1
|
Jang HJ, Choi JW, Kim YM, Shin SS, Lee K, Han JY. Reactivation of Transgene Expression by Alleviating CpG Methylation of the Rous sarcoma virus Promoter in Transgenic Quail Cells. Mol Biotechnol 2011; 49:222-8. [DOI: 10.1007/s12033-011-9393-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Touw IP, Erkeland SJ. Retroviral insertion mutagenesis in mice as a comparative oncogenomics tool to identify disease genes in human leukemia. Mol Ther 2008; 15:13-9. [PMID: 17164770 DOI: 10.1038/sj.mt.6300040] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Retroviral insertion mutagenesis has recently received much attention because of its adverse effects in the application of retroviral vector-based gene therapy, resulting in leukemia in certain patients. At the same time, retroviral mutagenesis in mice is being considered a powerful forward genetic strategy to identify disease genes involved in cancer. The publication of the mouse genome sequence and the development of high-throughput genomic approaches have given a further boost to this rapidly evolving field. The increasing numbers of new potential oncogenes identified in retroviral screens have given a valuable basis for a better understanding of cancer related pathways in mice. Important challenges that now lie ahead of us are (i) to determine the relevance and causal relationship of these genes with various types of human cancer (ii) to develop strategies to identify tumor suppressor genes on a large scale, (iii) to place the disease genes into regulatory networks to better understand their role in the complex pathogenesis of cancer, and (iv) to determine their value for diagnosis refinement and therapeutic target intervention in human disease. In this review, we will give a brief update of the current state-of-the-art and thoughts concerning these issues. We will specifically focus on the value of employing retroviral insertion mutagenesis in mice and gene expression profiling in man in the context of acute myeloid leukemia.
Collapse
Affiliation(s)
- Ivo P Touw
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | | |
Collapse
|
3
|
Voisin V, Rassart E. Complete genome sequences of the two viral variants of the Graffi MuLV: Phylogenetic relationship with other murine leukemia retroviruses. Virology 2007; 361:335-47. [PMID: 17208267 DOI: 10.1016/j.virol.2006.10.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/03/2006] [Accepted: 10/28/2006] [Indexed: 11/15/2022]
Abstract
A detailed phylogenetic analysis of two variants of the Graffi murine retrovirus, GV-1.2 and GV-1.4, showed that they are closely related to SRS 19-6 and Moloney MuLVs. Two stretches of sequence testify to the divergence between Graffi and SRS 19-6 MuLVs, one corresponding to a recombination event of Graffi MuLV with a xenotropic virus. Moloney MuLV was found more distant, particularly in the GAG region. Our study encompasses every class of MuLVs (ecotropic, amphotropic, xenotropic, polytropic) with some focus on exogenous ecotropic viruses and further adds to previous phylogenetic studies. Graffi, SRS 19-6, Moloney, Friend and Rauscher MuLVs form a cluster that appears to share a common ancestor with the Casitas-amphotropic and -ecotropic MuLVs but are more distant to the Akv-type and xenotropic MuLVs. The analysis also revealed that the ENV region of HEMV, the prototype of the MuLV ancestor, was closely related to the corresponding region of Cas-Br-E.
Collapse
Affiliation(s)
- Véronique Voisin
- Laboratoire de biologie moléculaire, Département des sciences biologiques, Université du Québec à Montréal, Case Postale 8888 Succursale Centre-ville, Montréal, Canada H3C-3P8
| | | |
Collapse
|
4
|
Rodenburg M, Fischer M, Engelmann A, Harbers SO, Ziegler M, Löhler J, Stocking C. Importance of receptor usage, Fli1 activation, and mouse strain for the stem cell specificity of 10A1 murine leukemia virus leukemogenicity. J Virol 2006; 81:732-42. [PMID: 17079317 PMCID: PMC1797452 DOI: 10.1128/jvi.01430-06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Murine leukemia viruses (MuLV) induce leukemia through a multistage process, a critical step being the activation of oncogenes through provirus integration. Transcription elements within the long terminal repeats (LTR) are prime determinants of cell lineage specificity; however, the influence of other factors, including the Env protein that modulates cell tropism through receptor recognition, has not been rigorously addressed. The ability of 10A1-MuLV to use both PiT1 and PiT2 receptors has been implicated in its induction of blast cell leukemia. Here we show that restricting receptor usage of 10A1-MuLV to PiT2 results in loss of blast cell transformation capacity. However, the pathogenicity was unaltered when the env gene is exchanged with Moloney MuLV, which uses the Cat1 receptor. Significantly, the leukemic blasts express erythroid markers and consistently contain proviral integrations in the Fli1 locus, a target of Friend MuLV (F-MuLV) during erythroleukemia induction. Furthermore, an NB-tropic variant of 10A1 was unable to induce blast cell leukemia in C57BL/6 mice, which are also resistant to F-MuLV transformation. We propose that 10A1- and F-MuLV actually induce identical (erythro)blastic leukemia by a mechanism involving Fli1 activation and cooperation with inherent genetic mutations in susceptible mouse strains. Furthermore, we demonstrate that deletion of the Icsbp tumor suppressor gene in C57BL/6 mice is sufficient to confer susceptibility to 10A1-MuLV leukemia induction but with altered specificity. In summary, we validate the significance of the env gene in leukemia specificity and underline the importance of a complex interplay of cooperating oncogenes and/or tumor suppressors in determining the pathogenicity of MuLV variants.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Fibroblasts
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Hematopoietic Stem Cells/pathology
- Hematopoietic Stem Cells/virology
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/metabolism
- Leukemia Virus, Murine/pathogenicity
- Leukemia, Experimental/pathology
- Leukemia, Experimental/virology
- Mice
- Mice, Inbred C57BL
- Proto-Oncogene Protein c-fli-1/genetics
- Proto-Oncogene Protein c-fli-1/metabolism
- Receptors, Virus/metabolism
- Retroviridae Infections/pathology
- Retroviridae Infections/virology
- Species Specificity
- Tumor Virus Infections/pathology
- Tumor Virus Infections/virology
Collapse
|
5
|
Voisin V, Barat C, Hoang T, Rassart E. Novel insights into the pathogenesis of the Graffi murine leukemia retrovirus. J Virol 2006; 80:4026-37. [PMID: 16571819 PMCID: PMC1440465 DOI: 10.1128/jvi.80.8.4026-4037.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 01/25/2006] [Indexed: 11/20/2022] Open
Abstract
The Graffi murine leukemia virus (MuLV) was isolated in 1954 by Arnold Graffi, who characterized it as a myeloid leukemia-inducing retrovirus. He and his team, however, soon observed the intriguing phenomenon of hematological diversification, which corresponded to a decrease of myeloid leukemias and an increase of other types of leukemias. Recently, we derived two different molecular clones corresponding to ecotropic nondefective genomes that were named GV-1.2 and GV-1.4. The induced leukemias were classified as myeloid based on morphological analysis of blood smears. In this study, we further characterized the two variants of the Graffi murine retrovirus, GV-1.2 and GV-1.4, in three different strains of mice. We show that the Graffi MuLV is a multipotent retrovirus capable of inducing both lymphoid (T- and B-cell) and nonlymphoid (myeloid, erythroid, megakaryocytic) leukemia. Many of these are very complex with concomitant expression of different hematopoietic lineages. Interestingly, a high percentage of megakaryocytic leukemias, a type of leukemia rarely observed with MuLVs, arise in the FVB/n strain of mice. The genetic backgrounds of the different strains of mice influence greatly the results. Furthermore, the enhancer region, different for GV-1.2 and GV-1.4, plays a pivotal role in the disease specificity: GV-1.2 induces more lymphoid leukemias, and GV-1.4 induces more nonlymphoid ones.
Collapse
MESH Headings
- Animals
- Enhancer Elements, Genetic
- Flow Cytometry
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Leukemia, B-Cell/immunology
- Leukemia, B-Cell/pathology
- Leukemia, Experimental/pathology
- Leukemia, Megakaryoblastic, Acute/immunology
- Leukemia, Megakaryoblastic, Acute/pathology
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/pathology
- Leukemia, T-Cell/immunology
- Leukemia, T-Cell/pathology
- Mice
- Mice, Inbred BALB C
- Retroviridae Infections/pathology
- Terminal Repeat Sequences
- Tumor Virus Infections/pathology
- Virus Latency
Collapse
Affiliation(s)
- Véronique Voisin
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal, Case Postale 8888 Succ. Centre-ville, Montréal, Canada H3C-3P8
| | | | | | | |
Collapse
|
6
|
Erkeland SJ, Verhaak RGW, Valk PJM, Delwel R, Löwenberg B, Touw IP. Significance of murine retroviral mutagenesis for identification of disease genes in human acute myeloid leukemia. Cancer Res 2006; 66:622-6. [PMID: 16423987 DOI: 10.1158/0008-5472.can-05-2908] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Retroviral insertion mutagenesis is considered a powerful tool to identify cancer genes in mice, but its significance for human cancer has remained elusive. Moreover, it has recently been debated whether common virus integrations are always a hallmark of tumor cells and contribute to the oncogenic process. Acute myeloid leukemia (AML) is a heterogeneous disease with a variable response to treatment. Recurrent cytogenetic defects and acquired mutations in regulatory genes are associated with AML subtypes and prognosis. Recently, gene expression profiling (GEP) has been applied to further risk stratify AML. Here, we show that mouse leukemia genes identified by retroviral insertion mutagenesis are more frequently differentially expressed in distinct subclasses of adult and pediatric AML than randomly selected genes or genes located more distantly from a virus integration site. The candidate proto-oncogenes showing discriminative expression in primary AML could be placed in regulatory networks mainly involved in signal transduction and transcriptional control. Our data support the validity of retroviral insertion mutagenesis in mice for human disease and indicate that combining these murine screens for potential proto-oncogenes with GEP in human AML may help to identify critical disease genes and novel pathogenetic networks in leukemia.
Collapse
Affiliation(s)
- Stefan J Erkeland
- Department of Hematology, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
Mountford JC, Vanin EF, Hayden RE, Bunce CM. All-trans retinoic acid increases transgene expression in MSCV-transduced cells, via a mechanism that is retinoid receptor dependent but independent of cellular differentiation. Hum Gene Ther 2005; 16:132-8. [PMID: 15703496 DOI: 10.1089/hum.2005.16.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Treatment of MSCV-GFP-transduced HL60 promyelocytic cells with all-trans retinoic acid (ATRA) resulted in a significant increase in GFP expression. The increased GFP expression was observed by 16 hr and was dependent on de novo protein production. This effect was specific to ATRA and unrelated to cell differentiation because it was not induced by dimethyl sulfoxide. Furthermore, a similar increase in GFP expression was observed in MSCV-GFP-transfected K562 cells, which do not differentiate when exposed to ATRA. Significantly increased GFP expression was seen at doses as low as 0.5 nM ATRA and was abrogated by AGN193109, an antagonist of retinoid signaling. We therefore conclude that this increase in gene expression is mediated by retinoic acid receptors. The long terminal repeat (LTR) region of MSCV contains candidate retinoic acid response elements and response elements for the ATRA-inducible transcription factor C/EBPalpha. We suggest that the increase in GFP expression is driven by the action of ATRA-activated host cell transcription factors. These findings offer a method to increase the expression of retroviral transgenes either in vitro or in vivo by treatment with low doses of retinoic acid that are clinically achievable and well tolerated. This use of inducible host cell transcription factors offers an alternative to engineering novel LTR regulatory sequences in order to increase transgene expression.
Collapse
Affiliation(s)
- Joanne C Mountford
- Section of Experimental Haematology and Haemopoietic Stem Cells, Division of Cancer Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom.
| | | | | | | |
Collapse
|
8
|
Takase-Yoden S, Watanabe R. Unique three-repeat sequences containing FVa, LVb/C4, and CORE motifs in LTR-U3 of Friend murine leukemia virus clone A8 accelerate the induction of thymoma in rat. Virology 2004; 326:29-40. [PMID: 15262492 DOI: 10.1016/j.virol.2004.04.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 04/13/2004] [Accepted: 04/30/2004] [Indexed: 11/19/2022]
Abstract
Friend murine leukemia virus (Fr-MLV) clone A8 causes thymoma 7 weeks postinfection in rats with a more rapid progression than clone 57. The U3 region of A8-LTR contains a unique structure of enhancer motifs consisting of three repeats of a 38-bp sequence containing FVa, LVb/C4, and CORE motifs. Replacement or deletion of the 38-bp sequence in the A8-U3 resulted in a marked reduction in tumorigenicity. Furthermore, the virus with 57-U3 gained high tumorigenicity after construction of the three 38-bp repeats in the U3 region. These findings indicated that the repeats of the 38-bp sequence of A8-LTR are essential for the rapid induction of thymoma. Interestingly, the repeat of the 38-bp sequence did not accelerate the amount of integrated viral DNA in the thymus during the early phase of infection, although it contributed to higher production of infectious virus. Thus, it was demonstrated that the ability to induce thymoma, which correlates with virus titer in the thymus, is not determined by the rate of viral DNA integration into the host genome.
Collapse
Affiliation(s)
- Sayaka Takase-Yoden
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan.
| | | |
Collapse
|
9
|
Yamaguchi K, Itoh K, Ohnishi N, Itoh Y, Baum C, Tsuji T, Nagao T, Higashitsuji H, Okanoue T, Fujita J. Engineered long terminal repeats of retroviral vectors enhance transgene expression in hepatocytes in vitro and in vivo. Mol Ther 2004; 8:796-803. [PMID: 14599813 DOI: 10.1016/j.ymthe.2003.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To analyze the important elements for retroviral expression in hepatocytes, cis-acting elements in the U3 region of the long terminal repeat (LTR) of the polycythemic strain of spleen focus-forming virus (SFFVp) were analyzed in a hepatocellular carcinoma cell line. Two cis-acting elements located within the upstream region of the direct repeat, which positively regulated retroviral expression, were identified. Transcription factors NFAT5 and Sp1, which are ubiquitously expressed in a variety of tissues, bound to these elements. To increase specificity without lowering the potency of retroviral expression in hepatocytes, these elements were replaced by a sequence derived from the hepatitis B virus enhancer II region. Novel vectors, SF-Hep3 and SF-Hep5 (SFFVp-based vector for hepatocytes 3 and 5), were developed with these engineered LTRs. The engineered LTRs of these vectors enhanced the retroviral expression only in hepatocellular carcinoma cell lines in vitro. These vectors also increased transgene expression 4- to 9-fold or 3.5- to 5-fold in comparison with a Moloney murine leukemia virus-based vector or a vector containing the wild-type LTR of SFFVp, respectively, in murine hepatocytes in vivo.
Collapse
Affiliation(s)
- Kanji Yamaguchi
- Department of Clinical Molecular Biology, Faculty of Medicine, Kyoto University, 606-8507, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wahlers A, Kustikova O, Zipfel PF, Itoh K, Koester M, Heberlein C, Li Z, Schiedlmeier B, Skerka C, Fehse B, Baum C. Upstream conserved sequences of mouse leukemia viruses are important for high transgene expression in lymphoid and hematopoietic cells. Mol Ther 2002; 6:313-20. [PMID: 12231166 DOI: 10.1006/mthe.2002.0671] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Highly conserved enhancer sequences located in the upstream part of the long terminal repeat (LTR) of murine leukemia retroviruses (MLV) were reported to compromise viral gene expression in multipotent embryonic cells in vitro and to reduce the likelihood for maintenance of retroviral gene expression in hematopoietic cells in vivo. We show that deletion of these sequences (nucleotides +37 to +95) attenuates rather than increases the transcriptional activity of retroviral vectors in hematopoietic cells almost independently of the developmental lineage (erythroid, myeloid, or lymphoid). Expression rates of modified vectors were reduced by as much as 34-65%, although the strong enhancer array located in the direct repeat of the LTR was preserved. Sequence analysis and electrophoretic mobility shift assays revealed the presence of a highly conserved binding site for NFAT (nuclear factor of activated T cells) proteins that immediately neighbors a known binding site for the transcription factor Yin-Yang1 (YY1) [corrected]. Specific inactivation of the NFAT site reduced transgene expression in all cell types investigated and had a similar effect as the destruction of a neighboring SP1 motif. Combined destruction of individual motifs for NFAT, SP1, and E twenty-six transcription factors (ETS) resulted in a severe attenuation (by 40-60%) of the retroviral enhancer. These results provide novel clues for the manipulation of retrovirus replication and vector tropism.
Collapse
Affiliation(s)
- Anke Wahlers
- Heinrich-Pette-Institute, Department of Cell and Virus Genetics, 20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pereira LA, Churchill MJ, Elefanty AG, Gouskos T, Lambert PF, Ramsay RG, Deacon NJ. Characterization of interactions between transcription factors and a regulatory region spanning nt -320 to -281 of the HIV-1 LTR in T-lymphoid and non-T-lymphoid cells. J Biomed Sci 2002; 9:68-81. [PMID: 11810027 DOI: 10.1007/bf02256580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
HIV-1 gene expression is regulated by the interplay of transcription factors with multiple binding motifs present within the U3, R and U5 regions of the long terminal repeat (LTR). Here we report novel DNA binding complexes (termed 9a, 9b and 9c) between nuclear proteins from T-lymphoid and non-T-lymphoid cells and a region of the U3 LTR between nucleotides (nts) -320 to -281 in the HIV strain HXB2. Complex 9b bound a motif predicted to bind E-box or c-Myb proteins and a partially overlapping dyad symmetrical motif, and included basic helix-loop-helix proteins (E12, E47 or ITF-1) but surprisingly not c-Myb. Complex 9c, which bound to a pair of GATA sites, included GATA-3 and GATA-4 in Jurkat and MT-2 cells, respectively. We also demonstrate that the c-Myb/E-box and GATA sites form a bipartite motif required for the formation of complex 9a. Transient transfection experiments with T cells revealed that in the context of a minichromosome assembled full-length LTR, mutation of region -320 to -281 increased basal and PMA-stimulated LTR activity. These findings suggest that this region is an important component of the HIV-1 LTR required for response to different cellular transcription factors.
Collapse
Affiliation(s)
- Lloyd A Pereira
- Laboratory for Physiological Chemistry and Centre for Biomedical Genetics, University Medical Centre, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Wahlers A, Zipfel PF, Schwieger M, Ostertag W, Baum C. In vivo analysis of retroviral enhancer mutations in hematopoietic cells: SP1/EGR1 and ETS/GATA motifs contribute to long terminal repeat specificity. J Virol 2002; 76:303-12. [PMID: 11739695 PMCID: PMC135690 DOI: 10.1128/jvi.76.1.303-312.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The objective of this work was to identify, in the context of chromosomally integrated DNA, the contribution of defined transcription factor binding motifs to the function of a complex retrovirus enhancer in hematopoietic cells in vivo. Repopulating murine hematopoietic cells were transduced with equal gene dosages of replication-incompetent retrovirus vectors encoding enhanced green fluorescent protein. Enhancer sequences were derived from mouse spleen focus-forming virus. Destruction of GC-rich sites representing overlapping targets for SP1 or EGR1 uniformly attenuated gene expression (approximately 25 to 70% of wild-type levels) in all hematopoietic lineages, as shown by multicolor flow cytometry of peripheral blood and bone marrow cells at various time points posttransplantation. In contrast, a point mutation within a dual ETS/GATA motif that abolished transactivation by ETS factors but not by GATA-1 slightly increased activity in erythroid cells and significantly attenuated enhancer function in T lymphocytes. This study shows that controlled gene transfer in transplantable hematopoietic cells allows a functional analysis of distinct cis elements within a complex retrovirus enhancer, as required for the characterization and engineering of various cellular and viral regulatory sequences in basic research and gene therapy.
Collapse
Affiliation(s)
- Anke Wahlers
- Department of Cell and Virus Genetics, Heinrich Pette Institute, D-20251 Hamburg, Germany
| | | | | | | | | |
Collapse
|
13
|
Martiney MJ, Levy LS, Lenz J. Suppressor mutations within the core binding factor (CBF/AML1) binding site of a T-cell lymphomagenic retrovirus. J Virol 1999; 73:2143-52. [PMID: 9971797 PMCID: PMC104459 DOI: 10.1128/jvi.73.3.2143-2152.1999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional enhancer of the lymphomagenic mouse retrovirus SL3 contains a binding site for the transcription factor core binding factor (CBF; also called AML1, PEBP2, and SEF1). The SL3 CBF binding site is called the core. It differs from the core of the weakly lymphomagenic mouse retrovirus Akv by one nucleotide (the sequences are TGTGGTTAA and TGTGGTCAA, respectively). A mutant virus called SAA that was identical to SL3 except that its core was mutated to the Akv sequence was only moderately attenuated for lymphomagenicity. In most SAA-infected mice, tumor proviruses contained either reversions of the original mutation or one of two novel core sequences. In 20% of the SAA-infected mice, tumor proviruses retained the original SAA/Akv core mutation but acquired one of two additional mutations (underlined), TGCGGTCAA or TGTGGTCTA, that generated core elements called So and T*, respectively. We tested whether the novel base changes in the So and T* cores were suppressor mutations. SL3 mutants that contained So or T* cores in place of the wild-type sequence were generated. These viruses induced T-cell lymphomas in mice more quickly than SAA. Therefore, the mutations in the So and T* cores are indeed second-site suppressor mutations. The suppressor mutations increased CBF binding in vitro and transcriptional activity of the viral long terminal repeats (LTRs) in T lymphocytes to levels comparable to those of SL3. Thus, CBF binding was increased by any of three different nucleotide changes within the sequence of the SAA core. Increased CBF binding resulted in increased LTR transcriptional activity in T cells and in increased viral lymphomagenicity.
Collapse
Affiliation(s)
- M J Martiney
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
14
|
Barat C, Rassart E. Nuclear factors that bind to the U3 region of two murine myeloid leukemia-inducing retroviruses, Cas-Br-E and Graffi. Virology 1998; 252:82-95. [PMID: 9875319 DOI: 10.1006/viro.1998.9435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cas-Br-E and Graffi are two myeloid leukemia-inducing murine viruses. Cas-Br-E induces, in NIH-Swiss mice, mostly non-T, non-B leukemia composed of very immature cells with no specific characteristics (Bergeron et al. (1993). Leukemia 7, 954-962). The Graffi murine leukemia virus causes exclusively myeloid leukemia, but the tumor cells are clearly of granulocytic nature (Ru et al. (1993). J. Virol. 67, 4722). We were interested to understand the role of the long terminal repeat (LTR) U3 region in the myeloid specificity of these two retroviruses. We used DNase I footprinting and gel mobility shift assays to identify a number of protein binding sites within Cas-Br-E and Graffi U3 regions. The pattern of protected regions is highly similar for the two viruses. Some factors identified in other murine leukemia viruses, like the core binding factor, also bind to Cas-Br-E and Graffi LTR; however, other binding sites seem specific for these two viruses. Only one difference between them was noted, at the 5' end of the U3 region. Transcriptional activity of both LTRs was also analyzed in various cell lines and compared with other murine leukemia viruses. The results show a slight myeloid specificity for the two LTRs, and indicate that the Graffi enhancer is quite strong in a broad range of cell types.
Collapse
Affiliation(s)
- C Barat
- Département des Sciences Biologiques, Université du Québec à Montréal, Canada
| | | |
Collapse
|