1
|
Kurg R, Uusen P, Sepp T, Sepp M, Abroi A, Ustav M. Bovine papillomavirus type 1 E2 protein heterodimer is functional in papillomavirus DNA replication in vivo. Virology 2009; 386:353-9. [PMID: 19232665 DOI: 10.1016/j.virol.2009.01.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 12/26/2008] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
Abstract
Papillomaviruses are small DNA viruses that induce epithelial lesions in their host. The viral life cycle is regulated by the family of proteins encoded by the E2 open reading frame. In addition to the full-length E2 protein, the BPV-1 genome encodes two truncated E2 proteins, E2C and E8/E2, which maintain the DNA-binding-dimerization domains, but lack the activation domain. Heterodimers formed between the full-length E2 and truncated E2 proteins serve as activators of E2-dependent transcription and papillomavirus DNA replication. We show that the single activation domain of E2 is sufficient for interaction with viral helicase E1 and for initiation of DNA replication from different papillomavirus origins. Single-chain E2 heterodimer is able to activate papillomavirus DNA replication in the context of entire BPV genome in the absence of other E2 proteins. These data suggest that E2 heterodimers with single activation domain are functional in initiation of papillomavirus replication in vivo.
Collapse
Affiliation(s)
- Reet Kurg
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|
2
|
Sheikh S, Van Horn G, Naqvi A, Sheahan L, Khan SA. Purification and biochemical characterization of the E1 replication initiation protein of the cutaneous human papillomavirus type 1. J Gen Virol 2003; 84:277-285. [PMID: 12560558 DOI: 10.1099/vir.0.18527-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The E1 and E2 proteins encoded by papillomaviruses are required for viral DNA replication. Although E1 is the replication initiator protein, previous studies have shown that the full-length E1 protein binds to the origin weakly and with low sequence specificity. The E2 protein facilitates binding of the E1 protein to the origin, triggering the initiation of replication. The E1 protein contains ATPase, helicase and DNA unwinding activities. In vivo studies with mucosal human papillomavirus (HPV) types 11 and 18 have shown that while E1 is absolutely essential for replication, the E1 binding site is dispensable. However, both the E2 protein and E2 binding sites are required for their replication. In contrast to these HPVs, transient replication of HPV type 1, which infects cutaneous tissue, requires only the viral E1 protein and E1 binding site. To understand the basis for these differences, we have overexpressed and purified the HPV-1 E1 and E2 proteins and studied their biochemical properties. The purified E1 protein was shown to have an ATPase activity with a very low K(m) value, similar to that of the SV40 large T antigen. The E1 protein bound to the HPV-1 origin in the absence of the E2 protein and without the use of any cross-linking agents. Our results suggest that the ability of the HPV-1 E1 protein to initiate DNA replication in vivo in the absence of the E2 protein may be due to its stable interaction with the HPV-1 origin.
Collapse
Affiliation(s)
- Saifuddin Sheikh
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Gerald Van Horn
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Asma Naqvi
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Laura Sheahan
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Saleem A Khan
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
3
|
Woytek KJ, Rangasamy D, Bazaldua-Hernandez C, West M, Wilson VG. Effects of mutations within two hydrophilic regions of the bovine papillomavirus type 1 E1 DNA-binding domain on E1-E2 interaction. J Gen Virol 2001; 82:2341-2351. [PMID: 11562528 DOI: 10.1099/0022-1317-82-10-2341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interaction between papillomavirus E1 and E2 proteins is essential for viral genome replication. Using both in vivo and in vitro assays to evaluate the regions of the two proteins necessary for the E1-E2 interaction, three independent interactions were identified for bovine papillomavirus E1: the N terminus of E1 (E1N, residues 1-311) interacts with the E2 transactivation domain (E2TAD) and the E2 DNA-binding domain (E2DBD) and the C terminus of E1 (E1C, residues 315-605) interacts with E2. Nine mutations within E1N were evaluated for their effects on E2 interaction. Five mutations eliminated interaction with the E2TAD; four of these were located within two previously identified conserved, hydrophilic regions, HR1 and HR3. Since HR1 and HR3 residues appear to comprise the origin of replication recognition element for E1, simultaneous interaction with the E2TAD during initiation complex formation would seem unlikely. Consistent with this inference is the fact that three of the five mutants defective for E2TAD binding exhibited wild-type levels of replication. The replication-positive phenotype of these mutants suggests that the E1N-E2TAD interaction is not essential for replication function and is probably involved in some other E1-E2 function, such as regulating transcription. Only one of the five mutations defective for E2TAD binding also prevented E2DBD interaction, indicating that the regions of E1N that interact with the E2TAD and the E2DBD are not identical. The ability of E1N to cooperatively interact with E2 bound to E2-binding site (E2BS) 11 versus E2BS12 was also examined, and cooperative binding was only observed when E2 was bound to E2BS12.
Collapse
Affiliation(s)
- Kelly J Woytek
- Department of Medical Microbiology and Immunology, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA1
| | - Dhandapani Rangasamy
- The Institute of Advanced Studies, John Curtin School of Medical Research, PO Box 334, Canberra City, ACT 2601, Australia2
| | | | - Mike West
- Department of Medical Microbiology and Immunology, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA1
| | - Van G Wilson
- Department of Medical Microbiology and Immunology, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA1
| |
Collapse
|
4
|
Van Horn G, Sheikh S, Khan SA. Regulation of human papillomavirus type 1 replication by the viral E2 protein. Virology 2001; 287:214-24. [PMID: 11504556 DOI: 10.1006/viro.2001.1037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The E1 and E2 proteins encoded by papillomaviruses are required for viral replication. Earlier studies have shown that the viral E2 protein plays an important role in replication by targeting the E1 helicase to the origin of replication (ori). We have previously shown that the E1 protein of human papillomavirus (HPV) type 1 is sufficient for the in vivo replication of ori plasmids, although the E2 protein stimulates replication. In this study, we have further analyzed the role of the E2 protein in HPV-1 replication. The optimal ori of HPV-1 contains one putative E1 binding site (E1BS) and two putative E2 binding sites, E2BS-3 and E2BS-4. Plasmid pori171, containing the optimal ori, replicates to much higher levels than plasmid pori312, which includes an additional upstream E2 binding site, E2BS-2, located 75 nucleotides upstream of E2BS-3. To study the possible role of E2BS-2 and other upstream sequences in E2-dependent downregulation of replication, transient replication analysis was done in the presence of increasing levels of the E2 protein. Interestingly, inhibition of pori312 replication was more severe at higher levels of E2, suggesting that this protein may also negatively regulate HPV-1 replication. Deletion of sequences from pori312 containing an additional putative E2BS, E2BS-2A, relieved the repression of replication to a significant extent, while replacement of E2BS-2 with a different sequence of the same length had a modest effect. These results suggest that E2BS-2A plays a major and E2BS-2 a minor role in the negative regulation of HPV-1 replication at high E2 levels. Electrophoretic mobility-shift assays showed that the purified E2 protein bound with high affinity to E2BS-3 and weakly to the other putative E2BSs located within the viral long control region. EMSA using various ori fragments showed the formation of multiple E2-DNA complexes which likely represent binding of E2 to multiple E2BSs present within the HPV-1 ori. Our data are consistent with the assembly of ori-protein complexes at high E2 levels that are impaired for replication and further suggest that E2 may regulate HPV-1 replication by a mechanism involving interaction between the E2 protein bound to E2BSs at a distance.
Collapse
Affiliation(s)
- G Van Horn
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
5
|
Sanders CM, Stenlund A. Mechanism and requirements for bovine papillomavirus, type 1, E1 initiator complex assembly promoted by the E2 transcription factor bound to distal sites. J Biol Chem 2001; 276:23689-99. [PMID: 11323428 DOI: 10.1074/jbc.m101861200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication of papillomavirus requires the viral initiator E1 and the transcription factor E2. Bovine papillomavirus, type 1 (BPV-1), E1, and E2 bind cooperatively as dimers to proximal sites in the viral replicator generating a sequence-specific E1E2-ori complex. This complex is critical for replication and can be converted to a multimeric E1-ori initiator complex by displacement of E2 in the presence of hydrolyzable ATP. However, E2 can function over extended distances, and E2 at a distal position 33 base pairs upstream of the E1-binding site also loads an E1 dimer onto ori. Under these conditions, neither displacement of E2 nor ATP hydrolysis are required for E1-ori formation, consistent with a need for ATP hydrolysis in E2 displacement from E1E2-ori. However, ATP is required for stabilization of the resulting E1-ori complex. These results indicate that BPV (with a proximal E2-binding site) and human papillomaviruses (with distal E2-binding sites) utilize the same general mechanism for E1 loading but suggest that E1E2-ori, which forms preferentially on ori, may perform an additional role in BPV replication.
Collapse
Affiliation(s)
- C M Sanders
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
6
|
Allikas A, Ord D, Kurg R, Kivi S, Ustav M. Roles of the hinge region and the DNA binding domain of the bovine papillomavirus type 1 E2 protein in initiation of DNA replication. Virus Res 2001; 75:95-106. [PMID: 11325464 DOI: 10.1016/s0168-1702(01)00219-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The bovine papillomavirus (BPV-1) E2 protein is the regulator of extrachromosomal replication of papillomaviruses. The mutants with C-terminal truncations and in-frame internal deletions were constructed to study the role of structural domains of E2 in the initiation of DNA replication. We show that the replication initiation function of E2 is absolutely dependent on the ability of the protein to bind to DNA. Our study also confirms the borders of the functional domains of the E2 protein; residues 1-192 form the activation domain and residues 310-410 the DNA binding-dimerization domain. Some critical length and flexibility, but not the particular amino acid sequence between these two functional domains is required for the activity of the protein to support replication. The hinge region, including the major phosphorylation sites of E2, is also dispensable for the mediation of attachment of the BPV1 genome to the mitotic chromosomes.
Collapse
Affiliation(s)
- A Allikas
- Department of Microbiology and Virology, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010, Tartu, Estonia
| | | | | | | | | |
Collapse
|
7
|
Van Craenenbroeck K, Vanhoenacker P, Haegeman G. Episomal vectors for gene expression in mammalian cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5665-78. [PMID: 10971576 DOI: 10.1046/j.1432-1327.2000.01645.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An important reason for preferring mammalian cells for heterologous gene expression is their ability to make authentic proteins containing post-translational modifications similar to those of the native protein. The development of expression systems for mammalian cells has been ongoing for several years, resulting in a wide variety of effective expression vectors. The aim of this review is to highlight episomal expression vectors. Such episomal plasmids are usually based on sequences from DNA viruses, such as BK virus, bovine papilloma virus 1 and Epstein-Barr virus. In this review we will mainly focus on the improvements made towards the usefulness of these systems for gene expression studies and gene therapy.
Collapse
|
8
|
Sanders CM, Stenlund A. Transcription factor-dependent loading of the E1 initiator reveals modular assembly of the papillomavirus origin melting complex. J Biol Chem 2000; 275:3522-34. [PMID: 10652347 DOI: 10.1074/jbc.275.5.3522] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication of bovine papillomavirus type 1 DNA absolutely requires the viral transcription factor E2 as well as the initiator E1, although E1 alone has all the activities expected of an initiator protein. E1 assembles on the DNA in a stepwise fashion and undergoes a transition in activities from site-specific DNA-binding protein to mobile helicase. Complex assembly is assisted by the viral transcription factor E2 at two levels. E2 acts generally as a specificity factor, which through cooperative binding with E1 generates an initial E1 complex containing three E1 dimers bound to ori on one face of the DNA, E1-ori. Furthermore, E2 can promote the transition to an ori melting complex by recruiting additional E1 molecules to ori, effectively reducing the E1 concentration required for ori melting. This reaction is dependent on an E2-binding site positioned distal to the precursor E1-ori complex. The final origin melting complex has two subunits that each encircle the DNA and function independently to melt ori. The assembly pathway we describe has implication for understanding DNA melting and unwinding reactions, which are generally poorly understood.
Collapse
Affiliation(s)
- C M Sanders
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
9
|
Kurg R, Langel U, Ustav M. Inhibition of the bovine papillomavirus E2 protein activity by peptide nucleic acid. Virus Res 2000; 66:39-50. [PMID: 10653916 DOI: 10.1016/s0168-1702(99)00124-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The bovine papillomavirus type-1 E2 protein is the master regulator of the papillomavirus transcription and replication, the activity of which is regulated through sequence-specific DNA binding. Peptide nucleic acid (PNA) is a nucleic acid analogue, which associates with high affinity to complementary DNA, RNA or PNA, yielding in formation of stable complexes. The potential use of PNA as a sequence-specific inhibitor of the E2 protein activity is studied in this report. We demonstrate that replacement of one or both DNA strands with the complementary PNA reduced drastically the affinity of the BPV-1 E2 protein to its target site in the direct as well as in competitive binding as shown by in vitro gel-shift assays. We demonstrate that PNA could specifically bind to the double stranded E2 binding site by forming the complex with DNA oligonucleotide. In addition, PNA was able to bind specifically to the E2 binding site within the supercoiled plasmid DNA. Such binding of PNA to the E2 binding site within the origin of replication specifically abolished the activity of the E2 protein in the initiation of DNA replication in vivo.
Collapse
Affiliation(s)
- R Kurg
- Department of Microbiology and Virology, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010, Tartu, Estonia
| | | | | |
Collapse
|
10
|
Conger KL, Liu JS, Kuo SR, Chow LT, Wang TS. Human papillomavirus DNA replication. Interactions between the viral E1 protein and two subunits of human dna polymerase alpha/primase. J Biol Chem 1999; 274:2696-705. [PMID: 9915800 DOI: 10.1074/jbc.274.5.2696] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Papovaviruses are valuable models for the study of DNA replication in higher eukaryotic organisms, as they depend on host factors for replication of their DNA. In this study we investigate the interactions between the human papillomavirus type 11 (HPV-11) origin recognition and initiator protein E1 and human polymerase alpha/primase (pol alpha/primase) subunits. By using a variety of physical assays, we show that both 180- (p180) and 70-kDa (p70) subunits of pol alpha/primase interact with HPV-11 E1. The interactions of E1 with p180 and p70 are functionally different in cell-free replication of an HPV-11 origin-containing plasmid. Exogenously added p180 inhibits both E2-dependent and E2-independent cell-free replication of HPV-11, whereas p70 inhibits E2-dependent but stimulates E2-independent replication. Our experiments indicate that p70 does not physically interact with E2 and suggest that it may compete with E2 for binding to E1. A model of how E2 and p70 sequentially interact with E1 during initiation of viral DNA replication is proposed.
Collapse
Affiliation(s)
- K L Conger
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | | | | | | | | |
Collapse
|