1
|
Shi N, Zhu Q, Yang G, Wang P, Huang B. Prevalence and species diversity of dsRNA mycoviruses from Beauveria bassiana strains in the China's Guniujiang nature. Heliyon 2024; 10:e30186. [PMID: 38694113 PMCID: PMC11061733 DOI: 10.1016/j.heliyon.2024.e30186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
We investigated the prevalence and species diversity of dsRNA mycoviruses in Beauveria bassiana isolates from the China's Guniujiang Nature Preserve. Among the 28 isolates analyzed, electropherotyping revealed viral infections in 28.6 % (8 out of 28) of the isolates. Metatranscriptomic identification and RT-PCR confirmed the presence of six putative virus species, including two novel species: Beauveria bassiana victorivirus 2 (BbV-2) and Beauveria bassiana bipartite mycovirus 2 (BbBV-2). Four previously characterized mycoviruses were also identified: Beauveria bassiana polymycovirus 4 (BbPmV4), Beauveria bassiana partitivirus 1 (BbPV-1), Beauveria bassiana bipartite mycovirus 1 (BbBV-1), and Beauveria bassiana chrysovirus 2 (BbCV-2). BbPmV4 was found to be the prevailing mycovirus among the infected isolates, and three isolates showed co-infection with both BbPmV4 and BbBV-2. This study enhances our understanding of fungal viral taxonomy and diversity, providing insights into mycovirus infections in B. bassiana populations in China's Guniujiang Nature Preserve. Furthermore, the study on the diversity of B. bassiana viruses lays the foundation for recognizing fungal viruses as potential enhancers of biocontrol agents.
Collapse
Affiliation(s)
- Najie Shi
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Qiuyan Zhu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
2
|
Khalifa ME, MacDiarmid RM. Molecular Characterization of Two Totiviruses from the Commensal Yeast Geotrichum candidum. Viruses 2023; 15:2150. [PMID: 38005831 PMCID: PMC10674808 DOI: 10.3390/v15112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Mycoviruses can infect many of the major taxa of fungi including yeasts. Mycoviruses in the yeast fungus Geotrichum candidum are not well studied with only three G. candidum-associated viral species characterized to date, all of which belong to the Totiviridae genus Totivirus. In this study, we report the molecular characteristics of another two totiviruses co-infecting isolate Gc6 of G. candidum. The two totiviruses were tentatively named Geotrichum candidum totivirus 2 isolate Gc6 (GcTV2-Gc6) and Geotrichum candidum totivirus 4 isolate Gc6 (GcTV4-Gc6). Both viruses have the typical genome organization of totiviruses comprising two ORFs encoding capsid protein (CP) and RNA-dependent RNA polymerase (RdRp) at the N and C termini, respectively. The genomes of GcTV2-Gc6 and GcTV4-Gc6 are 4592 and 4530 bp long, respectively. Both viruses contain the-frameshifting elements and their proteins could be expressed as a single fusion protein. GcTV2-Gc6 is closely related to a totivirus isolated from the same host whereas GcTV4-Gc6 is related to insect-associated totiviruses. The phylogenetic analysis indicated that GcTV2-Gc6 and GcTV4-Gc6 belong to two different sister clades, I-A and I-B, respectively. It is interesting that all viruses identified from G. candidum belong to the genus Totivirus; however, this might be due to the lack of research reporting the characterization of mycoviruses from this fungal host. It is possible that the RNA interference (RNAi) mechanism cannot actively suppress totivirus accumulation in G. candidum Gc6.
Collapse
Affiliation(s)
- Mahmoud E. Khalifa
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta 34517, Egypt;
| | - Robin M. MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
3
|
Molecular characterization of two novel totiviruses coinfecting the basal fungus Conidiobolus adiaeretus. Arch Virol 2022; 168:7. [PMID: 36542124 DOI: 10.1007/s00705-022-05689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
A number of viruses have recently been discovered in all major fungal phyla using high-throughput sequencing. However, basal fungi remain among the least-explored organisms with respect to the presence of mycoviruses. In this study, we characterized two mycoviruses coinfecting the basal fungus Conidiobolus adiaeretus, which we have named "Conidiobolus adiaeretus totivirus 1" (CaTV1) and "Conidiobolus adiaeretus totivirus 2" (CaTV2). Due to their similar sizes, the genomic RNAs of these two viruses comigrated as a single band in 1.5% agarose gel electrophoresis but could be distinguished and characterized by next-generation sequencing and RT-PCR. Like those of other totiviruses, the genomes of both CaTV1 and CaTV2 have two discontinuous open reading frames: ORF1 and ORF2, encoding a putative capsid protein and a putative RNA-dependent RNA polymerase (RdRp), respectively. The RdRps of CaTV1 and CaTV2 have 62.73% and 63.76% amino acid sequence identity, respectively, to Wuhan insect virus 26 and have 62.15% amino acid sequence identity to each other. A maximum-likelihood phylogenetic tree based on RdRp amino acid sequences showed that both CaTV1 and CaTV2 clustered in a clade with members of the genus Totivirus. Therefore, we propose that CaTV1 and CaTV2 are two new members of the genus Totivirus in the family Totiviridae.
Collapse
|
4
|
Zhong J, Sui WW, Li P, Tang QJ, Liu TB, Xiao YS. Characterization of a novel victorivirus from Nigrospora chinensis, a fungus isolated from tobacco. Arch Virol 2022; 167:2851-2855. [PMID: 36255526 DOI: 10.1007/s00705-022-05619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Here, we characterized a new mycovirus from the fungus Nigrospora chinensis, which was named "Nigrospora chinensis victorivirus 1" (NcVV1). The NcVV1 genome is 5283 bp in length, containing two continuous open reading frames (ORFs), ORF1 and ORF2. ORF1 and ORF2 were predicted to encode a putative coat protein (CP) and an RNA-dependent RNA polymerase (RdRp), respectively. The stop codon of ORF1 overlaps with the start codon of ORF2 by the tetranucleotide sequence AUGA. Phylogenetic analysis based on amino acid sequences of RdRp and CP indicated that NcVV1 clustered with members of the genus Victorivirus in the family Totiviridae. To our knowledge, this was the first report of a mycovirus infecting N. chinensis.
Collapse
Affiliation(s)
- Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China.
| | - Wen Wen Sui
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Ping Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Qian Jun Tang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Tian Bo Liu
- Tobacco Research Institute of Hunan Province, Changsha, 410004, Hunan, People's Republic of China.
| | - Yan Song Xiao
- Chenzhou Tobacco Company of Hunan Province, Chenzhou, 423000, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Molecular characterization of a novel victorivirus isolated from Botryosphaeria dothidea, the causal agent of longan leaf spot disease. Arch Virol 2022; 167:2417-2422. [PMID: 35962824 DOI: 10.1007/s00705-022-05573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
Mycoviruses are widespread in all major taxonomic groups of filamentous fungi. Previous research has indicated that mycoviruses are associated with the phytopathogenic fungus Botryosphaeria dothidea. In this study, three distinct double-stranded RNA viruses were detected in B. dothidea strain YCLYY11 isolated from a leaf spot of longan (Dimocarpus longana). The results of BLAST analysis revealed that the predicted amino acid sequences of those viruses were similar to those of Botryosphaeria dothidea chrysovirus 1, Botryosphaeria dothidea partitivirus 1, and an apparent novel victorivirus. Sequencing and analysis of the complete genome of the novel victorivirus indicated it is 5218 bp in length and contains two open reading frames (ORFs) that overlap at the tetranucleotide AUGA. BLASTp analysis of the proteins encoded by ORF1 and ORF2 showed that they were most similar to the coat protein and RNA-dependent RNA polymerase of Sphaeropsis sapinea RNA virus 2 (81.37% and 74.09% identical, respectively). A phylogenetic tree showed that the novel virus clustered together with victoriviruses and was separate from members of the other four genera of the family Totiviridae. Based on its genome structure and the results of phylogenetic analysis, we propose that this novel victorivirus should be named "Botryosphaeria dothidea victorivirus 3". This is also the first report of these three mycoviruses coinfecting a strain of B. dothidea.
Collapse
|
6
|
Lee MD, Creagh JW, Fredericks LR, Crabtree AM, Patel JS, Rowley PA. The Characterization of a Novel Virus Discovered in the Yeast Pichia membranifaciens. Viruses 2022; 14:v14030594. [PMID: 35337001 PMCID: PMC8951182 DOI: 10.3390/v14030594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/05/2023] Open
Abstract
Mycoviruses are widely distributed across fungi, including the yeasts of the Saccharomycotina subphylum. This manuscript reports the first double-stranded RNA (dsRNA) virus isolated from Pichia membranifaciens. This novel virus has been named Pichia membranifaciens virus L-A (PmV-L-A) and is a member of the Totiviridae. PmV-L-A is 4579 bp in length, with RNA secondary structures similar to the packaging, replication, and frameshift signals of totiviruses that infect Saccharomycotina yeasts. PmV-L-A was found to be part of a monophyletic group within the I-A totiviruses, implying a shared ancestry between mycoviruses isolated from the Pichiaceae and Saccharomycetaceae yeasts. Energy-minimized AlphaFold2 molecular models of the PmV-L-A Gag protein revealed structural conservation with the Gag protein of Saccharomyces cerevisiae virus L-A (ScV-L-A). The predicted tertiary structure of the PmV-L-A Pol and other homologs provided a possible mechanism for totivirus RNA replication due to structural similarities with the RNA-dependent RNA polymerases of mammalian dsRNA viruses. Insights into the structure, function, and evolution of totiviruses gained from yeasts are essential because of their emerging role in animal disease and their parallels with mammalian viruses.
Collapse
Affiliation(s)
- Mark D. Lee
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
| | - Jack W. Creagh
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
| | - Lance R. Fredericks
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
| | - Angela M. Crabtree
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
| | - Jagdish Suresh Patel
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA
| | - Paul A. Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
- Correspondence:
| |
Collapse
|
7
|
Ramírez M, Velázquez R, López-Piñeiro A, Martínez A. Genome Features of a New Double-Stranded RNA Helper Virus (LBCbarr) from Wine Torulaspora delbrueckii Killer Strains. Int J Mol Sci 2021; 22:13492. [PMID: 34948288 PMCID: PMC8709356 DOI: 10.3390/ijms222413492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
The killer phenotype of Torulaspora delbrueckii (Td) and Saccharomyces cerevisiae (Sc) is encoded in the genome of medium-size dsRNA viruses (V-M). Killer strains also contain a helper large size (4.6 kb) dsRNA virus (V-LA) which is required for maintenance and replication of V-M. Another large-size (4.6 kb) dsRNA virus (V-LBC), without known helper activity to date, may join V-LA and V-M in the same yeast. T. delbrueckii Kbarr1 killer strain contains the killer virus Mbarr1 in addition to two L viruses, TdV-LAbarr1 and TdV-LBCbarr1. In contrast, the T. delbrueckii Kbarr2 killer strain contains two M killer viruses (Mbarr1 and M1) and a LBC virus (TdV-LBCbarr2), which has helper capability to maintain both M viruses. The genomes of TdV-LBCbarr1 and TdV-LBCbarr2 were characterized by high-throughput sequencing (HTS). Both RNA genomes share sequence identity and similar organization with their ScV-LBC counterparts. They contain all conserved motifs required for translation, packaging, and replication of viral RNA. Their Gag-Pol amino-acid sequences also contain the features required for cap-snatching and RNA polymerase activity. However, some of these motifs and features are similar to those of LA viruses, which may explain that at least TdV-LBCbarr2 has a helper ability to maintain M killer viruses. Newly sequenced ScV-LBC genomes contained the same motifs and features previously found in LBC viruses, with the same genome location and secondary structure. Sequence comparison showed that LBC viruses belong to two clusters related to each species of yeast. No evidence for associated co-evolution of specific LBC with specific M virus was found. The presence of the same M1 virus in S. cerevisiae and T. delbrueckii raises the possibility of cross-species transmission of M viruses.
Collapse
Affiliation(s)
- Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (R.V.); (A.M.)
| | - Rocío Velázquez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (R.V.); (A.M.)
| | - Antonio López-Piñeiro
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain;
| | - Alberto Martínez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (R.V.); (A.M.)
| |
Collapse
|
8
|
Molecular characterization of a novel totivirus infecting the basal fungus Conidiobolus heterosporus. Arch Virol 2021; 166:1801-1804. [PMID: 33866414 DOI: 10.1007/s00705-021-05054-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/09/2021] [Indexed: 10/21/2022]
Abstract
Mycoviruses are widely distributed in fungi, but only a few mycoviruses have been reported in basal fungi to date. Here, we characterized a novel totivirus isolated from the basal fungus Conidiobolus heterosporus, and we designated this virus as "Conidiobolus heterosporus totivirus 1" (ChTV1). The complete genome of ChTV1 contains two discontinuous open reading frames (ORFs), ORF1 and ORF2, encoding a putative coat protein (CP) and a putative RNA-dependent RNA polymerase (RdRP), respectively. Phylogenetic analysis based on RdRP sequences showed that ChTV1 clustered with members of the genus Totivirus. The RdRP of ChTV1 has 51% sequence identity to that of Trichoderma koningiopsis totivirus 1 (TkTV1), which is the highest among mycoviruses. However, TkTV1 formed a distinct cluster with Wuhan insect virus 27, with 63% RdRP sequence identity, although Wuhan insect virus 27 has not been described, and its host represents a different kingdom. Therefore, we propose that ChTV1 is a new member of the genus Totivirus, family Totiviridae.
Collapse
|
9
|
Espino-Vázquez AN, Bermúdez-Barrientos JR, Cabrera-Rangel JF, Córdova-López G, Cardoso-Martínez F, Martínez-Vázquez A, Camarena-Pozos DA, Mondo SJ, Pawlowska TE, Abreu-Goodger C, Partida-Martínez LP. Narnaviruses: novel players in fungal-bacterial symbioses. ISME JOURNAL 2020; 14:1743-1754. [PMID: 32269378 DOI: 10.1038/s41396-020-0638-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022]
Abstract
Rhizopus microsporus is an early-diverging fungal species with importance in ecology, agriculture, food production, and public health. Pathogenic strains of R. microsporus harbor an intracellular bacterial symbiont, Mycetohabitans (formerly named Burkholderia). This vertically transmitted bacterial symbiont is responsible for the production of toxins crucial to the pathogenicity of Rhizopus and remarkably also for fungal reproduction. Here we show that R. microsporus can live not only in symbiosis with bacteria but also with two viral members of the genus Narnavirus. Our experiments revealed that both viruses replicated similarly in the growth conditions we tested. Viral copies were affected by the developmental stage of the fungus, the substrate, and the presence or absence of Mycetohabitans. Absolute quantification of narnaviruses in isolated asexual sporangiospores and sexual zygospores indicates their vertical transmission. By curing R. microsporus of its viral and bacterial symbionts and reinfecting bacteria to reestablish symbiosis, we demonstrate that these viruses affect fungal biology. Narnaviruses decrease asexual reproduction, but together with Mycetohabitans, are required for sexual reproductive success. This fungal-bacterial-viral system represents an outstanding model to investigate three-way microbial symbioses and their evolution.
Collapse
Affiliation(s)
- Astrid N Espino-Vázquez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - J Roberto Bermúdez-Barrientos
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico.,Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - J Francisco Cabrera-Rangel
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Gonzalo Córdova-López
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico.,Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Faviola Cardoso-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Azul Martínez-Vázquez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - David A Camarena-Pozos
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.,Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, CO, 80521, USA
| | - Teresa E Pawlowska
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Laila P Partida-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico.
| |
Collapse
|
10
|
Khalifa ME, MacDiarmid RM. A Novel Totivirus Naturally Occurring in Two Different Fungal Genera. Front Microbiol 2019; 10:2318. [PMID: 31681196 PMCID: PMC6797558 DOI: 10.3389/fmicb.2019.02318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022] Open
Abstract
Mycoviruses are widely distributed across different phyla of the fungal kingdom. Viruses that share significant sequence similarities have been reported in different fungi, suggesting descent from a common ancestor. In this study, two fungal genera isolated from the same sample, Trichoderma koningiopsis isolate Mg10 and Clonostachys rosea isolate Mg06, were reported to have identical double-stranded RNA (dsRNA) profiles that consist of two virus-like, dsRNA elements (dsRNA-L and dsRNA-S). The complete sequence and genome organization of dsRNA-L from isolate Mg10 was determined. It is 4712 nucleotides (nt) long and contains two non-overlapping open reading frames (ORFs) that code for proteins with similarities to totiviruses. Consequently the virus was given the proposed name Trichoderma koningiopsis totivirus 1 (TkTV1/Mg10). The TkTV1/Mg10 genome structure resembles that of yeast totiviruses in which the region preceding the stop codon of ORF1 contains the elements required for -1 ribosomal frameshifting which may induce the expression of an ORF1–ORF2 (CP-RdRp) fusion protein. Sequence analyses of viral dsRNA-L from C. rosea isolate Mg06 revealed that it is nearly identical with that of TkTV1/Mg10. This relatedness was confirmed by northern blot hybridization and indicates very recent natural horizontal transmission of this virus between unrelated fungi. TkTV1 purified isometric virions were ∼38–40 nm in diameter and were able to transfect T. koningiopsis and C. rosea protoplasts. This is another report of a mycovirus present naturally in two taxonomically distinct fungi.
Collapse
Affiliation(s)
- Mahmoud E Khalifa
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.,Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Kartali T, Nyilasi I, Szabó B, Kocsubé S, Patai R, Polgár TF, Nagy G, Vágvölgyi C, Papp T. Detection and Molecular Characterization of Novel dsRNA Viruses Related to the Totiviridae Family in Umbelopsis ramanniana. Front Cell Infect Microbiol 2019; 9:249. [PMID: 31380294 PMCID: PMC6644447 DOI: 10.3389/fcimb.2019.00249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/26/2019] [Indexed: 11/24/2022] Open
Abstract
Umbelopsis ramanniana is an oleaginous fungus belonging to the Mucoromycotina subphylum. Our group had previously detected four double-stranded RNA (dsRNA) bands in the U. ramanniana NRRL 1296 strain by gel electrophoresis. Here we describe the molecular characterization of its dsRNA elements as well as the discovery of four novel dsRNA viruses: Umbelopsis ramanniana virus 1 (UrV1), Umbelopsis ramanniana virus 2 (UrV2), Umbelopsis ramanniana virus 3 (UrV3), and Umbelopsis ramanniana virus 4 (UrV4). Full genomes of UrV1, UrV3, and UrV4 were determined using the full-length amplification of cDNAs (FLAC) technique; they contain two open reading frames (ORF), which putatively encode the coat protein (CP) and the RNA dependent RNA polymerase (RdRp), respectively. In case of UrV2, a partial ORF encoding a partial RdRp gene could be determined. Based on the phylogeny inferred from the RdRp sequences, UrV1 and UrV4 belong to the genus Totivirus, while UrV2 may belong to the genus Victorivirus. UrV3 nested to a novel, unclassified group of Totiviridae, which is related to the genus Totivirus. Hybridization analysis revealed that the dsRNA molecules of UrV1 and UrV4 correspond to the same 5.0-kbp electrophoretic band, whilst the probe for the UrV3 hybridized to the largest, 5.3-kbp and the 3.0-kbp bands of the dsRNA pattern of U. ramanniana. Interestingly, the probe for the UrV2 sequence did not hybridized to any dsRNA bands, but it could be amplified from the isolated 3.0-kbp fragment. By transmission electron microscopy, two different isometric virus particles with about 50 and 35 nm in diameter were detected in U. ramanniana NRRL 1296 indicating that this strain harbor multiple viruses. Beside U. ramanniana, dsRNA elements were also detected in other Umbelopsis isolates with different patterns consisting of 2 to 4 discrete and different sized (0.7–5.3-kbp) dsRNA molecules. Based on a hybridization analysis with UrV1 CP and RdRp probes, the bands with the size of around 5.0-kbp, which were present in all tested Umbelopsis strains, are presumed as possible full mycovirus genomes.
Collapse
Affiliation(s)
- Tünde Kartali
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ildikó Nyilasi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Boglárka Szabó
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biophysics, Szeged, Hungary
| | - Tamás F Polgár
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biophysics, Szeged, Hungary
| | - Gábor Nagy
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Department of Microbiology, University of Szeged, Hungarian Academy of Sciences, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Tamás Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.,MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Department of Microbiology, University of Szeged, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
12
|
Nncube NB, Ramharack P, Soliman MES. Using bioinformatics tools for the discovery of Dengue RNA-dependent RNA polymerase inhibitors. PeerJ 2018; 6:e5068. [PMID: 30280009 PMCID: PMC6161702 DOI: 10.7717/peerj.5068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/04/2018] [Indexed: 12/29/2022] Open
Abstract
Background Dengue fever has rapidly manifested into a serious global health concern. The emergence of various viral serotypes has prompted the urgent need for innovative drug design techniques. Of the viral non-structural enzymes, the NS5 RNA-dependent RNA polymerase has been established as a promising target due to its lack of an enzymatic counterpart in mammalian cells and its conserved structure amongst all serotypes. The onus is now on scientists to probe further into understanding this enzyme and its mechanism of action. The field of bioinformatics has evolved greatly over recent decades, with updated drug design tools now being publically available. Methods In this study, bioinformatics tools were used to provide a comprehensive sequence and structural analysis of the two most prominent serotypes of Dengue RNA-dependent RNA polymerase. A list of popular flavivirus inhibitors were also chosen to dock to the active site of the enzyme. The best docked compound was then used as a template to generate a pharmacophore model that may assist in the design of target-specific Dengue virus inhibitors. Results Comparative sequence alignment exhibited similarity between all three domains of serotype 2 and 3.Sequence analysis revealed highly conserved regions at residues Meth530, Thr543 Asp597, Glu616, Arg659 and Pro671. Mapping of the active site demonstrated two highly conserved residues: Ser710 and Arg729. Of the active site interacting residues, Ser796 was common amongst all ten docked compounds, indicating its importance in the drug design process. Of the ten docked flavivirus inhibitors, NITD-203 showed the best binding affinity to the active site. Further pharmacophore modeling of NITD-203 depicted significant pharmacophoric elements that are necessary for stable binding to the active site. Discussion This study utilized publically available bioinformatics tools to provide a comprehensive framework on Dengue RNA-dependent RNA polymerase. Based on docking studies, a pharmacophore model was also designed to unveil the crucial pharmacophoric elements that are required when constructing an efficacious DENV inhibitor. We believe that this study will be a cornerstone in paving the road toward the design of target-specific inhibitors against DENV RdRp.
Collapse
Affiliation(s)
- Nomagugu B Nncube
- Molecular Bio-computation and Drug Design laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Pritika Ramharack
- Molecular Bio-computation and Drug Design laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
13
|
Li W, Xia Y, Zhang H, Zhang X, Chen H. A Victorivirus from Fusarium asiaticum, the pathogen of Fusarium head blight in China. Arch Virol 2018; 164:313-316. [PMID: 30232613 DOI: 10.1007/s00705-018-4038-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/07/2018] [Indexed: 01/08/2023]
Abstract
A Victorivirus was detected in isolate F16176 of the fungus Fusarium asiaticum, the causal agent of Fusarium head blight in China. The full genome sequence of the virus was sequenced and characterized. The complete cDNA sequence is 5,281 nucleotides long with 64.2% G + C content and contains two open reading frames (ORFs) that overlap at the pentanucleotide UAAUG. The two ORFs are predicted to encode coat protein (CP) and RNA-dependent RNA polymerase (RdRp), which are conserved among the dsRNA mycoviruses of the genus Victorivirus. Pairwise comparisons and phylogenetic analysis of the deduced amino acid sequences of RdRp indicated that this dsRNA mycovirus is a new virus belonging to the species Rosellinia necatrix victorivirus 1 in the family Totiviridae. This study is the first to report a full-length genomic sequence of a putative member of the genus Victorivirus in F. asiaticum.
Collapse
Affiliation(s)
- Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Yunlei Xia
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Haotian Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.,Agricultural College, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xing Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.,Agricultural College, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
14
|
Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc Natl Acad Sci U S A 2017; 115:E506-E515. [PMID: 29284754 DOI: 10.1073/pnas.1717806115] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Knowledge of viral diversity is expanding greatly, but many lineages remain underexplored. We surveyed RNA viruses in 52 cultured monoxenous relatives of the human parasite Leishmania (Crithidia and Leptomonas), as well as plant-infecting PhytomonasLeptomonas pyrrhocoris was a hotbed for viral discovery, carrying a virus (Leptomonas pyrrhocoris ostravirus 1) with a highly divergent RNA-dependent RNA polymerase missed by conventional BLAST searches, an emergent clade of tombus-like viruses, and an example of viral endogenization. A deep-branching clade of trypanosomatid narnaviruses was found, notable as Leptomonas seymouri bearing Narna-like virus 1 (LepseyNLV1) have been reported in cultures recovered from patients with visceral leishmaniasis. A deep-branching trypanosomatid viral lineage showing strong affinities to bunyaviruses was termed "Leishbunyavirus" (LBV) and judged sufficiently distinct to warrant assignment within a proposed family termed "Leishbunyaviridae" Numerous relatives of trypanosomatid viruses were found in insect metatranscriptomic surveys, which likely arise from trypanosomatid microbiota. Despite extensive sampling we found no relatives of the totivirus Leishmaniavirus (LRV1/2), implying that it was acquired at about the same time the Leishmania became able to parasitize vertebrates. As viruses were found in over a quarter of isolates tested, many more are likely to be found in the >600 unsurveyed trypanosomatid species. Viral loss was occasionally observed in culture, providing potentially isogenic virus-free lines enabling studies probing the biological role of trypanosomatid viruses. These data shed important insights on the emergence of viruses within an important trypanosomatid clade relevant to human disease.
Collapse
|
15
|
Zheng L, Lu X, Liang X, Jiang S, Zhao J, Zhan G, Liu P, Wu J, Kang Z. Molecular Characterization of Novel Totivirus-Like Double-Stranded RNAs from Puccinia striiformis f. sp. tritici, the Causal Agent of Wheat Stripe Rust. Front Microbiol 2017; 8:1960. [PMID: 29067018 PMCID: PMC5641321 DOI: 10.3389/fmicb.2017.01960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 09/22/2017] [Indexed: 11/30/2022] Open
Abstract
Characterization of newly isolated mycoviruses may contribute to understanding of the evolution and diversity of viruses. Here, a deep sequencing approach was used to analyze the double-stranded RNA (dsRNA) mycoviruses isolated from field-collected P. striiformis samples in China. Database searches showed the presence of at least four totivirus-like sequences, termed Puccinia striiformis virus 1 to 4 (PsV1 to 4). All of these identified sequences contained two overlapping open reading frames (ORFs) which encode a putative coat protein (CP) and an RNA-dependent RNA polymerase (RdRp) showing similar structures to members of the genus Totivirus. Each PsV contained a -1 ribosomal frameshifting region with a slippery site and a pseudoknot structure in the overlapped regions of these ORFs, indicating that the RdRp is translated as a CP-RdRp fusion. Phylogenetic analyses based on RdRp and CP suggested that these novel viruses belong to the genus Totivirus in the family Totiviridae. The presences of these PsVs were further validated by transmission electron microscope (TEM) and RT-PCR. Taken together, our results demonstrate the presence of diverse, novel totiviruses in the P. striiformis field populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Rousvoal S, Bouyer B, López-Cristoffanini C, Boyen C, Collén J. Mutant swarms of a totivirus-like entities are present in the red macroalga Chondrus crispus and have been partially transferred to the nuclear genome. JOURNAL OF PHYCOLOGY 2016; 52:493-504. [PMID: 27151076 DOI: 10.1111/jpy.12427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Chondrus crispus Stackhouse (Gigartinales) is a red seaweed found on North Atlantic rocky shores. Electrophoresis of RNA extracts showed a prominent band with a size of around 6,000 bp. Sequencing of the band revealed several sequences with similarity to totiviruses, double-stranded RNA viruses that normally infect fungi. This virus-like entity was named C. crispus virus (CcV). It should probably be regarded as an extreme viral quasispecies or a mutant swarm since low identity (<65%) was found between sequences. Totiviruses typically code for two genes: one capsid gene (gag) and one RNA-dependent RNA polymerase gene (pol) with a pseudoknot structure between the genes. Both the genes and the intergenic structures were found in the CcV sequences. A nonidentical gag gene was also found in the nuclear genome of C. crispus, with associated expressed sequence tags (EST) and upstream regulatory features. The gene was presumably horizontally transferred from the virus to the alga. Similar dsRNA bands were seen in extracts from different life cycle stages of C. crispus and from all geographic locations tested. In addition, similar bands were also observed in RNA extractions from other red algae; however, the significance of this apparently widespread phenomenon is unknown. Neither phenotype caused by the infection nor any virus particles or capsid proteins were identified; thus, the presence of viral particles has not been validated. These findings increase the known host range of totiviruses to include marine red algae.
Collapse
Affiliation(s)
- Sylvie Rousvoal
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, UPMC Univ Paris 06, CS 90074, 29688, Roscoff Cedex, France
| | - Betty Bouyer
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, UPMC Univ Paris 06, CS 90074, 29688, Roscoff Cedex, France
| | - Camilo López-Cristoffanini
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, UPMC Univ Paris 06, CS 90074, 29688, Roscoff Cedex, France
| | - Catherine Boyen
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, UPMC Univ Paris 06, CS 90074, 29688, Roscoff Cedex, France
| | - Jonas Collén
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, UPMC Univ Paris 06, CS 90074, 29688, Roscoff Cedex, France
| |
Collapse
|
17
|
Kondo H, Hisano S, Chiba S, Maruyama K, Andika IB, Toyoda K, Fujimori F, Suzuki N. Reprint of "Sequence and phylogenetic analyses of novel totivirus-like double-stranded RNAs from field-collected powdery mildew fungi". Virus Res 2016; 219:39-50. [PMID: 27208846 DOI: 10.1016/j.virusres.2016.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/08/2015] [Accepted: 11/11/2015] [Indexed: 11/29/2022]
Abstract
The identification of mycoviruses contributes greatly to understanding of the diversity and evolutionary aspects of viruses. Powdery mildew fungi are important and widely studied obligate phytopathogenic agents, but there has been no report on mycoviruses infecting these fungi. In this study, we used a deep sequencing approach to analyze the double-stranded RNA (dsRNA) segments isolated from field-collected samples of powdery mildew fungus-infected red clover plants in Japan. Database searches identified the presence of at least ten totivirus (genus Totivirus)-like sequences, termed red clover powdery mildew-associated totiviruses (RPaTVs). The majority of these sequences shared moderate amino acid sequence identity with each other (<44%) and with other known totiviruses (<59%). Nine of these identified sequences (RPaTV1a, 1b and 2-8) resembled the genome of the prototype totivirus, Saccharomyces cerevisiae virus-L-A (ScV-L-A) in that they contained two overlapping open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA dependent RNA polymerase (RdRp), while one sequence (RPaTV9) showed similarity to another totivirus, Ustilago maydis virus H1 (UmV-H1) that encodes a single polyprotein (CP-RdRp fusion). Similar to yeast totiviruses, each ScV-L-A-like RPaTV contains a -1 ribosomal frameshift site downstream of a predicted pseudoknot structure in the overlapping region of these ORFs, suggesting that the RdRp is translated as a CP-RdRp fusion. Moreover, several ScV-L-A-like sequences were also found by searches of the transcriptome shotgun assembly (TSA) libraries from rust fungi, plants and insects. Phylogenetic analyses show that nine ScV-L-A-like RPaTVs along with ScV-L-A-like sequences derived from TSA libraries are clustered with most established members of the genus Totivirus, while one RPaTV forms a new distinct clade with UmV-H1, possibly establishing an additional genus in the family. Taken together, our results indicate the presence of diverse, novel totiviruses in the powdery mildew fungus populations infecting red clover plants in the field.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan.
| | - Sakae Hisano
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Sotaro Chiba
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Kazuyuki Maruyama
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Ida Bagus Andika
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Fumihiro Fujimori
- Department of Environmental Education, Tokyo Kasei University, 1-18-1 Kaga, Itabashi, Tokyo 173-8062, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
18
|
Kondo H, Hisano S, Chiba S, Maruyama K, Andika IB, Toyoda K, Fujimori F, Suzuki N. Sequence and phylogenetic analyses of novel totivirus-like double-stranded RNAs from field-collected powdery mildew fungi. Virus Res 2015; 213:353-364. [PMID: 26592174 DOI: 10.1016/j.virusres.2015.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/08/2015] [Accepted: 11/11/2015] [Indexed: 11/30/2022]
Abstract
The identification of mycoviruses contributes greatly to understanding of the diversity and evolutionary aspects of viruses. Powdery mildew fungi are important and widely studied obligate phytopathogenic agents, but there has been no report on mycoviruses infecting these fungi. In this study, we used a deep sequencing approach to analyze the double-stranded RNA (dsRNA) segments isolated from field-collected samples of powdery mildew fungus-infected red clover plants in Japan. Database searches identified the presence of at least ten totivirus (genus Totivirus)-like sequences, termed red clover powdery mildew-associated totiviruses (RPaTVs). The majority of these sequences shared moderate amino acid sequence identity with each other (<44%) and with other known totiviruses (<59%). Nine of these identified sequences (RPaTV1a, 1b and 2-8) resembled the genome of the prototype totivirus, Saccharomyces cerevisiae virus-L-A (ScV-L-A) in that they contained two overlapping open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA dependent RNA polymerase (RdRp), while one sequence (RPaTV9) showed similarity to another totivirus, Ustilago maydis virus H1 (UmV-H1) that encodes a single polyprotein (CP-RdRp fusion). Similar to yeast totiviruses, each ScV-L-A-like RPaTV contains a -1 ribosomal frameshift site downstream of a predicted pseudoknot structure in the overlapping region of these ORFs, suggesting that the RdRp is translated as a CP-RdRp fusion. Moreover, several ScV-L-A-like sequences were also found by searches of the transcriptome shotgun assembly (TSA) libraries from rust fungi, plants and insects. Phylogenetic analyses show that nine ScV-L-A-like RPaTVs along with ScV-L-A-like sequences derived from TSA libraries are clustered with most established members of the genus Totivirus, while one RPaTV forms a new distinct clade with UmV-H1, possibly establishing an additional genus in the family. Taken together, our results indicate the presence of diverse, novel totiviruses in the powdery mildew fungus populations infecting red clover plants in the field.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan.
| | - Sakae Hisano
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Sotaro Chiba
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Kazuyuki Maruyama
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Ida Bagus Andika
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Fumihiro Fujimori
- Department of Environmental Education, Tokyo Kasei University, 1-18-1 Kaga, Itabashi, Tokyo 173-8062, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
19
|
Naim S, Brown JK, Nibert ML. Genetic diversification of penaeid shrimp infectious myonecrosis virus between Indonesia and Brazil. Virus Res 2014; 189:97-105. [PMID: 24874195 PMCID: PMC7114510 DOI: 10.1016/j.virusres.2014.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 11/26/2022]
Abstract
Infectious myonecrosis virus (IMNV) is a pathogen of penaeid shrimp, most notably the whiteleg shrimp Litopenaeus vannamei. First discovered in L. vannamei from Brazilian aquaculture farms in 2003, IMNV was additionally confirmed in L. vannamei from Indonesian farms in 2006 and has since been found in numerous provinces there. Only two complete sequences of IMNV strains have been reported to date, one strain from the Brazilian state of Piauí collected in 2003 and another from the Indonesian province of East Java collected in 2006. In this study, we determined the complete sequences of two additional Indonesian strains, one from Lampung province collected in 2011 and another from East Java province collected in 2012. We also determined partial sequences for six other strains to enhance phylogenetic comparisons, which have heretofore been limited by the small number of reported sequences, including only one for an Indonesian strain. The new results demonstrate clear genetic diversification of IMNV between Indonesia and Brazil, as well as within Indonesia. Analyses of conserved sequence motifs suggest a revised RNA pseudoknot prediction for ribosomal frameshifting.
Collapse
Affiliation(s)
- Sidrotun Naim
- Department of Microbiology & Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Center for Sustainable Aquaculture & Pathology Studies, Surya University, Banten 15810, Indonesia.
| | - Judith K Brown
- School of Plant Sciences, University of Arizona, 1140 E. South Campus Drive, Tucson, AZ 85721, USA.
| | - Max L Nibert
- Department of Microbiology & Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Leishmania aethiopica Field Isolates Bearing an Endosymbiontic dsRNA Virus Induce Pro-inflammatory Cytokine Response. PLoS Negl Trop Dis 2014. [DOI: 10.1371/journal.pntd.0002836#s5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Leishmania aethiopica field isolates bearing an endosymbiontic dsRNA virus induce pro-inflammatory cytokine response. PLoS Negl Trop Dis 2014; 8:e2836. [PMID: 24762979 PMCID: PMC3998932 DOI: 10.1371/journal.pntd.0002836] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/19/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Infection with Leishmania parasites causes mainly cutaneous lesions at the site of the sand fly bite. Inflammatory metastatic forms have been reported with Leishmania species such as L. braziliensis, guyanensis and aethiopica. Little is known about the factors underlying such exacerbated clinical presentations. Leishmania RNA virus (LRV) is mainly found within South American Leishmania braziliensis and guyanensis. In a mouse model of L. guyanensis infection, its presence is responsible for an hyper-inflammatory response driven by the recognition of the viral dsRNA genome by the host Toll-like Receptor 3 leading to an exacerbation of the disease. In one instance, LRV was reported outside of South America, namely in the L. major ASKH strain from Turkmenistan, suggesting that LRV appeared before the divergence of Leishmania subgenera. LRV presence inside Leishmania parasites could be one of the factors implicated in disease severity, providing rationale for LRV screening in L. aethiopica. METHODOLOGY/PRINCIPAL FINDINGS A new LRV member was identified in four L. aethiopica strains (LRV-Lae). Three LRV-Lae genomes were sequenced and compared to L. guyanensis LRV1 and L. major LRV2. LRV-Lae more closely resembled LRV2. Despite their similar genomic organization, a notable difference was observed in the region where the capsid protein and viral polymerase open reading frames overlap, with a unique -1 situation in LRV-Lae. In vitro infection of murine macrophages showed that LRV-Lae induced a TLR3-dependent inflammatory response as previously observed for LRV1. CONCLUSIONS/SIGNIFICANCE In this study, we report the presence of an immunogenic dsRNA virus in L. aethiopica human isolates. This is the first observation of LRV in Africa, and together with the unique description of LRV2 in Turkmenistan, it confirmed that LRV was present before the divergence of the L. (Leishmania) and (Viannia) subgenera. The potential implication of LRV-Lae on disease severity due to L. aethiopica infections is discussed.
Collapse
|
22
|
Baeza M, Bravo N, Sanhueza M, Flores O, Villarreal P, Cifuentes V. Molecular characterization of totiviruses in Xanthophyllomyces dendrorhous. Virol J 2012; 9:140. [PMID: 22838956 PMCID: PMC3561658 DOI: 10.1186/1743-422x-9-140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 07/17/2012] [Indexed: 12/12/2022] Open
Abstract
Background Occurrence of extrachromosomal dsRNA elements has been described in the red-yeast Xanthophyllomyces dendrorhous, with numbers and sizes that are highly variable among strains with different geographical origin. The studies concerning to the encapsidation in viral-like particles and dsRNA-curing have suggested that some dsRNAs are helper viruses, while others are satellite viruses. However, the nucleotide sequences and functions of these dsRNAs are still unknown. In this work, the nucleotide sequences of four dsRNAs of the strain UCD 67–385 of X. dendrorhous were determined, and their identities and genome structures are proposed. Based on this molecular data, the dsRNAs of different strains of X. dendrorhous were analyzed. Results The complete sequences of L1, L2, S1 and S2 dsRNAs of X. dendrorhous UCD 67–385 were determined, finding two sequences for L1 dsRNA (L1A and L1B). Several ORFs were uncovered in both S1 and S2 dsRNAs, but no homologies were found for any of them when compared to the database. Instead, two ORFs were identified in each L1A, L1B and L2 dsRNAs, whose deduced amino acid sequences were homologous with a major capsid protein (5’-ORF) and a RNA-dependent RNA polymerase (3’-ORF) belonging to the Totiviridae family. The genome structures of these dsRNAs are characteristic of Totiviruses, with two overlapped ORFs (the 3’-ORF in the −1 frame with respect to the 5’-ORF), with a slippery site and a pseudoknot in the overlapped regions. These structures are essential for the synthesis of the viral polymerase as a fusion protein with the viral capsid protein through −1 ribosomal frameshifting. In the RNase protection analysis, all the dsRNAs in the four analyzed X. dendrorhous strains were protected from enzymatic digestion. The RT-PCR analysis revealed that, similar to strain UCD 67–385, the L1A and L1B dsRNAs coexist in the strains VKM Y-2059, UCD 67–202 and VKM Y-2786. Furthermore, determinations of the relative amounts of L1 dsRNAs using two-step RT-qPCR revealed a 40-fold increment of the ratio L1A/L1B in the S2 dsRNA-cured strain compared to its parental strain. Conclusions Three totiviruses, named as XdV-L1A, XdV-L1B and XdV-L2, were identified in the strain UCD 67–385 of X. dendrorhous. The viruses XdV-L1A and XdV-L1B were also found in other three X. dendrorhous strains. Our results suggest that the smaller dsRNAs (named XdRm-S1 and XdRm-S2) of strain UCD 67–385 are satellite viruses, and particularly that XdRm-S2 is a satellite of XdV-L1A.
Collapse
Affiliation(s)
- Marcelo Baeza
- Departamento de Ciencias Ecológicas, Laboratorio de Genética, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
23
|
Hartley MA, Ronet C, Zangger H, Beverley SM, Fasel N. Leishmania RNA virus: when the host pays the toll. Front Cell Infect Microbiol 2012; 2:99. [PMID: 22919688 PMCID: PMC3417650 DOI: 10.3389/fcimb.2012.00099] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/27/2012] [Indexed: 12/21/2022] Open
Abstract
The presence of an RNA virus in a South American subgenus of the Leishmania parasite, L. (Viannia), was detected several decades ago but its role in leishmanial virulence and metastasis was only recently described. In Leishmania guyanensis, the nucleic acid of Leishmania RNA virus (LRV1) acts as a potent innate immunogen, eliciting a hyper-inflammatory immune response through toll-like receptor 3 (TLR3). The resultant inflammatory cascade has been shown to increase disease severity, parasite persistence, and perhaps even resistance to anti-leishmanial drugs. Curiously, LRVs were found mostly in clinical isolates prone to infectious metastasis in both their human source and experimental animal model, suggesting an association between the viral hyperpathogen and metastatic complications such as mucocutaneous leishmaniasis (MCL). MCL presents as chronic secondary lesions in the mucosa of the mouth and nose, debilitatingly inflamed and notoriously refractory to treatment. Immunologically, this outcome has many of the same hallmarks associated with the reaction to LRV: production of type 1 interferons, bias toward a chronic Th1 inflammatory state and an impaired ability of host cells to eliminate parasites through oxidative stress. More intriguing, is that the risk of developing MCL is found almost exclusively in infections of the L. (Viannia) subtype, further indication that leishmanial metastasis is caused, at least in part, by a parasitic component. LRV present in this subgenus may contribute to the destructive inflammation of metastatic disease either by acting in concert with other intrinsic "metastatic factors" or by independently preying on host TLR3 hypersensitivity. Because LRV amplifies parasite virulence, its presence may provide a unique target for diagnostic and clinical intervention of metastatic leishmaniasis. Taking examples from other members of the Totiviridae virus family, this paper reviews the benefits and costs of endosymbiosis, specifically for the maintenance of LRV infection in Leishmania parasites, which is often at the expense of its human host.
Collapse
Affiliation(s)
- Mary-Anne Hartley
- Department of Biochemistry, University of Lausanne Epalinges, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Ransangan J, Manin BO. Genome analysis of Betanodavirus from cultured marine fish species in Malaysia. Vet Microbiol 2012; 156:16-44. [DOI: 10.1016/j.vetmic.2011.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 12/28/2022]
|
25
|
Fraga J, Rojas L, Sariego I, Fernández-Calienes A. Genetic characterization of three Cuban Trichomonas vaginalis virus. Phylogeny of Totiviridae family. INFECTION GENETICS AND EVOLUTION 2011; 12:113-20. [PMID: 22075038 DOI: 10.1016/j.meegid.2011.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/28/2011] [Accepted: 10/22/2011] [Indexed: 10/16/2022]
Abstract
Trichomonas vaginalis can be infected with double stranded RNA (dsRNA) viruses known as T. vaginalis virus (TVV). This viral infection may have important implications for trichomonal virulence and disease pathogenesis. In this study we identified and genetic characterized three strains of TVVs isolated from T. vaginalis in Cuba. The three new predicted sequences of capsid protein and RNA-dependent RNA polymerase amounted to the previously determined 20 TVV sequences and other 21 viruses of Totiviridae family were used for a phylogenetic analysis. Four distinct monophyletic clades are shown in a phylogenetic tree. One corresponds with TVVs, other with Victorivirus, Leishmaniavirus and Eimeria brunetti virus and, other with viruses of the genus Totivirus and the last with Giardiavirus. The E. brunetti virus is identified in the phylogenetic tree as independent taxon between Leishmaniavirus and Victorivirus isolates, most closely related to Victorivirus. TVV constitute a monophyletic cluster distinguishable from all other viruses in Totiviridae family. This result suggested that TVV may be grouped in a separated genus and not inside of Giardiavirus. TVVs appear to be more closely related to protozoan viruses in the genus Leishmaniavirus and to fungal viruses in the genus Victorivirus than to other protozoan and fungal viruses in Giardiavirus and Totivirus. Among TVVs, four main groups can be recognized within Trichomonasvirus cluster, which correspond with the previous species classification proposed. Further studies, with more TVV strains, especially TVV3 and 4 strains, are needed in order to determine the phylogenetic relationship among Trichomonasvirus genus and specifically if TVV2 and 3 each also constitute a well-delimited group.
Collapse
Affiliation(s)
- Jorge Fraga
- Departamento de Parasitología, Instituto de Medicina Tropical Pedro Kourí, Autopista Novia del Mediodía km 61/2, Apartado Postal 601, Marianao 13, Ciudad de La Habana, Cuba.
| | | | | | | |
Collapse
|
26
|
Clinical isolates of Trichomonas vaginalis concurrently infected by strains of up to four Trichomonasvirus species (Family Totiviridae). J Virol 2011; 85:4258-70. [PMID: 21345965 DOI: 10.1128/jvi.00220-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Trichomonas vaginalis, which causes the most common nonviral sexually transmitted disease worldwide, is itself commonly infected by nonsegmented double-stranded RNA (dsRNA) viruses from the genus Trichomonasvirus, family Totiviridae. To date, cDNA sequences of one or more strains of each of three trichomonasvirus species have been reported, and gel electrophoresis showing several different dsRNA molecules obtained from a few T. vaginalis isolates has suggested that more than one virus strain might concurrently infect the same parasite cell. Here, we report the complete cDNA sequences of 3 trichomonasvirus strains, one from each of the 3 known species, infecting a single, agar-cloned clinical isolate of T. vaginalis, confirming the natural capacity for concurrent (in this case, triple) infections in this system. We furthermore report the complete cDNA sequences of 11 additional trichomonasvirus strains, from 4 other clinical isolates of T. vaginalis. These additional strains represent the three known trichomonasvirus species, as well as a newly identified fourth species. Moreover, 2 of these other T. vaginalis isolates are concurrently infected by strains of all 4 trichomonasvirus species (i.e., quadruple infections). In sum, the full-length cDNA sequences of these 14 new trichomonasviruses greatly expand the existing data set for members of this genus and substantiate our understanding of their genome organizations, protein-coding and replication signals, diversity, and phylogenetics. The complexity of this virus-host system is greater than has been previously well recognized and suggests a number of important questions relating to the pathogenesis and disease outcomes of T. vaginalis infections of the human genital mucosa.
Collapse
|
27
|
Molecular cloning and characterization of an inducible RNA-dependent RNA polymerase gene, GhRdRP, from cotton (Gossypium hirsutum L.). Mol Biol Rep 2007; 36:47-56. [PMID: 17929195 DOI: 10.1007/s11033-007-9150-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
The RNA-dependent RNA polymerase (RdRP) cDNA, designated as Gossypium hirsutum RdRP (GhRdRP) was cloned from cotton by rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The full-length cDNA was 3,672 bp in size and encoded an open reading frame (ORF) of 1,110 amino acids which contained the RdRP conserved functional domain and the signature motif DbDGD. Amino acid sequence alignment indicated that GhRdRP shared the highest identity (66.37%) with AtRdRP1 and had homology with other plant, fungal, yeast and nematode RdRPs. The corresponding genomic DNA containing five exons and four introns, was isolated and analyzed. Also a 5'-flanking region was cloned, and a group of putative cis-acting elements were identified. Southern blot analysis revealed a single copy of the GhRdRP gene in cotton genome. The expression analysis by semi-quantitative RT-PCR showed that GhRdRP was induced by salicylic acid (SA), 5-chloroSA (5-CSA) and fungal infection of Rhizoctonia solani Kuhn. The cloning and characterization of the GhRdRP gene will be useful for further studies of biological roles of GhRdRP in plants.
Collapse
|
28
|
Bruenn JA. A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res 2003; 31:1821-9. [PMID: 12654997 PMCID: PMC152793 DOI: 10.1093/nar/gkg277] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Revised: 12/02/2002] [Accepted: 01/22/2003] [Indexed: 12/12/2022] Open
Abstract
A systematic bioinformatic approach to identifying the evolutionarily conserved regions of proteins has verified the universality of a newly described conserved motif in RNA-dependent RNA polymerases (motif F). In combination with structural comparisons, this approach has defined two regions that may be involved in unwinding double-stranded RNA (dsRNA) for transcription. One of these is the N-terminal portion of motif F and the second is a large insertion in motif F present in the RNA-dependent RNA polymerases of some dsRNA viruses.
Collapse
Affiliation(s)
- Jeremy A Bruenn
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
29
|
Shwed PS, Dobos P, Cameron LA, Vakharia VN, Duncan R. Birnavirus VP1 proteins form a distinct subgroup of RNA-dependent RNA polymerases lacking a GDD motif. Virology 2002; 296:241-50. [PMID: 12069523 DOI: 10.1006/viro.2001.1334] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have cloned and characterized the Drosophila X virus (DXV) genome segment B and its encoded VP1, the putative RNA-dependent RNA polymerase (RdRp) present in the virion. The 2991-bp open reading frame encodes the largest birnavirus VP1 at 977 aa, with a calculated M(r) of 112.8 kDa. As with the VP1 proteins of the type species of the other two genera in the family Birnaviridae, namely, infectious pancreatic necrosis virus (genus Aquabirnavirus) and infectious bursal disease virus (genus Avibirnavirus), the DXV (genus Entomobirnavirus) VP1 protein contains a consensus GTP-binding site and appears to possess self-guanylylation activity. All of the birnavirus VP1 proteins contain conserved RdRp motifs that reside in the catalytic "palm" domain of all classes of polymerases. However, the birnavirus RdRps lack the highly conserved Gly-Asp-Asp (GDD) sequence, a component of the proposed catalytic site of this enzyme family that exists in the conserved motif VI of the palm domain of other RdRps. All three birnavirus RdRps do contain downstream DD motifs that could function as part of the catalytic triad. These motifs are, however, located in spatially distinct regions of the various birnavirus VP1 proteins. These results suggest that the VP1 proteins of birnaviruses form a defined subgroup of polymerases that either are lacking the conserved RdRp motif VI or have repositioned this motif to different structural regions.
Collapse
Affiliation(s)
- Philip S Shwed
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
30
|
Kang J, Wu J, Bruenn JA, Park C. The H1 double-stranded RNA genome of Ustilago maydis virus-H1 encodes a polyprotein that contains structural motifs for capsid polypeptide, papain-like protease, and RNA-dependent RNA polymerase. Virus Res 2001; 76:183-9. [PMID: 11410317 DOI: 10.1016/s0168-1702(01)00250-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The Ustilago maydis viral (UmV) genome consists of three distinct size groups of double-stranded RNA (dsRNA) segments: H (heavy), M (medium), and L (light). The H segments have been suggested to encode all essential viral proteins, but without any molecular evidences. As a preliminary step to understand viral genomic organization and the molecular mechanism governing gene expression in UmV, we determined the complete nucleotide sequence of the H1 dsRNA genome in P1 viral killer subtype. The H1 dsRNA genome (designated UmV-H1) contained a single open reading frame that encodes a polyprotein of 1820 residues, which is predicted to be autocatalytically processed by a viral papain-like protease to generate viral proteins. The amino-terminal region is the capsid polypeptide with a predicted molecular mass of 79.9 kDa. The carboxy-terminal region is the RNA-dependent RNA polymerase (RDRP) that has a high sequence homology to those of the totiviruses. The H2 dsRNA also encodes a distinct RDRP, suggesting that UmV is a complex virus system like the Saccharomyces cerevisiae viruses ScV-L1 and -La.
Collapse
Affiliation(s)
- J Kang
- Kumho Life & Environmental Science Laboratory, 1 Oryong-dong, Buk-gu, 500-480, Kwangju, South Korea
| | | | | | | |
Collapse
|
31
|
Strauss EE, Lakshman DK, Tavantzis SM. Molecular characterization of the genome of a partitivirus from the basidiomycete Rhizoctonia solani. J Gen Virol 2000; 81:549-55. [PMID: 10644855 DOI: 10.1099/0022-1317-81-2-549] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bisegmented genome of a double-stranded (ds) RNA virus from the fungus Rhizoctonia solani isolate Rhs 717 was characterized. The larger segment, dsRNA 1, is 2363 bases long whereas the smaller segment, dsRNA 2, has 2206 bases. The 5' ends of the coding strands of dsRNA 1 and dsRNA 2 are highly conserved (100% identity over 47 bases), and contain inverted repeats capable of forming stable stem-loop structures. Analysis of the coding potential of each of the two segments showed that dsRNAs 1 and 2 could code for polypeptides of 730 aa (bases 86-2275; molecular mass 86 kDa) and 683 aa (bases 79-2130; molecular mass 76 kDa), respectively. The 86 kDa polypeptide has all the motifs of dsRNA RNA-dependent RNA polymerases (RDRP), and has significant homology with putative RDRPs of partitiviruses from Fusarium poae and Atkinsonella hypoxylon. The 76 kDa protein shows homology with the putative capsid proteins (CP) of the same viruses. Northern blot analysis revealed no subgenomic RNA species, consistent with the fact that the long open reading frames encoding the putative RDRP and CP cover the entire length of the respective dsRNAs.
Collapse
Affiliation(s)
- E E Strauss
- Department of Biological Sciences, University of Maine, Orono, ME 04469-0102, USA
| | | | | |
Collapse
|
32
|
|
33
|
Schiebel W, Pélissier T, Riedel L, Thalmeir S, Schiebel R, Kempe D, Lottspeich F, Sänger HL, Wassenegger M. Isolation of an RNA-directed RNA polymerase-specific cDNA clone from tomato. THE PLANT CELL 1998; 10:2087-101. [PMID: 9836747 PMCID: PMC143969 DOI: 10.1105/tpc.10.12.2087] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A 3600-bp RNA-directed RNA polymerase (RdRP)-specific cDNA comprising an open reading frame (ORF) of 1114 amino acids was isolated from tomato. The putative protein encoded by this ORF does not share homology with any characterized proteins. Antibodies that were raised against synthetic peptides whose sequences have been deduced from the ORF were shown to specifically detect the 127-kD tomato RdRP protein. The immunoresponse to the antibodies correlated with the enzymatic activity profile of the RdRP after chromatography on Q-, poly(A)-, and poly(U)-Sepharose, hydroxyapatite, and Sephadex G-200 columns. DNA gel blot analysis revealed a single copy of the RdRP gene in tomato. RdRP homologs from petunia, Arabidopsis, tobacco, and wheat were identified by using polymerase chain reaction. A sequence comparison indicated that sequences homologous to RdRP are also present in the yeast Schizosaccharomyces pombe and in the nematode Caenorhabditis elegans. The previously described induction of RdRP activity upon viroid infection is shown to be correlated with an increased steady state level of the corresponding mRNA. The possible involvement of this heretofore functionally elusive plant RNA polymerase in homology-dependent gene silencing is discussed.
Collapse
Affiliation(s)
- W Schiebel
- Max-Planck-Institut für Biochemie, Abteilung Viroidforschung, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Schiebel W, Pélissier T, Riedel L, Thalmeir S, Schiebel R, Kempe D, Lottspeich F, Sänger HL, Wassenegger M. Isolation of an RNA-directed RNA polymerase-specific cDNA clone from tomato. THE PLANT CELL 1998. [PMID: 9836747 DOI: 10.2307/3870786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A 3600-bp RNA-directed RNA polymerase (RdRP)-specific cDNA comprising an open reading frame (ORF) of 1114 amino acids was isolated from tomato. The putative protein encoded by this ORF does not share homology with any characterized proteins. Antibodies that were raised against synthetic peptides whose sequences have been deduced from the ORF were shown to specifically detect the 127-kD tomato RdRP protein. The immunoresponse to the antibodies correlated with the enzymatic activity profile of the RdRP after chromatography on Q-, poly(A)-, and poly(U)-Sepharose, hydroxyapatite, and Sephadex G-200 columns. DNA gel blot analysis revealed a single copy of the RdRP gene in tomato. RdRP homologs from petunia, Arabidopsis, tobacco, and wheat were identified by using polymerase chain reaction. A sequence comparison indicated that sequences homologous to RdRP are also present in the yeast Schizosaccharomyces pombe and in the nematode Caenorhabditis elegans. The previously described induction of RdRP activity upon viroid infection is shown to be correlated with an increased steady state level of the corresponding mRNA. The possible involvement of this heretofore functionally elusive plant RNA polymerase in homology-dependent gene silencing is discussed.
Collapse
Affiliation(s)
- W Schiebel
- Max-Planck-Institut für Biochemie, Abteilung Viroidforschung, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|