glycine receptors. Confocal laser-scanning microscopy demonstrated co-localization of Tax1BP1 and rho1 in clusters at the cell membrane of transfected cells. Furthermore, Tax1BP1 and GABA(C) receptors were co-expressed in both synaptic layers of the retina, indicating that Tax1BP1 is a component of GABA(C) receptor-containing signal complexes.
Collapse
Affiliation(s)
- Melanie Ulrich
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Silke Seeber
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Cord-Michael Becker
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Ralf Enz
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
39
|
Lemasson I, Lewis MR, Polakowski N, Hivin P, Cavanagh MH, Thébault S, Barbeau B, Nyborg JK, Mesnard JM. Human T-cell leukemia virus type 1 (HTLV-1) bZIP protein interacts with the cellular transcription factor CREB to inhibit HTLV-1 transcription. J Virol 2006; 81:1543-53. [PMID: 17151132 PMCID: PMC1797566 DOI: 10.1128/jvi.00480-06] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The complex human T-cell leukemia virus type 1 (HTLV-1) retrovirus encodes several proteins that are unique to the virus within its 3'-end region. Among them, the viral transactivator Tax and posttranscriptional regulator Rex are well characterized, and both positively regulate HTLV-1 viral expression. Less is known about the other regulatory proteins encoded in this region of the provirus, including the recently discovered HBZ protein. HBZ has been shown to negatively regulate basal and Tax-dependent HTLV-1 transcription through its ability to interact with specific basic-leucine zipper (bZIP) proteins. In the present study, we found that HBZ reduces HTLV-1 transcription and virion production. We then characterized the interaction between HBZ and the cellular transcription factor CREB. CREB plays a critical role in Tax-mediated HTLV-1 transcription by forming a complex with Tax that binds to viral cyclic AMP-response elements (CREs) located within the viral promoter. We found that HBZ and CREB interact in vivo and directly in vitro, and this interaction occurs through the bZIP domain of each protein. We also found that CREM-Ia and ATF-1, which share significant homology in their bZIP domains with the bZIP domain of CREB, interact with HBZ-bZIP. The interaction between CREB and HBZ prevents CREB binding to the viral CRE elements in vitro and in vivo, suggesting that the reduction in HTLV-1 transcription by HBZ is partly due to the loss of CREB at the promoter. We also found that HBZ displaces CREB from a cellular CRE, suggesting that HBZ may deregulate CREB-dependent cellular gene expression.
Collapse
Affiliation(s)
- Isabelle Lemasson
- East Carolina University, Department of Microbiology and Immunology, Brody School of Medicine, 600 Moye Blvd., Greenville, NC 27834, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Site-specific Phosphorylation Differentiates Active from Inactive Forms of the Human T-cell Leukemia Virus Type 1 Tax Oncoprotein. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84084-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Durkin SS, Ward MD, Fryrear KA, Semmes OJ. Site-specific phosphorylation differentiates active from inactive forms of the human T-cell leukemia virus type 1 Tax oncoprotein. J Biol Chem 2006; 281:31705-12. [PMID: 16923801 DOI: 10.1074/jbc.m607011200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The human T-cell leukemia virus type 1 oncoprotein Tax is a phosphoprotein with a predominately nuclear subcellular localization that accomplishes multiple functions via protein-protein interactions. It has been proposed that regulation of this protein's pleiotropic functions may be accomplished through phosphorylation of specific amino acid residues. We have conducted a phosphoryl mapping of mammalian-expressed Tax protein using a combination of affinity purification, liquid chromatography tandem mass spectrometry, and site-directed substitution mutational analysis. We achieved physical coverage of 77% of the Tax sequence and identified four novel sites of phosphorylation at Thr-48, Thr-184, Thr-215, and Ser-336. Previously identified potential serine phosphorylation sites at Ser-10, Ser-77, and Ser-274 could not be confirmed by mass spectrometry. The functional significance of these novel phosphorylation events was evaluated by mutational analysis and subsequent evaluation for activity via both CREB and NF-kappaB-responsive promoters. Our results demonstrate that phosphorylation at Thr-215 is associated with loss of both Tax functions, phosphorylation at Thr-48 was specifically deficient for activation via NF-kappaB, and phosphorylation at Thr-184 and Ser-336 had no effect on these Tax functions. Semiquantitation of phosphopeptides revealed that the majority of Tax was phosphorylated at Thr-48, Thr-184, Thr-215, and Ser-336, whereas only a minor population of Tax was phosphorylated at either Ser-300 or Ser-301. These results suggest that both positive and negative phosphorylation signals result in the maintenance of a subfraction of Tax as "active" protein.
Collapse
Affiliation(s)
- Sarah S Durkin
- Department of Microbiology and Molecular Cell Biology, Center for Biomedical Proteomics, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Division of Hematology-Oncology, Department of Medicine, Weill Medical College of Cornell University and The New York Presbyterian Hospital, New York, NY, USA
| | | |
Collapse
|
43
|
Grant C, Nonnemacher M, Jain P, Pandya D, Irish B, Williams SC, Wigdahl B. CCAAT/enhancer-binding proteins modulate human T cell leukemia virus type 1 long terminal repeat activation. Virology 2006; 348:354-69. [PMID: 16458341 DOI: 10.1016/j.virol.2005.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 09/06/2005] [Accepted: 12/09/2005] [Indexed: 10/25/2022]
Abstract
CCAAT/enhancer-binding protein (C/EBP) basic region/leucine zipper (bZIP) transcription factors have been shown to form heterodimers with cAMP-responsive element binding protein 2 (CREB-2), a transcription factor involved in regulating basal and Tax-mediated transactivation of the human T cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR). In cells of the monocyte-macrophage lineage (proposed to play a role in HTLV-1 pathogenesis as an accessory target cell), several members of the C/EBP family are expressed at high levels and may have functional impact on both basal and Tax-mediated transactivation of the HTLV-1 LTR. Basal activation of the HTLV-1 LTR was enhanced by overexpression of C/EBPbeta, C/EBPdelta, or C/EBPepsilon, whereas transactivation of the LTR by Tax was inhibited by overexpression of C/EBPalpha and C/EBPbeta. Inhibition of Tax-mediated transactivation of the HTLV-1 LTR was co-activator-independent, did not require C/EBP binding to the Tax-responsive elements, and may involve heterodimerization with CREB factors.
Collapse
Affiliation(s)
- Christian Grant
- Department of Microbiology and Immunology, The Pennsylvania State University, College of Medicine, Hershey, 17033, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Hogan MR, Cockram GP, Lu R. Cooperative interaction of Zhangfei and ATF4 in transactivation of the cyclic AMP response element. FEBS Lett 2005; 580:58-62. [PMID: 16343488 DOI: 10.1016/j.febslet.2005.11.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/14/2005] [Accepted: 11/18/2005] [Indexed: 12/22/2022]
Abstract
Zhangfei (ZF) is a basic region-leucine zipper protein that has been implicated in herpesvirus infection cycle and related cellular processes. Here we show both in vivo and in vitro data demonstrating that ZF is a novel cellular binding partner of activating transcription factor 4 (ATF4) (or CREB2). We found that ZF competed with ATF4 to form ATF4-ZF heterodimeric complexes through the bZIP regions. ZF enhanced ATF4 binding to the cAMP response element (CRE), and augmented activation of a CRE reporter by ATF4, in response to MEK1 activation. These results suggest an important role of ZF in the MEK1-ATF4 signaling pathway.
Collapse
Affiliation(s)
- Melissa R Hogan
- Department of Molecular and Cellular Biology, University of Guelph, Axelrod Building, Room 334, 50 Stone Road East, Guelph, Ont., Canada N1G 2W1
| | | | | |
Collapse
|
45
|
Kim S, Song YJ, Higuchi DA, Kang HP, Pratt JR, Yang L, Hong CM, Poursine-Laurent J, Iizuka K, French AR, Sunwoo JB, Ishii S, Reimold AM, Yokoyama WM. Arrested natural killer cell development associated with transgene insertion into the Atf2 locus. Blood 2005; 107:1024-30. [PMID: 16223777 PMCID: PMC1458371 DOI: 10.1182/blood-2005-04-1493] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cell development in the bone marrow is not fully understood. Following lineage commitment, these cells appear to advance through a series of developmental stages that are beginning to be characterized. We previously reported a selective deficiency of NK cells in a C57BL/6 mouse with a transgenic construct consisting of the cDNA for the Ly49A major histocompatibility complex (MHC) class 1-specific inhibitory receptor driven by the granzyme A gene. This mouse has few NK cells in peripheral tissues with relative preservation of other immune cells, including T and B cells. Herein we demonstrate that these mice have an accumulation of NK cells with an immature phenotype in the bone marrow, consistent with a block at a previously proposed stage in normal NK-cell development. The phenotype is associated with transgenic insertion into Atf2, the gene for the basic leucine zipper (bZIP) transcription factor family member ATF-2. Although analysis of Atf2-null NK cells shows no defect, the transgenic mice express abnormal truncated Atf2 transcripts that may mediate a repressor effect because ATF2 can heterodimerize with other bZIP molecules. The defect is cell intrinsic, suggesting that certain bZIP molecules play significant roles in NK-cell development.
Collapse
MESH Headings
- Activating Transcription Factor 2/genetics
- Activating Transcription Factor 2/immunology
- Animals
- Antigens, Ly/genetics
- Antigens, Ly/immunology
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- Bone Marrow Transplantation
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Mice
- Mice, Transgenic
- Mutagenesis, Insertional/genetics
- Mutagenesis, Insertional/immunology
- NK Cell Lectin-Like Receptor Subfamily A
- Quantitative Trait Loci/genetics
- Quantitative Trait Loci/immunology
- Receptors, NK Cell Lectin-Like
- Transgenes/genetics
- Transgenes/immunology
- Transplantation Chimera/genetics
- Transplantation Chimera/immunology
Collapse
Affiliation(s)
- Sungjin Kim
- Howard Hughes Medical Institute, the Rheumatology Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Adult T-cell leukemia (ATL) is an aggressive hematologic malignancy caused by human T-cell leukemia virus type I (HTLV-1). Tax, encoded by the HTLV-1 pX region, has been recognized by its pleiotropic actions to play a critical role in leukemogenesis. Three highly conserved 21-bp repeat elements located within the long terminal repeat, commonly referred to as Tax-responsive element 1 (TRE-1), are critical to Tax-mediated viral transcriptional activation through complex interaction with cyclic AMP-responsive element binding protein (CREB), CBP/p300 and PCAF. Tax has also been shown to activate transcription from a number of critical cellular genes through the NF-kappaB and serum-responsive factor pathways. Tax transactivation has been attributed to the protein's interaction with transcription factors, chromatin remodeling complexes, cell cycle and repair genes. In this review, we will discuss some of the latest findings on this fascinating viral activator and highlight its regulation of cellular factors including CREB, p300/CBP and their effect on RNA polymerase II and chromatin remodeling, as well as its role in cytoplasmic and nuclear function. We will highlight the possible contribution of each factor, discuss Tax's critical peptide domains and highlight its post-transcriptional modifications. It is quite obvious that, collectively, Tax's effects on a wide variety of cellular targets cooperate in promoting cell proliferation and leukemogenesis. In addition, the post-transcriptional effects of Rex play an important role in virus replication. Understanding these interactions at a molecular level will facilitate the targeted development of drugs to effectively inhibit or treat ATL.
Collapse
Affiliation(s)
- Fatah Kashanchi
- Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, 2300 Eye St, NW, Ross Hall, Washington, DC, USA.
| | | |
Collapse
|
47
|
Langlois M, Audet B, Legault E, Paré ME, Ouellet M, Roy J, Dumais N, Mesnard JM, Rothstein DM, Marriott SJ, Tremblay MJ, Barbeau B. Activation of HTLV-I gene transcription by protein tyrosine phosphatase inhibitors. Virology 2005; 329:395-411. [PMID: 15518818 DOI: 10.1016/j.virol.2004.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 05/10/2004] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-I) transcription generally depends on the ability of the viral Tax protein to bind the CREB transcription factor and form an active complex by recruiting CBP/p300 coactivators to the long terminal repeat (LTR). Studies have demonstrated that T-cell activating agents that stimulate CREB are potent inducers of HTLV-I transcription. Herein, we demonstrate that bpV[pic], a protein tyrosine phosphatase (PTP) inhibitor activates the HTLV-I LTR in the presence and absence of Tax expression. Optimal activation occurred at 8 h and was synergistic with forskolin or PGE(2). Infected cell lines and cells transfected with HTLV-I proviral DNA were equally responsive to the synergistic effect of bpV and forskolin on HTLV-I gene expression. Activation of the LTR by bpV[pic] was T-cell receptor-independent, but required ZAP70, calcineurin activity and functional calcium entry. Inhibition of the SHP-1 PTP was suggested to be important. Transfection experiments with a CREB dominant-negative mutant and with isolated TRE1- or CREB-responsive reporter constructs and treatment with the MDL-12,330A adenylate cyclase inhibitor all supported the involvement of a CREB/ATF family member in this bpV-dependent activation of the HTLV-I LTR, although CREB itself did not seem to be involved. Analysis of HTLV-I reporter constructs containing mutated CREB-binding sites also implied the involvement of another element in this activation. These results demonstrate for the first time a powerful effect of PTP inhibitors on HTLV-I LTR activity and suggest participation of both CREB-dependent and -independent pathways in this activation.
Collapse
Affiliation(s)
- Mélanie Langlois
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, Ste-Foy (Québec), Canada G1V 4G2
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
de la Fuente C, Kashanchi F. The expanding role of Tax in transcription. Retrovirology 2004; 1:19. [PMID: 15285790 PMCID: PMC506788 DOI: 10.1186/1742-4690-1-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 07/30/2004] [Indexed: 11/21/2022] Open
Abstract
The viral transactivator of HTLV-I, Tax, has long been shown to target the earliest steps of transcription by forming quaternary complexes with sequence specific transcription factors and histone-modifying enzymes in the LTR of HTLV-I. However, a new study suggests that Tax preferentially transactivates the 21-bp repeats through CREB1 and not other bZIP proteins. The additional transactivation of Tax-responsive promoters subsequent to initiation is also presented. This result highlights a potentially novel role of Tax following TBP recruitment (i.e. initiation) and may expand the mechanism of Tax transactivation in promoter clearance and transcriptional elongation.
Collapse
Affiliation(s)
- Cynthia de la Fuente
- Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, DC 20037, USA
| | - Fatah Kashanchi
- Institute for Proteomics Technology and Application, The George Washington University, Washington, DC 20037, USA
- Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, DC 20037, USA
- The Institute for Genomic Research (TIGR), Rockville, MD 20850, USA
| |
Collapse
|
49
|
Thébault S, Basbous J, Hivin P, Devaux C, Mesnard JM. HBZ interacts with JunD and stimulates its transcriptional activity. FEBS Lett 2004; 562:165-70. [PMID: 15044019 DOI: 10.1016/s0014-5793(04)00225-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 01/29/2004] [Accepted: 02/15/2004] [Indexed: 11/15/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-I) bZIP factor (HBZ) is a viral basic leucine zipper protein that was originally described as a partner of cAMP response element binding protein-2 and as a repressor of HTLV-I viral transcription. In addition, HBZ is able to interact with the activator protein-1 (AP-1) transcription factors c-Jun and JunB, the interaction with c-Jun leading to a transcriptional repression of AP-1-regulated genes. Here we show that HBZ also interacts with JunD in vitro and in vivo, and that this association occurs via the bZIP domain of the two proteins. Moreover, we show that HBZ can activate JunD-dependent transcription and that its amino-terminus is required.
Collapse
Affiliation(s)
- Sabine Thébault
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS/UM I UMR 5121/IFR 122, Institut de Biologie, 4 Bd Henri IV, CS 89508, 34960 Montpellier Cedex 2, France.
| | | | | | | | | |
Collapse
|
50
|
Hivin P, Gaudray G, Devaux C, Mesnard JM. Interaction between C/EBPbeta and Tax down-regulates human T-cell leukemia virus type I transcription. Virology 2004; 318:556-65. [PMID: 14972524 DOI: 10.1016/j.virol.2003.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 10/09/2003] [Accepted: 10/20/2003] [Indexed: 11/24/2022]
Abstract
The human T-cell leukemia virus type I (HTLV-I) Tax protein trans-activates viral transcription through three imperfect tandem repeats of a 21-bp sequence called Tax-responsive element (TxRE). Tax regulates transcription via direct interaction with some members of the activating transcription factor/CRE-binding protein (ATF/CREB) family including CREM, CREB, and CREB-2. By interacting with their ZIP domain, Tax stimulates the binding of these cellular factors to the CRE-like sequence present in the TxREs. Recent observations have shown that CCAAT/enhancer binding protein beta (C/EBPbeta) forms stable complexes on the CRE site in the presence of CREB-2. Given that C/EBPbeta has also been found to interact with Tax, we analyzed the effects of C/EBPbeta on viral Tax-dependent transcription. We show here that C/EBPbeta represses viral transcription and that Tax is no more able to form a stable complex with CREB-2 on the TxRE site in the presence of C/EBPbeta. We also analyzed the physical interactions between Tax and C/EBPbeta and found that the central region of C/EBPbeta, excluding its ZIP domain, is required for direct interaction with Tax. It is the first time that Tax is described to interact with a basic leucine-zipper (bZIP) factor without recognizing its ZIP domain. Although unexpected, this result explains why C/EBPbeta would be unable to form a stable complex with Tax on the TxRE site and could then down-regulate viral transcription. Lastly, we found that C/EBPbeta was able to inhibit Tax expression in vivo from an infectious HTLV-I molecular clone. In conclusion, we propose that during cell activation events, which stimulate the Tax synthesis, C/EBPbeta may down-regulate the level of HTLV-I expression to escape the cytotoxic-T-lymphocyte response.
Collapse
Affiliation(s)
- P Hivin
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS/UM I UMR 5121/IFR 122, Institut de Biologie, 34960 Montpellier, cedex 2, France
| | | | | | | |
Collapse
|