1
|
Genetic fusion of peste des petits ruminants virus haemagglutinin and fusion protein domains to the amino terminal subunit of glycoprotein B of bovine herpesvirus 1 interferes with transport and function of gB for BHV-1 infectious replication. Virus Res 2018; 258:9-18. [DOI: 10.1016/j.virusres.2018.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 01/31/2023]
|
2
|
Recombinant bovine adenovirus-3 co-expressing bovine respiratory syncytial virus glycoprotein G and truncated glycoprotein gD of bovine herpesvirus-1 induce immune responses in cotton rats. Mol Biotechnol 2015; 57:58-64. [PMID: 25173687 DOI: 10.1007/s12033-014-9801-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
One of the impediments in the development of safe and cost effective vaccines for veterinary use has been the availability of appropriate delivery vehicle. We have chosen to develop and use bovine adenovirus (BAdV)-3 as vaccine delivery vector in cattle. Here, we describe the construction of recombinant E3 deleted BAdV-3 vectors expressing single vaccine antigen (BAV360; bovine respiratory syncytial virus G) or two vaccine antigens (BAV851; bovine herpesvirus-1gDt and bovine respiratory syncytial virus G). Recombinant proteins expressed by BAV360 or BAV851 were recognized by protein-specific monoclonal antibodies. Moreover, intranasal immunization of cotton rats with BAV360 (expressing a single vaccine antigen) or BAV851 (expressing two vaccine antigens) induced strong antigen-specific immune responses. These results suggest that single replication-competent BAdV-3 expressing vaccine antigens of two economically important respiratory pathogens of calves has potential to act as a feasible approach in the development of economically effective veterinary vaccines for cattle.
Collapse
|
3
|
Antigen delivery systems for veterinary vaccine development. Viral-vector based delivery systems. Vaccine 2009; 26:6508-28. [PMID: 18838097 PMCID: PMC7131726 DOI: 10.1016/j.vaccine.2008.09.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 08/21/2008] [Accepted: 09/16/2008] [Indexed: 11/30/2022]
Abstract
The recent advances in molecular genetics, pathogenesis and immunology have provided an optimal framework for developing novel approaches in the rational design of vaccines effective against viral epizootic diseases. This paper reviews most of the viral-vector based antigen delivery systems (ADSs) recently developed for vaccine testing in veterinary species, including attenuated virus and DNA and RNA viral vectors. Besides their usefulness in vaccinology, these ADSs constitute invaluable tools to researchers for understanding the nature of protective responses in different species, opening the possibility of modulating or potentiating relevant immune mechanisms involved in protection.
Collapse
|
4
|
Antonis AFG, van der Most RG, Suezer Y, Stockhofe-Zurwieden N, Daus F, Sutter G, Schrijver RS. Vaccination with recombinant modified vaccinia virus Ankara expressing bovine respiratory syncytial virus (bRSV) proteins protects calves against RSV challenge. Vaccine 2007; 25:4818-27. [PMID: 17499893 DOI: 10.1016/j.vaccine.2007.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/28/2007] [Accepted: 04/02/2007] [Indexed: 11/27/2022]
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe respiratory disease in infants and calves. Bovine RSV (bRSV) is a natural pathogen for cattle, and bRSV infection in calves shares many features with the human infection. Thus, bRSV infection in cattle provides the ideal setting to evaluate the safety and efficacy of novel RSV vaccine strategies. Here, we have evaluated the efficacy and safety of modified vaccinia virus Ankara (rMVA)-based vaccine candidates, expressing the bovine RSV-F protein, either or not in combination with the G protein, in colostrums-deprived SPF calves born by caesarean section. Vaccination induced bRSV-specific IgG and CD8 T cell responses. Importantly, no IgE responses were detected. After bRSV challenge, rMVA vaccinated calves experienced less severe symptoms of lower respiratory tract disease compared to the mock-immunized control group. Immunized animals showed reduced pulmonary virus loads, and no eosinophilic infiltration or enhanced respiratory distress. In conclusion, candidate rMVA/bRSV vaccines induced protective and safe immune responses in calves.
Collapse
Affiliation(s)
- Adriaan F G Antonis
- Animal Sciences Group, Division of Infectious Diseases, P.O. Box 65, NL-8200AB Lelystad, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
5
|
Rosas CT, Tischer BK, Perkins GA, Wagner B, Goodman LB, Osterrieder N. Live-attenuated recombinant equine herpesvirus type 1 (EHV-1) induces a neutralizing antibody response against West Nile virus (WNV). Virus Res 2007; 125:69-78. [PMID: 17241683 DOI: 10.1016/j.virusres.2006.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 12/20/2022]
Abstract
The immunogenicity in horses of a recombinant equine herpesvirus type 1 (EHV-1) vaccine expressing West Nile virus (WNV) prM and E proteins was studied. To construct the recombinant EHV-1, two-step en passant mutagenesis was employed for manipulation of a bacterial artificial chromosome (BAC) of vaccine strain RacH. Recombinant EHV-1 stably expressed the WNV prM and E proteins as demonstrated by indirect immunofluorescence and Western blotting. In addition, growth properties in vitro of the EHV-1/WNV recombinant were found to not be significantly different from those of the parental virus. To determine if vaccination of horses induces an antibody response, 10 horses were allocated in two groups. Group A consisted of six horses that were vaccinated three times with the recombinant EHV-1/WNV virus in 28- to 31-day intervals. Group B consisted of four horses that were sham-vaccinated using the same regimen. Serum was collected on days 0, 31, 45 and 66. Plaque reduction neutralization test and IgG(T)- and IgGb-specific WNV E antibody-capture ELISAs were used. After a single vaccination (day 31), at least four of the six horses from group A had detectable levels of serum neutralizing antibodies against WNV, and three horses retained SN titers until the end of the study. None of the horses in the control group B sero-converted. On days 31 and 45, five of the six horses in group A had a marked increase of WNV-specific IgG(T), and at least four exhibited modestly elevated WNV-specific IgGb titers. From the results, we concluded that the EHV-1 vectored virus is able to express the WNV structural proteins and that vaccination of horses results in the induction of WNV E-protein-specific IgG(T), IgGb, and neutralizing antibodies.
Collapse
Affiliation(s)
- Cristina T Rosas
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
6
|
Höhle C, Karger A, König P, Giesow K, Keil GM. High-level expression of biologically active bovine alpha interferon by Bovine herpesvirus 1 interferes only marginally with recombinant virus replication in vitro. J Gen Virol 2005; 86:2685-2695. [PMID: 16186221 DOI: 10.1099/vir.0.81094-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
An artificial open reading frame (ORF) for bovine alpha interferon (boIFN-α) with the codon preference of Bovine herpesvirus 1 (BHV-1) glycoprotein B was constructed to assess the effect of expression of boIFN-α by BHV-1 from an expression cassette. Transient expression of the ORF revealed that transfected cells secreted substantial amounts of biologically active boIFN-α, which moderately inhibited replication of BHV-1 after stimulation of bovine cells with 104 U ml−1. The boIFN-α-encoding expression cassette was recombined into the glycoprotein E locus of the glycoprotein E-negative BHV-1 vaccine strain GKD. Cells infected with the resulting recombinant BHV-1/boIFN-α secreted up to 107 U boIFN-α per ml cell culture supernatant, which is about 40- to more than 100-fold the activity reached with other virus expression systems. Bioassays demonstrated that the BHV-1-expressed interferon induced a rapid and sustained antiviral state in stimulated bovine cells. Analysis of the in vitro growth properties of the recombinant revealed, depending on the cell line used, no or only slight inhibition in direct spreading from cell to cell and a modest delay in virus egress from infected cells. Final titres, however, were comparable to those reached by the parent strain. Penetration into cells was not affected. The results from this study demonstrate that BHV-1/boIFN-α expresses high levels of boIFN-α, grows to high titres in cell culture and thus represents a potential alternative means to deliver endogenously produced boIFN-α
in situ for a period of time.
Collapse
Affiliation(s)
- Constanze Höhle
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Boddenblick 5A, 17493 Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Boddenblick 5A, 17493 Greifswald-Insel Riems, Germany
| | - Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Boddenblick 5A, 17493 Greifswald-Insel Riems, Germany
| | - Katrin Giesow
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Boddenblick 5A, 17493 Greifswald-Insel Riems, Germany
| | - Günther M Keil
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Boddenblick 5A, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
7
|
Taylor G, Bruce C, Barbet AF, Wyld SG, Thomas LH. DNA vaccination against respiratory syncytial virus in young calves. Vaccine 2005; 23:1242-50. [PMID: 15652666 DOI: 10.1016/j.vaccine.2004.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 08/27/2004] [Accepted: 09/08/2004] [Indexed: 01/13/2023]
Abstract
A DNA vaccine encoding the fusion (F) gene (DNA-F) of bovine respiratory syncytial virus (BRSV) induced significant protection against BRSV infection in young calves. However, serum antibody to RSV developed more slowly in animals vaccinated with DNA-F when compared with those previously infected with BRSV. Furthermore, protection against BRSV infection was not as great as that induced by prior BRSV infection. Although there was little difference in the level of protection induced in calves vaccinated with DNA-F by either the intramuscular (i.m.) or intradermal (i.d.) routes, only the i.m. route primed for a rapid BRSV-specific IgA response after BRSV challenge. These results indicate that a DNA vaccination may be effective against RSV infection even in very young infants and calves.
Collapse
Affiliation(s)
- Geraldine Taylor
- Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK
| | | | | | | | | |
Collapse
|
8
|
Ioannou XP, Griebel P, Mena A, Gomis SM, Godson DL, Mutwiri G, Hecker R, Babiuk LA, van Drunen Littel-van den Hurk S. Safety of CpG oligodeoxynucleotides in veterinary species. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2004; 13:157-67. [PMID: 12954116 DOI: 10.1089/108729003768247628] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bacterial DNA and synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs in particular sequence contexts (CpG ODN) are recognized as a danger signal by the innate immune system of vertebrates. For this reason, CpG ODNs have a potential application as both an adjuvant and nonspecific immune modulator and are currently being evaluated in a number of human and veterinary clinical trials. Given their potent immunostimulatory activity, CpG ODNs could possibly induce adverse reactions. As all adjuvants and immune modulators must be nontoxic to meet safety requirements, it was essential to address the safety aspects of CpG ODNs. The current review summarizes experiments carried out to date to establish the safety of CpG ODNs in animals.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Animals
- Animals, Domestic/blood
- Animals, Domestic/immunology
- Base Sequence
- Body Temperature
- Cattle
- Cell Division/drug effects
- Cells, Cultured
- Drug Evaluation, Preclinical
- Haptoglobins/metabolism
- Hemocyanins/administration & dosage
- Hemocyanins/pharmacology
- Immune System/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Injections, Intramuscular
- Injections, Subcutaneous
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/genetics
- Oligodeoxyribonucleotides/immunology
- Oligodeoxyribonucleotides/pharmacology
- Species Specificity
- Time Factors
Collapse
Affiliation(s)
- X P Ioannou
- Vetinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang L, Whitbeck JC, Lawrence WC, Volgin DV, Bello LJ. Expression of the genomic form of the bovine viral diarrhea virus E2 ORF in a bovine herpesvirus-1 vector. Virus Genes 2003; 27:83-91. [PMID: 12913361 DOI: 10.1023/a:1025180604047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is a ubiquitous pathogen of cattle with a world-wide distribution. Recently, the possibility of using recombinant virus vectors to immunize cattle against selected BVDV genes has gained widespread interest. Among the virus vectors tested, bovine herpesvirus-1 (BHV1) provides many unique advantages. However, results of recent studies have raised the possibility that the codon usage pattern required for optimal expression in a BHV1-infected cell may be incompatible with the codon usage pattern of BVDV. If true, use of BHV1 to express BVDV proteins would require construction of synthetic BVDV genes that have been modified to resemble the codon pattern of BHV1. To explore this possibility, we constructed a BHV1 recombinant containing the genomic form of the BVDV (NADL) E2 ORF and compared expression of the E2 protein with that of the endogenous BHV1 gD protein. We observed that E2 was expressed at a significant rate compared to that of the gD protein. We conclude that codon usage problems are unlikely to constitute a serious problem for expression of BVDV proteins in BHV1 vectors.
Collapse
Affiliation(s)
- Lingshu Wang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104, PA, USA
| | | | | | | | | |
Collapse
|
10
|
Wang L, Menon S, Bolin SR, Bello LJ. A hepadnavirus regulatory element enhances expression of a type 2 bovine viral diarrhea virus E2 protein from a bovine herpesvirus 1 vector. J Virol 2003; 77:8775-82. [PMID: 12885896 PMCID: PMC167231 DOI: 10.1128/jvi.77.16.8775-8782.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, the possibility of using virus vectors to immunize cattle against selected bovine viral diarrhea virus (BVDV) genes has gained widespread interest. However, when we attempted to express the E2 protein from type 2 (890 strain) BVDV in a bovine herpesvirus 1 (BHV1) vector, we observed that expression was poor. This often happens when genes from a cytoplasmic virus are expressed in the cell nucleus. To counter this effect, we attempted to enhance expression by a strategy employed by viruses. RNAs of retroviruses and hepadnaviruses contain cis-acting elements that facilitate expression of RNAs that otherwise are degraded or retained within the nucleus. In Mason-Pfizer monkey virus, the required RNA sequence element is known as a constitutive transport element (CTE). A related element from woodchuck hepatitis virus is known as the woodchuck posttranscriptional regulatory element (WPRE). We tested the ability of the CTE, the WPRE, and introns to enhance expression of E2. All three elements stimulated expression of E2 from plasmids. The combination of the WPRE and an intron yielded the highest level of E2 expression in plasmids. However, when E2 was expressed from a BHV1 vector, the presence of an intron was inhibitory. In contrast, the WPRE was very efficient at stimulating E2 expression from a BHV1 vector. This result represents the first expression of a type 2 BVDV E2 protein from a mammalian virus vector and raises the possibility that the WPRE may provide a general method of enhancing foreign gene expression from BHV1 and other herpesvirus vectors.
Collapse
Affiliation(s)
- Lingshu Wang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
11
|
Mahony TJ, McCarthy FM, Gravel JL, Young PL. Rapid and efficient construction of recombinant bovine herpesvirus 1 genomes. J Virol Methods 2003; 107:269-74. [PMID: 12505643 DOI: 10.1016/s0166-0934(02)00226-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1) is an important pathogen of cattle. Recombinant bovine herpesvirus 1 viruses (rBoHV) have been studied extensively as potential vaccines for BoHV-1 associated diseases. A method is described which advances protocols used currently for constructing rBoHV by producing recombinant viruses free of parent virus. The method, restriction endonuclease mediated recombination (REMR), utilises a unique NsiI site in the BoHV-1 genome. Following NsiI digestion the two genomic fragments are prevented from recombining by dephosphorylation. However, when the genomic fragments are co-transfected into a susceptible cell-line with a third DNA fragment (DNA bridge), which encodes DNA homologous to the digested viral termini, the three DNA molecules are able to undergo homologous recombination and produce infectious BoHV-1. During the recombination process foreign DNA within the DNA bridge is incorporated into the BoHV-1 genome, producing rBoHV. In the absence of the DNA bridge virus reconstitution does not occur thus eliminating contamination by the nonrecombinant parent virus. As REMR used an NsiI site occurring naturally in the BoHV-1 genome it can be used for the insertion of foreign DNA into the genome without any prior modifications. REMR could also be applied to any herpesvirus for which the genome sequence is known.
Collapse
Affiliation(s)
- Timothy J Mahony
- Queensland Agricultural Biotechnology Centre, Agency for Food and Fibre Sciences, Gehrmann Laboratories, Research Road, 4072, Queensland, Brisbane, Australia.
| | | | | | | |
Collapse
|
12
|
Mahony TJ, McCarthy FM, Gravel JL, West L, Young PL. Construction and manipulation of an infectious clone of the bovine herpesvirus 1 genome maintained as a bacterial artificial chromosome. J Virol 2002; 76:6660-8. [PMID: 12050379 PMCID: PMC136292 DOI: 10.1128/jvi.76.13.6660-6668.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete genome of bovine herpesvirus 1 (BoHV-1) strain V155 has been cloned as a bacterial artificial chromosome (BAC). Following electroporation into Escherichia coli strain DH10B, the BoHV-1 BAC was stably propagated over multiple generations of its host. BAC DNA recovered from DH10B cells and transfected into bovine cells produced a cytopathic effect which was indistinguishable from that of the parent virus. Analysis of the replication kinetics of the viral progeny indicated that insertion of the BAC vector into the thymidine kinase gene did not affect viral replication. Specific manipulation of the BAC was demonstrated by deleting the gene encoding glycoprotein E by homologous recombination in DH10B cells facilitated by GET recombination. These studies illustrate that the propagation and manipulation of herpesviruses in bacterial systems will allow for rapid and accurate characterization of BoHV-1 genes. In turn, this will allow for the full utilization of BoHV-1 as a vaccine vector.
Collapse
Affiliation(s)
- Timothy J Mahony
- Queensland Agricultural Biotechnology Centre, Agency for Food and Fibre Sciences, Gehrmann Laboratories, Research Road, St. Lucia, Queensland 4072, Australia.
| | | | | | | | | |
Collapse
|
13
|
König P, Giesow K, Keil GM. Glycoprotein M of bovine herpesvirus 1 (BHV-1) is nonessential for replication in cell culture and is involved in inhibition of bovine respiratory syncytial virus F protein induced syncytium formation in recombinant BHV-1 infected cells. Vet Microbiol 2002; 86:37-49. [PMID: 11888688 DOI: 10.1016/s0378-1135(01)00489-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell cultures infected with BHV-1/F(syn), a recombinant bovine herpesvirus 1 (BHV-1) which expresses a synthetic open reading frame encoding the fusion (F) protein of the bovine respiratory syncytial virus (BRSV), showed a cytopathic effect (CPE) indistinguishable from that induced by wildtype BHV-1 although transient transfection experiments demonstrated that expression of the F protein leads to formation of large syncytia. Since it has been shown that glycoprotein M (gM) of pseudorabies virus inhibits BRSV F-induced syncytium formation in transient plasmid transfection experiments [Pseudorbies virus glycoprotein M inhibits membrane fusion. J. Virol. 74 (2000) 6760], the gM ORF of wtBHV-1 and BHV-1/F(syn) was interrupted. Infection of cell cultures with the resulting gM(-) mutant of BHV-1/F(syn) led to formation of syncytia, whereas the CPE in gM(-)BHV-1 infected cells was comparable to the CPE in wtBHV-1 infected cultures. Our results demonstrate that gM is not essential for BHV-1 replication in cell culture and that gM is involved in inhibition of the cell fusion activity of the BHV-1 expressed BRSV F protein.
Collapse
Affiliation(s)
- Patricia König
- Friedrich-Loeffler-Institute, Bundesforschungsanstalt für Viruskrankheiten der Tiere, Insel Riems, Germany
| | | | | |
Collapse
|
14
|
Baxi MK, Deregt D, Robertson J, Babiuk LA, Schlapp T, Tikoo SK. Recombinant bovine adenovirus type 3 expressing bovine viral diarrhea virus glycoprotein E2 induces an immune response in cotton rats. Virology 2000; 278:234-43. [PMID: 11112498 DOI: 10.1006/viro.2000.0661] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombinant bovine adenovirus is being developed as a live vector for animal vaccination and for human gene therapy. In this study, two replication-competent bovine adenovirus 3 (BAV-3) recombinants (BAV331 and BAV338) expressing bovine viral diarrhea virus (BVDV) glycoprotein E2 in the early region 3 (E3) of BAV-3 were constructed. Recombinant BAV331 contains chemically synthesized E2 gene (nucleotides modified to remove internal cryptic splice sites) under the control of BAV-3 E3/major late promoter (MLP), while recombinant BAV338 contains original E2 gene under the control of human cytomegalovirus immediate early promoter. Since E2, a class I membrane glycoprotein, does not contain its own signal peptide sequence at the 5' end, the bovine herpesvirus 1 (BHV-1) glycoprotein D signal sequence was fused in frame to the E2 open reading frame (ORF) for proper processing of the E2 glycoprotein in both the recombinant viruses. Recombinant E2 protein expressed by BAV331 and BAV338 recombinant viruses was recognized by E2-specific monoclonal antibodies as a 53-kDa protein, which also formed dimer with an apparent molecular weight of 94 kDa. Insertion of an E2-expression cassette in the E3 region did not effect the replication of recombinant BAV-3s. Intranasal immunization of cotton rats with these recombinant viruses generated E2-specific IgA and IgG responses at the mucosal surfaces and in the serum. In summary, these results show that the pestivirus glycoprotein can be expressed efficiently by BAV-3. In addition, mucosal immunization with replication-competent recombinant bovine adenovirus 3 can induce a specific immune response against the expressed antigen.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenovirus E3 Proteins/genetics
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/biosynthesis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Bovine Virus Diarrhea-Mucosal Disease/prevention & control
- Cattle
- Cells, Cultured
- DNA, Recombinant/immunology
- Diarrhea Viruses, Bovine Viral/chemistry
- Diarrhea Viruses, Bovine Viral/genetics
- Diarrhea Viruses, Bovine Viral/immunology
- Female
- Glycoproteins/biosynthesis
- Glycoproteins/genetics
- Glycoproteins/immunology
- Immunization
- Immunoglobulin A/analysis
- Immunoglobulin A/blood
- Immunoglobulin G/analysis
- Immunoglobulin G/blood
- Male
- Nasal Mucosa/immunology
- Rats
- Recombinant Proteins/biosynthesis
- Sigmodontinae/blood
- Sigmodontinae/immunology
- Sigmodontinae/virology
- Transcription, Genetic
- Viral Envelope Proteins/biosynthesis
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- M K Baxi
- Virology Group, Veterinary Infectious Disease Organization, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Keil GM. Fusion of the green fluorescent protein to amino acids 1 to 71 of bovine respiratory syncytial virus glycoprotein G directs the hybrid polypeptide as a class II membrane protein into the envelope of recombinant bovine herpesvirus-1. J Gen Virol 2000; 81:1051-5. [PMID: 10725432 DOI: 10.1099/0022-1317-81-4-1051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It was recently shown that the class II membrane glycoprotein G of bovine respiratory syncytial virus (BRSV) is integrated into the envelope of recombinant bovine herpesvirus-1 (BHV-1) virions in the correct orientation. To verify the hypothesis that the membrane anchor of BRSV G might be suitable to target heterologous polypeptides into the membrane of recombinant BHV-1 particles, an open reading frame encoding a fusion protein between amino acids 1 to 71 of the BRSV G glycoprotein and the green fluorescent protein (TMIIGFP) was recombined into the genome of BHV-1. The resulting recombinant BHV-1/eTMIIGFP had growth properties similar to those of wild-type BHV-1. Live-cell analysis of cells infected with BHV-1/eTMIIGFP indicated that the fusion protein localized to the cell surface. Immunoprecipitations and virus neutralization assays using a GFP-specific antiserum proved that TMIIGFP was incorporated as a class II membrane protein into virions.
Collapse
Affiliation(s)
- G M Keil
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany.
| |
Collapse
|
16
|
Schmitt J, Becher P, Thiel HJ, Keil GM. Expression of bovine viral diarrhoea virus glycoprotein E2 by bovine herpesvirus-1 from a synthetic ORF and incorporation of E2 into recombinant virions. J Gen Virol 1999; 80 ( Pt 11):2839-2848. [PMID: 10580045 DOI: 10.1099/0022-1317-80-11-2839] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression cassettes containing the codons for the pestivirus E (rns) signal peptide (Sig) followed by a chemically synthesized ORF that encoded the bovine viral diarrhoea virus (BVDV) strain C86 glycoprotein E2, a class I membrane glycoprotein, were constructed with and without a chimeric intron sequence immediately upstream of the translation start codon, and incorporated into the genome of bovine herpesvirus-1 (BHV-1). The resulting recombinants, BHV- 1/SigE2(syn) and BHV-1/SigE2(syn)-intron, expressed comparable quantities of glycoprotein E2, and Northern blot hybridizations indicated that the presence of the intron did not increase significantly the steady-state levels of transcripts encompassing the SigE2(syn) ORF. In BHV-1/SigE2(syn)- infected cells, the 54 kDa E2 glycoprotein formed a dimer with an apparent molecular mass of 94 kDa, which was further modified to a 101 kDa form found in the envelope of recombinant virus particles. Penetration kinetics and single-step growth curves indicated that the incorporation of the BVDV E2 glycoprotein in the BHV-1 envelope, which apparently did not require BHV-1-specific signals, interfered with entry into target cells and egress of progeny virions. These results demonstrate that a pestivirus glycoprotein can be expressed efficiently by BHV-1 and incorporated into the viral envelope. BHV-1 thus represents a promising tool for the development of efficacious live and inactivated BHV-1-based vector vaccines.
Collapse
Affiliation(s)
- Jutta Schmitt
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany1
| | - Paul Becher
- Institut für Virologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universit ät Giessen, D-35392 Giessen, Germany 2
| | - Heinz-Jürgen Thiel
- Institut für Virologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universit ät Giessen, D-35392 Giessen, Germany 2
| | - Günther M Keil
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany1
| |
Collapse
|
17
|
|
18
|
Turin L, Russo S, Poli G. BHV-1: new molecular approaches to control a common and widespread infection. Mol Med 1999; 5:261-84. [PMID: 10390543 PMCID: PMC2230419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Herpesviruses are widespread viruses, causing severe infections in both humans and animals. Eradication of herpesviruses is extremely difficult because of their ability to establish latent and life-long infections. However, latency is only one tool that has evolved in herpesviruses to successfully infect their hosts; such viruses display a wide (and still incompletely known) panoply of genes and proteins that are able to counteract immune responses of their hosts. Envelope glycoproteins and cytokine inhibitors are two examples of such weapons. All of these factors make it difficult to develop diagnostics and vaccines, unless they are based on molecular techniques. MATERIALS AND METHODS Animal herpesviruses, because of their striking similarity to human ones, are suitable models to study the molecular biology of herpesviruses and develop strategies aimed at designing neurotropic live vectors for gene therapy as well as engineered attenuated vaccines. RESULTS BHV-1 is a neurotropic herpesvirus causing infectious rhinotracheitis (IBR) in cattle. It is a major plague in zootechnics and commercial trade, because of its ability to spread through asymptomatic carrier animals, frozen semen, and embryos. Such portals of infections are also important for human herpesviruses, which mainly cause systemic, eye, and genital tract infections, leading even to the development of cancer. CONCLUSIONS This review covers both the genetics and molecular biology of BHV-1 and its related herpesviruses. Epidemiology and diagnostic approaches to herpesvirus infections are presented. The role of herpesviruses in gene therapy and a broad introduction to classic and engineered vaccines against herpesviruses are also provided. http://link.springer-ny. com/link/service/journals/00020/bibs/5n5p261.html
Collapse
Affiliation(s)
- L Turin
- Institute of Veterinary Microbiology and Immunology, University of Milan, Italy.
| | | | | |
Collapse
|