1
|
Wang TT, Hirons A, Doerflinger M, Morris KV, Ledger S, Purcell DFJ, Kelleher AD, Ahlenstiel CL. Current State of Therapeutics for HTLV-1. Viruses 2024; 16:1616. [PMID: 39459949 PMCID: PMC11512412 DOI: 10.3390/v16101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Human T cell leukaemia virus type-1 (HTLV-1) is an oncogenic retrovirus that causes lifelong infection in ~5-10 million individuals globally. It is endemic to certain First Nations populations of Northern and Central Australia, Japan, South and Central America, Africa, and the Caribbean region. HTLV-1 preferentially infects CD4+ T cells and remains in a state of reduced transcription, often being asymptomatic in the beginning of infection, with symptoms developing later in life. HTLV-1 infection is implicated in the development of adult T cell leukaemia/lymphoma (ATL) and HTLV-1-associated myelopathies (HAM), amongst other immune-related disorders. With no preventive or curative interventions, infected individuals have limited treatment options, most of which manage symptoms. The clinical burden and lack of treatment options directs the need for alternative treatment strategies for HTLV-1 infection. Recent advances have been made in the development of RNA-based antiviral therapeutics for Human Immunodeficiency Virus Type-1 (HIV-1), an analogous retrovirus that shares modes of transmission with HTLV-1. This review highlights past and ongoing efforts in the development of HTLV-1 therapeutics and vaccines, with a focus on the potential for gene therapy as a new treatment modality in light of its successes in HIV-1, as well as animal models that may help the advancement of novel antiviral and anticancer interventions.
Collapse
Affiliation(s)
- Tiana T. Wang
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Ashley Hirons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Kevin V. Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Damian F. J. Purcell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chantelle L. Ahlenstiel
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Niazmand S, Gowhari Shabgah A, Hosseinian S, Gholizadeh Navashenaq J, Kamali A, Khazdair MR, Baghcheghi Y, Hedayati‐Moghadam M. The effect of HTLV1 infection on inflammatory and oxidative parameters in the liver, kidney, and pancreases of BALB/c mice. Physiol Rep 2022; 10:e15243. [PMID: 35373925 PMCID: PMC8978595 DOI: 10.14814/phy2.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/05/2022] [Accepted: 02/13/2022] [Indexed: 12/04/2022] Open
Abstract
Viral infections are linked to the progression of inflammatory reactions and oxidative stress that play pivotal roles in systemic diseases. To confirm this phenomenon, in the present study, TNF-α level and oxidative stress markers were examined in the liver, kidney, and pancreas of HTLV1-infected male BALB/c mice. To this end, twenty BALB/c mice were divided into HTLV1-infected mice that were inoculated with 1-million HTLV1-infected cells (MT-2), and the control groups. Two months after inoculation, the peripheral blood, mesenteric lymph nodes, liver, kidney, and pancreas were collected after deep anesthetization of mice (ketamine, 30 mg/kg). The extracted DNA of mesenteric lymph nodes was obtained to quantify proviral load (PVL) using quantitative real-time polymerase chain reaction (qRT-PCR). The levels of lipid peroxidation, total thiol (SH), nitric oxide (NO), TNF-α, catalase (CAT), and superoxide dismutase (SOD) activities were examined in the liver, kidney, and pancreases. Furthermore, histopathological changes in the liver and kidney were evaluated. In liver tissue, the levels of MDA, TNF-α, and blood cell infiltration were significantly increased, and the levels of CAT and SOD were significantly decreased. In the kidney, a reduction in SOD, CAT, and total SH and an increase in MDA and NO were observed. In the pancreas, CAT activity, total SH, and SOD were decreased, and the levels of MDA and NO were enhanced. In terms of TNF-α production, it has been shown that the level of this inflammatory cytokine was increased in the liver, kidney, and pancreas. The HTLV1 may have a role in inducing inflammatory reactions and oxidative stress pathways in the tissues.
Collapse
Affiliation(s)
- Saeed Niazmand
- Department of PhysiologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Sara Hosseinian
- Department of PhysiologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Ali Kamali
- Department of Infectious DiseasesSchool of MedicineJiroft University of Medical SciencesJiroftIran
| | | | - Yousef Baghcheghi
- Student Research Committee Jiroft University of Medical SciencesJiroftIran
| | - Mahdiyeh Hedayati‐Moghadam
- Student Research Committee Jiroft University of Medical SciencesJiroftIran
- Department of PhysiologySchool of MedicineJiroft University of Medical SciencesJiroftIran
| |
Collapse
|
3
|
Forlani G, Shallak M, Accolla RS, Romanelli MG. HTLV-1 Infection and Pathogenesis: New Insights from Cellular and Animal Models. Int J Mol Sci 2021; 22:ijms22158001. [PMID: 34360767 PMCID: PMC8347336 DOI: 10.3390/ijms22158001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of the human T-cell leukemia virus-1 (HTLV-1), cellular and animal models have provided invaluable contributions in the knowledge of viral infection, transmission and progression of HTLV-associated diseases. HTLV-1 is the causative agent of the aggressive adult T-cell leukemia/lymphoma and inflammatory diseases such as the HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Cell models contribute to defining the role of HTLV proteins, as well as the mechanisms of cell-to-cell transmission of the virus. Otherwise, selected and engineered animal models are currently applied to recapitulate in vivo the HTLV-1 associated pathogenesis and to verify the effectiveness of viral therapy and host immune response. Here we review the current cell models for studying virus–host interaction, cellular restriction factors and cell pathway deregulation mediated by HTLV products. We recapitulate the most effective animal models applied to investigate the pathogenesis of HTLV-1-associated diseases such as transgenic and humanized mice, rabbit and monkey models. Finally, we summarize the studies on STLV and BLV, two closely related HTLV-1 viruses in animals. The most recent anticancer and HAM/TSP therapies are also discussed in view of the most reliable experimental models that may accelerate the translation from the experimental findings to effective therapies in infected patients.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Mariam Shallak
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Roberto Sergio Accolla
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Maria Grazia Romanelli
- Department of Biosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
4
|
Tanaka M, Kawazu Y, Yoshida T, Konishi T, Takenouchi N, Miwa M. Effects of radiation based on whole-body irradiation in HTLV-1-infected mice. JOURNAL OF RADIATION RESEARCH 2019; 60:705-708. [PMID: 31322703 PMCID: PMC6805971 DOI: 10.1093/jrr/rrz050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/07/2019] [Indexed: 05/04/2023]
Abstract
Adult T-cell leukemia is one of the life-threatening diseases that occur in individuals infected with human T-cell leukemia virus type 1 (HTLV-1). Clinical trials of hematopoietic stem cell transplantation therapy are being performed in addition to chemotherapy; however, neither is satisfactory. As a pretreatment for transplantation, anticancer drugs or whole-body irradiation is used to decrease the number of HTLV-1-infected cells, but there are numerous side effects. Therefore, in the present study, using a mouse model of HTLV-1 infection, the long-term survival and number of infected cells in the reservoir organ were investigated in order to determine the effect of γ-irradiation on HTLV-1-infected mice in vivo. There was no improvement in the survival period following γ-irradiation in the γ-irradiated group after HTLV-1 infection when compared with the HTLV-1-infected group. It was also found that the incidence of splenomegaly was ≥80% in the HTLV-1-infected and γ-irradiated group, which was significantly higher than that in the HTLV-1-infected mice. The tissue morphology in the spleen became non-uniform because of γ-rays. Importantly, the number of infected cells in the spleen was increased 4.1-fold in the HTLV-1-infected and γ-irradiated mice compared with that in the HTLV-1-infected mice. Careful consideration might be necessary when using whole-body irradiation in patients with HTLV-1 infection.
Collapse
Affiliation(s)
- Masakazu Tanaka
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka, Japan
- Faculty of Bioscience, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama, Shiga, Japan
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
- Corresponding author. Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan. Tel: +81-99-275-5941; Fax: +81-99-275-5942;
| | - Yusuke Kawazu
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka, Japan
- Faculty of Bioscience, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama, Shiga, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, Japan
| | - Tomoko Konishi
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka, Japan
- Faculty of Bioscience, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama, Shiga, Japan
| | - Norihiro Takenouchi
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Masanao Miwa
- Faculty of Bioscience, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama, Shiga, Japan
| |
Collapse
|
5
|
Abstract
Infection with human T cell leukemia virus type I (HTLV-I) causes adult T cell leukemia (ATL) in a minority of infected individuals after long periods of viral persistence. The various stages of HTLV-I infection and leukemia development are studied by using several different animal models: (1) the rabbit (and mouse) model of persistent HTLV-I infection, (2) transgenic mice to model tumorigenesis by HTLV-I specific protein expression, (3) ATL cell transfers into immune-deficient mice, and (4) infection of humanized mice with HTLV-I. After infection, virus replicates without clinical disease in rabbits and to a lesser extent in mice. Transgenic expression of both the transactivator protein (Tax) and the HTLV-I bZIP factor (HBZ) protein have provided insight into factors important in leukemia/lymphoma development. To investigate factors relating to tumor spread and tissue invasion, a number of immune-deficient mice based on the severe combined immunodeficiency (SCID) or non-obese diabetic/SCID background have been used. Inoculation of adult T cell leukemia cell (lines) leads to lymphoma with osteolytic bone lesions and to a lesser degree to leukemia development. These mice have been used extensively for the testing of anticancer drugs and virotherapy. A recent development is the use of so-called humanized mice, which, upon transfer of CD34(+)human umbilical cord stem cells, generate human lymphocytes. Infection with HTLV-I leads to leukemia/lymphoma development, thus providing an opportunity to investigate disease development with the aid of molecularly cloned viruses. However, further improvements of this mouse model, particularly in respect to the development of adaptive immune responses, are necessary.
Collapse
Affiliation(s)
- Stefan Niewiesk
- Stefan Niewiesk, DVM, PhD, is a professor in the Department of Veterinary Biosciences in the College of Veterinary Medicine at the Ohio State University in Columbus, Ohio
| |
Collapse
|
6
|
Saito M, Tanaka R, Fujii H, Kodama A, Takahashi Y, Matsuzaki T, Takashima H, Tanaka Y. The neutralizing function of the anti-HTLV-1 antibody is essential in preventing in vivo transmission of HTLV-1 to human T cells in NOD-SCID/γcnull (NOG) mice. Retrovirology 2014; 11:74. [PMID: 25163482 PMCID: PMC4180130 DOI: 10.1186/s12977-014-0074-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 08/13/2014] [Indexed: 02/06/2023] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) causes both neoplastic and inflammatory diseases, including adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Because these life-threatening and disabling diseases are not yet curable, it is important to prevent new HTLV-1 infections. Findings In this study, we have established a simple humanized mouse model of HTLV-1 infection for evaluating prophylactic and therapeutic interventions. In this model, HTLV-1-negative normal human peripheral blood mononuclear cells (PBMCs) are transplanted directly into the spleens of severely immunodeficient NOD-SCID/γcnull (NOG) mice, together with mitomycin-treated HTLV-1-producing T cells. Using this model, we tested the efficacy of monoclonal antibodies (mAbs) specific to HTLV-1 as well as human IgG isolated from HAM/TSP patients (HAM-IgG) in preventing HTLV-1-infection. One hour before and 24 h after transplantation of the human cells, each antibody sample was inoculated intraperitoneally. On day 14, human PBMCs isolated from the mouse spleens were tested for HTLV-1 infection. Whereas fresh CD4-positive and CD8-positive T cells isolated from untreated mice or mice treated with isotype control mAb, HTLV-1 non-neutralizing mAbs to envelope gp46, gag p19, and normal human IgG were all infected with HTLV-1; the mice treated with either HTLV-1 neutralizing anti-gp46 mAb or HAM-IgG did not become infected. Conclusions Our data indicate that the neutralizing function of the antibody, but not the antigen specificity, is essential for preventing the in vivo transmission of HTLV-1. The present animal model will also be useful for the in vivo evaluation of the efficacy of candidate molecules to be used as prophylactic and therapeutic intervention against HTLV-1 infection. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0074-z) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Warner K, Crispatzu G, Al-Ghaili N, Weit N, Florou V, You MJ, Newrzela S, Herling M. Models for mature T-cell lymphomas--a critical appraisal of experimental systems and their contribution to current T-cell tumorigenic concepts. Crit Rev Oncol Hematol 2013; 88:680-95. [PMID: 23972664 DOI: 10.1016/j.critrevonc.2013.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/18/2013] [Accepted: 07/18/2013] [Indexed: 02/03/2023] Open
Abstract
Mature T-cell lymphomas/leukemias (MTCL) have been understudied lymphoid neoplasms that currently receive growing attention. Our historically rudimentary molecular understanding and dissatisfactory interventional success in this complex and for the most part poor-prognostic group of tumors is only slightly improving. A major limiting aspect in further progress in these rare neoplasms is the lack of suitable model systems that would substantially facilitate pathogenic studies and pre-clinical drug evaluations. Such representations of MTCL have thus far not been systematically appraised. We therefore provide an overview on existing models and point out their particular advantages and limitations in the context of the specific scientific questions. After addressing issues of species-specific differences and classifications, we summarize data on MTCL cell lines of human as well as murine origin, on murine strain predispositions to MTCL, on available models of genetically engineered mice, and on transplant systems. From an in-silico meta-analysis of available primary data of gene expression profiles on human MTCL we cross-reference genes reported to transform T-cells in mice and reflect on their general vs entity-restricted relevance and on target-promoter influences. Overall, we identify the urgent need for new models of higher fidelity to human MTCL with respect to their increasingly recognized diversity and to predictions of drug response.
Collapse
Affiliation(s)
- Kathrin Warner
- Laboratory of lymphocyte signaling and oncoproteome, CECAD, Cologne University, Cologne, Germany; Senckenberg Institute of Pathology, Goethe-University, Frankfurt/M., Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Since the isolation and discovery of human T-cell leukemia virus type 1 (HTLV-1) over 30 years ago, researchers have utilized animal models to study HTLV-1 transmission, viral persistence, virus-elicited immune responses, and HTLV-1-associated disease development (ATL, HAM/TSP). Non-human primates, rabbits, rats, and mice have all been used to help understand HTLV-1 biology and disease progression. Non-human primates offer a model system that is phylogenetically similar to humans for examining viral persistence. Viral transmission, persistence, and immune responses have been widely studied using New Zealand White rabbits. The advent of molecular clones of HTLV-1 has offered the opportunity to assess the importance of various viral genes in rabbits, non-human primates, and mice. Additionally, over-expression of viral genes using transgenic mice has helped uncover the importance of Tax and Hbz in the induction of lymphoma and other lymphocyte-mediated diseases. HTLV-1 inoculation of certain strains of rats results in histopathological features and clinical symptoms similar to that of humans with HAM/TSP. Transplantation of certain types of ATL cell lines in immunocompromised mice results in lymphoma. Recently, “humanized” mice have been used to model ATL development for the first time. Not all HTLV-1 animal models develop disease and those that do vary in consistency depending on the type of monkey, strain of rat, or even type of ATL cell line used. However, the progress made using animal models cannot be understated as it has led to insights into the mechanisms regulating viral replication, viral persistence, disease development, and, most importantly, model systems to test disease treatments.
Collapse
Affiliation(s)
- Amanda R Panfil
- Center for Retrovirus Research, OH, USA. ; Department of Veterinary Biosciences, OH, USA
| | - Jacob J Al-Saleem
- Center for Retrovirus Research, OH, USA. ; Department of Veterinary Biosciences, OH, USA
| | - Patrick L Green
- Center for Retrovirus Research, OH, USA. ; Department of Veterinary Biosciences, OH, USA. ; Comprenhensive Cancer Center and Solove Research Institute, OH, USA. ; Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Columbus, OH, USA
| |
Collapse
|
9
|
Lairmore MD, Anupam R, Bowden N, Haines R, Haynes RAH, Ratner L, Green PL. Molecular determinants of human T-lymphotropic virus type 1 transmission and spread. Viruses 2011; 3:1131-65. [PMID: 21994774 PMCID: PMC3185783 DOI: 10.3390/v3071131] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/01/2011] [Accepted: 07/02/2011] [Indexed: 01/23/2023] Open
Abstract
Human T-lymphotrophic virus type-1 (HTLV-1) infects approximately 15 to 20 million people worldwide, with endemic areas in Japan, the Caribbean, and Africa. The virus is spread through contact with bodily fluids containing infected cells, most often from mother to child through breast milk or via blood transfusion. After prolonged latency periods, approximately 3 to 5% of HTLV-1 infected individuals will develop either adult T-cell leukemia/lymphoma (ATL), or other lymphocyte-mediated disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The genome of this complex retrovirus contains typical gag, pol, and env genes, but also unique nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo such as, p30, p12, p13 and the antisense encoded HBZ. While progress has been made in the understanding of viral determinants of cell transformation and host immune responses, host and viral determinants of HTLV-1 transmission and spread during the early phases of infection are unclear. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the early events of HTLV-1 infection. This review will focus on studies that test HTLV-1 determinants in context to full length infectious clones of the virus providing insights into the mechanisms of transmission and spread of HTLV-1.
Collapse
Affiliation(s)
- Michael D. Lairmore
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-614-292-9203; Fax: +1-614-292-6473
| | - Rajaneesh Anupam
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Nadine Bowden
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Robyn Haines
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Rashade A. H. Haynes
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Lee Ratner
- Department of Medicine, Pathology, and Molecular Microbiology, Division of Biology and Biological Sciences, Washington University School of Medicine, Campus Box 8069, 660 S. Euclid Ave., St. Louis, MO 63110, USA; E-Mail: (L.R.)
| | - Patrick L. Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Tanaka M, Nitta T, Sun B, Fujisawa JI, Miwa M. Route of primary HTLV-1 infection regulates HTLV-1 distribution in reservoir organs of infected mice. Exp Ther Med 2011; 2:89-93. [PMID: 22977475 DOI: 10.3892/etm.2010.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/18/2010] [Indexed: 12/23/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia and HTLV-1-associated myelo-pathy/tropical spastic paraparesis. HTLV-1 is mainly transmitted through blood transfusion and breastfeeding, but viral proliferation in the body in vivo shortly after transmission is not well understood. To investigate whether the route of infection influences the early stages of viral proliferation, we inoculated BALB/c mice with MT-2 cells, an HTLV-1-producing human T-cell line, via different routes, and evaluated the proviral load and humoral immune responses. One month after infection, the provirus was detected in most organs of the mice infected intraperitoneally, and substantial proviral loads were detected in the peripheral blood and secondary lymphoid organs. In contrast, the mice infected intravenously and orally showed low proviral loads, and the provirus distribution was limited to the spinal cord among the intravenously inoculated mice and to the liver among the perorally inoculated mice. Mice infected intraperitoneally also exhibited higher interleukin-2 production than the mice infected intravenously or orally, or than the uninfected control mice, while anti-HTLV-1 antibody titers were comparable between the mice infected intraperitoneally and intravenously. These results demonstrate that the route of primary HTLV-1 infection influences the establishment of HTLV-1-infected cell proliferation and the cell reservoir in mice.
Collapse
Affiliation(s)
- Masakazu Tanaka
- Department of Genetics and Cell Biology, Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829
| | | | | | | | | |
Collapse
|
11
|
Zimmerman B, Niewiesk S, Lairmore MD. Mouse models of human T lymphotropic virus type-1-associated adult T-cell leukemia/lymphoma. Vet Pathol 2010; 47:677-89. [PMID: 20442421 DOI: 10.1177/0300985810370009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human T-lymphotropic virus type-1 (HTLV-1), the first human retrovirus discovered, is the causative agent of adult T-cell leukemia/lymphoma (ATL) and a number of lymphocyte-mediated inflammatory conditions including HTLV-1-associated myelopathy/tropical spastic paraparesis. Development of animal models to study the pathogenesis of HTLV-1-associated diseases has been problematic. Mechanisms of early infection and cell-to-cell transmission can be studied in rabbits and nonhuman primates, but lesion development and reagents are limited in these species. The mouse provides a cost-effective, highly reproducible model in which to study factors related to lymphoma development and the preclinical efficacy of potential therapies against ATL. The ability to manipulate transgenic mice has provided important insight into viral genes responsible for lymphocyte transformation. Expansion of various strains of immunodeficient mice has accelerated the testing of drugs and targeted therapy against ATL. This review compares various mouse models to illustrate recent advances in the understanding of HTLV-1-associated ATL development and how improvements in these models are critical to the future development of targeted therapies against this aggressive T-cell lymphoma.
Collapse
Affiliation(s)
- B Zimmerman
- The Ohio State University, Department of Veterinary Biosciences, Goss Laboratory, 1925 Coffey Road, Columbus, Ohio 43210-1093, USA
| | | | | |
Collapse
|
12
|
Rahman S, Manuel SL, Khan ZK, Wigdahl B, Acheampong E, Tangy F, Jain P. Depletion of dendritic cells enhances susceptibility to cell-free infection of human T cell leukemia virus type 1 in CD11c-diphtheria toxin receptor transgenic mice. THE JOURNAL OF IMMUNOLOGY 2010; 184:5553-61. [PMID: 20382884 DOI: 10.4049/jimmunol.0903226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is associated with two immunologically distinct diseases: HTLV-1-associated myelopathy/tropical spastic paraparesis and adult T cell leukemia. The genesis of these diseases is believed to be associated with the route (mucosa versus blood) and mode (cell-free versus cell-associated) of primary infection as well as the modulation of dendritic cell (DC) functions. To explore the role of DCs during early HTLV-1 infection in vivo, we used a chimeric HTLV-1 with a replaced envelope gene from Moloney murine leukemia virus to allow HTLV-1 to fuse with murine cells, which are generally not susceptible to infection with human retroviruses. We also used a CD11c-diphtheria toxin receptor transgenic mouse model system that permits conditional transient depletion of CD11c(+) DCs. We infected these transgenic mice with HTLV-1 using both cell-free and cell-associated infection routes in the absence and presence of DCs. The ablation of DCs led to an enhanced susceptibility to infection with cell-free but not cell-associated HTLV-1 in both CD4 and non-CD4 fractions, as measured by the proviral load. Infection with cell-free virus in the absence of DCs was also found to have increased levels of Tax mRNA in the non-CD4 fraction. Moreover, depletion of DCs significantly dampened the cellular immune response (IFN-gamma(+)CD8(+) T cells) against both cell-free and cell-associated virus. These results uniquely differentiate the involvement of DCs in early cell-free versus late cell-associated infection of HTLV-1 and highlight a significant aspect of viral immunopathogenesis related to the progression of adult T cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis after the initial infection.
Collapse
Affiliation(s)
- Saifur Rahman
- Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, PA 19127, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Vanmassenhove J, Sallée M, Guilpain P, Vanholder R, De Potter A, Libbrecht L, Suarez F, Hermine O, Fakhouri F. Fanconi syndrome in lymphoma patients: report of the first case series. Nephrol Dial Transplant 2010; 25:2516-20. [PMID: 20154363 DOI: 10.1093/ndt/gfq045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Fanconi syndrome (FS) is a generalized transport defect in the proximal renal tubule leading to renal losses of phosphate, calcium, uric acid, bicarbonates as well as glucose, amino acids and other organic compounds. It is caused by inherited or acquired disorders including low mass or high mass multiple myeloma. OBJECTIVES To report the first case series of patients with lymphoma and FS. DESIGN, SETTING, PARTICIPANTS, AND MEASUREMENTS Patients with lymphoma and FS were identified in the nephrology department of two teaching hospitals in Paris, France and Ghent, Belgium. FS was defined by the presence of at least three out of the four following criteria: hypophosphataemia, metabolic acidosis, normoglycaemic glucosuria and hypokalaemia. Patients files were reviewed and relevant data were collected. RESULTS Eight patients with lymphoma and FS were identified. In six patients, the lymphoma was of the acute T cell leukaemia/lymphoma (ATLL) type, related to human T cell lymphotropic virus 1 (HTLV1) infection. In all patients, FS was severe requiring supplementation. A kidney biopsy performed in a patient with post-transplantation primary renal lymphoma disclosed intense proximal tubule infiltration by lymphomatous cells. In one patient with ATLL, FS features regressed following the successful treatment of lymphoma. CONCLUSION Patients with lymphoma require careful monitoring for features of FS; lymphoma should also be added to the spectrum of disorders associated to FS. Prospective studies are needed to ascertain the implication of HTLV1 in the genesis of FS.
Collapse
Affiliation(s)
- Jill Vanmassenhove
- Nephrology Department, Universite Paris Descartes, AP-HP, Hopital Necker, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nitta T, Tanaka M, Sun B, Sugihara E, Kimura M, Kamada Y, Takahashi H, Hanai S, Jiang SW, Fujisawa JI, Miwa M. Reduction of human T-cell leukemia virus type-1 infection in mice lacking nuclear factor-kappaB-inducing kinase. Cancer Sci 2008; 99:872-8. [PMID: 18312467 PMCID: PMC11160047 DOI: 10.1111/j.1349-7006.2008.00766.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 12/21/2007] [Accepted: 01/03/2008] [Indexed: 11/27/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) causes adult T-cell leukemia and inflammatory disorders. Aberrant activation of nuclear factor-kappaB (NF-kappaB) has been linked to HTLV-1 pathogenesis and to various kinds of cancers, including adult T-cell leukemia. NF-kappaB-inducing kinase (NIK) is critical for non-canonical activation of NF-kappaB and for the development of lymphoid organs. HTLV-1 activates NF-kappaB by the non-canonical pathway, but examination of the role of NIK in proliferation of HTLV-1-infected cells in vivo has been hindered by lack of a suitable animal model. Alymphoplasia (aly/aly) mice bear a mutation of NIK, resulting in defects in the development of lymphoid organs and severe deficiencies in both humoral and cell-mediated immunity. In the present study we therefore used a mouse model of HTLV-1 infection with aly/aly mice. The number of HTLV-1-infected cells in the reservoir organs in aly/aly mice was significantly smaller than in the control group 1 month after infection. In addition, aly/aly mice did not maintain provirus for 1 year and antibodies against HTLV-1 were undetectable. These results demonstrate that the absence of functional NIK impairs primary HTLV-1 proliferation and abolishes the maintenance of provirus. Interestingly, clonal proliferation of HTLV-1-infected mouse cells was not detected in aly/aly mice, which is consistent with the lack of HTLV-1 persistence. These observations imply that the clonal proliferation of HTLV-1-infected cells in secondary lymphoid organs might be important for HTLV-1 persistence.
Collapse
Affiliation(s)
- Takayuki Nitta
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Takayanagi R, Ohashi T, Yamashita E, Kurosaki Y, Tanaka K, Hakata Y, Komoda Y, Ikeda S, Tsunetsugu-Yokota Y, Tanaka Y, Shida H. Enhanced replication of human T-cell leukemia virus type 1 in T cells from transgenic rats expressing human CRM1 that is regulated in a natural manner. J Virol 2007; 81:5908-18. [PMID: 17360758 PMCID: PMC1900248 DOI: 10.1128/jvi.02811-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 03/05/2007] [Indexed: 12/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia (ATL). To develop a better animal model for the investigation of HTLV-1 infection, we established a transgenic (Tg) rat carrying the human CRM1 (hCRM1) gene, which encodes a viral RNA transporter that is a species-specific restriction factor. At first we found that CRM1 expression is elaborately regulated through a pathway involving protein kinase C during lymphocyte activation, initially by posttranscriptional and subsequently by transcriptional mechanisms. This fact led us to use an hCRM1-containing bacterial artificial chromosome clone, which would harbor the entire regulatory and coding regions of the CRM1 gene. The Tg rats expressed hCRM1 protein in a manner similar to expression of intrinsic rat CRM1 in various organs. HTLV-1-infected T-cell lines derived from these Tg rats produced 100- to 10,000-fold more HTLV-1 than did T cells from wild-type rats, and the absolute levels of HTLV-1 were similar to those produced by human T cells. We also observed enhancement of the dissemination of HTLV-1 to the thymus in the Tg rats after intraperitoneal inoculation, although the proviral loads were low in both wild-type and Tg rats. These results support the essential role of hCRM1 in proper HTLV-1 replication and suggest the importance of this Tg rat as an animal model for HTLV-1.
Collapse
Affiliation(s)
- Ryo Takayanagi
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Debacq C, Héraud JM, Asquith B, Bangham C, Merien F, Moules V, Mortreux F, Wattel E, Burny A, Kettmann R, Kazanji M, Willems L. Reduced cell turnover in lymphocytic monkeys infected by human T-lymphotropic virus type 1. Oncogene 2005; 24:7514-23. [PMID: 16091751 DOI: 10.1038/sj.onc.1208896] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding cell dynamics in animal models have implications for therapeutic strategies elaborated against leukemia in human. Quantification of the cell turnover in closely related primate systems is particularly important for rare and aggressive forms of human cancers, such as adult T-cell leukemia. For this purpose, we have measured the death and proliferation rates of the CD4+ T lymphocyte population in squirrel monkeys (Saimiri sciureus) infected by human T-lymphotropic virus type 1 (HTLV-1). The kinetics of in vivo bromodeoxyuridine labeling revealed no modulation of the cell turnover in HTLV-1-infected monkeys with normal CD4 cell counts. In contrast, a substantial decrease in the proliferation rate of the CD4+ T population was observed in lymphocytic monkeys (e.g. characterized by excessive proportions of CD4+ T lymphocytes and by the presence of abnormal flower-like cells). Unexpectedly, onset of HTLV-associated leukemia thus occurs in the absence of increased CD4+ T-cell proliferation. This dynamics significantly differs from the generalized activation of the T-cell turnover induced by other primate lymphotropic viruses like HIV and SIV.
Collapse
Affiliation(s)
- Christophe Debacq
- 1Molecular and Cellular Biology, Center of Basic Biology (FUSAG), 13 avenue Maréchal Juin, B5030, Gembloux, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lairmore MD, Silverman L, Ratner L. Animal models for human T-lymphotropic virus type 1 (HTLV-1) infection and transformation. Oncogene 2005; 24:6005-15. [PMID: 16155607 PMCID: PMC2652704 DOI: 10.1038/sj.onc.1208974] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past 25 years, animal models of human T-lymphotropic virus type 1 (HTLV-1) infection and transformation have provided critical knowledge about viral and host factors in adult T-cell leukemia/lymphoma (ATL). The virus consistently infects rabbits, some non-human primates, and to a lesser extent rats. In addition to providing fundamental concepts in viral transmission and immune responses against HTLV-1 infection, these models have provided new information about the role of viral proteins in carcinogenesis. Mice and rats, in particular immunodeficient strains, are useful models to assess immunologic parameters mediating tumor outgrowth and therapeutic invention strategies against lymphoma. Genetically altered mice including both transgenic and knockout mice offer important models to test the role of specific viral and host genes in the development of HTLV-1-associated lymphoma. Novel approaches in genetic manipulation of both HTLV-1 and animal models are available to address the complex questions that remain about viral-mediated mechanisms of cell transformation and disease. Current progress in the understanding of the molecular events of HTLV-1 infection and transformation suggests that answers to these questions are approachable using animal models of HTLV-1-associated lymphoma.
Collapse
Affiliation(s)
- Michael D Lairmore
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210-1093, USA.
| | | | | |
Collapse
|
18
|
Abstract
The identification of CD4 as the primary receptor for HIV followed shortly after the discovery of the virus, but the HTLV receptor remained long elusive, until its recent identification as the GLUT1 glucose transporter. In the present review, we describe the status of the literature that surrounded this discovery as well as the in vitro and in vivo observations that led to the identification of GLUT1. Also, we will explore a few tracks to conciliate the in vitro and in vivo data on HTLV-1 tropism within the context of the HTLV literature that has accumulated over the past 25 years. A close examination of these data leads us to conclude that the preferential detection of HTLV-1 in CD4+ T lymphocyte subsets in vivo, even in the absence of leukemia, is not likely to be directly related to envelope receptor interactions, but rather to an array of postentry selection bottlenecks in vivo. Furthermore, we propose that infection of other hematopoietic and nonhematopoietic cells is likely to take place during the lifetime of an individual, with a burst early during the infection.
Collapse
Affiliation(s)
- Nicolas Manel
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, IFR 122, 1919 route de Mende, F-34293 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
19
|
Nitta T, Tanaka M, Sun B, Hanai S, Miwa M. The genetic background as a determinant of human T-cell leukemia virus type 1 proviral load. Biochem Biophys Res Commun 2003; 309:161-5. [PMID: 12943677 DOI: 10.1016/s0006-291x(03)01543-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is etiologically linked with HTLV-1-associated diseases. HTLV-1 proviral load is higher in persons with adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis than in asymptomatic carriers. However there are little data available on the factors controlling HTLV-1 proviral load in carriers. To study the effect of genetic background on HTLV-1 proviral load, we employed a mouse model of HTLV-1 infection that we had established. Here we analyzed nine strains of mice and found there is a great variation of proviral load among mouse strains that is not necessarily dependent on major histocompatibility complex. The antibody response is also different among these strains. To our knowledge, this is the first demonstration of the importance of the genetic background other than major histocompatibility complex controlling the HTLV-1 proviral load.
Collapse
Affiliation(s)
- Takayuki Nitta
- Department of Biochemistry and Molecular Oncology, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba Science City, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
20
|
Marques SMP, Veyrune JL, Shukla RR, Kumar A. Restriction of human immunodeficiency virus type 1 Rev function in murine A9 cells involves the Rev C-terminal domain. J Virol 2003; 77:3084-90. [PMID: 12584334 PMCID: PMC149738 DOI: 10.1128/jvi.77.5.3084-3090.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Rev and human T-cell leukemia virus type 1 (HTLV-1) Rex proteins are essential for the expression of viral structural proteins and productive infection. Both contain a nuclear export signal (NES) in their C-terminal domain and a nuclear localization signal (NLS) in their N-terminal domain. The NES and NLS are necessary for shuttling between nucleus and cytoplasm and are therefore indispensable for the transport of unspliced and singly spliced viral transcripts. HIV-1 Rev function is restricted in A9 cells, a murine fibroblast cell line, whereas HTLV-1 Rex is functional in these cells. Immunofluorescence studies with RevGFP fusion protein demonstrate normal import and export of Rev in A9 cells. To ascertain which domains of Rev are necessary for the restriction of Rev function in A9 cells, we studied a chimeric construct in which the NES domain of Rev was exchanged with Rex C-terminal amino acids 79 to 95, the Rev1-79/Rex79-95 chimera, which restored Rev function in A9 cells. In addition, overexpression of a truncated Rev containing the Rev C-terminal domain in the presence of wild-type Rev, led to restoration of Rev function in A9 cells. These results suggest that the C-terminal domain of HIV-1 Rev plays an important role in restricting Rev function in murine cells.
Collapse
Affiliation(s)
- Sandra M P Marques
- Department of Biochemistry and Molecular Biology, The George Washington University, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
21
|
Delebecque F, Pramberger K, Prévost MC, Brahic M, Tangy F. A chimeric human T-cell lymphotropic virus type 1 with the envelope glycoprotein of Moloney murine leukemia virus is infectious for murine cells. J Virol 2002; 76:7883-9. [PMID: 12097602 PMCID: PMC136376 DOI: 10.1128/jvi.76.15.7883-7889.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed a chimeric human T-cell lymphotropic virus type 1 (HTLV-1) provirus in which the original envelope precursor sequence was replaced by that of ecotropic Moloney murine leukemia virus (Mo-MuLV). Chimeric particles produced by transient transfection of this chimeric provirus were infectious for murine cells, such as NIH 3T3 fibroblasts, lymphoid EL4 cells, and primary CD4(+) T lymphocytes, whereas HTLV-1 particles were not. The infectivity of chimeric particles increased 10 times when the R peptide located at the carboxy terminus of the MuLV envelope glycoprotein was deleted. Primary murine CD4(+) T lymphocytes, infected by the Delta R chimeric virus, released particles that could spread the infection to other naive murine lymphoid cells. This chimeric virus, with the Mo-MuLV envelope glycoprotein and the replication characteristics of HTLV-1, should be useful in studying the pathogenesis of HTLV-1 in a mouse model.
Collapse
|
22
|
Sun B, Nitta T, Shoda M, Tanaka M, Hanai S, Hoshino H, Miwa M. Cell-free human T-cell leukemia virus type 1 binds to, and efficiently enters mouse cells. Jpn J Cancer Res 2002; 93:760-6. [PMID: 12149141 PMCID: PMC5927073 DOI: 10.1111/j.1349-7006.2002.tb01317.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an etiologic agent of adult T-cell leukemia / lymphoma and other HTLV-1-associated diseases. However, the interaction between HTLV-1 and T cells in the pathogenesis of these diseases is poorly understood. Mouse cells have been reported to be resistant to cell-free HTLV-1 infection. However, we recently reported that HTLV-1 DNA could be observed 24 h after cell-free HTLV-1 infection of mouse cell lines. To understand HTLV-1 replication in these cells in detail, we concentrated the virus produced from c77 feline kidney cell line and established an efficient infection system. The amounts of adsorption of HTLV-1 are larger in mouse T cell lines, EL4 and RLm1, than those in human T cell lines, Molt4 and HUT78, and are similar to that in human kidney cell line, 293T. Unexpectedly, however, the amounts of entry of HTLV-1 are about 10-fold larger in the two mouse cell lines than those in the three human cell lines employed. Moreover, viral DNA was detectable from 1 h in EL4 and RLm1 cells, but only from 2 - 3 h in 293T, Molt4 and HUT78 cells. However, the amount of viral DNA in EL4 cells became smaller than that in Molt4 cells. HTLV-1 expression could be detected until day 1 - 2 in RLm1 and EL4 cells, and until day 4 in Molt4 cells. Our results suggest that mouse cell experiments would give useful information to dissect the early steps of cell-free HTLV-1 infection.
Collapse
Affiliation(s)
- Binlian Sun
- Department of Biochemistry and Molecular Oncology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Hakata Y, Yamada M, Shida H. Rat CRM1 is responsible for the poor activity of human T-cell leukemia virus type 1 Rex protein in rat cells. J Virol 2001; 75:11515-25. [PMID: 11689633 PMCID: PMC114738 DOI: 10.1128/jvi.75.23.11515-11525.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2001] [Accepted: 08/25/2001] [Indexed: 11/20/2022] Open
Abstract
Rat models of human T-cell leukemia virus type 1 (HTLV-1)-related diseases such as adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis have been reported. However, these models do not completely reproduce human diseases partly because HTLV-1 replicates poorly in rats. We investigated here the possible reason for this. We found that the activity of Rex in rat cells is quite low compared to that in human cells. As Rex function depends largely on the CRM1 protein, whose human type (human CRM1 [hCRM1]) directly binds to Rex and exports it from the nucleus to the cytoplasm, we assessed whether rat CRM1 (rCRM1) could act as well as hCRM1 as a cofactor for Rex activity. We first cloned a cDNA encoding rCRM1 and found that both rCRM1 and hCRM1 could bind to and export Rex protein to the cytoplasm with similar efficiencies. However, unlike hCRM1, rCRM1 could hardly support Rex function because of its poor ability in inducing the Rex-Rex interaction required for RNA export into the cytoplasm. These observations suggest that the poor ability of rCRM1 to act as a cofactor for Rex function may be responsible for the poor replication of HTLV-1 in rats.
Collapse
Affiliation(s)
- Y Hakata
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
24
|
Tanaka M, Sun B, Fang J, Nitta T, Yoshida T, Kohtoh S, Kikukawa H, Hanai S, Uchida K, Miwa M. Human T-cell leukemia virus type 1 (HTLV-1) infection of mice: proliferation of cell clones with integrated HTLV-1 provirus in lymphoid organs. J Virol 2001; 75:4420-3. [PMID: 11287593 PMCID: PMC114189 DOI: 10.1128/jvi.75.9.4420-4423.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is suggested to cause adult T-cell leukemia after 40 to 50 years of latency in a small percentage of carriers. However, little is known about the pathophysiology of the latent period and the reservoir organs where polyclonal proliferation of cells harboring integrated provirus occurs. The availability of animal models would be useful to analyze the latent period of HTLV-1 infection. At 18 months after HTLV-1 infection of C3H/HeJ mice inoculated with the MT-2 cell line, which is an HTLV-1-producing human T-cell line, HTLV-1 provirus was detected in spleen DNA from eight of nine mice. No more than around 100 proviruses were found per 10(5) spleen cells. Cellular sequences flanking the 3' long terminal repeat (LTR) and the clonalities of the cells which harbor integrated HTLV-1 provirus were analyzed by linker-mediated PCR. The results showed that the flanking sequences are of mouse genome origin and that polyclonal proliferation of the spleen cells harboring integrated HTLV-1 provirus had occurred in three mice. A sequence flanking the 5' LTR was isolated from one of the mice and revealed the presence of a 6-nucleotide duplication of cellular sequences, consistent with typical retroviral integration. Moreover, PCR was performed on DNA from infected tissues, with LTR primers and primers derived from seven novel flanking sequences of the three mice. Data revealed that the expected PCR products were found from lymphatic tissues of the same mouse, suggesting that the lymphatic tissues were the reservoir organs for the infected and proliferating cell clones. The mouse model described here should be useful for analysis of the carrier state of HTLV-1 infection in humans.
Collapse
Affiliation(s)
- M Tanaka
- Department of Biochemistry and Molecular Oncology, Institute of Basic Medical Sciences and Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Feng R, Kabayama A, Uchida K, Hoshino H, Miwa M. Cell-free entry of human T-cell leukemia virus type 1 to mouse cells. Jpn J Cancer Res 2001; 92:410-6. [PMID: 11346463 PMCID: PMC5926731 DOI: 10.1111/j.1349-7006.2001.tb01110.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent for adult T-cell leukemia and HTLV-1-associated myelopathy / tropical spastic paraparesis. Recently we infected newborn mice by inoculating HTLV-1-producing human cells, and found that T-cells, B-cells and granulocytes were infected in vivo. To understand the mechanism of viral-cell interaction and the pathogenesis of HTLV-1 using the mouse model, it is important to clarify the cellular tropism using a cell-free HTLV-1 transmission system. We employed a highly transmissible cell-free HTLV-1 produced by a feline kidney cell line, c77, and studied the susceptibility of 9 kinds of mouse cell lines, EL4, RLm1, CTLL-2, J774.1, DA-1, Ba / F3, WEHI-3, NIH3T3 and B1, and two kinds of human cell lines, Molt-4 and Hut78. HTLV-1 proviral sequence was found by PCR in all 9 mouse cell lines as well as in 2 human cell lines and viral entry was blocked with sera from an HTLV-1 carrier and an adult T-cell leukemia patient. Unexpectedly, mouse cell lines EL4 and RLm1 and human cell lines Molt-4 and Hut78 showed similar efficiency for viral entry. These results suggest a wide distribution of HTLV-1 receptor in mouse cells.
Collapse
Affiliation(s)
- R Feng
- Department of Biochemistry and Molecular Oncology, Institute of Basic Medical Sciences and Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | |
Collapse
|
26
|
Twizere JC, Kerkhofs P, Burny A, Portetelle D, Kettmann R, Willems L. Discordance between bovine leukemia virus tax immortalization in vitro and oncogenicity in vivo. J Virol 2000; 74:9895-902. [PMID: 11024116 PMCID: PMC102026 DOI: 10.1128/jvi.74.21.9895-9902.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bovine leukemia virus (BLV) Tax protein, a transcriptional activator of viral expression, is essential for viral replication in vivo. Tax is believed to be involved in leukemogenesis because of its second function, immortalization of primary cells in vitro. These activities of Tax can be dissociated on the basis of point mutations within specific regions of the protein. For example, mutation of the phosphorylation sites at serines 106 and 293 abrogates immortalization potential in vitro but maintains transcriptional activity. This type of mutant is thus particularly useful for unraveling the role of Tax immortalization activity during leukemogenesis independently of viral replication. In this report, we describe the biological properties of BLV recombinant proviruses mutated in the Tax phosphorylation sites (BLVTax106+293). Titration of the proviral loads by semiquantitative PCR revealed that the BLV mutants propagated at wild-type levels in vivo. Furthermore, two animals (sheep 480 and 296) infected with BLVTax106+293 developed leukemia or lymphosarcoma after 16 and 36 months, respectively. These periods of time are within the normal range of latencies preceding the onset of pathogenesis induced by wild-type viruses. The phenotype of the mutant-infected cells was characteristic of a B lymphocyte (immunoglobulin M positive) expressing CD11b and CD5 (except at the final stage for the latter marker), a pattern that is typical of wild-type virus-infected target cells. Interestingly, the transformed B lymphocytes from sheep 480 also coexpressed the CD8 marker, a phenotype rarely observed in tumor biopsies from chronic lymphocytic leukemia patients. Finally, direct sequencing of the tax gene demonstrated that the leukemic cells did not harbor revertant proviruses. We conclude that viruses expressing a Tax mutant unable to transform primary cells in culture are still pathogenic in the sheep animal model. Our data thus provide a clear example of the discordant conclusions that can be drawn from in vitro immortalization assays and in vivo experiments. These observations could be of interest for other systems, such as the related human T-cell leukemia virus type 1, which currently lack animal models allowing the study of the leukemogenic process.
Collapse
Affiliation(s)
- J C Twizere
- Department of Applied Biochemistry and Biology, Faculty of Agronomy, Gembloux, Belgium
| | | | | | | | | | | |
Collapse
|
27
|
Kindt TJ, Said WA, Bowers FS, Mahana W, Zhao TM, Simpson RM. Passage of human T-cell leukemia virus type-1 during progression to cutaneous T-cell lymphoma results in myelopathic disease in an HTLV-1 infection model. Microbes Infect 2000; 2:1139-46. [PMID: 11008104 DOI: 10.1016/s1286-4579(00)01268-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Studies comparing functional differences in human T-cell leukemia virus type 1 (HTLV-1) clones that mediate distinct outcomes in experimentally infected rabbits, resulted in a dermatopathic smoldering adult T-cell leukemia/lymphoma following chronic infection with HTLV-1 strain RH/K34. During the 3.5 years' follow-up, HTLV-1 skin disease progressed to cutaneous T-cell lymphoma. When infection was passed to several naive rabbits, progressive paraparesis due to myelopathic neurodegeneration, analogous to HTLV-associated myelopathy, resulted in one of 4 transfusion recipients. Similar proviral loads were detected in the two diseases, regardless of stage of progression or tissue compartment of infection. Complete proviral sequences obtained from the donor and affected recipient aligned identically with each other and with the inoculated virus clone. Existence of disparate pathogenic outcomes following infectious transmission further extends the analogy of using rabbits to model human infection and disease. Although the experimental outcomes shown are limited by numbers of animals affected, they mimic the infrequency of HTLV-1 disease and authenticate epidemiological evidence of virus sequence stability regardless of disease phenotype. The findings suggest that further investigation of a possible role for HTLV-1 in some forms of cutaneous T-cell lymphoma is warranted.
Collapse
Affiliation(s)
- T J Kindt
- Laboratory of Immunogenetics, NIH Twinbrook Facility, Rockville, MD 20852, USA
| | | | | | | | | | | |
Collapse
|
28
|
Feng R, Tanaka M, Abe H, Arashi N, Sun B, Uchida K, Miwa M. Human T-cell leukemia virus type 1 can infect a wide variety of cells in mice. Jpn J Cancer Res 1999; 90:48-54. [PMID: 10076564 PMCID: PMC5925986 DOI: 10.1111/j.1349-7006.1999.tb00664.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Analysis of human T-cell leukemia virus type 1 (HTLV-1)-infected cell types and the interplay of these infected cells in vivo should provide valuable information to elucidate the pathogenesis of HTLV-1-associated diseases in humans and in animal models. In this study, HTLV-1-infected cell types were identified in HTLV-1-infected C3H/HeJ mice. Pan T, CD4+, CD8+, granulocyte and pan B cell fractions in the splenocytes of MT-2 cell-inoculated mice were sorted by use of their cell surface high-density expression of CD3e, CD4, CD8, Gr-1 and B220 antigens, respectively, with a fluorescence-activated cell sorter. The pX sequence of HTLV-1 provirus in the lysate of each fraction was amplified by polymerase chain reaction and detected by Southern hybridization. Interestingly, in addition to the CD4+ cell fraction, the pX sequence was also found in CD8+ cell, B cell and granulocyte fractions. The broad cell spectrum of HTLV-1 infection in mice is consistent with the situation in humans. Our finding indicate that HTLV-1 receptor or coreceptor is widely distributed among different cell types in mice.
Collapse
Affiliation(s)
- R Feng
- Department of Biochemistry and Molecular Oncology, University of Tsukuba, Ibaraki
| | | | | | | | | | | | | |
Collapse
|