1
|
Machinaga A, Ishihara S, Shirai A, Takase-Yoden S. Splicing of Friend Murine Leukemia Virus env-mRNA Enhances Its Ability to Form Polysomes. Front Microbiol 2016; 7:160. [PMID: 26909075 PMCID: PMC4754430 DOI: 10.3389/fmicb.2016.00160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/29/2016] [Indexed: 12/12/2022] Open
Abstract
Friend murine leukemia virus (MLV) belongs to the gamma retroviruses of the Retroviridae family. The positive-sense RNA of its genome contains a 5' long terminal repeat (LTR), 5' leader sequence, gag, pol, env, and 3' LTR. Transcription from proviral DNA begins from the R region of the 5' LTR and ends at the polyadenylation signal located at the R region of the other end of the 3' LTR. There is a 5' splice site in the 5' leader sequence and a 3' splice site at the 3' end of the pol region. Both full-length unspliced mRNAs and a singly spliced mRNA (env-mRNA) are produced in MLV-infected cells. The MLV Env protein plays important roles both in viral adsorption to host cells and in neuropathogenic disease in MLV-infected mice and rats. Understanding the regulatory mechanisms controlling Env expression is important for determining the functions of the Env protein. We have previously shown that splicing increases env-mRNA stability and translation efficiency. Generally, mRNA polysome formation correlates with translation efficiency. Therefore, here we investigated the effects of env-mRNA splicing on polysome formation to identify mechanisms for Env up-regulation due to splicing. We performed polysome profile analyses using Env-expression plasmids producing spliced or unspliced env-mRNA and showed that the former formed polysomes more efficiently than the latter. Thus, splicing of env-mRNA facilitated polysome formation, suggesting that this contributes to up-regulation of Env expression. We replaced the env region of the expression plasmids with a luciferase (luc) gene, and found that in this case both unspliced and spliced luc-mRNA formed polysomes to a similar extent. Thus, we conclude that whether mRNA polysome formation is affected by splicing depends on the structure of gene in question.
Collapse
Affiliation(s)
- Akihito Machinaga
- Department of Bioinformatics, Graduate School of Engineering, Soka University Tokyo, Japan
| | - Syuhei Ishihara
- Department of Bioinformatics, Graduate School of Engineering, Soka University Tokyo, Japan
| | - Akiko Shirai
- Department of Bioinformatics, Graduate School of Engineering, Soka University Tokyo, Japan
| | - Sayaka Takase-Yoden
- Department of Bioinformatics, Graduate School of Engineering, Soka UniversityTokyo, Japan; Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka UniversityTokyo, Japan
| |
Collapse
|
2
|
Choo YC, Seki Y, Takase-Yoden S. Kinetic studies of the effect of a 17-nucleotide difference in the 0.3-kb region containing the R-U5-5' leader sequence of Friend murine leukemia virus on viral gene expression. Microbiol Immunol 2013; 57:594-9. [PMID: 23945025 DOI: 10.1111/1348-0421.12072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/19/2013] [Accepted: 05/28/2013] [Indexed: 11/29/2022]
Abstract
In addition to the env gene, a 0.3-kb fragment containing the R-U5-5' leader sequence is essential for the induction of spongiform neurodegeneration by Friend murine leukemia virus (Fr-MLV) clone A8 and it also influences expression of the Env protein. Kinetic studies were carried out using two recombinant viruses, R7f, carrying the A8 0.3-kb fragment, and Rec5, carrying the 0.3-kb fragment of the non-neuropathogenic Fr-MLV clone 57. These analyses suggested that the 0.3-kb fragment influenced the expression level of the Env protein by regulating the amount of spliced env-mRNA rather than the amount of total viral mRNA or viral production.
Collapse
Affiliation(s)
- Yeng Cheng Choo
- Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236, Tangi-machi, Hachioji-shi, Tokyo, 192-8577, Japan
| | | | | |
Collapse
|
3
|
Construction and characterization of an infectious molecular clone of Koala retrovirus. J Virol 2013; 87:5081-8. [PMID: 23427161 DOI: 10.1128/jvi.01584-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Koala retrovirus (KoRV) is a gammaretrovirus that is currently endogenizing into koalas. Studies on KoRV infection have been hampered by the lack of a replication-competent molecular clone. In this study, we constructed an infectious molecular clone, termed plasmid pKoRV522, of a KoRV isolate (strain Aki) from a koala reared in a Japanese zoo. The virus KoRV522, derived from pKoRV522, grew efficiently in human embryonic kidney (HEK293T) cells, attaining 10(6) focus-forming units/ml. Several mutations in the Gag (L domain) and Env regions reported to be involved in reduction in viral infection/production in vitro are found in pKoRV522, yet KoRV522 replicated well, suggesting that any effects of these mutations are limited. Indeed, a reporter virus pseudotyped with pKoRV522 Env was found to infect human, feline, and mink cell lines efficiently. Analyses of KoRV L-domain mutants showed that an additional PPXY sequence, PPPY, in Gag plays a critical role in KoRV budding. Altogether, our results demonstrate the construction and characterization of the first infectious molecular clone of KoRV. The infectious clone reported here will be useful for elucidating the mechanism of endogenization of the virus in koalas and screening for antiretroviral drugs for KoRV-infected koalas.
Collapse
|
4
|
Seki Y, Hirano N, Mizukura M, Watanabe R, Takase-Yoden S. Narrowing down the critical region within env gene for determining neuropathogenicity of murine leukemia virus A8. Microbiol Immunol 2012; 55:694-703. [PMID: 21831205 DOI: 10.1111/j.1348-0421.2011.00374.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Friend murine leukemia virus clone A8 causes spongiform neurodegeneration in the rat brain, and the env gene of A8 is a primary determinant of neuropathogenicity. In order to narrow down the critical region within the env gene that determines neuropathogenicity, we constructed chimeric viruses having chimeric env between A8 and non-neuropathogenic 57 on the background of A8 virus. After replacement of the BamHI (at nucleotide 5715)-AgeI (at nucleotide 6322) fragment of A8 virus with the corresponding fragment of 57, neuropathogenicity was lost. In contrast, the chimeric viruses that have the BamHI (5715)-AgeI (6322) fragment of A8 induced spongiosis in 100% of infected rats at the same or slightly lower intensity than A8 virus. These results indicate that the BamHI (5715)-AgeI (6322) fragment of A8, which contains the signal sequence and the N-terminal half of RBD, is crucial for the induction of spongiform neurodegeneration. In the BamHI (5715)-AgeI (6322) fragment, seven amino acids differed between A8 and 57, one in the signal sequence and six in RBD, which suggests that these amino acids significantly contribute to the neuropathogenicity of A8.
Collapse
Affiliation(s)
- Yohei Seki
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | | | | | | | | |
Collapse
|
5
|
Takase-Yoden S, Wada M, Watanabe R. A viral non-coding region determining neuropathogenicity of murine leukemia virus A8 is responsible for envelope protein expression in the rat brain. Microbiol Immunol 2006; 50:197-201. [PMID: 16547417 DOI: 10.1111/j.1348-0421.2006.tb03786.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Friend murine leukemia virus clone A8 causes spongiform neurodegeneration in the rat brain. A 0.3-kb fragment containing the R-U5-5' leader sequence of A8 is required in addition to the A8-env gene to induce spongiosis. The A8-env gene is a primary determinant of neuropathogenicity. Comparative studies of the neuropathogenic virus R7f, which carries the 0.3-kb fragment of A8 and A8-env on the background of the non-neuropathogenic clone 57, and the non-neuropathogenic virus Rec5, which carries A8-env on the background of 57, showed that the 0.3-kb fragment of A8 was responsible for increasing the ratio of Env/Gag expression in the brain, but not in the spleen.
Collapse
Affiliation(s)
- Sayaka Takase-Yoden
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan.
| | | | | |
Collapse
|
6
|
Kanamatsu T, Watanabe R, Takase-Yoden S. Cerebral metabolism in brains of rats infected with neuropathogenic murine leukemia viruses. J Vet Med Sci 2006; 68:259-65. [PMID: 16598170 DOI: 10.1292/jvms.68.259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Friend murine leukemia virus A8 and PVC211 cause spongiform neurodegeneration in rat brains. Glutamate is an important neurotransmitter synthesized from alpha-ketoglutaric acid, an intermediate product of the citric acid cycle, and glutamine is synthesized from glutamate. To examine the brain metabolism of rats infected with neuropathogenic viruses, the amount of glutamate and glutamine in the brains of rats infected with A8, PVC211, and non-neuropathogenic 57 was measured using high performance liquid chromatography, and the (13)C-label incorporation into the C4 position of glutamate and glutamine from [1-(13)C] glucose was measured with (13)C nuclear magnetic resonance. In the cerebral hemisphere and region containing the brain stem and basal ganglia of rats infected with A8 and PVC211 at 8-9 weeks post-infection (wpi), the amount of glutamine was decreased compared with the 57-infected rats. The amount of glutamate was decreased in the cerebral hemisphere of the A8-infected rats and the region containing the brain stem and basal ganglia of PVC211-infected rats at 8-9 wpi. The amount of [4-(13)C] glutamine and [4-(13)C] glutamate in the cerebral hemisphere and region containing the brain stem and basal ganglia of rats infected with A8 and PVC211 at 8-9 wpi was equivalent to that of the 57-infected rats. These results suggest that in the brains of rats infected with neuropathogenic viruses, de novo synthesis of glutamate and glutamine is not decreased, but the ability to maintain quantitative levels of glutamate and glutamine is decreased compared with the brains of rats infected with non-neuropathogenic virus.
Collapse
Affiliation(s)
- Tomoyuki Kanamatsu
- Department of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | | | | |
Collapse
|
7
|
Takase-Yoden S, Watanabe R. A 0.3-kb fragment containing the R-U5-5' leader sequence is essential for the induction of spongiform neurodegeneration by A8 murine leukemia virus. Virology 2005; 336:1-10. [PMID: 15866066 DOI: 10.1016/j.virol.2005.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 01/21/2005] [Accepted: 03/04/2005] [Indexed: 11/17/2022]
Abstract
Friend murine leukemia virus (Fr-MLV) clone A8 causes spongiform neurodegeneration in the rat brain. The A8-env gene is a primary determinant of neuropathogenicity, and the 1.5-kb ClaI-HindIII fragment containing the LTR and 5' leader from A8 are additionally required for spongiosis. After replacement of the A8 enhancer region of the neuropathogenic chimera with the enhancer region of non-neuropathogenic 57, viral titer in the brain was reduced by two orders of magnitude. However, the A8 enhancer region was not responsible for the induction of spongiosis. The region responsible for neuropathogenesis was located in the 0.3-kb KpnI-AatII fragment of A8 containing the R-U5-5' leader. The chimeric virus possessing this 0.3-kb fragment of A8 and the A8-env in the 57 background induced a high rate of spongiform neurodegeneration within 7 weeks (9/9 of infected rats). Studies using cultured cells suggest that the 0.3-kb fragment influences the expression of Env protein. Furthermore, these neuropathogenic chimerae, despite low viral replication in the brain, exhibited a stronger expression of Env protein compared with that of non-neuropathogenic viruses.
Collapse
Affiliation(s)
- Sayaka Takase-Yoden
- Department of Bioinformatics, Faculty of Engineering, Soka University, Tangi-cho 1-236, Hachioji, Tokyo 192-8577, Japan.
| | | |
Collapse
|
8
|
Abstract
Murine leukemia viruses may produce encephalopathies that have the same characteristics as those induced by infectious proteins or prions: neuronal loss, astrocytosis, and absence of inflammatory response. The pathogenic mechanism is still poorly understood but it seems that it involves the envelope proteins (Env), which may be misprocessed in the cell, giving rise to pathogenic isoforms that trigger oxidative damage. Env may also affect the cytokine pattern in the central nervous system and thus, induce encephalopathy.
Collapse
Affiliation(s)
- Esperanza Gomez-Lucia
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
9
|
Jinno-Oue A, Oue M, Ruscetti SK. A unique heparin-binding domain in the envelope protein of the neuropathogenic PVC-211 murine leukemia virus may contribute to its brain capillary endothelial cell tropism. J Virol 2001; 75:12439-45. [PMID: 11711634 PMCID: PMC116140 DOI: 10.1128/jvi.75.24.12439-12445.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2001] [Accepted: 09/04/2001] [Indexed: 11/20/2022] Open
Abstract
Previous studies from our laboratory demonstrated that PVC-211 murine leukemia virus (MuLV), a neuropathogenic variant of Friend MuLV (F-MuLV), had undergone genetic changes which allowed it to efficiently infect rat brain capillary endothelial cells (BCEC) in vivo and in vitro. Two amino acid changes from F-MuLV in the putative receptor binding domain (RBD) of the envelope surface protein of PVC-211 MuLV (Glu-116 to Gly and Glu-129 to Lys) were shown to be sufficient for conferring BCEC tropism on PVC-211 MuLV. Recent examination of the unique RBD of PVC-211 MuLV revealed that the substitution of Lys for Glu at position 129 created a new heparin-binding domain that overlapped a heparin-binding domain common to ecotropic MuLVs. In this study we used heparin-Sepharose columns to demonstrate that PVC-211 MuLV, but not F-MuLV, can bind efficiently to heparin and that one or both of the amino acids in the RBD of PVC-211 MuLV that are associated with BCEC tropism are responsible. We further showed that heparin can enhance or inhibit MuLV infection and that the mode of action is dependent on heparin concentration, sulfation of heparin, and the affinity of the virus for heparin. Our results suggest that the amino acid changes that occurred in the envelope surface protein of PVC-211 MuLV may allow the virus to bind strongly to the surface of BCEC via heparin-like molecules, increasing the probability that the virus will bind to its cell surface receptor and efficiently infect these cells.
Collapse
Affiliation(s)
- A Jinno-Oue
- Basic Research Laboratory, National Cancer Institute-Frederick, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
10
|
Tanaka A, Saida K, Andoh M, Maeda K, Kai K. At least four non-env factors that reside in the LTR, in the 5'-non-coding region, in gag and in part of pol affect neuropathogenicity of PVC-441 murine leukemia virus (MuLV). Virus Res 2000; 69:17-30. [PMID: 10989182 DOI: 10.1016/s0168-1702(00)00166-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PVC-441 murine leukemia virus (MuLV) is neuropathogenic in F344 rats. Recently, an infectious DNA clone was isolated and its nucleotide sequence was determined (J. Virol. 72: 3423-3426. 1998). To identify the viral determinants of neuropathogenicity of the molecularly cloned PVC-441 MuLV, chimeras were constructed between PVC-441 MuLV and F-MuLV clones at appropriate restriction enzyme sites that divide the viral genome approximately in LTR-non-coding, gag-, pol-, and env-gene regions. Results indicated that the LTR-non-coding and the gag-gene regions of PVC-441 MuLV affected independently the neuropathogenicity in combination with the env gene region as evidenced clinically and pathologically. Studies on the distribution of vacuolar degeneration suggested that the pons and cervical spinal cord areas were the primary targets and the large brain was the latest target of PVC-441 MuLV. Further studies with chimeric viruses that were formed in the LTR-non-coding and the gag gene regions revealed that at least four factors affected the neuropathogenicity of PVC-441 MuLV. Two factors were found in the U3, and R-U5-5'-non-coding regions, and at least two factors in the gag gene region that contained the N-terminal part of the pol gene. Among these factors, at least two factors seemed to be 'cis-acting' from each other
Collapse
MESH Headings
- 5' Untranslated Regions
- Amino Acid Sequence
- Animals
- Base Sequence
- Chimera/genetics
- DNA, Viral/genetics
- Female
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/pathogenicity
- Genes, Viral
- Genes, env
- Genes, gag
- Genes, pol
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Leukemia, Experimental/etiology
- Male
- Mice
- Molecular Sequence Data
- Nervous System Diseases/etiology
- Rats
- Rats, Inbred F344
- Retroviridae Infections/etiology
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Terminal Repeat Sequences
- Tumor Virus Infections/etiology
- Virulence/genetics
Collapse
Affiliation(s)
- A Tanaka
- Department of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | | | | | | |
Collapse
|