1
|
Masomian M, Lalani S, Poh CL. Molecular Docking of SP40 Peptide towards Cellular Receptors for Enterovirus 71 (EV-A71). Molecules 2021; 26:molecules26216576. [PMID: 34770987 PMCID: PMC8587434 DOI: 10.3390/molecules26216576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Enterovirus 71 (EV-A71) is one of the predominant etiological agents of hand, foot and mouth disease (HMFD), which can cause severe central nervous system infections in young children. There is no clinically approved vaccine or antiviral agent against HFMD. The SP40 peptide, derived from the VP1 capsid of EV-A71, was reported to be a promising antiviral peptide that targeted the host receptor(s) involved in viral attachment or entry. So far, the mechanism of action of SP40 peptide is unknown. In this study, interactions between ten reported cell receptors of EV-A71 and the antiviral SP40 peptide were evaluated through molecular docking simulations, followed by in vitro receptor blocking with specific antibodies. The preferable binding region of each receptor to SP40 was predicted by global docking using HPEPDOCK and the cell receptor-SP40 peptide complexes were refined using FlexPepDock. Local molecular docking using GOLD (Genetic Optimization for Ligand Docking) showed that the SP40 peptide had the highest binding score to nucleolin followed by annexin A2, SCARB2 and human tryptophanyl-tRNA synthetase. The average GoldScore for 5 top-scoring models of human cyclophilin, fibronectin, human galectin, DC-SIGN and vimentin were almost similar. Analysis of the nucleolin-SP40 peptide complex showed that SP40 peptide binds to the RNA binding domains (RBDs) of nucleolin. Furthermore, receptor blocking by specific monoclonal antibody was performed for seven cell receptors of EV-A71 and the results showed that the blocking of nucleolin by anti-nucleolin alone conferred a 93% reduction in viral infectivity. Maximum viral inhibition (99.5%) occurred when SCARB2 was concurrently blocked with anti-SCARB2 and the SP40 peptide. This is the first report to reveal the mechanism of action of SP40 peptide in silico through molecular docking analysis. This study provides information on the possible binding site of SP40 peptide to EV-A71 cellular receptors. Such information could be useful to further validate the interaction of the SP40 peptide with nucleolin by site-directed mutagenesis of the nucleolin binding site.
Collapse
Affiliation(s)
- Malihe Masomian
- Correspondence: (M.M.); (C.L.P.); Tel.: +603-74918622 (ext. 7603) (M.M.); +603-74918622 (ext. 7338) (C.L.P.)
| | | | - Chit Laa Poh
- Correspondence: (M.M.); (C.L.P.); Tel.: +603-74918622 (ext. 7603) (M.M.); +603-74918622 (ext. 7338) (C.L.P.)
| |
Collapse
|
2
|
Joseph AP, Bhat P, Das S, Srinivasan N. Re-analysis of cryoEM data on HCV IRES bound to 40S subunit of human ribosome integrated with recent structural information suggests new contact regions between ribosomal proteins and HCV RNA. RNA Biol 2015; 11:891-905. [PMID: 25268799 DOI: 10.4161/rna.29545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, we combine available high resolution structural information on eukaryotic ribosomes with low resolution cryo-EM data on the Hepatitis C Viral RNA (IRES) human ribosome complex. Aided further by the prediction of RNA-protein interactions and restrained docking studies, we gain insights on their interaction at the residue level. We identified the components involved at the major and minor contact regions, and propose that there are energetically favorable local interactions between 40S ribosomal proteins and IRES domains. Domain II of the IRES interacts with ribosomal proteins S5 and S25 while the pseudoknot and the downstream domain IV region bind to ribosomal proteins S26, S28 and S5. We also provide support using UV cross-linking studies to validate our proposition of interaction between the S5 and IRES domains II and IV. We found that domain IIIe makes contact with the ribosomal protein S3a (S1e). Our model also suggests that the ribosomal protein S27 interacts with domain IIIc while S7 has a weak contact with a single base RNA bulge between junction IIIabc and IIId. The interacting residues are highly conserved among mammalian homologs while IRES RNA bases involved in contact do not show strict conservation. IRES RNA binding sites for S25 and S3a show the best conservation among related viral IRESs. The new contacts identified between ribosomal proteins and RNA are consistent with previous independent studies on RNA-binding properties of ribosomal proteins reported in literature, though information at the residue level is not available in previous studies.
Collapse
Affiliation(s)
- Agnel Praveen Joseph
- Molecular Biophysics Unit. Indian Institute of Science, Bangalore, India; Present address: Science and Technology Facilities Council, RAL, Harwell, Didcot, UK
| | - Prasanna Bhat
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
3
|
Jiang X, Kanda T, Wu S, Nakamoto S, Saito K, Shirasawa H, Kiyohara T, Ishii K, Wakita T, Okamoto H, Yokosuka O. Suppression of La antigen exerts potential antiviral effects against hepatitis A virus. PLoS One 2014; 9:e101993. [PMID: 24999657 PMCID: PMC4084951 DOI: 10.1371/journal.pone.0101993] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/12/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Despite the development and availability of hepatitis A virus (HAV) vaccine, HAV infection is still a major cause of acute hepatitis that occasionally leads to fatal liver disease. HAV internal ribosomal entry-site (IRES) is one of the attractive targets of antiviral agents against HAV. The aim of the present study is to evaluate the impact of La, one of the cellular proteins, on HAV IRES-mediated translation and HAV replication. METHODS AND FINDINGS We investigated the therapeutic feasibility of siRNAs specific for cellular cofactors for HAV IRES-mediated translation in cell culture. It was revealed that siRNA against La could inhibit HAV IRES activities as well as HAV subgenomic replication. We also found that the Janus kinase (JAK) inhibitors SD-1029 and AG490, which reduce La expression, could inhibit HAV IRES activities as well as HAV replication. CONCLUSIONS Inhibition of La by siRNAs and chemical agents could lead to the efficient inhibition of HAV IRES-mediated translation and HAV replication in cell culture models. La might play important roles in HAV replication and is being exploited as one of the therapeutic targets of host-targeting antivirals.
Collapse
Affiliation(s)
- Xia Jiang
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Shuang Wu
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Shingo Nakamoto
- Department of Molecular Virology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Kengo Saito
- Department of Molecular Virology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Hiroshi Shirasawa
- Department of Molecular Virology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Tomoko Kiyohara
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Koji Ishii
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
4
|
Dibrov SM, Parsons J, Carnevali M, Zhou S, Rynearson KD, Ding K, Garcia Sega E, Brunn ND, Boerneke MA, Castaldi MP, Hermann T. Hepatitis C virus translation inhibitors targeting the internal ribosomal entry site. J Med Chem 2013; 57:1694-707. [PMID: 24138284 DOI: 10.1021/jm401312n] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The internal ribosome entry site (IRES) in the 5' untranslated region (UTR) of the hepatitis C virus (HCV) genome initiates translation of the viral polyprotein precursor. The unique structure and high sequence conservation of the 5' UTR render the IRES RNA a potential target for the development of selective viral translation inhibitors. Here, we provide an overview of approaches to block HCV IRES function by nucleic acid, peptide, and small molecule ligands. Emphasis will be given to the IRES subdomain IIa, which currently is the most advanced target for small molecule inhibitors of HCV translation. The subdomain IIa behaves as an RNA conformational switch. Selective ligands act as translation inhibitors by locking the conformation of the RNA switch. We review synthetic procedures for inhibitors as well as structural and functional studies of the subdomain IIa target and its ligand complexes.
Collapse
Affiliation(s)
- Sergey M Dibrov
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Hepatitis C viral protein translation occurs in a cap-independent manner through the use of an internal ribosomal entry site (IRES) present within the viral 5'-untranslated region. The IRES is composed of highly conserved structural domains that directly recruit the 40S ribosomal subunit to the viral genomic RNA. This frees the virus from relying on a large number of translation initiation factors that are required for cap-dependent translation, conferring a selective advantage to the virus especially in times when the availability of such factors is low. Although the mechanism of translation initiation on the Hepatitis C virus (HCV) IRES is well established, modulation of the HCV IRES activity by both cellular and viral factors is not well understood. As the IRES is essential in the HCV life cycle and as such remains well conserved in an otherwise highly heterogenic virus, the process of HCV protein translation represents an attractive target in the development of novel antivirals. This review will focus on the mechanisms of HCV protein translation and how this process is postulated to be modulated by cis-acting viral factors, as well as trans-acting viral and cellular factors. Numerous therapeutic approaches investigated in targeting HCV protein translation for the development of novel antivirals will also be discussed.
Collapse
Affiliation(s)
- Brett Hoffman
- Vaccine and Infectious Disease Organization/International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
6
|
Fontanes V, Raychaudhuri S, Dasgupta A. A cell-permeable peptide inhibits hepatitis C virus replication by sequestering IRES transacting factors. Virology 2009; 394:82-90. [PMID: 19740508 PMCID: PMC2767405 DOI: 10.1016/j.virol.2009.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 05/25/2009] [Accepted: 08/04/2009] [Indexed: 02/05/2023]
Abstract
Hepatitis C virus (HCV) infection frequently leads to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. There is no effective therapy or vaccine available to HCV-infected patients other than interferon-ribavarin combination, which is effective in a relatively small percentage of infected patients. Our previous results have shown that a synthetic peptide (LAP) corresponding to the N-terminal 18 amino acids of the Lupus autoantigen (La) was a potent inhibitor of HCV IRES-mediated translation. We demonstrate here that LAP efficiently blocks HCV replication of infectious JFH1 virus in cell culture. Our data suggest that LAP forms complexes with IRES-transacting factors (ITAFs) PTB and PCBP2. LAP-mediated inhibition of HCV IRES-mediated translation in vitro could be fully rescued by recombinant PCB and PCBP2. Also transient expression of PTB / PCBP2 combination significantly restores HCV replication in LAP-inhibited cultures. These results suggest that ITAFs could be potential targets to block HCV replication.
Collapse
Affiliation(s)
- Vanessa Fontanes
- Department of Microbiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
7
|
The FUSE binding protein is a cellular factor required for efficient replication of hepatitis C virus. J Virol 2008; 82:5761-73. [PMID: 18400844 DOI: 10.1128/jvi.00064-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) infection is the leading cause of liver cirrhosis and hepatocellular carcinoma and one of the primary indications for liver transplantation. The molecular mechanisms underlying the actions of host factors in HCV replication remain poorly defined. FUSE (far upstream element of the c-myc proto-oncogene) binding protein (FBP) is a cellular factor that we have identified as a binder of HCV 3' nontranslated region (3'NTR). Mapping of the binding site showed that FBP specifically interacts with the poly(U) tract within the poly(U/UC) region of the 3'NTR. Silencing of FBP expression by small interfering RNA in cells carrying HCV subgenomic replicons severely reduced viral replication, while overexpression of FBP significantly enhanced viral replication. We confirmed these observations by an in vitro HCV replication assay in the cell-free replicative lysate, which suggested that there is a direct correlation between the cellular FBP level and HCV replication. FBP immunoprecipitation coprecipitated HCV nonstructural protein 5A (NS5A), indicating that FBP interacts with HCV NS5A, which is known to function as a link between HCV translation and replication. Although FBP is mainly localized in the nucleus, we found that in MH14 cells a significant level of this protein is colocalized with NS5A in the cytosol, a site of HCV replication. While the mechanism of FBP involvement in HCV replication is yet to be delineated, our findings suggest that it may be an important regulatory component that is essential for efficient replication of HCV.
Collapse
|
8
|
Morikawa Y. [Study of animal viruses in yeast]. Uirusu 2006; 56:9-16. [PMID: 17038807 DOI: 10.2222/jsv.56.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Yeast is often considered to be a model eukaryotic organism, in a manner analogous to E. coli as a model prokaryotic organism. Yeast has been extensively characterized and the genomes completely sequenced. Despite the small genome size, yeast displays most of features of higher eukaryotes. The facts that most of cellular machinery is conserved among different eukaryotes and that the powerful technologies of genetics and molecular biology are available have made yeast model eukaryotic cells in biological and biomedical sciences including virology. Cumulative data indicate that yeast can be a host for animal viruses. I briefly describe yeast gene expression and review viral replication in yeast. Great discovery include complete replication of animal viruses and production of virus-like particle vaccines in yeast. Current studies on yeast focus on identification of host factors and machinery used for viral replication. The studies are based on traditional yeast genetics and genome-wide identification using a complete set of yeast deletion strains.
Collapse
Affiliation(s)
- Yuko Morikawa
- Kitasato Unversity, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
9
|
Raychaudhuri S, Fontanes V, Banerjee R, Bernavichute Y, Dasgupta A. Zuotin, a DnaJ molecular chaperone, stimulates cap-independent translation in yeast. Biochem Biophys Res Commun 2006; 350:788-95. [PMID: 17027912 PMCID: PMC2680724 DOI: 10.1016/j.bbrc.2006.09.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 09/25/2006] [Indexed: 02/05/2023]
Abstract
A small inhibitor RNA (IRNA) isolated from yeast has previously been shown to efficiently block poliovirus and hepatitis C virus IRES-mediated translation by sequestering mammalian RNA-binding (transacting) factors that play important roles in cap-independent translation. Here we have investigated the IRNA-binding proteins that might be involved in cap-independent translation in the yeast Saccharomyces cerevisiae. We have identified Zuotin, a DnaJ chaperone protein similar to mammalian HSP-40 chaperone, which interacts strongly with IRNA. Using ZUO1-deleted S. cerevisiae, we demonstrate a preferential requirement of Zuo1p for cap-independent translation mediated by the 5' untranslated region of the yeast TFIID mRNA. Further studies using zuo1delta S. cerevisiae complemented with various Zuo1p mutants indicate that the DnaJ domain of Zuo1p, known to influence its interaction with HSP-70, significantly affects cap-independent translation. These results demonstrate for the first time a role for an established chaperone protein in cap-independent translation of a cellular mRNA.
Collapse
Affiliation(s)
| | | | | | | | - Asim Dasgupta
- Corresponding author Tel: (310) 206-8649, Fax: (310) 206-3865,
| |
Collapse
|
10
|
Harris D, Zhang Z, Chaubey B, Pandey VN. Identification of cellular factors associated with the 3'-nontranslated region of the hepatitis C virus genome. Mol Cell Proteomics 2006; 5:1006-18. [PMID: 16500930 DOI: 10.1074/mcp.m500429-mcp200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chronic infection by hepatitis C virus (HCV) is the leading cause of severe hepatitis that often develops into liver cirrhosis and hepatocellular carcinoma. The molecular mechanisms underlying HCV replication and pathogenesis are poorly understood. Similarly, the role(s) of host factors in the replication of HCV remains largely undefined. Based on our knowledge of other RNA viruses, it is likely that a number of cellular factors may be involved in facilitating HCV replication. It has been demonstrated that elements within the 3'-nontranslated region (3'-NTR) of the (+) strand HCV genome are essential for initiation of (-) strand synthesis. The RNA signals within the highly conserved 3'-NTR may be the site for recruiting cellular factors that mediate virus replication/pathogenesis. However, the identities of putative cellular factors interacting with these RNA signals remain unknown. In this report, we demonstrate that an RNA affinity capture system developed in our laboratory used in conjunction with LC/MS/MS allowed us to positively identify more than 70 cellular proteins that interact with the 3'-NTR (+) of HCV. Binding of these cellular proteins was not competed out by a 10-fold excess of nonspecific competitor RNA. With few exceptions, all of the identified cellular proteins are RNA-binding proteins whose reported cellular functions provide unique insights into host cell-virus interactions and possible mechanisms influencing HCV replication and HCV-associated pathogenesis. Small interfering RNA-mediated silencing of selected 3'-NTR-binding proteins in an HCV replicon cell line reduced replicon RNA to undetectable levels, suggesting important roles for these cellular factors in HCV replication.
Collapse
Affiliation(s)
- Dylan Harris
- Department of Biochemistry and Molecular Biology and Centre for the Study of Emerging and Re-emerging Pathogens, University of Medicine and Dentistry of New Jersey--New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
11
|
Jang SK. Internal initiation: IRES elements of picornaviruses and hepatitis c virus. Virus Res 2005; 119:2-15. [PMID: 16377015 DOI: 10.1016/j.virusres.2005.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 08/29/2005] [Accepted: 11/02/2005] [Indexed: 02/08/2023]
Abstract
The scanning hypothesis provides an explanation for events preceding the first peptide bond formation during the translation of the vast majority of eukaryotic mRNAs. However, this hypothesis does not explain the translation of eukaryotic mRNAs lacking the cap structure required for scanning. The existence of a group of positive sense RNA viruses lacking cap structures (e.g. picornaviruses) indicates that host cells also contain a 5' cap-independent translation mechanism. This review discusses the translation mechanisms of atypical viral mRNAs such as picornaviruses and hepatitis c virus, and uses these mechanisms to propose a general theme for all translation, including that of both eukaryotic and prokaryotic mRNAs.
Collapse
Affiliation(s)
- Sung Key Jang
- NRL, PBC, Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea.
| |
Collapse
|
12
|
Pudi R, Ramamurthy SS, Das S. A peptide derived from RNA recognition motif 2 of human la protein binds to hepatitis C virus internal ribosome entry site, prevents ribosomal assembly, and inhibits internal initiation of translation. J Virol 2005; 79:9842-53. [PMID: 16014945 PMCID: PMC1181605 DOI: 10.1128/jvi.79.15.9842-9853.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Human La protein is known to interact with hepatitis C virus (HCV) internal ribosome entry site (IRES) and stimulate translation. Previously, we demonstrated that mutations within HCV SL IV lead to reduced binding to La-RNA recognition motif 2 (RRM2) and drastically affect HCV IRES-mediated translation. Also, the binding of La protein to SL IV of HCV IRES was shown to impart conformational alterations within the RNA so as to facilitate the formation of functional initiation complex. Here, we report that a synthetic peptide, LaR2C, derived from the C terminus of La-RRM2 competes with the binding of cellular La protein to the HCV IRES and acts as a dominant negative inhibitor of internal initiation of translation of HCV RNA. The peptide binds to the HCV IRES and inhibits the functional initiation complex formation. An Huh7 cell line constitutively expressing a bicistronic RNA in which both cap-dependent and HCV IRES-mediated translation can be easily assayed has been developed. The addition of purified TAT-LaR2C recombinant polypeptide that allows direct delivery of the peptide into the cells showed reduced expression of HCV IRES activity in this cell line. The study reveals valuable insights into the role of La protein in ribosome assembly at the HCV IRES and also provides the basis for targeting ribosome-HCV IRES interaction to design potent antiviral therapy.
Collapse
Affiliation(s)
- Renuka Pudi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
| | | | | |
Collapse
|
13
|
Pickering BM, Willis AE. The implications of structured 5' untranslated regions on translation and disease. Semin Cell Dev Biol 2004; 16:39-47. [PMID: 15659338 DOI: 10.1016/j.semcdb.2004.11.006] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Translational control is a key step in eukaryotic gene expression. The majority of translational control occurs at the level of initiation, thus implicating the 5' untranslated region as a major site of translational regulation. Many growth-related mRNAs have atypical 5' UTRs, which are often long and GC-rich. Such features promote formation of stable secondary structure, and many mRNAs encoding proteins involved in cell growth, proliferation and apoptosis have structured 5' UTRs, which in many cases harbour internal ribosome entry sites (IRESs) and upstream open-reading frames (uORFs). In this review we discuss how secondary structural elements in the 5' UTR can regulate translation and how mutations that perturb these secondary structural elements can have implications for disease and tumourigenesis.
Collapse
Affiliation(s)
- Becky M Pickering
- Department of Biochemistry, University of Leicester, University Rd, Leicester LE17RH, UK
| | | |
Collapse
|
14
|
Costa-Mattioli M, Svitkin Y, Sonenberg N. La autoantigen is necessary for optimal function of the poliovirus and hepatitis C virus internal ribosome entry site in vivo and in vitro. Mol Cell Biol 2004; 24:6861-70. [PMID: 15254251 PMCID: PMC444852 DOI: 10.1128/mcb.24.15.6861-6870.2004] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 04/02/2004] [Accepted: 04/30/2004] [Indexed: 12/12/2022] Open
Abstract
Translation of poliovirus and hepatitis C virus (HCV) RNAs is initiated by recruitment of 40S ribosomes to an internal ribosome entry site (IRES) in the mRNA 5' untranslated region. Translation initiation of these RNAs is stimulated by noncanonical initiation factors called IRES trans-activating factors (ITAFs). The La autoantigen is such an ITAF, but functional evidence for the role of La in poliovirus and HCV translation in vivo is lacking. Here, by two methods using small interfering RNA and a dominant-negative mutant of La, we demonstrate that depletion of La causes a dramatic reduction in poliovirus IRES function in vivo. We also show that 40S ribosomal subunit binding to HCV and poliovirus IRESs in vitro is inhibited by a dominant-negative form of La. These results provide strong evidence for a function of the La autoantigen in IRES-dependent translation and define the step of translation which is stimulated by La.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Biochemistry and McGill Cancer Center, McGill University, McIntyre Medical Building, Montreal, Quebec, Canada H3G 1Y6
| | | | | |
Collapse
|
15
|
Pudi R, Srinivasan P, Das S. La protein binding at the GCAC site near the initiator AUG facilitates the ribosomal assembly on the hepatitis C virus RNA to influence internal ribosome entry site-mediated translation. J Biol Chem 2004; 279:29879-88. [PMID: 15138264 DOI: 10.1074/jbc.m403417200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human La autoantigen has been shown to influence internal initiation of translation of hepatitis C virus (HCV) RNA. Previously, we have demonstrated that, among the three RRMs of La protein, the RRM2 interacts with HCV internal ribosome entry site (IRES) around the GCAC motif near the initiator AUG present in the stem region of stem-loop IV (SL IV) (Pudi, R., Abhiman, S., Srinivasan, N., and Das S. (2003) J. Biol. Chem. 278, 12231-12240). Here, we have demonstrated that the mutations in the GCAC motif, which altered the binding to RRM2, had drastic effect on HCV IRES-mediated translation, both in vitro and in vivo. The results indicated that the primary sequence of the stem region of SL IV plays an important role in mediating internal initiation. Furthermore, we have shown that the mutations also altered the ability to bind to ribosomal protein S5 (p25), through which 40 S ribosomal subunit is known to contact the HCV IRES RNA. Interestingly, binding of La protein to SL IV region induced significant changes in the circular dichroism spectra of the HCV RNA indicating conformational alterations that might assist correct positioning of the initiation complex. Finally, the ribosome assembly analysis using sucrose gradient centrifugation implied that the mutations within SL IV of HCV IRES impair the formation of functional ribosomal complexes. These observations strongly support the hypothesis that La protein binding near the initiator AUG facilitates the interactions with ribosomal protein S5 and 48 S ribosomal assembly and influences the formation of functional initiation complex on the HCV IRES RNA to mediate efficient internal initiation of translation.
Collapse
Affiliation(s)
- Renuka Pudi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | | | | |
Collapse
|
16
|
Dasgupta A, Das S, Izumi R, Venkatesan A, Barat B. Targeting internal ribosome entry site (IRES)-mediated translation to block hepatitis C and other RNA viruses. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09533.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
17
|
Izumi RE, Das S, Barat B, Raychaudhuri S, Dasgupta A. A peptide from autoantigen La blocks poliovirus and hepatitis C virus cap-independent translation and reveals a single tyrosine critical for La RNA binding and translation stimulation. J Virol 2004; 78:3763-76. [PMID: 15016896 PMCID: PMC371053 DOI: 10.1128/jvi.78.7.3763-3776.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 11/25/2003] [Indexed: 02/05/2023] Open
Abstract
La, a 52-kDa autoantigen in patients with systemic lupus erythematosus, was one of the first cellular proteins identified to interact with viral internal ribosome entry site (IRES) elements and stimulate poliovirus (PV) and hepatitis C virus (HCV) IRES-mediated translation. Previous results from our laboratory have shown that a small, yeast RNA (IRNA) could selectively inhibit PV and HCV IRES-mediated translation by sequestering the La protein. Here we have identified an 18-amino-acid-long sequence from the N-terminal "La motif" which is required for efficient interaction of La with IRNA and viral 5' untranslated region (5'-UTR) elements. A synthetic peptide (called LAP, for La peptide) corresponding to this sequence (amino acids 11 to 28) of La was found to efficiently inhibit viral IRES-mediated translation in vitro. The LAP efficiently enters Huh-7 cells and preferentially inhibits HCV IRES-mediated translation programmed by a bicistronic RNA in vivo. The LAP does not bind RNA directly but appears to block La binding to IRNA and PV 5'-UTR. Competition UV cross-link and translation rescue experiments suggested that LAP inhibits IRES-mediated translation by interacting with proteins rather than RNA. Mutagenesis of LAP demonstrates that single amino acid changes in a highly conserved sequence within LAP are sufficient to eliminate the translation-inhibitory activity of LAP. When one of these mutations (Y23Q) is introduced into full-length La, the mutant protein is severely defective in interacting with the PV IRES element and consequently unable to stimulate IRES-mediated translation. However, the La protein with a mutation of the next tyrosine moiety (Y24Q) could still interact with PV 5'-UTR and stimulate viral IRES-mediated translation significantly. These results underscore the importance of the La N-terminal amino acids in RNA binding and viral RNA translation. The possible role of the LAP sequence in La-RNA binding and stimulation of viral IRES-mediated translation is discussed.
Collapse
Affiliation(s)
- Raquel E Izumi
- Department of Microbiology, Immunology and Molecular Genetics, UCLA School of Medicine, University of California-Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
18
|
Ray PS, Das S. Inhibition of hepatitis C virus IRES-mediated translation by small RNAs analogous to stem-loop structures of the 5'-untranslated region. Nucleic Acids Res 2004; 32:1678-87. [PMID: 15020704 PMCID: PMC390326 DOI: 10.1093/nar/gkh328] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Translation of the hepatitis C virus (HCV) RNA is mediated by the interaction of ribosomes and cellular proteins with an internal ribosome entry site (IRES) located within the 5'-untranslated region (5'-UTR). We have investigated whether small RNA molecules corresponding to the different stem-loop (SL) domains of the HCV IRES, when introduced in trans, can bind to the cellular proteins and antagonize their binding to the viral IRES, thereby inhibiting HCV IRES-mediated translation. We have found that a RNA molecule corresponding to SL III could efficiently inhibit HCV IRES-mediated translation in a dose-dependent manner without affecting cap-dependent translation. The SL III RNA was found to bind to most of the cellular proteins which interacted with the HCV 5'-UTR. A smaller RNA corresponding to SL e+f of domain III also strongly and selectively inhibited HCV IRES-mediated translation. This RNA molecule interacted with the ribosomal S5 protein and prevented the recruitment of the 40S ribosomal subunit. This study reveals valuable insights into the role of the SL structures of the HCV IRES in mediating ribosome entry. Finally, these results provide a basis for developing anti-HCV therapy using small RNA molecules mimicking the SL structures of the 5'-UTR to specifically block viral RNA translation.
Collapse
Affiliation(s)
- Partho Sarothi Ray
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
19
|
Buckwold VE, Beer BE, Donis RO. Bovine viral diarrhea virus as a surrogate model of hepatitis C virus for the evaluation of antiviral agents. Antiviral Res 2003; 60:1-15. [PMID: 14516916 DOI: 10.1016/s0166-3542(03)00174-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The identification and development of new antiviral agents that can be used to combat hepatitis C virus (HCV) infection has been complicated by both technical and logistic issues. There are few, if any, robust methods by which HCV virions can be grown in vitro. The development of HCV RNA replicons has been a great breakthrough that has allowed for the undertaking of significant screening efforts to identify inhibitors of HCV intracellular replication. However, since replicons do not undergo a complete replication cycle, drug screening programs and mechanism of action studies based solely on these assays will not identify compounds targeting either early (virion attachment, entry, uncoating) or late (virion assembly, egress) stages of the viral replication cycle. Drugs that negatively affect the infectivity of new virions will also not be identified using HCV RNA replicons. Bovine viral diarrhea virus (BVDV) shares a similar structural organization with HCV, and both viruses generally cause chronic long-term infections in their respective hosts. The BVDV surrogate model is attractive, since it is a virus-based system. It is easy to culture the virus in vitro, molecular clones are available for genetic studies, and the virus undergoes a complete replication cycle. Like HCV, BVDV utilizes the LDL receptor to enter cells, uses a functionally similar internal ribosome entry site (IRES) for translation, uses an NS4A cofactor with its homologous NS3 protease, has a similar NS3 helicase/NTPase, a mechanistically similar NS5B RNA-dependent RNA polymerase, and a seemingly equivalent mechanism of virion maturation, assembly and egress. While the concordance between drugs active in either BVDV or HCV is largely unknown at this time, BVDV remains a popular model system with which drugs can be evaluated for potential antiviral activity against HCV and in studies of drug mechanism of action.
Collapse
Affiliation(s)
- Victor E Buckwold
- Infectious Disease Research Department, Southern Research Institute, 431 Aviation Way, Frederick MD 21701, USA.
| | | | | |
Collapse
|
20
|
Pudi R, Abhiman S, Srinivasan N, Das S. Hepatitis C virus internal ribosome entry site-mediated translation is stimulated by specific interaction of independent regions of human La autoantigen. J Biol Chem 2003; 278:12231-40. [PMID: 12540850 DOI: 10.1074/jbc.m210287200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human La autoantigen has been shown to interact with the internal ribosome entry site (IRES) of hepatitis C virus (HCV) in vitro. Using a yeast three-hybrid system, we demonstrated that, in addition to full-length La protein, both N- and C-terminal halves were able to interact with HCV IRES in vivo. The exogenous addition of purified full-length and truncated La proteins in rabbit reticulocyte lysate showed dose-dependent stimulation of HCV IRES-mediated translation. However, an additive effect was achieved adding the terminal halves together in the reaction, suggesting that both might play critical roles in achieving full stimulatory activity of the full-length La protein. Using computational analysis, three-dimensional structures of the RNA recognition motifs (RRM) of the La protein were independently modeled. Of the three putative RRMs, RRM2 was predicted to have a good binding pocket for the interaction with the HCV IRES around the GCAC motif near the initiator AUG and RRM3 binds perhaps in a different location. This observation was further investigated by the filter-binding and toe-printing assays. The results presented here strongly suggest that both the N- and C-terminal halves can interact independently with the HCV IRES and are involved in stimulating internal initiation of translation.
Collapse
Affiliation(s)
- Renuka Pudi
- Department of Microbiology and Cell Biology and the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
21
|
Luo G, Xin S, Cai Z. Role of the 5'-proximal stem-loop structure of the 5' untranslated region in replication and translation of hepatitis C virus RNA. J Virol 2003; 77:3312-8. [PMID: 12584356 PMCID: PMC149781 DOI: 10.1128/jvi.77.5.3312-3318.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequences of the untranslated regions at the 5' and 3' ends (5'UTR and 3'UTR) of the hepatitis C virus (HCV) RNA genome are highly conserved and contain cis-acting RNA elements for HCV RNA replication. The HCV 5'UTR consists of two distinct RNA elements, a short 5'-proximal stem-loop RNA element (nucleotides 1 to 43) and a longer element of internal ribosome entry site. To determine the sequence and structural requirements of the 5'-proximal stem-loop RNA element in HCV RNA replication and translation, a mutagenesis analysis was preformed by nucleotide deletions and substitutions. Effects of mutations in the 5'-proximal stem-loop RNA element on HCV RNA replication were determined by using a cell-based HCV replicon replication system. Deletion of the first 20 nucleotides from the 5' end resulted in elimination of cell colony formation. Likewise, disruption of the 5'-proximal stem-loop by nucleotide substitutions abolished the ability of HCV RNA to induce cell colony formation. However, restoration of the 5'-proximal stem-loop by compensatory mutations with different nucleotides rescued the ability of the subgenomic HCV RNA to replicate in Huh7 cells. In addition, deletion and nucleotide substitutions of the 5'-proximal stem-loop structure, including the restored stem-loop by compensatory mutations, all resulted in reduction of translation by two- to fivefold, suggesting that the 5'-proximal stem-loop RNA element also modulates HCV RNA translation. These findings demonstrate that the 5'-proximal stem-loop of the HCV RNA is a cis-acting RNA element that regulates HCV RNA replication and translation.
Collapse
Affiliation(s)
- Guangxiang Luo
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA.
| | | | | |
Collapse
|
22
|
Ray PS, Das S. La autoantigen is required for the internal ribosome entry site-mediated translation of Coxsackievirus B3 RNA. Nucleic Acids Res 2002; 30:4500-8. [PMID: 12384597 PMCID: PMC137146 DOI: 10.1093/nar/gkf583] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Revised: 08/15/2002] [Accepted: 08/15/2002] [Indexed: 01/01/2023] Open
Abstract
Translation initiation in Coxsackievirus B3 (CVB3) occurs via ribosome binding to an internal ribosome entry site (IRES) located in the 5'-untranslated region (UTR) of the viral RNA. This unique mechanism of translation initiation requires various trans-acting factors from the host. We show that human La autoantigen (La) binds to the CVB3 5'-UTR and also demonstrate the dose-dependent effect of exogenously added La protein in stimulating CVB3 IRES-mediated translation. The requirement of La for CVB3 IRES mediated translation has been further demonstrated by inhibition of translation as a result of sequestering La and its restoration by exogenous addition of recombinant La protein. The abundance of La protein in various mouse tissue extracts has been probed using anti-La antibody. Pancreatic tissue, a target organ for CVB3 infection, was found to have a large abundance of La protein which was demonstrated to interact with the CVB3 5'-UTR. Furthermore, exogenous addition of pancreas extract to in vitro translation reactions resulted in a dose dependent stimulation of CVB3 IRES-mediated translation. These observations indicate the role of La in CVB3 IRES-mediated translation, and suggest its possible involvement in the efficient translation of the viral RNA in the pancreas.
Collapse
Affiliation(s)
- Partho Sarothi Ray
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore-560012, India
| | | |
Collapse
|
23
|
Malhi H, Gorla GR, Irani AN, Annamaneni P, Gupta S. Cell transplantation after oxidative hepatic preconditioning with radiation and ischemia-reperfusion leads to extensive liver repopulation. Proc Natl Acad Sci U S A 2002; 99:13114-9. [PMID: 12244212 PMCID: PMC130595 DOI: 10.1073/pnas.192365499] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inability of transplanted cells to proliferate in the normal liver hampers cell therapy. We considered that oxidative hepatic DNA damage would impair the survival of native cells and promote proliferation in transplanted cells. Dipeptidyl peptidase-deficient F344 rats were preconditioned with whole liver radiation and warm ischemia-reperfusion followed by intrasplenic transplantation of syngeneic F344 rat hepatocytes. The preconditioning was well tolerated, although serum aminotransferase levels rose transiently and hepatic injury was observed histologically, along with decreased catalase activity and 8-hydroxy adducts of guanine, indicating oxidative DNA damage. Transplanted cells did not proliferate in the liver over 3 months in control animals and animals preconditioned with ischemia-reperfusion alone. Animals treated with radiation alone showed some transplanted cell proliferation. In contrast, the liver of animals preconditioned with radiation plus ischemia-reperfusion was replaced virtually completely over 3 months. Transplanted cells integrated in the liver parenchyma and liver architecture were preserved normally. These findings offer a paradigm for repopulating the liver with transplanted cells. Progressive loss of cells experiencing oxidative DNA damage after radiation and ischemia-reperfusion injury could be of significance for epithelial renewal in additional organs.
Collapse
Affiliation(s)
- Harmeet Malhi
- Marion Bessin Liver Research Center, Departments of Medicine, Radiation Oncology, and Pathology, Comprehensive Cancer Research Center, and General Clinical Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Rainer Gosert
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
25
|
Izumi RE, Valdez B, Banerjee R, Srivastava M, Dasgupta A. Nucleolin stimulates viral internal ribosome entry site-mediated translation. Virus Res 2001; 76:17-29. [PMID: 11376843 DOI: 10.1016/s0168-1702(01)00240-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous results from our laboratory have identified a small (60 nt) RNA from the yeast S. cerevisiae that specifically inhibits internal ribosome entry site (IRES)-mediated translation programmed by poliovirus (PV) and hepatitis C virus (HCV) 5'-untranslated region (5'UTR). The yeast inhibitor RNA (called IRNA) was found to efficiently compete with viral 5'UTR for binding of several cellular polypeptides that presumably play important roles in IRES-mediated translation. One such IRNA (and 5'UTR)-binding protein has previously been identified as the La autoantigen. In this report, we have identified a 110-kDa IRNA-binding protein (which also interacts with viral 5'UTR) as nucleolin, a nucleolar RNA binding protein that was previously shown to translocate into the cytoplasm following infection of cells with poliovirus. We demonstrate that nucleolin (called C23) stimulates viral IRES-mediated translation both in vitro and in vivo. We also show that nucleolin mutants containing the carboxy-terminal RNA binding domains but lacking the amino terminal domain inhibit IRES-mediated translation in vitro. The translation inhibitory activity of these mutants correlates with their ability to bind the 5'UTR sequence. These results suggest a role of nucleolin/C23 in viral IRES-mediated translation.
Collapse
Affiliation(s)
- R E Izumi
- Department of Microbiology Immunology and Molecular Genetics, UCLA School of Medicine, 10833 Le Conte Avenue, 90095, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
26
|
Buck CB, Shen X, Egan MA, Pierson TC, Walker CM, Siliciano RF. The human immunodeficiency virus type 1 gag gene encodes an internal ribosome entry site. J Virol 2001; 75:181-91. [PMID: 11119587 PMCID: PMC113911 DOI: 10.1128/jvi.75.1.181-191.2001] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several retroviruses have recently been shown to promote translation of their gag gene products by internal ribosome entry. In this report, we show that mRNAs containing the human immunodeficiency virus type 1 (HIV-1) gag open reading frame (ORF) exhibit internal ribosome entry site (IRES) activity that can promote translational initiation of Pr55(gag). Remarkably, this IRES activity is driven by sequences within the gag ORF itself and is not dependent on the native gag 5'-untranslated region (UTR). This cap-independent mechanism for Pr55(gag) translation may help explain the high levels of translation of this protein in the face of major RNA structural barriers to scanning ribosomes found in the gag 5' UTR. The gag IRES activity described here also drives translation of a novel 40-kDa Gag isoform through translational initiation at an internal AUG codon found near the amino terminus of the Pr55(gag) capsid domain. Our findings suggest that this low-abundance Gag isoform may be important for wild-type replication of HIV-1 in cultured cells. The activities of the HIV-1 gag IRES may be an important feature of the HIV-1 life cycle and could serve as a novel target for antiretroviral therapeutic strategies.
Collapse
Affiliation(s)
- C B Buck
- Program in Cellular and Molecular Medicine, Cellular and Molecular Biology, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
27
|
Urwin P, Yi L, Martin H, Atkinson H, Gilmartin PM. Functional characterization of the EMCV IRES in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:583-9. [PMID: 11123797 DOI: 10.1046/j.1365-313x.2000.00904.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The translation of eukaryotic messenger RNA is typically dependent upon the presence of an m7GpppN cap structure at the 5' end of the transcript. However, several animal viruses, including the Picorna viruses, have been shown to exhibit cap-independent translation through the presence of an internal ribosome entry site or IRES. This IRES-mediated cap-independent internal translation initiation has been exploited to generate bicistronic transcripts that function in animal cells. Recently IRES elements have also been identified in a small number of vertebrate, insect and yeast cellular messenger RNAs although no such sequences have been identified in endogenous plant genes and there are no reports of animal virus derived IRES activity in plant cells. Here we have constructed a bicistronic gene containing both green fluorescent protein and luciferase open-reading frames separated by the encephalomyocarditis IRES element under the control of the CaMV 35S promoter. Northern analysis reveals expression of the bicistronic transcript and in vivo imaging of GFP and luciferase activities demonstrates the functional presence of both proteins. Western blot analysis confirms the independent translation of both reporter proteins. These data suggest that insertion of the encephalomyocarditis virus (EMCV) IRES element between two open-reading frames of a plant bicistronic transcript can mediate translation of the second open-reading frame. This activity is more apparent in the leaves, than in the roots, of transgenic seedlings carrying the bicistronic reporter gene construct.
Collapse
Affiliation(s)
- P Urwin
- Centre for Plant Sciences, Leeds Institute for Plant Biotechnology and Agriculture, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
28
|
Anwar A, Ali N, Tanveer R, Siddiqui A. Demonstration of functional requirement of polypyrimidine tract-binding protein by SELEX RNA during hepatitis C virus internal ribosome entry site-mediated translation initiation. J Biol Chem 2000; 275:34231-5. [PMID: 10938288 DOI: 10.1074/jbc.m006343200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Polypyrimidine tract-binding protein (PTB) has been previously shown to physically interact with the hepatitis C virus (HCV) RNA genome at its 5'- and 3'-noncoding regions. Using high affinity SELEX RNA molecules, we present evidence for the functional requirement of PTB during HCV internal ribosome entry site (IRES)-controlled translation initiation. This study was carried out in rabbit reticulocyte translation lysates in which the HCV IRES-driven reporter RNA was introduced along with the PTB-specific SELEX RNA molecules. The SELEX RNAs specifically inhibited the HCV IRES function in the context of mono- and dicistronic mRNAs. The cap-dependent translation of a reporter (chloramphenicol acetyltransferase) RNA or naturally capped brome mosaic virus RNA, however, was not affected by the presence of SELEX during in vitro translation assays. The SELEX-mediated inhibition of the HCV IRES is shown to be relieved by the addition of recombinant human PTB in an add-back experiment. The in vivo requirement of PTB was further confirmed by cotransfection of Huh7 cells with reporter RNA and PTB-specific SELEX RNA. The HCV IRES activity was inhibited by the SELEX RNA in these cells, but not by an unrelated control RNA. Together, these results demonstrate the functional requirement of cellular PTB in HCV translation and further support the feasible use of SELEX RNA strategy in demonstrating the functional relevance of cellular protein(s) in complex biological processes.
Collapse
Affiliation(s)
- A Anwar
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
29
|
Ali N, Pruijn GJ, Kenan DJ, Keene JD, Siddiqui A. Human La antigen is required for the hepatitis C virus internal ribosome entry site-mediated translation. J Biol Chem 2000; 275:27531-40. [PMID: 10856291 DOI: 10.1074/jbc.m001487200] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The 5'-noncoding region (5'-NCR) of the hepatitis C virus (HCV) RNA genome serves as an internal ribosome entry site (IRES) and mediates translation initiation in a cap-independent manner. Previously, we reported the interaction between La antigen and the HCV IRES, which appeared to occur in the context of initiator AUG. It was further shown that HCV IRES-mediated translation was stimulated in the presence of human La antigen. In this study, we have defined the cis- and trans-acting elements responsible for La-5'-NCR interactions and established the dependence of the HCV IRES efficiency on cellular La antigen. During the La-IRES interaction, initiator AUG but not the neighboring codons was found to be the direct target of La binding. The C terminus effector domain-dependent modulation of La binding to the HCV IRES is demonstrated by deletion and substitution mutagenesis of the protein. An RNA systematic evolution of ligands by exponential enrichment (SELEX), generated against La protein that selectively binds La in HeLa lysates and competes for the protein binding to the 5'-NCR, was used to demonstrate the requirement of La for the HCV IRES function in the context of mono- and dicistronic mRNAs. Sequestration of La antigen by the RNA SELEX in HeLa translation lysates blocked the HCV and poliovirus IRES-mediated translation in vitro. The functional requirement of La protein for the HCV IRES activity was further established in a liver-derived cell line and in an add-back experiment in which the inhibited IRES was rescued by recombinant human La. These results strongly argue for the novel role of La protein during selection of the initiator AUG and its participation during internal initiation of translation of the HCV RNA genome.
Collapse
Affiliation(s)
- N Ali
- Department of Microbiology and Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
As obligate intracellular parasites, viruses rely exclusively on the translational machinery of the host cell for the synthesis of viral proteins. This relationship has imposed numerous challenges on both the infecting virus and the host cell. Importantly, viruses must compete with the endogenous transcripts of the host cell for the translation of viral mRNA. Eukaryotic viruses have thus evolved diverse mechanisms to ensure translational efficiency of viral mRNA above and beyond that of cellular mRNA. Mechanisms that facilitate the efficient and selective translation of viral mRNA may be inherent in the structure of the viral nucleic acid itself and can involve the recruitment and/or modification of specific host factors. These processes serve to redirect the translation apparatus to favor viral transcripts, and they often come at the expense of the host cell. Accordingly, eukaryotic cells have developed antiviral countermeasures to target the translational machinery and disrupt protein synthesis during the course of virus infection. Not to be outdone, many viruses have answered these countermeasures with their own mechanisms to disrupt cellular antiviral pathways, thereby ensuring the uncompromised translation of virion proteins. Here we review the varied and complex translational programs employed by eukaryotic viruses. We discuss how these translational strategies have been incorporated into the virus life cycle and examine how such programming contributes to the pathogenesis of the host cell.
Collapse
Affiliation(s)
- M Gale
- University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | |
Collapse
|
31
|
Abstract
The hepatitis C virus is a single-stranded RNA virus with a genome approximately 9,000 nucleotides in length. The genome consists of a single, large open reading frame (ORF) and 5' and 3' untranslated regions. The highly conserved 5' untranslated region is 341 nucleotides in length with a complex secondary structure and may function as an internal ribosomal entry site (IRES). The 3' untranslated region is approximately 500 nucleotides in length and contains a hypervariable region, followed by a poly(U) sequence and a highly conserved 98-nucleotide element with a stable secondary structure. The ORF codes form a single polyprotein that is processed into as many as 10 polypeptides, including a capsid protein (core), two envelope proteins (E1 and E2), and nonstructural proteins (NS2, NS3, NS4, and NS5). Potentially suitable antiviral targets include the IRES, protease, helicase, and RNA polymerase. In vitro studies show that antisense oligonucleotides can inhibit the production of structural HCV proteins and may be therapeutically useful if the problems of stability and delivery can be solved. The binding of HCV envelope proteins to CD81, a potential receptor for viral entry into hepatocytes, has recently been described and also raises the possibility of agents to block the binding to CD81 or the entry of the virus into cells.
Collapse
Affiliation(s)
- A M Di Bisceglie
- Department of Internal Medicine, Saint Louis University School of Medicine, Missouri 63104, USA
| |
Collapse
|
32
|
Abstract
IRESs are known to recruit ribosomes directly, without a previous scanning of untranslated region of mRNA by the ribosomes. IRESs have been found in a number of viral and cellular mRNAs. Experimentally, IRESs are commonly used to direct the expression of the second cistrons of bicistronic mRNAs. The mechanism of action of IRESs is not fully understood and a certain number of laboratories were not successful in using them in a reliable manner. Three observations done in our laboratory suggested that IRESs might not work as functionally as it was generally believed. Stem loops added before IRESs inhibited mRNA translation. When added into bicistronic mRNAs, IRESs initiated translation of the second cistrons efficiently only when the intercistronic region contained about 80 nucleotides, and they did not work any more effectively with intercistronic regions containing at least 300-400 nucleotides. Conversely, IRESs inserted at any position into the coding region of a cistron interrupted its translation and initiated translation of the following cistron. The first two data are hardly compatible with the idea that IRESs are able to recruit ribosomes without using the classical scanning mechanism. IRESs are highly structured and cannot be scanned by the 40S ribosomal subunit. We suggest that IRESs are short-circuited and are essentially potent stimulators favoring translation in particular physiological situations.
Collapse
Affiliation(s)
- L M Houdebine
- Laboratoire de Differenciation Cellulaire, Institut National de la Recherche Agronomique, Jouy-en-Josas, France.
| | | |
Collapse
|
33
|
Venkatesan A, Das S, Dasgupta A. Structure and function of a small RNA that selectively inhibits internal ribosome entry site-mediated translation. Nucleic Acids Res 1999; 27:562-72. [PMID: 9862981 PMCID: PMC148216 DOI: 10.1093/nar/27.2.562] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A 60 nt long RNA termed IRNA, isolated from the yeast Saccharomyces cerevesiae, was previously shown to selectively block internal ribosome entry site (IRES)-mediated translation without interfering with cap-dependent translation of cellular mRNAs both in vivo and in vitro. IRNA specifically bound cellular proteins believed to be important for IRES-mediated translation. We demonstrate here that a complementary copy of IRNA (cIRNA) is also active in blocking IRES-mediated translation and that it binds many of the same cellular proteins that IRNA does. We have probed the secondary structure of both IRNA and cIRNA using single-strand- and double-strand-specific nucleases as well as using oligonucleotide hybridization followed by RNase H digestion. Both IRNA and cIRNA share secondary structural homology, although distinct differences do exist between the two structures. Mutational analysis of IRNA shows that sequences that form both the main stem and one loop are critical for its translation inhibitory activity. Maintenance of the established secondary structure appears to be required for both IRNA's ability to bind cellular trans -acting proteins believed to be required for IRES-mediated translation and its ability to block IRES-mediated translation.
Collapse
Affiliation(s)
- A Venkatesan
- Molecular Biology Institute, University of California, Los Angeles, CA 90095-1747, USA and Department of Microbiology, Molecular Genetics and Immunology, UCLA School of Medicine, Los Angeles, CA 90095-1747, USA
| | | | | |
Collapse
|
34
|
Chapter 13. Progress in the Search for Anti-HCV Therapeutics. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1999. [DOI: 10.1016/s0065-7743(08)60575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|