1
|
Ng YS, Chen CY, Cheng SW, Tan YK, Lin SS, Senapin S, Sangsuriya P, Wang HC. WSSV early protein WSSV004 enhances viral replication by suppressing LDH activity. Int J Biol Macromol 2024; 271:132482. [PMID: 38763244 DOI: 10.1016/j.ijbiomac.2024.132482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
White spot syndrome virus (WSSV) is known to upregulate glycolysis to supply biomolecules and energy for the virus's replication. At the viral genome replication stage, lactate dehydrogenase (LDH), a glycolytic enzyme, shows increased activity without any increase in expression. In the present study, yeast 2-hybrid screening was used to identify WSSV proteins that interacted with LvLDH isoform 1 and 2, and these included the WSSV early protein WSSV004. The interaction between WSSV004 and LvLDH1/2 was confirmed by co-immunoprecipitation. Immunofluorescence showed that WSSV004 co-localized with LvLDH1/2 in the cytoplasm. dsRNA silencing experiments showed that WSSV004 was crucial for WSSV replication. However, although WSSV004 silencing led to the suppression of total LvLDH gene expression during the viral late stage, there was nevertheless a significant increase in LvLDH activity at this time. We also used affinity purification-mass spectrometry to identify cellular proteins that interact with WSSV004, and found a total of 108 host proteins and 3 WSSV proteins with which it potentially interacts. Bioinformatics analysis revealed that WSSV004 and its interacting proteins might be responsible for various biological pathways during infection, including vesicular transport machinery and RNA-related functions. Collectively, our study suggests that WSSV004 serves as a multifunctional modulator to facilitate WSSV replication.
Collapse
Affiliation(s)
- Yen Siong Ng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Cong-Yan Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Wen Cheng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu Kent Tan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Saengchan Senapin
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Pakkakul Sangsuriya
- Aquatic Molecular Genetics and Biotechnology Research Team, BIOTEC, NSTDA, Pathum Thani, Thailand
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Abstract
Recent advances in the study of virus-cell interactions have improved our understanding of how viruses that replicate their genomes in the nucleus (e.g., retroviruses, hepadnaviruses, herpesviruses, and a subset of RNA viruses) hijack cellular pathways to export these genomes to the cytoplasm where they access virion egress pathways. These findings shed light on novel aspects of viral life cycles relevant to the development of new antiviral strategies and can yield new tractable, virus-based tools for exposing additional secrets of the cell. The goal of this review is to summarize defined and emerging modes of virus-host interactions that drive the transit of viral genomes out of the nucleus across the nuclear envelope barrier, with an emphasis on retroviruses that are most extensively studied. In this context, we prioritize discussion of recent progress in understanding the trafficking and function of the human immunodeficiency virus type 1 Rev protein, exemplifying a relatively refined example of stepwise, cooperativity-driven viral subversion of multi-subunit host transport receptor complexes.
Collapse
Affiliation(s)
- Ryan T. Behrens
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Mghezzi-Habellah M, Prochasson L, Jalinot P, Mocquet V. Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host. Viruses 2023; 15:2218. [PMID: 38005895 PMCID: PMC10674744 DOI: 10.3390/v15112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
In eukaryotic cells, the spatial distribution between cytoplasm and nucleus is essential for cell homeostasis. This dynamic distribution is selectively regulated by the nuclear pore complex (NPC), which allows the passive or energy-dependent transport of proteins between these two compartments. Viruses possess many strategies to hijack nucleocytoplasmic shuttling for the benefit of their viral replication. Here, we review how viruses interfere with the karyopherin CRM1 that controls the nuclear export of protein cargoes. We analyze the fact that the viral hijacking of CRM1 provokes are-localization of numerous cellular factors in a suitable place for specific steps of viral replication. While CRM1 emerges as a critical partner for viruses, it also takes part in antiviral and inflammatory response regulation. This review also addresses how CRM1 hijacking affects it and the benefits of CRM1 inhibitors as antiviral treatments.
Collapse
Affiliation(s)
| | | | | | - Vincent Mocquet
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure-Lyon, Université Claude Bernard Lyon, U1293, UMR5239, 69364 Lyon, France; (M.M.-H.); (L.P.); (P.J.)
| |
Collapse
|
4
|
Nakano K, Watanabe T. Tuning Rex rules HTLV-1 pathogenesis. Front Immunol 2022; 13:959962. [PMID: 36189216 PMCID: PMC9523361 DOI: 10.3389/fimmu.2022.959962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
HTLV-1 is an oncovirus causing ATL and other inflammatory diseases such as HAM/TSP and HU in about 5% of infected individuals. It is also known that HTLV-1-infected cells maintain a disease-free, immortalized, latent state throughout the lifetimes of about 95% of infected individuals. We believe that the stable maintenance of disease-free infected cells in the carrier is an intrinsic characteristic of HTLV-1 that has been acquired during its evolution in the human life cycle. We speculate that the pathogenesis of the virus is ruled by the orchestrated functions of viral proteins. In particular, the regulation of Rex, the conductor of viral replication rate, is expected to be closely related to the viral program in the early active viral replication followed by the stable latency in HTLV-1 infected T cells. HTLV-1 and HIV-1 belong to the family Retroviridae and share the same tropism, e.g., human CD4+ T cells. These viruses show significant similarities in the viral genomic structure and the molecular mechanism of the replication cycle. However, HTLV-1 and HIV-1 infected T cells show different phenotypes, especially in the level of virion production. We speculate that how the activity of HTLV-1 Rex and its counterpart HIV-1 Rev are regulated may be closely related to the properties of respective infected T cells. In this review, we compare various pathological aspects of HTLV-1 and HIV-1. In particular, we investigated the presence or absence of a virally encoded "regulatory valve" for HTLV-1 Rex or HIV-1 Rev to explore its importance in the regulation of viral particle production in infected T cells. Finally, wereaffirm Rex as the key conductor for viral replication and viral pathogenesis based on our recent study on the novel functional aspects of Rex. Since the activity of Rex is closely related to the viral replication rate, we hypothesize that the "regulatory valve" on the Rex activity may have been selectively evolved to achieve the "scenario" with early viral particle production and the subsequent long, stable deep latency in HTLV-1 infected cells.
Collapse
Affiliation(s)
- Kazumi Nakano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiki Watanabe
- Department of Practical Management of Medical Information, Graduate School of Medicine, St. Marianna University, Kawasaki, Japan
| |
Collapse
|
5
|
Mailliot J, Vivoli-Vega M, Schaffitzel C. No-nonsense: insights into the functional interplay of nonsense-mediated mRNA decay factors. Biochem J 2022; 479:973-993. [PMID: 35551602 PMCID: PMC9162471 DOI: 10.1042/bcj20210556] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Nonsense-mediated messenger RNA decay (NMD) represents one of the main surveillance pathways used by eukaryotic cells to control the quality and abundance of mRNAs and to degrade viral RNA. NMD recognises mRNAs with a premature termination codon (PTC) and targets them to decay. Markers for a mRNA with a PTC, and thus NMD, are a long a 3'-untranslated region and the presence of an exon-junction complex (EJC) downstream of the stop codon. Here, we review our structural understanding of mammalian NMD factors and their functional interplay leading to a branched network of different interconnected but specialised mRNA decay pathways. We discuss recent insights into the potential impact of EJC composition on NMD pathway choice. We highlight the coexistence and function of different isoforms of up-frameshift protein 1 (UPF1) with an emphasis of their role at the endoplasmic reticulum and during stress, and the role of the paralogs UPF3B and UPF3A, underscoring that gene regulation by mammalian NMD is tightly controlled and context-dependent being conditional on developmental stage, tissue and cell types.
Collapse
Affiliation(s)
- Justine Mailliot
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Mirella Vivoli-Vega
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, U.K
| |
Collapse
|
6
|
Nakano K, Karasawa N, Hashizume M, Tanaka Y, Ohsugi T, Uchimaru K, Watanabe T. Elucidation of the Mechanism of Host NMD Suppression by HTLV-1 Rex: Dissection of Rex to Identify the NMD Inhibitory Domain. Viruses 2022; 14:344. [PMID: 35215946 PMCID: PMC8875924 DOI: 10.3390/v14020344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/24/2023] Open
Abstract
The human retrovirus human T-cell leukemia virus type I (HTLV-1) infects human T cells by vertical transmission from mother to child through breast milk or horizontal transmission through blood transfusion or sexual contact. Approximately 5% of infected individuals develop adult T-cell leukemia/lymphoma (ATL) with a poor prognosis, while 95% of infected individuals remain asymptomatic for the rest of their lives, during which time the infected cells maintain a stable immortalized latent state in the body. It is not known why such a long latent state is maintained. We hypothesize that the role of functional proteins of HTLV-1 during early infection influences the phenotype of infected cells in latency. In eukaryotic cells, a mRNA quality control mechanism called nonsense-mediated mRNA decay (NMD) functions not only to eliminate abnormal mRNAs with nonsense codons but also to target virus-derived RNAs. We have reported that HTLV-1 genomic RNA is a potential target of NMD, and that Rex suppresses NMD and stabilizes viral RNA against it. In this study, we aimed to elucidate the molecular mechanism of NMD suppression by Rex using various Rex mutant proteins. We found that region X (aa20-57) of Rex, the function of which has not been clarified, is required for NMD repression. We showed that Rex binds to Upf1, which is the host key regulator to detect abnormal mRNA and initiate NMD, through this region. Rex also interacts with SMG5 and SMG7, which play essential roles for the completion of the NMD pathway. Moreover, Rex selectively binds to Upf3B, which is involved in the normal NMD complex, and replaces it with a less active form, Upf3A, to reduce NMD activity. These results revealed that Rex invades the NMD cascade from its initiation to completion and suppresses host NMD activity to protect the viral genomic mRNA.
Collapse
Affiliation(s)
- Kazumi Nakano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Nobuaki Karasawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Masaaki Hashizume
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yuetsu Tanaka
- Faculty of Medicine, University of the Ryukyus, Nishihara 903-0125, Japan
| | - Takeo Ohsugi
- Department of Laboratory Animal Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Kaoru Uchimaru
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Toshiki Watanabe
- Department of Practical Management of Medical Information, Graduate School of Medicine, St. Marianna University, Kawasaki 216-8511, Japan
| |
Collapse
|
7
|
The Complex Relationship between HTLV-1 and Nonsense-Mediated mRNA Decay (NMD). Pathogens 2020; 9:pathogens9040287. [PMID: 32326562 PMCID: PMC7238105 DOI: 10.3390/pathogens9040287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
Before the establishment of an adaptive immune response, retroviruses can be targeted by several cellular host factors at different stages of the viral replication cycle. This intrinsic immunity relies on a large diversity of antiviral processes. In the case of HTLV-1 infection, these active innate host defense mechanisms are debated. Among these mechanisms, we focused on an RNA decay pathway called nonsense-mediated mRNA decay (NMD), which can target multiple viral RNAs, including HTLV-1 unspliced RNA, as has been recently demonstrated. NMD is a co-translational process that depends on the RNA helicase UPF1 and regulates the expression of multiple types of host mRNAs. RNA sensitivity to NMD depends on mRNA organization and the ribonucleoprotein (mRNP) composition. HTLV-1 has evolved several means to evade the NMD threat, leading to NMD inhibition. In the early steps of infection, NMD inhibition favours the production of HTLV-1 infectious particles, which may contribute to the survival of the fittest clones despite genome instability; however, its direct long-term impact remains to be investigated.
Collapse
|
8
|
Nakano K, Watanabe T. HTLV-1 Rex Tunes the Cellular Environment Favorable for Viral Replication. Viruses 2016; 8:58. [PMID: 26927155 PMCID: PMC4810248 DOI: 10.3390/v8030058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 12/18/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) Rex is a viral RNA binding protein. The most important and well-known function of Rex is stabilizing and exporting viral mRNAs from the nucleus, particularly for unspliced/partially-spliced mRNAs encoding the structural proteins essential for viral replication. Without Rex, these unspliced viral mRNAs would otherwise be completely spliced. Therefore, Rex is vital for the translation of structural proteins and the stabilization of viral genomic RNA and, thus, for viral replication. Rex schedules the period of extensive viral replication and suppression to enter latency. Although the importance of Rex in the viral life-cycle is well understood, the underlying molecular mechanism of how Rex achieves its function has not been clarified. For example, how does Rex protect unspliced/partially-spliced viral mRNAs from the host cellular splicing machinery? How does Rex protect viral mRNAs, antigenic to eukaryotic cells, from cellular mRNA surveillance mechanisms? Here we will discuss these mechanisms, which explain the function of Rex as an organizer of HTLV-1 expression based on previously and recently discovered aspects of Rex. We also focus on the potential influence of Rex on the homeostasis of the infected cell and how it can exert its function.
Collapse
Affiliation(s)
- Kazumi Nakano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1, Shirokanedai, Minatoku, Tokyo 108-8639, Japan.
| | - Toshiki Watanabe
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1, Shirokanedai, Minatoku, Tokyo 108-8639, Japan.
| |
Collapse
|
9
|
Expression of Alternatively Spliced Human T-Cell Leukemia Virus Type 1 mRNAs Is Influenced by Mitosis and by a Novel cis-Acting Regulatory Sequence. J Virol 2015; 90:1486-98. [PMID: 26581997 DOI: 10.1128/jvi.02298-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human T-cell leukemia virus type 1 (HTLV-1) expression depends on the concerted action of Tax, which drives transcription of the viral genome, and Rex, which favors expression of incompletely spliced mRNAs and determines a 2-phase temporal pattern of viral expression. In the present study, we investigated the Rex dependence of the complete set of alternatively spliced HTLV-1 mRNAs. Analyses of cells transfected with Rex-wild-type and Rex-knockout HTLV-1 molecular clones using splice site-specific quantitative reverse transcription (qRT)-PCR revealed that mRNAs encoding the p30Tof, p13, and p12/8 proteins were Rex dependent, while the p21rex mRNA was Rex independent. These findings provide a rational explanation for the intermediate-late temporal pattern of expression of the p30tof, p13, and p12/8 mRNAs described in previous studies. All the Rex-dependent mRNAs contained a 75-nucleotide intronic region that increased the nuclear retention and degradation of a reporter mRNA in the absence of other viral sequences. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis revealed that this sequence formed a stable hairpin structure. Cell cycle synchronization experiments indicated that mitosis partially bypasses the requirement for Rex to export Rex-dependent HTLV-1 transcripts. These findings indicate a link between the cycling properties of the host cell and the temporal pattern of viral expression/latency that might influence the ability of the virus to spread and evade the immune system. IMPORTANCE HTLV-1 is a complex retrovirus that causes two distinct pathologies termed adult T-cell leukemia/lymphoma and tropical spastic paraparesis/HTLV-1-associated myelopathy in about 5% of infected individuals. Expression of the virus depends on the concerted action of Tax, which drives transcription of the viral genome, and Rex, which favors expression of incompletely spliced mRNAs and determines a 2-phase temporal pattern of virus expression. The findings reported in this study revealed a novel cis-acting regulatory element and indicated that mitosis partially bypasses the requirement for Rex to export Rex-dependent HTLV-1 transcripts. Our results add a layer of complexity to the mechanisms controlling the expression of alternatively spliced HTLV-1 mRNAs and suggest a link between the cycling properties of the host cell and the temporal pattern of viral expression/latency that might influence the ability of the virus to spread and evade the immune system.
Collapse
|
10
|
Fleta-Soriano E, Martinez JP, Hinkelmann B, Gerth K, Washausen P, Diez J, Frank R, Sasse F, Meyerhans A. The myxobacterial metabolite ratjadone A inhibits HIV infection by blocking the Rev/CRM1-mediated nuclear export pathway. Microb Cell Fact 2014; 13:17. [PMID: 24475978 PMCID: PMC3910686 DOI: 10.1186/1475-2859-13-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nuclear export of unspliced and partially spliced HIV-1 mRNA is mediated by the recognition of a leucine-rich nuclear export signal (NES) in the HIV Rev protein by the host protein CRM1/Exportin1. This makes the CRM1-Rev complex an attractive target for the development of new antiviral drugs. Here we tested the anti-HIV efficacy of ratjadone A, a CRM1 inhibitor derived from myxobacteria. RESULTS Ratjadone A inhibits HIV infection in vitro in a dose-dependent manner with EC₅₀ values at the nanomolar range. The inhibitory effect of ratjadone A occurs around 12 hours post-infection and is specific for the Rev/CRM1-mediated nuclear export pathway. By using a drug affinity responsive target stability (DARTS) assay we could demonstrate that ratjadone A interferes with the formation of the CRM1-Rev-NES complex by binding to CRM1 but not to Rev. CONCLUSION Ratjadone A exhibits strong anti-HIV activity but low selectivity due to toxic effects. Although this limits its potential use as a therapeutic drug, further studies with derivatives of ratjadones might help to overcome these difficulties in the future.
Collapse
Affiliation(s)
- Eric Fleta-Soriano
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88 08003, Barcelona, Spain
| | - Javier P Martinez
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88 08003, Barcelona, Spain
| | - Bettina Hinkelmann
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Gerth
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Washausen
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Juana Diez
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ronald Frank
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Florenz Sasse
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Meyerhans
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
11
|
Nuclear trafficking of retroviral RNAs and Gag proteins during late steps of replication. Viruses 2013; 5:2767-95. [PMID: 24253283 PMCID: PMC3856414 DOI: 10.3390/v5112767] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 10/31/2013] [Accepted: 11/12/2013] [Indexed: 11/16/2022] Open
Abstract
Retroviruses exploit nuclear trafficking machinery at several distinct stages in their replication cycles. In this review, we will focus primarily on nucleocytoplasmic trafficking events that occur after the completion of reverse transcription and proviral integration. First, we will discuss nuclear export of unspliced viral RNA transcripts, which serves two essential roles: as the mRNA template for the translation of viral structural proteins and as the genome for encapsidation into virions. These full-length viral RNAs must overcome the cell's quality control measures to leave the nucleus by co-opting host factors or encoding viral proteins to mediate nuclear export of unspliced viral RNAs. Next, we will summarize the most recent findings on the mechanisms of Gag nuclear trafficking and discuss potential roles for nuclear localization of Gag proteins in retrovirus replication.
Collapse
|
12
|
Schumann S, Jackson BR, Baquero-Perez B, Whitehouse A. Kaposi's sarcoma-associated herpesvirus ORF57 protein: exploiting all stages of viral mRNA processing. Viruses 2013; 5:1901-23. [PMID: 23896747 PMCID: PMC3761232 DOI: 10.3390/v5081901] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 11/17/2022] Open
Abstract
Nuclear mRNA export is a highly complex and regulated process in cells. Cellular transcripts must undergo successful maturation processes, including splicing, 5'-, and 3'-end processing, which are essential for assembly of an export competent ribonucleoprotein particle. Many viruses replicate in the nucleus of the host cell and require cellular mRNA export factors to efficiently export viral transcripts. However, some viral mRNAs undergo aberrant mRNA processing, thus prompting the viruses to express their own specific mRNA export proteins to facilitate efficient export of viral transcripts and allowing translation in the cytoplasm. This review will focus on the Kaposi's sarcoma-associated herpesvirus ORF57 protein, a multifunctional protein involved in all stages of viral mRNA processing and that is essential for virus replication. Using the example of ORF57, we will describe cellular bulk mRNA export pathways and highlight their distinct features, before exploring how the virus has evolved to exploit these mechanisms.
Collapse
Affiliation(s)
| | | | | | - Adrian Whitehouse
- School of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
13
|
Nakano K, Ando T, Yamagishi M, Yokoyama K, Ishida T, Ohsugi T, Tanaka Y, Brighty DW, Watanabe T. Viral interference with host mRNA surveillance, the nonsense-mediated mRNA decay (NMD) pathway, through a new function of HTLV-1 Rex: implications for retroviral replication. Microbes Infect 2013; 15:491-505. [PMID: 23541980 DOI: 10.1016/j.micinf.2013.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 01/08/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is an essential and conserved cellular mRNA quality control mechanism. RNA signals to express viral genes from overlapping open reading frames potentially initiate NMD, nevertheless it is not clear whether viral RNAs are sensitive to NMD or if viruses have evolved mechanisms to evade NMD. Here we demonstrate that the genomic and full-length mRNAs of Human-T-cell Leukemia Virus type-I (HTLV-1), a retrovirus responsible for Adult T-cell Leukemia (ATL), are sensitive to NMD. They exhibit accelerated turnover in NMD-activated cells, while siRNA-mediated knockdown of NMD-master-regulator, UPF1, promotes enhanced stability of them. These effects on RNA stability were recapitulated by a reporter construct encoding the HTLV-1 translational frameshift signal of gag-pol. In agreement with the RNA stability, viral protein expression from the integrated provirus was inversely correlated with cellular NMD activity. We further demonstrated that the viral RNA-binding protein, Rex, approves the stability of viral RNA by inhibiting NMD. Significantly, Rex establishes a general block to NMD, as both NMD-responsive reporter transcripts and natural host-encoded NMD substrates were stabilized in the presence of Rex. Thus, we suggest that Rex not only stabilizes viral transcripts, but also perturbs cellular mRNA metabolism and host cell homeostasis via inhibition of NMD.
Collapse
Affiliation(s)
- Kazumi Nakano
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minatoku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nakano K, Watanabe T. HTLV-1 Rex: the courier of viral messages making use of the host vehicle. Front Microbiol 2012; 3:330. [PMID: 22973269 PMCID: PMC3434621 DOI: 10.3389/fmicb.2012.00330] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/24/2012] [Indexed: 01/25/2023] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus causing an aggressive T-cell malignancy, adult T-cell leukemia (ATL). Although HTLV-1 has a compact RNA genome, it has evolved elaborate mechanisms to maximize its coding potential. The structural proteins Gag, Pro, and Pol are encoded in the unspliced form of viral mRNA, whereas the Env protein is encoded in singly spliced viral mRNA. Regulatory and accessory proteins, such as Tax, Rex, p30II, p12, and p13, are translated only from fully spliced mRNA. For effective viral replication, translation from all forms of HTLV-1 transcripts has to be achieved in concert, although unspliced mRNA are extremely unstable in mammalian cells. It has been well recognized that HTLV-1 Rex enhances the stability of unspliced and singly spliced HTLV-1 mRNA by promoting nuclear export and thereby removing them from the splicing site. Rex specifically binds to the highly structured Rex responsive element (RxRE) located at the 3' end of all HTLV-1 mRNA. Rex then binds to the cellular nuclear exporter, CRM1, via its nuclear export signal domain and the Rex-viral transcript complex is selectively exported from the nucleus to the cytoplasm for effective translation of the viral proteins. Yet, the mechanisms by which Rex inhibits the cellular splicing machinery and utilizes the cellular pathways beneficial to viral survival in the host cell have not been fully explored. Furthermore, physiological impacts of Rex against homeostasis of the host cell via interactions with numerous cellular proteins have been largely left uninvestigated. In this review, we focus on the biological importance of HTLV-1 Rex in the HTLV-1 life cycle by following the historical path in the literature concerning this viral post-transcriptional regulator from its discovery to this day. In addition, for future studies, we discuss recently discovered aspects of HTLV-1 Rex as a post-transcriptional regulator and its use in host cellular pathways.
Collapse
Affiliation(s)
- Kazumi Nakano
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo Tokyo, Japan
| | - Toshiki Watanabe
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
15
|
Shida H. Role of Nucleocytoplasmic RNA Transport during the Life Cycle of Retroviruses. Front Microbiol 2012; 3:179. [PMID: 22783232 PMCID: PMC3390767 DOI: 10.3389/fmicb.2012.00179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/26/2012] [Indexed: 12/14/2022] Open
Abstract
Retroviruses have evolved mechanisms for transporting their intron-containing RNAs (including genomic and messenger RNAs, which encode virion components) from the nucleus to the cytoplasm of the infected cell. Human retroviruses, such as human immunodeficiency virus (HIV) and human T cell leukemia virus type 1 (HTLV-1), encode the regulatory proteins Rev and Rex, which form a bridge between the viral RNA and the export receptor CRM1. Recent studies show that these transport systems are not only involved in RNA export, but also in the encapsidation of genomic RNA; furthermore, they influence subsequent events in the cytoplasm, including the translation of the cognate mRNA, transport of Gag proteins to the plasma membrane, and the formation of virus particles. Moreover, the mode of interaction between the viral and cellular RNA transport machinery underlies the species-specific propagation of HIV-1 and HTLV-1, forming the basis for constructing animal models of infection. This review article discusses recent progress regarding these issues.
Collapse
Affiliation(s)
- Hisatoshi Shida
- Division of Molecular Virology, Institute of Immunological Science, Hokkaido University Sapporo, Japan
| |
Collapse
|
16
|
Nuclear export and expression of human T-cell leukemia virus type 1 tax/rex mRNA are RxRE/Rex dependent. J Virol 2012; 86:4559-65. [PMID: 22318152 DOI: 10.1128/jvi.06361-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus associated with the lymphoproliferative disease adult T-cell leukemia/lymphoma (ATL) and the neurodegenerative disorder tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). Replication of HTLV-1 is under the control of two major trans-acting proteins, Tax and Rex. Previous studies suggested that Tax activates transcription from the viral long terminal repeat (LTR) through recruitment of cellular CREB and transcriptional coactivators. Other studies reported that Rex acts posttranscriptionally and allows the cytoplasmic export of unspliced or incompletely spliced viral mRNAs carrying gag/pol and env only. As opposed to HIV's Rev-responsive element (RRE), the Rex-responsive element (RxRE) is present in all viral mRNAs in HTLV-1. However, based on indirect observations, it is believed that nuclear export and expression of the doubly spliced tax/rex RNA are Rex independent. In this study, we demonstrate that Rex does stimulate Tax expression, through nuclear-cytoplasmic export of the tax/rex RNA, even though a Rex-independent basal export mechanism exists. This effect was dependent upon the RxRE element and the RNA-binding activity of Rex. In addition, Rex-mediated export of tax/rex RNA was CRM1 dependent and inhibited by leptomycin B treatment. RNA immunoprecipitation (RNA-IP) experiments confirmed Rex binding to the tax/rex RNA in both transfected cells with HTLV-1 molecular clones and HTLV-1-infected T cells. Since both Rex and p30 interact with the tax/rex RNA and with one another, this may offer a temporal and dynamic regulation of HTLV-1 replication. Our results shed light on HTLV-1 replication and reveal a more complex regulatory network than previously anticipated.
Collapse
|
17
|
Comparison of the Genetic Organization, Expression Strategies and Oncogenic Potential of HTLV-1 and HTLV-2. LEUKEMIA RESEARCH AND TREATMENT 2011; 2012:876153. [PMID: 23213551 PMCID: PMC3504254 DOI: 10.1155/2012/876153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/24/2011] [Indexed: 11/30/2022]
Abstract
Human T cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are genetically related complex retroviruses that are capable of immortalizing human T-cells in vitro and establish life-long persistent infections in vivo. In spite of these apparent similarities, HTLV-1 and HTLV-2 exhibit a significantly different pathogenic potential. HTLV-1 is recognized as the causative agent of adult T-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). In contrast, HTLV-2 has not been causally linked to human malignancy, although it may increase the risk of developing inflammatory neuropathies and infectious diseases. The present paper is focused on the studies aimed at defining the viral genetic determinants of the pathobiology of HTLV-1 and HTLV-2 through a comparison of the expression strategies and functional properties of the different gene products of the two viruses.
Collapse
|
18
|
Srinivasakumar N. Rev-free HIV-1 gene delivery system for targeting Rev-RRE-Crm1 nucleocytoplasmic RNA transport pathway. PLoS One 2011; 6:e28462. [PMID: 22164294 PMCID: PMC3229575 DOI: 10.1371/journal.pone.0028462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/08/2011] [Indexed: 11/18/2022] Open
Abstract
The use of RNA transport elements from different viruses can provide novel attributes to HIV-1-based gene delivery systems such as improved safety or Rev independence. We previously described an HIV-1 based gene delivery system that utilized the simian immunodeficiency virus Rev-response element (RRE) in place of the HIV-1 RRE. Despite the use of Rev for the production of vector stocks, we showed the utility of this system for delivery of Rev M10, a dominant-negative mutant of HIV-1 Rev, into T-cells. Here, we investigated the use of RNA transport elements from Mason-Pfizer monkey virus or MPMV for the creation of high-titered Rev-free HIV-1-based packaging systems. The HIV-1 gag/pol expression constructs containing one or more copies of MPMV constitutive RNA transport element (CTE) were used to package similarly modified gene-transfer vectors in the presence or absence of Rev. An inverse correlation between the number of CTE modules and Rev dependency was noted for vector stock production. While packaging systems containing multiple CTEs were resistant to exogenously expressed Rev M10, the titers of vectors encoding Rev M10 were nevertheless reduced in comparison to vectors encoding only green fluorescent protein (GFP). In contrast, a gene transfer vector encoding the Rev M10 transgene and containing both RNA transport elements exhibited almost no loss in titer in comparison to a corresponding vector encoding only GFP. The optimized Rev-independent gene delivery system was used for delivery of Rev M10 transgene into T-lymphocytes. Upon challenge in single round infection assays with HIV-1, the modified T-cells produced fewer virus particles than control cells expressing GFP. This Rev-free packaging system may prove useful for targeting the Rev-RRE-Crm1 nucleocytoplasmic RNA transport pathway for inhibiting HIV replication.
Collapse
Affiliation(s)
- Narasimhachar Srinivasakumar
- Division of Hematology/Oncology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, United States of America.
| |
Collapse
|
19
|
Cerutti A, Maillard P, Minisini R, Vidalain PO, Roohvand F, Pecheur EI, Pirisi M, Budkowska A. Identification of a functional, CRM-1-dependent nuclear export signal in hepatitis C virus core protein. PLoS One 2011; 6:e25854. [PMID: 22039426 PMCID: PMC3200325 DOI: 10.1371/journal.pone.0025854] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/12/2011] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS), but no nuclear export signal (NES) has yet been identified.We show here that the aa(109-133) region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126) in the identified NES or in the sequence encoding the mature core aa(1-173) significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication.Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.
Collapse
Affiliation(s)
- Andrea Cerutti
- Unité Hépacivirus et Immunité Innée, Département de Virologie, Institut Pasteur, Paris, France
- CNRS, URA3015, Paris, France
- Dipartimento di Medicina Clinica e Sperimentale, Università del Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
| | - Patrick Maillard
- Unité Hépacivirus et Immunité Innée, Département de Virologie, Institut Pasteur, Paris, France
- CNRS, URA3015, Paris, France
| | - Rosalba Minisini
- Dipartimento di Medicina Clinica e Sperimentale, Università del Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
| | - Pierre-Olivier Vidalain
- CNRS, URA3015, Paris, France
- Unité de Génomique Virale et Vaccination, Département de Virologie, Institut Pasteur, Paris, France
| | - Farzin Roohvand
- Unité Hépacivirus et Immunité Innée, Département de Virologie, Institut Pasteur, Paris, France
- CNRS, URA3015, Paris, France
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Teheran, Iran
| | - Eve-Isabelle Pecheur
- Université Lyon 1, Lyon, France
- CNRS, UMR5086, Lyon, France
- IBCP, Bases Moléculaires et Structurales des Systèmes Infectieux, Lyon, France
| | - Mario Pirisi
- Dipartimento di Medicina Clinica e Sperimentale, Università del Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
| | - Agata Budkowska
- Unité Hépacivirus et Immunité Innée, Département de Virologie, Institut Pasteur, Paris, France
- CNRS, URA3015, Paris, France
| |
Collapse
|
20
|
Lairmore MD, Anupam R, Bowden N, Haines R, Haynes RAH, Ratner L, Green PL. Molecular determinants of human T-lymphotropic virus type 1 transmission and spread. Viruses 2011; 3:1131-65. [PMID: 21994774 PMCID: PMC3185783 DOI: 10.3390/v3071131] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/01/2011] [Accepted: 07/02/2011] [Indexed: 01/23/2023] Open
Abstract
Human T-lymphotrophic virus type-1 (HTLV-1) infects approximately 15 to 20 million people worldwide, with endemic areas in Japan, the Caribbean, and Africa. The virus is spread through contact with bodily fluids containing infected cells, most often from mother to child through breast milk or via blood transfusion. After prolonged latency periods, approximately 3 to 5% of HTLV-1 infected individuals will develop either adult T-cell leukemia/lymphoma (ATL), or other lymphocyte-mediated disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The genome of this complex retrovirus contains typical gag, pol, and env genes, but also unique nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo such as, p30, p12, p13 and the antisense encoded HBZ. While progress has been made in the understanding of viral determinants of cell transformation and host immune responses, host and viral determinants of HTLV-1 transmission and spread during the early phases of infection are unclear. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the early events of HTLV-1 infection. This review will focus on studies that test HTLV-1 determinants in context to full length infectious clones of the virus providing insights into the mechanisms of transmission and spread of HTLV-1.
Collapse
Affiliation(s)
- Michael D. Lairmore
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-614-292-9203; Fax: +1-614-292-6473
| | - Rajaneesh Anupam
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Nadine Bowden
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Robyn Haines
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Rashade A. H. Haynes
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Lee Ratner
- Department of Medicine, Pathology, and Molecular Microbiology, Division of Biology and Biological Sciences, Washington University School of Medicine, Campus Box 8069, 660 S. Euclid Ave., St. Louis, MO 63110, USA; E-Mail: (L.R.)
| | - Patrick L. Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
21
|
Nagai-Fukataki M, Ohashi T, Hashimoto I, Kimura T, Hakata Y, Shida H. Nuclear and cytoplasmic effects of human CRM1 on HIV-1 production in rat cells. Genes Cells 2011; 16:203-16. [PMID: 21251165 DOI: 10.1111/j.1365-2443.2010.01476.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) regulatory protein, Rev, mediates the nuclear export of unspliced gag and singly spliced env mRNAs by bridging viral RNA and the export receptor, CRM1. Recently, rat CRM1 was found to be less efficient than human CRM1 in supporting Rev function in rats. In this study, to understand the role of CRM1 in HIV propagation, the mechanism underlying the function of human and rat CRM1 in HIV-1 replication was investigated in rat cells. The production of viral particles, represented by the p24 Gag protein, was greatly enhanced by hCRM1 expression in rat cells; however, this effect was not simply because of the enhanced export of gag mRNA. The translation initiation rate of gag mRNA was not increased, nor was the Gag protein stabilized in the presence of hCRM1. However, the processing of the p55 Gag precursor and the release of viral particles were facilitated. These results indicated that hCRM1 exports gag mRNA to the cytoplasm, not only more efficiently than rCRM1 but also correctly, leading to efficient processing of Gag proteins and particle formation.
Collapse
Affiliation(s)
- Mika Nagai-Fukataki
- Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Kesic M, Doueiri R, Ward M, Semmes OJ, Green PL. Phosphorylation regulates human T-cell leukemia virus type 1 Rex function. Retrovirology 2009; 6:105. [PMID: 19919707 PMCID: PMC2780990 DOI: 10.1186/1742-4690-6-105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 11/17/2009] [Indexed: 11/10/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic complex deltaretrovirus, which is the causative agent of adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis. In addition to the structural and enzymatic viral gene products, HTLV-1 encodes the positive regulatory proteins Tax and Rex along with viral accessory proteins. Tax and Rex proteins orchestrate the timely expression of viral genes important in viral replication and cellular transformation. Rex is a nucleolar-localizing shuttling protein that acts post-transcriptionally by binding and facilitating the export of the unspliced and incompletely spliced viral mRNAs from the nucleus to the cytoplasm. HTLV-1 Rex (Rex-1) is a phosphoprotein and general protein kinase inhibition correlates with reduced function. Therefore, it has been proposed that Rex-1 function may be regulated through site-specific phosphorylation. Results We conducted a phosphoryl mapping of Rex-1 over-expressed in transfected 293 T cells using a combination of affinity purification and liquid chromatography tandem mass spectrometry. We achieved 100% physical coverage of the Rex-1 polypeptide and identified five novel phosphorylation sites at Thr-22, Ser-36, Thr-37, Ser-97, and Ser-106. We also confirmed evidence of two previously identified residues, Ser-70 and Thr-174, but found no evidence of phosphorylation at Ser-177. The functional significance of these phosphorylation events was evaluated using a Rex reporter assay and site-directed mutational analysis. Our results indicate that phosphorylation at Ser-97 and Thr-174 is critical for Rex-1 function. Conclusion We have mapped completely the site-specific phosphorylation of Rex-1 identifying a total of seven residues; Thr-22, Ser-36, Thr-37, Ser-70, Ser-97, Ser-106, and Thr-174. Overall, this work is the first to completely map the phosphorylation sites in Rex-1 and provides important insight into the regulation of Rex-1 function.
Collapse
Affiliation(s)
- Matthew Kesic
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Viruses are intracellular pathogens that have to usurp some of the cellular machineries to provide an optimal environment for their own replication. An increasing number of reports reveal that many viruses induce modifications of nuclear substructures including nucleoli, whether they replicate or not in the nucleus of infected cells. Indeed, during infection of cells with various types of human viruses, nucleoli undergo important morphological modifications. A large number of viral components traffic to and from the nucleolus where they interact with different cellular and/or viral factors, numerous host nucleolar proteins are redistributed in other cell compartments or are modified and some cellular proteins are delocalised in the nucleolus of infected cells. Well‐documented studies have established that several of these nucleolar modifications play a role in some steps of the viral cycle, and also in fundamental cellular pathways. The nucleolus itself is the place where several essential steps of the viral cycle take place. In other cases, viruses divert host nucleolar proteins from their known functions in order to exert new unexpected role(s). Copyright © 2009 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anna Greco
- Université de Lyon, Lyon F-69003, France.
| |
Collapse
|
24
|
Taylor JM, Ghorbel S, Nicot C. Genome wide analysis of human genes transcriptionally and post-transcriptionally regulated by the HTLV-I protein p30. BMC Genomics 2009; 10:311. [PMID: 19602286 PMCID: PMC2723137 DOI: 10.1186/1471-2164-10-311] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 07/14/2009] [Indexed: 11/16/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-I) is a human retrovirus that is etiologically linked to adult T-cell leukemia (ATL), an aggressive and fatal lymphoproliferative disease. The viral transactivator, Tax, is thought to play an important role during the initial stages of CD4+ T-cell immortalization by HTLV-1. Tax has been shown to activate transcription through CREB/ATF and NF-KB, and to alter numerous signaling pathways. These pleiotropic effects of Tax modify the expression of a wide array of cellular genes. Another viral protein encoded by HTLV-I, p30, has been shown to affect virus replication at the transcriptional and posttranscriptional levels. Little is currently known regarding the effect of p30 on the expression and nuclear export of cellular host mRNA transcripts. Identification of these RNA may reveal new targets and increase our understanding of HTLV-I pathogenesis. In this study, using primary peripheral blood mononuclear cells, we report a genome wide analysis of human genes transcriptionally and post-transcriptionally regulated by the HTLV-I protein p30. Results Using microarray analysis, we analyzed total and cytoplasmic cellular mRNA transcript levels isolated from PBMCs to assess the effect of p30 on cellular RNA transcript expression and their nuclear export. We report p30-dependent transcription resulting in the 2.5 fold up-regulation of 15 genes and the down-regulation of 65 human genes. We further tested nuclear export of cellular mRNA and found that p30 expression also resulted in a 2.5 fold post-transcriptional down-regulation of 90 genes and the up-regulation of 33 genes. Conclusion Overall, our study describes that expression of the HTLV-I protein p30 both positively and negatively alters the expression of cellular transcripts. Our study identifies for the first time the cellular genes for which nuclear export is affected by p30. These results suggest that p30 may possess a more global function with respect to mRNA transcription and the nuclear shuttling of cellular mRNA transcripts. In addition, these alterations in gene expression may play a role in cell transformation and the onset of leukemia.
Collapse
Affiliation(s)
- John M Taylor
- Center for Viral Oncology, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | |
Collapse
|
25
|
Mertz JA, Lozano MM, Dudley JP. Rev and Rex proteins of human complex retroviruses function with the MMTV Rem-responsive element. Retrovirology 2009; 6:10. [PMID: 19192308 PMCID: PMC2661877 DOI: 10.1186/1742-4690-6-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 02/03/2009] [Indexed: 11/11/2022] Open
Abstract
Background Mouse mammary tumor virus (MMTV) encodes the Rem protein, an HIV Rev-like protein that enhances nuclear export of unspliced viral RNA in rodent cells. We have shown that Rem is expressed from a doubly spliced RNA, typical of complex retroviruses. Several recent reports indicate that MMTV can infect human cells, suggesting that MMTV might interact with human retroviruses, such as human immunodeficiency virus (HIV), human T-cell leukemia virus (HTLV), and human endogenous retrovirus type K (HERV-K). In this report, we test whether the export/regulatory proteins of human complex retroviruses will increase expression from vectors containing the Rem-responsive element (RmRE). Results MMTV Rem, HIV Rev, and HTLV Rex proteins, but not HERV-K Rec, enhanced expression from an MMTV-based reporter plasmid in human T cells, and this activity was dependent on the RmRE. No RmRE-dependent reporter gene expression was detectable using Rev, Rex, or Rec in HC11 mouse mammary cells. Cell fractionation and RNA quantitation experiments suggested that the regulatory proteins did not affect RNA stability or nuclear export in the MMTV reporter system. Rem had no demonstrable activity on export elements from HIV, HTLV, or HERV-K. Similar to the Rem-specific activity in rodent cells, the RmRE-dependent functions of Rem, Rev, or Rex in human cells were inhibited by a dominant-negative truncated nucleoporin that acts in the Crm1 pathway of RNA and protein export. Conclusion These data argue that many retroviral regulatory proteins recognize similar complex RNA structures, which may depend on the presence of cell-type specific proteins. Retroviral protein activity on the RmRE appears to affect a post-export function of the reporter RNA. Our results provide additional evidence that MMTV is a complex retrovirus with the potential for viral interactions in human cells.
Collapse
Affiliation(s)
- Jennifer A Mertz
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
| | | | | |
Collapse
|
26
|
Baydoun HH, Bellon M, Nicot C. HTLV-1 Yin and Yang: Rex and p30 master regulators of viral mRNA trafficking. AIDS Rev 2008; 10:195-204. [PMID: 19092975 PMCID: PMC2666328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Human retroviruses are associated with a variety of malignancies including Kaposi's sarcoma and Epstein-Barr virus-associated lymphoma in HIV infection, T-cell leukemia/lymphoma and a neurologic disorder in human T-cell lymphotropic virus type 1 (HTLV-1) infection. Both HIV and human T-cell lymphotropic virus type 1 have evolved a complex genetic organization for optimal use of their limited genome and production of all necessary structural and regulatory proteins. Use of alternative splicing is essential for balanced expression of multiple viral regulators from one genomic polycistronic RNA. In addition, nuclear export of incompletely spliced RNA is required for production of structural and enzymatic proteins and virus particles. Decisions controlling these events are largely guarded by viral proteins. In human T-cell lymphotropic virus type 1, Rex and p30 are both nuclear/nucleolar RNA binding regulatory proteins. Rex interacts with a Rex-responsive element to stimulate nuclear export of incompletely spliced RNA and increase production of virus particles. In contrast, human T-cell lymphotropic virus type 1 p30 is involved in the nuclear retention of the tax/rex mRNA leading to inhibition of virus expression and establishment of viral latency. How these two proteins, with apparently opposite functions, orchestrate virus replication and ensure vigilant control of viral gene expression is discussed.
Collapse
Affiliation(s)
- Hicham H Baydoun
- University of Kansas Medical Center, Department of Pathology and Laboratory Medicine, Center for Viral Oncology, KU Cancer Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
27
|
Takayanagi R, Ohashi T, Yamashita E, Kurosaki Y, Tanaka K, Hakata Y, Komoda Y, Ikeda S, Tsunetsugu-Yokota Y, Tanaka Y, Shida H. Enhanced replication of human T-cell leukemia virus type 1 in T cells from transgenic rats expressing human CRM1 that is regulated in a natural manner. J Virol 2007; 81:5908-18. [PMID: 17360758 PMCID: PMC1900248 DOI: 10.1128/jvi.02811-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 03/05/2007] [Indexed: 12/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia (ATL). To develop a better animal model for the investigation of HTLV-1 infection, we established a transgenic (Tg) rat carrying the human CRM1 (hCRM1) gene, which encodes a viral RNA transporter that is a species-specific restriction factor. At first we found that CRM1 expression is elaborately regulated through a pathway involving protein kinase C during lymphocyte activation, initially by posttranscriptional and subsequently by transcriptional mechanisms. This fact led us to use an hCRM1-containing bacterial artificial chromosome clone, which would harbor the entire regulatory and coding regions of the CRM1 gene. The Tg rats expressed hCRM1 protein in a manner similar to expression of intrinsic rat CRM1 in various organs. HTLV-1-infected T-cell lines derived from these Tg rats produced 100- to 10,000-fold more HTLV-1 than did T cells from wild-type rats, and the absolute levels of HTLV-1 were similar to those produced by human T cells. We also observed enhancement of the dissemination of HTLV-1 to the thymus in the Tg rats after intraperitoneal inoculation, although the proviral loads were low in both wild-type and Tg rats. These results support the essential role of hCRM1 in proper HTLV-1 replication and suggest the importance of this Tg rat as an animal model for HTLV-1.
Collapse
Affiliation(s)
- Ryo Takayanagi
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sinha-Datta U, Datta A, Ghorbel S, Dodon MD, Nicot C. Human T-cell lymphotrophic virus type I rex and p30 interactions govern the switch between virus latency and replication. J Biol Chem 2007; 282:14608-15. [PMID: 17360706 DOI: 10.1074/jbc.m611219200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human T-cell lymphotrophic virus type I Rex and p30 are both RNA binding regulatory proteins. Rex is a protein that interacts with a responsive element and stimulates nuclear export of incompletely spliced viral RNAs thereby increasing production of virus particles. In contrast, p30 is involved in the nuclear retention of the tax/rex mRNA leading to inhibition of virus expression and possible establishment of viral latency. How these two proteins, with apparent opposite functions, integrate in the viral replication cycle is unknown. Here, we demonstrate that Rex and p30 form ribonucleoprotein ternary complexes onto specific viral mRNA. Our results explain the selective nuclear retention of tax/rex but not other viral mRNAs by p30. Whereas p30 suppresses Rex expression, it did not affect Rex-mediated nuclear export of RNA containing the Rex response element. In contrast, Rex was able to counteract p30-mediated suppression of viral expression and restore cytoplasmic tax/rex mRNA and Tax protein expression. Together, our data demonstrate a complex regulatory mechanism of antagonizing post-transcriptional regulators evolved by human T-cell lymphotrophic virus type I to allow a vigilant control of viral gene expression.
Collapse
Affiliation(s)
- Uma Sinha-Datta
- Department of Microbiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
29
|
Baydoun H, Duc-Dodon M, Lebrun S, Gazzolo L, Bex F. Regulation of the human T-cell leukemia virus gene expression depends on the localization of regulatory proteins Tax, Rex and p30II in specific nuclear subdomains. Gene 2007; 386:191-201. [PMID: 17071021 DOI: 10.1016/j.gene.2006.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 08/31/2006] [Accepted: 09/07/2006] [Indexed: 12/11/2022]
Abstract
The human T-cell leukemia virus HTLV-1 encodes regulatory proteins, Tax, Rex and p30(II), which are involved in the control of viral gene expression at the transcriptional and post-transcriptional levels. Tax localizes in unique nuclear bodies that contain components of the transcription and splicing complexes. In this work, we studied the relative intracellular localizations of Tax, Rex and p30(II). Run-on transcription assays and immunocytochemistry at light and electron microscopy levels indicated that the Tax nuclear bodies included both de novo transcribed RNA and the RNA polymerase II form that is phosphorylated on its carboxy-terminal domain whereas contacts with chromatin were observed at the periphery of these nuclear bodies. Rex first accumulated in nucleolar foci and then spread across the whole nucleus to display a diffuse and punctuate nucleoplasmic distribution. This distribution of Rex was observed in HTLV-1 transformed lymphocytes and in COS cells expressing the HTLV-1 provirus. Rex colocalized with the cellular export factor CRM-1 in the nucleolar foci as well as in the nucleoplasmic foci that did not overlap with Tax nuclear bodies but were found at the boundaries of the Tax bodies. In addition, we demonstrate that p30(II) interacts with Rex and colocalizes with the Rex/CRM-1 complexes in the nucleoli leading to their clearance from the nucleoplasm. Our results suggest that transcripts originating from Tax-induced activation of gene expression at the boundaries of the Tax bodies are transported out of the nucleus by nucleoplasmic Rex/CRM-1 complexes that are first assembled in nucleolar foci. In addition, p30(II) might exert its negative effect on viral RNA transport by preventing the release of the Rex/CRM-1 complexes from sequestration in nucleolar foci. These data support the idea that the transcriptional and post-transcriptional regulation of HTLV-1 gene expression depends on the concentration of select regulatory complexes at specific area of the nucleus.
Collapse
Affiliation(s)
- Hicham Baydoun
- Institute for Microbiological Research J-M Wiame and Laboratory of Microbiology, University of Brussels, Belgium
| | | | | | | | | |
Collapse
|
30
|
Ariumi Y, Trono D. Ataxia-telangiectasia-mutated (ATM) protein can enhance human immunodeficiency virus type 1 replication by stimulating Rev function. J Virol 2006; 80:2445-52. [PMID: 16474151 PMCID: PMC1395391 DOI: 10.1128/jvi.80.5.2445-2452.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 12/12/2005] [Indexed: 11/20/2022] Open
Abstract
The ataxia-telangiectasia-mutated (ATM) kinase plays a central role in responses to various forms of DNA damage and has been suggested to facilitate human immunodeficiency virus type 1 (HIV-1) integration. Here, we describe a series of experiences that indicate that ATM can enhance HIV-1 replication by stimulating the action of the Rev viral posttranscriptional regulator. The Rev-dependent stimulation of viral late gene expression was observed with ATM-overexpressing cells, a result confirmed with a Rev-dependent reporter construct. Both parameters were also enhanced upon treatment of HeLa cells with caffeine, a xanthine that, in this cellular context, stimulates ATM activity. As well, decreased levels of virions with reduced infectivity were released by ATM knockdown cells. Notably, ATM overexpression did not stimulate the HIV-1 late gene expression within the context of Rev-independent constructs or the Rex-dependent production of capsid from human T-cell leukemia virus type 1 proviral constructs. Altogether, these results indicate that ATM can positively influence HIV-1 Rev function.
Collapse
Affiliation(s)
- Yasuo Ariumi
- Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
| | | |
Collapse
|
31
|
Zhang X, Hakata Y, Tanaka Y, Shida H. CRM1, an RNA transporter, is a major species-specific restriction factor of human T cell leukemia virus type 1 (HTLV-1) in rat cells. Microbes Infect 2006; 8:851-9. [PMID: 16504563 DOI: 10.1016/j.micinf.2005.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 10/07/2005] [Accepted: 10/10/2005] [Indexed: 01/09/2023]
Abstract
Rat ortholog of human CRM1 has been found to be responsible for the poor activity of viral Rex protein, which is essential for RNA export of human T cell leukemia virus type 1 (HTLV-1). Here, we examined the species-specific barrier of HTLV-1 by establishing rat cell lines, including both adherent and CD4(+) T cells, which express human CRM1 at physiological levels. We demonstrated that expression of human CRM1 in rat cells is not harmful to cell growth and is sufficient to restore the synthesis of the viral structural proteins, Gag and Env, at levels similar to those in human cells. Gag precursor proteins were efficiently processed to the mature forms in rat cells and released into the culture medium as sedimentable viral particles. An HTLV-1 pseudovirus infection system suggested that the released virus particles are fully infectious. Our newly developed reporter cell system revealed that Env proteins produced in rat cells are fully fusogenic, which is the basis for cell-cell HTLV-1 infection. Moreover, we show that the early steps in infection, from post-entry uncoating to integration into the host chromosomes, occur efficiently in rat cells. These results, in conjunction with reports describing efficient entry of HTLV-1 into rat cells, may indicate that HTLV-1 is unique in that its major species-specific barrier is determined by CRM1 at a viral RNA export step. These observations will enable us to construct a transgenic rat model expressing human CRM1 that is sensitive to HTLV-1 infection.
Collapse
Affiliation(s)
- Xianfeng Zhang
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | |
Collapse
|
32
|
Abstract
Adult T-cell leukemia (ATL) is an aggressive hematologic malignancy caused by human T-cell leukemia virus type I (HTLV-1). Tax, encoded by the HTLV-1 pX region, has been recognized by its pleiotropic actions to play a critical role in leukemogenesis. Three highly conserved 21-bp repeat elements located within the long terminal repeat, commonly referred to as Tax-responsive element 1 (TRE-1), are critical to Tax-mediated viral transcriptional activation through complex interaction with cyclic AMP-responsive element binding protein (CREB), CBP/p300 and PCAF. Tax has also been shown to activate transcription from a number of critical cellular genes through the NF-kappaB and serum-responsive factor pathways. Tax transactivation has been attributed to the protein's interaction with transcription factors, chromatin remodeling complexes, cell cycle and repair genes. In this review, we will discuss some of the latest findings on this fascinating viral activator and highlight its regulation of cellular factors including CREB, p300/CBP and their effect on RNA polymerase II and chromatin remodeling, as well as its role in cytoplasmic and nuclear function. We will highlight the possible contribution of each factor, discuss Tax's critical peptide domains and highlight its post-transcriptional modifications. It is quite obvious that, collectively, Tax's effects on a wide variety of cellular targets cooperate in promoting cell proliferation and leukemogenesis. In addition, the post-transcriptional effects of Rex play an important role in virus replication. Understanding these interactions at a molecular level will facilitate the targeted development of drugs to effectively inhibit or treat ATL.
Collapse
Affiliation(s)
- Fatah Kashanchi
- Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, 2300 Eye St, NW, Ross Hall, Washington, DC, USA.
| | | |
Collapse
|
33
|
Choi EA, Hope TJ. Mutational analysis of bovine leukemia virus Rex: identification of a dominant-negative inhibitor. J Virol 2005; 79:7172-81. [PMID: 15890956 PMCID: PMC1112096 DOI: 10.1128/jvi.79.11.7172-7181.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rex proteins of the delta-retroviruses act to facilitate the export of intron-containing viral RNAs. The Rex of bovine leukemia virus (BLV) is poorly characterized. To gain a better understanding of BLV Rex, we generated a reporter assay to measure BLV Rex function and used it to screen a series of point and deletion mutations. Using this approach, we were able to identify the nuclear export signal of BLV Rex. Further, we identified a dominant-negative form of BLV Rex. Protein localization analysis revealed that wild-type BLV Rex had a punctate nuclear localization and was associated with nuclear pores. In contrast, the dominant-negative BLV Rex mutation had a diffuse nuclear localization and no nuclear pore association. Overexpression of the dominant-negative BLV Rex altered the localization of the wild-type protein. This dominant-negative derivative of BLV Rex could be a useful tool to test the concept of intracellular immunization against viral infection in a large animal model.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Amino Acid Sequence
- Animals
- Base Sequence
- Cattle
- Cell Line
- DNA, Viral/genetics
- Gene Products, rex/antagonists & inhibitors
- Gene Products, rex/genetics
- Gene Products, rex/physiology
- Genes, Reporter
- Genes, Viral
- HeLa Cells
- Humans
- Leukemia Virus, Bovine/genetics
- Leukemia Virus, Bovine/pathogenicity
- Leukemia Virus, Bovine/physiology
- Molecular Sequence Data
- Mutation
- Point Mutation
- Sequence Deletion
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Eun-A Choi
- Department of Microbiology and Immunology, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| | | |
Collapse
|
34
|
Younis I, Green PL. The human T-cell leukemia virus Rex protein. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2005; 10:431-45. [PMID: 15574380 PMCID: PMC2659543 DOI: 10.2741/1539] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A critical step in the life cycle of complex retroviruses, including HTLV-1 and HTLV-2 is the ability of these viruses to adopt a mechanism by which the genome-length unspliced mRNA as well as the partially spliced mRNAs are exported from the nucleus instead of being subjected to splicing or degradation. In HTLV, this is accomplished through the expression of the viral Rex, which recognizes a specific response element on the incompletely spliced mRNAs, stabilizes them, inhibits their splicing, and utilizes the CRM1-dependent cellular pathway for transporting them from the nucleus to the cytoplasm. Rex itself is regulated by phosphorylation, which implies that proper activation of the protein in response to certain cellular cues is an important tool for the virus to ensure that specific viral gene expression is allowed only when the host cell can provide the best conditions for virion production. Having such a critical role in HTLV life cycle, Rex is indispensable for efficient viral replication, infection and spread. Indeed, Rex is considered to regulate the switch between the latent and productive phases of the HTLV life cycle. Without a functional Rex, the virus would still produce regulatory and some accessory gene products; however, structural and enzymatic post-transcriptional gene expression would be severely repressed, essentially leading to non-productive viral replication. More detailed understanding of the exact molecular mechanism of action of Rex will thus allow for better design of therapeutic drugs against Rex function and ultimately HTLV replication. Herein we summarize the progress made towards understanding Rex function and its role in the HTLV life cycle.
Collapse
Affiliation(s)
- Ihab Younis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210
| | - Patrick L. Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
35
|
Affiliation(s)
- Rozanne M Sandri-Goldin
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-4025, USA.
| |
Collapse
|
36
|
Narayan M, Younis I, D'Agostino DM, Green PL. Functional domain structure of human T-cell leukemia virus type 2 rex. J Virol 2004; 77:12829-40. [PMID: 14610204 PMCID: PMC262564 DOI: 10.1128/jvi.77.23.12829-12840.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rex protein of human T-cell leukemia virus (HTLV) acts posttranscriptionally to induce the cytoplasmic expression of the unspliced and incompletely spliced viral RNAs encoding the viral structural and enzymatic proteins and is therefore essential for efficient viral replication. Rex function requires nuclear import, RNA binding, multimerization, and nuclear export. In addition, it has been demonstrated that the phosphorylation status of HTLV-2 Rex (Rex-2) correlates with RNA binding and inhibition of splicing in vitro. Recent mutational analyses of Rex-2 revealed that the phosphorylation of serine residues 151 and 153 within a novel carboxy-terminal domain is critical for function in vivo. To further define the functional domain structure of Rex-2, we evaluated a panel of Rex-2 mutants for subcellular localization, RNA binding capacity, multimerization and trans-dominant properties, and the ability to shuttle between the nucleus and the cytoplasm. Rex-2 mutant S151A,S153A, which is defective in phosphorylation and function, showed diffuse cytoplasmic staining, whereas mutant S151D,S153D, previously shown to be functional and in a conformation corresponding to constitutive phosphorylation, displayed increased intense speckled staining in the nucleoli. In vivo RNA binding analyses indicated that mutant S151A,S153A failed to efficiently bind target RNA, while its phosphomimetic counterpart, S151D,S153D, bound twofold more RNA than wild-type Rex-2. Taken together, these findings provide direct evidence that the phosphorylation status of Rex-2 is linked to cellular trafficking and RNA binding capacity. Mutants with substitutions in either of the two putative multimerization domains or in the putative activation domain-nuclear export signal displayed a dominant negative phenotype as well as defects in multimerization and nucleocytoplasmic shuttling. Several carboxy-terminal mutants that displayed wild-type levels of phosphorylation and localized to the nucleolus were also partially impaired in shuttling. This is consistent with the hypothesis that the carboxy terminus of Rex-2 contains a novel domain that is required for efficient shuttling. This work thus provides a more detailed functional domain map of Rex-2 and further insight into its regulation of HTLV replication.
Collapse
Affiliation(s)
- Murli Narayan
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
37
|
Hakata Y, Yamada M, Shida H. A multifunctional domain in human CRM1 (exportin 1) mediates RanBP3 binding and multimerization of human T-cell leukemia virus type 1 Rex protein. Mol Cell Biol 2003; 23:8751-61. [PMID: 14612415 PMCID: PMC262658 DOI: 10.1128/mcb.23.23.8751-8761.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Revised: 05/19/2003] [Accepted: 08/29/2003] [Indexed: 11/20/2022] Open
Abstract
Human CRM1 (hCRM1) functions in the Rex-mediated mRNA export of human T-cell leukemia virus type 1 (HTLV-1) as an export receptor and as an inducing factor for Rex multimerization on its cognate RNA. Although there are only 24 amino acid differences between hCRM1 and rat CRM1 (rCRM1), rCRM1 can hardly support Rex activity, suggesting a role for rCRM1 as a determinant restricting the host range of HTLV-1. Here, we used a series of mutants, which were generated by interchanging residues of these CRM1s, to examine the relationship of hCRM1 functions. The functions for Rex multimerization and binding to nuclear export signals are mapped to different amino acid residues, and these are separable, suggesting that CRM1 not only functions as an export receptor but also participates in the formation of the RNA export complex through higher-ordered interaction with Rex. The region for the interaction with RanBP3, comprising four residues (amino acids [aa] 411, 414, 474, and 481), and the region for Rex multimerization, including two residues (aa 411 and 414), form an overlapped domain. Our results provide the molecular basis underlying the species-specific ability of HTLV-1 to propagate in human cells.
Collapse
Affiliation(s)
- Yoshiyuki Hakata
- Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo 060-0815, Japan
| | | | | |
Collapse
|
38
|
Franchini G, Nicot C, Johnson JM. Seizing of T Cells by Human T-Cell Leukemia⧸Lymphoma Virus Type 1. Adv Cancer Res 2003; 89:69-132. [PMID: 14587871 DOI: 10.1016/s0065-230x(03)01003-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) causes neoplastic transformation of human T-cells in a small number of infected individuals several years from infection. Several viral proteins act in concert to increase the responsiveness of T-cells to extracellular stimulation, modulate proapoptotic and antiapoptotic gene signals, enhance T-cell survival, and avoid immune recognition of the infected T-cells. The virus promotes T-cell proliferation by usurping several signaling pathways central to immune T-cell function. Viral proteins modulate the downstream effects of antigen stimulation and receptor-ligand interaction, suggesting that extracellular signals are important for HTLV-1 oncogenesis. Environmental factors such as chronic antigen stimulation are therefore important, as also suggested by epidemiological data. The ability of a given individual to respond to specific antigens is determined genetically. Thus, genetic and environmental factors, together with the virus, contribute to disease development. As in the case of other virus-associated cancers, HTLV-1-induced leukemia/lymphoma can be prevented by avoiding viral infection or by intervention during the asymptomatic phase with approaches able to interrupt the vicious cycle of virus-induced proliferation of a subset of T-cells. This review focuses on current knowledge of the mechanisms regulating HTLV-1 replication and the T-cell pathways that are usurped by viral proteins to induce and maintain clonal proliferation of infected T-cells in vitro. The relevance of these laboratory findings will be related to clonal T-cell proliferation and adult T-cell leukemia/lymphoma development in vivo.
Collapse
Affiliation(s)
- Genoveffa Franchini
- National Cancer Institute, Basic Research Laboratory, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
39
|
Hakata Y, Yamada M, Mabuchi N, Shida H. The carboxy-terminal region of the human immunodeficiency virus type 1 protein Rev has multiple roles in mediating CRM1-related Rev functions. J Virol 2002; 76:8079-89. [PMID: 12134013 PMCID: PMC155169 DOI: 10.1128/jvi.76.16.8079-8089.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2001] [Accepted: 05/12/2002] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) regulatory protein, Rev, mediates the nuclear export of unspliced and singly spliced viral mRNAs by bridging viral RNA and export receptor human CRM1 (hCRM1). Ribonucleoprotein complex formation, including the oligomerization of Rev proteins on viral RNA, must occur to allow export. We show here that Rev-Rev interactions, which are a basis of complex formation, can be initiated without cellular factors and are subsequently enhanced by hCRM1-Ran-GTP. Furthermore, we reveal functions for the Rev carboxy-terminal (C-terminal) region, which is well conserved among many HIV-1 strains, and for which no function has been reported. This region is required for the efficient binding of Rev to hCRM1 and consequently for nuclear export, Rev-Rev dimerization, and full Rev transactivator activity. Consistent with these results, a HIV-1 proviral plasmid that expresses a C-terminally truncated Rev mutant protein produces smaller amounts of the p24 antigen than does a plasmid that possesses an intact rev gene. These results indicate the functional importance of the C-terminal region for full Rev activity, which leads to efficient HIV-1 replication.
Collapse
|
40
|
Affiliation(s)
- Bryan R Cullen
- Howard Hughes Medical Institute, Department of Genetics, Room 426 CARL Building, Research Drive, Durham, NC 27710, USA
| |
Collapse
|
41
|
Hakata Y, Yamada M, Shida H. Rat CRM1 is responsible for the poor activity of human T-cell leukemia virus type 1 Rex protein in rat cells. J Virol 2001; 75:11515-25. [PMID: 11689633 PMCID: PMC114738 DOI: 10.1128/jvi.75.23.11515-11525.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2001] [Accepted: 08/25/2001] [Indexed: 11/20/2022] Open
Abstract
Rat models of human T-cell leukemia virus type 1 (HTLV-1)-related diseases such as adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis have been reported. However, these models do not completely reproduce human diseases partly because HTLV-1 replicates poorly in rats. We investigated here the possible reason for this. We found that the activity of Rex in rat cells is quite low compared to that in human cells. As Rex function depends largely on the CRM1 protein, whose human type (human CRM1 [hCRM1]) directly binds to Rex and exports it from the nucleus to the cytoplasm, we assessed whether rat CRM1 (rCRM1) could act as well as hCRM1 as a cofactor for Rex activity. We first cloned a cDNA encoding rCRM1 and found that both rCRM1 and hCRM1 could bind to and export Rex protein to the cytoplasm with similar efficiencies. However, unlike hCRM1, rCRM1 could hardly support Rex function because of its poor ability in inducing the Rex-Rex interaction required for RNA export into the cytoplasm. These observations suggest that the poor ability of rCRM1 to act as a cofactor for Rex function may be responsible for the poor replication of HTLV-1 in rats.
Collapse
Affiliation(s)
- Y Hakata
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
42
|
Narayan M, Kusuhara K, Green PL. Phosphorylation of two serine residues regulates human T-cell leukemia virus type 2 Rex function. J Virol 2001; 75:8440-8. [PMID: 11507189 PMCID: PMC115089 DOI: 10.1128/jvi.75.18.8440-8448.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function of the human T-cell leukemia virus (HTLV) Rex phosphoprotein is to increase the level of the viral structural and enzymatic gene products expressed from the incompletely spliced viral RNAs containing the Rex-responsive element. The phosphorylation of HTLV type 2 Rex (Rex-2), predominantly on serine residues, correlates with an altered conformation, as detected by a gel mobility shift, and is required for specific binding to its viral RNA target sequence. Thus, the phosphorylation state of Rex in the infected cell may be a switch that determines whether the virus exists in a latent or a productive state. A mutational analysis of Rex-2 that focused on serine and threonine residues was performed to identify regions or domains within Rex-2 important for function, with a specific emphasis on identifying Rex-2 phosphorylation mutants. We identified mutations near the carboxy terminus that disrupted a novel region or domain and abrogated Rex-2 function. Mutant M17 (with S151A and S153A mutations) displayed reduced phosphorylation that correlated with reduced function. Replacement of both serine residues 151 and 153 with phosphomimetic aspartic acid restored Rex-2 function and locked Rex-2 in a phosphorylated active conformation. A mutant containing threonine residues at positions 151 and 153 displayed a phenotype indistinguishable from that of wild-type Rex. Furthermore, this same mutant showed increased threonine phosphorylation and decreased serine phosphorylation, providing conclusive evidence that one or both of these residues are phosphorylated in vivo. Our results provide the first direct evidence that the phosphorylation of Rex-2 is important for function. Further understanding of HTLV Rex phosphorylation will provide insight into the regulatory control of HTLV replication and ultimately the pathobiology of HTLV.
Collapse
Affiliation(s)
- M Narayan
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
43
|
Abstract
Retroviral replication is highly dependent on post-transcriptional regulation because a single primary transcript directs synthesis of many viral proteins. The identification and characterization of two post-transcriptional regulatory systems (Rev/RRE and CTE) revealed the efficient use of cellular transport pathways by retroviruses to achieve production of infectious progeny virus. The Rev/RRE system of HIV-1 consists of the viral Rev protein which binds to its target sequence on incompletely spliced RNAs and channels these into the CRM1-dependent export pathway, which is normally used for export of cellular proteins and RNAs (U snRNAs and 5 S rRNA). The CTE, on the other hand, directly recruits the cellular mRNA export receptor TAP to the viral RNA. Both systems have in common that they recruit a key player of a specific cellular export pathway and this recruitment appears to out-compete the respective cellular target molecules. The fact that CTE can functionally substitute for Rev/RRE, yielding a replication-competent virus, indicates that very short sequence elements are sufficient for post-transcriptional control. The presence of short dominant export signals could relieve the selective pressure on the remainder of the genome to maintain a sequence that is easily exported. The resultant increase in permitted sequence space may increase the potential for immune escape, thereby providing a selective advantage for the virus. Replication of the CTE-dependent HIV-1 variant is significantly impaired compared with the wild-type virus. Considering that post-transcriptional control in the case of HIV is also used to provide a temporal switch from the early phase of regulatory protein expression to the late phase of virion production, one may suggest that the CRM1 export pathway is advantageous for the rapid delivery of large amounts of cargo (i.e. HIV RNA). This would be in accordance with its normal function because CRM1 has been shown to direct the nuclear export of cellular regulatory proteins which must be accomplished rapidly as well. In summary, retroviruses have evolved fascinating ways to deal with their cellular environment and to make use of cellular transport pathways, allowing nuclear export of intron-containing RNAs which are normally restricted to the nucleus. Specific signals on the viral RNAs recruit key factors of cellular export, thus bypassing these restrictions and ensuring efficient viral replication.
Collapse
Affiliation(s)
- H Wodrich
- Heinrich-Pette-Institut für experimentelle Virologie und Immunologie an der Universität Hamburg, 20251 Hamburg, Germany
| | | |
Collapse
|
44
|
Neumann M, Afonina E, Ceccherini-Silberstein F, Schlicht S, Erfle V, Pavlakis GN, Brack-Werner R. Nucleocytoplasmic transport in human astrocytes: decreased nuclear uptake of the HIV Rev shuttle protein. J Cell Sci 2001; 114:1717-29. [PMID: 11309202 DOI: 10.1242/jcs.114.9.1717] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Astrocytes are cellular targets for the human immunodeficiency virus (HIV) that limit virus production, owing, at least in part, to the diminished functionality of the viral post-transcriptional stimulatory factor Rev. To understand the trafficking process in astrocytes, we compared nucleocytoplasmic transport of Rev and various proteins with well-characterized nucleocytoplasmic transport features in human astrocytes and control cells (HeLa). Localization and trafficking characteristics of several cellular and viral proteins, as well as nuclear trafficking of classical peptide signals upon microinjection were similar in both cell types, indicating maintenance of general features of nucleocytoplasmic transport in astrocytes. Quantification of fluorescence in living cells expressing Rev fused to green fluorescent protein (GFP) indicated a strong shift in intracellular distribution of Rev in astrocytes, with 50–70% of Rev in the cytoplasm, whereas the cytoplasmic proportion of Rev in HeLa cells is around 10%. The dynamics of nucleocytoplasmic trafficking of Rev were compared in astrocytes and Rev-permissive cells by monitoring migration of Rev-GFP in cell fusions using highly sensitive time-lapse imaging. Nuclear uptake of Rev was dramatically retarded in homo-polykaryons of astrocytes compared with control cells. Diminished nuclear uptake of Rev was also observed in hetero-polykaryons of Rev-permissive cells and astrocytes. These results indicate that astrocytes contain a cytoplasmic activity that interferes with nuclear uptake of Rev. Our studies suggest a model in which Rev is prevented from functioning efficiently in astrocytes by specific alterations of its nucleocytoplasmic trafficking properties. http://www.biologists.com/JCS/movies/jcs1709.html
Collapse
Affiliation(s)
- M Neumann
- Institute of Molecular Virology, GSF National Research Center for Environment and Health, D-85764 Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Boese A, Galli U, Geyer M, Sauter M, Mueller-Lantzsch N. The Rev/Rex homolog HERV-K cORF multimerizes via a C-terminal domain. FEBS Lett 2001; 493:117-21. [PMID: 11287007 DOI: 10.1016/s0014-5793(01)02280-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Expression of human endogenous retrovirus K (HERV-K) is associated with germ-cell neoplasia. HERV-K encodes a protein of the Rev/Rex family, cORF, that supports cellular transformation and binds the promyelocytic leukemia zinc finger (PLZF) protein implicated in spermatogenesis. Rev/Rex function invariably depends on multimerization. Here we show that cORF likewise self-associates to form higher-order oligomers. Amino acids (aa) 47-87 in cORF are sufficient, aa 75-87 essential for self-association. Consistently, this domain is predicted to form a hydrophobic alpha-helix that may represent an oligomerization interface. The existence of a dimerization-competent cORF mutant lacking PLZF-binding activity (cORF47-87) suggests a way of dominant negative inhibition of the proposed tumor susceptibility factor cORF.
Collapse
Affiliation(s)
- A Boese
- Institut für Medizinische Mikrobiologie und Hygiene, Abteilung, Virologie, Haus 47, 66421 Hamburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Abstract
SUMMARY In recent years, our understanding of macromolecular transport processes across the nuclear envelope has grown dramatically, and a large number of soluble transport receptors mediating either nuclear import or nuclear export have been identified. Most of these receptors belong to one large family of proteins, all of which share homology with the protein import receptor importin beta (also named karyopherin beta). Members of this family have been classified as importins or exportins on the basis of the direction they carry their cargo. To date, the family includes 14 members in the yeast Saccharomyces cerevisiae and at least 22 members in humans. Importins and exportins are regulated by the small GTPase Ran, which is thought to be highly enriched in the nucleus in its GTP-bound form. Importins recognize their substrates in the cytoplasm and transport them through nuclear pores into the nucleus. In the nucleoplasm, RanGTP binds to importins, inducing the release of import cargoes. In contrast, exportins interact with their substrates only in the nucleus in the presence of RanGTP and release them after GTP hydrolysis in the cytoplasm, causing disassembly of the export complex. Thus, common features of all importin-beta-like transport factors are their ability to shuttle between the nucleus and the cytoplasm, their interaction with RanGTP as well as their ability to recognize specific transport substrates.
Collapse
Affiliation(s)
- Anne-Christine Ström
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720-3200, USA
| | - Karsten Weis
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720-3200, USA
| |
Collapse
|
47
|
Yang J, Bogerd H, Le SY, Cullen BR. The human endogenous retrovirus K Rev response element coincides with a predicted RNA folding region. RNA (NEW YORK, N.Y.) 2000; 6:1551-1564. [PMID: 11105755 PMCID: PMC1370025 DOI: 10.1017/s135583820000100x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Human endogenous retrovirus K (HERV-K) is the name given to an approximately 30-million-year-old family of endogenous retroviruses present at >50 copies per haploid human genome. Previously, the HERV-K were shown to encode a nuclear RNA export factor, termed K-Rev, that is the functional equivalent of the H-Rev protein encoded by human immunodeficiency virus type 1. HERV-K was also shown to contain a cis-acting target element, the HERV-K Rev response element (K-RRE), that allowed the nuclear export of linked RNA transcripts in the presence of either K-Rev or H-Rev. Here, we demonstrate that the functionally defined K-RRE coincides with a statistically highly significant unusual RNA folding region and present a potential RNA secondary structure for the approximately 416-nt K-RRE. Both in vitro and in vivo assays of sequence specific RNA binding were used to map two primary binding sites for K-Rev, and one primary binding site for H-Rev, within the K-RRE. Of note, all three binding sites map to discrete predicted RNA stem-loop subdomains within the larger K-RRE structure. Although almost the entire 416-nt K-RRE was required for the activation of nuclear RNA export in cells expressing K-Rev, mutational inactivation of the binding sites for K-Rev resulted in the selective loss of the K-RRE response to K-Rev but not to H-Rev. Together, these data strongly suggest that the K-RRE, like the H-RRE, coincides with an extensive RNA secondary structure and identify specific sites within the K-RRE that can recruit either K-Rev or H-Rev to HERV-K RNA transcripts.
Collapse
Affiliation(s)
- J Yang
- Department of Genetics and Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
48
|
Bogerd HP, Wiegand HL, Yang J, Cullen BR. Mutational definition of functional domains within the Rev homolog encoded by human endogenous retrovirus K. J Virol 2000; 74:9353-61. [PMID: 11000203 PMCID: PMC112363 DOI: 10.1128/jvi.74.20.9353-9361.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2000] [Accepted: 07/18/2000] [Indexed: 01/06/2023] Open
Abstract
Nuclear export of the incompletely spliced mRNAs encoded by several complex retroviruses, including human immunodeficiency virus type 1 (HIV-1), is dependent on a virally encoded adapter protein, termed Rev in HIV-1, that directly binds both to a cis-acting viral RNA target site and to the cellular Crm1 export factor. Human endogenous retrovirus K, a family of ancient endogenous retroviruses that is not related to the exogenous retrovirus HIV-1, was recently shown to also encode a Crm1-dependent nuclear RNA export factor, termed K-Rev. Although HIV-1 Rev and K-Rev display little sequence identity, they share the ability not only to bind to Crm1 and to RNA but also to form homomultimers and shuttle between nucleus and cytoplasm. We have used mutational analysis to identify sequences in the 105-amino-acid K-Rev protein required for each of these distinct biological activities. While mutations in K-Rev that inactivate any one of these properties also blocked K-Rev-dependent nuclear RNA export, several K-Rev mutants were comparable to wild type when assayed for any of these individual activities yet nevertheless defective for RNA export. Although several nonfunctional K-Rev mutants acted as dominant negative inhibitors of K-Rev-, but not HIV-1 Rev-, dependent RNA export, these were not defined by their inability to bind to Crm1, as is seen with HIV-1 Rev. In total, this analysis suggests a functional architecture for K-Rev that is similar to, but distinct from, that described for HIV-1 Rev and raises the possibility that viral RNA export mediated by the approximately 25 million-year-old K-Rev protein may require an additional cellular cofactor that is not required for HIV-1 Rev function.
Collapse
Affiliation(s)
- H P Bogerd
- Howard Hughes Medical Institute and Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
49
|
Ristea S, Dobbelstein M, Roth J. Rev protein of human immunodeficiency virus type 1 and cellular exportin 1 protein relocalize each other to a subnucleolar structure. AIDS Res Hum Retroviruses 2000; 16:857-65. [PMID: 10875611 DOI: 10.1089/08892220050042792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The exportin 1/crml protein associates with leucine-rich nuclear export signals (NESs) and mediates nuclear export in various experimental systems. We show here that exportin 1 and the NES-containing human immunodeficiency virus (HIV) type 1 Rev protein relocalize each other to a characteristic dotlike structure within the nucleoli of human cells. On treatment with actinomycin D, Rev remains in these dots longer than in the rest of the nucleoli, arguing that the nucleolar dots do not represent sites of high transport turnover. Transient expression of exportin 1 strongly reduces the expression of a reporter that depends on the export of HIV RNA. When export of hepatitis B virus RNA and simple retrovirus RNA, as well as spliced mRNA, was assayed in this way, exportin 1 inhibited reporter expression to a lesser extent. Thus, an excess of exportin 1 may downregulate Rev-mediated RNA export by sequestering Rev to a subnucleolar structure.
Collapse
Affiliation(s)
- S Ristea
- Institut für Virologie, Universität Marburg, Germany
| | | | | |
Collapse
|
50
|
Kimura T, Hashimoto I, Yamamoto A, Nishikawa M, Fujisawa JI. Rev-dependent association of the intron-containing HIV-1 gag mRNA with the nuclear actin bundles and the inhibition of its nucleocytoplasmic transport by latrunculin-B. Genes Cells 2000; 5:289-307. [PMID: 10792467 DOI: 10.1046/j.1365-2443.2000.00326.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND A hallmark of HIV-1 gene expression is that unspliced genomic RNA, which also acts as mRNA for the expression of Gag/Pol, is exported to the cytoplasm. Rev directs this transport through the nuclear export signal (NES). RESULTS Fluorescence in situ hybridization and immunocytochemistry demonstrated that gag mRNA, Rev, and its NES receptor, CRM1, and RanGTPase formed nuclear tracks which were congruent with underlying beta-actin bundles. Actin bundle formation was confirmed electron-microscopically. These bundles were observed upon Rev-containing gag RNP formation. The loss of bundles was associated with the nuclear retention of gag mRNA. Reverse transcription-polymerase chain reaction analysis of both cytoplasmic and nuclear gag mRNAs demonstrated that disruption of nuclear actin filament formation by latrunculin-B (LAT-B), an F-actin depolymerizing compound, resulted in the dose-dependent inhibition of gag mRNA export. The differential subtyping of the mRNA-positive cells confirmed morphologically the effect of LAT-B treatment. The export inhibition was specific to gag mRNA and export of fully spliced HIV-1 tat/rev mRNAs as well as cellular GAPDH mRNA was not affected by the compound. CONCLUSIONS Nuclear beta-actin bundles are suggested to be functionally involved in the Rev-dependent nucleocytoplasmic transport of intron-containing HIV-1 gag mRNA.
Collapse
MESH Headings
- Actins/metabolism
- Biological Transport/drug effects
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Nucleus/chemistry
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cytoplasm/drug effects
- Cytoplasm/metabolism
- DNA, Recombinant/genetics
- DNA, Recombinant/metabolism
- Dose-Response Relationship, Drug
- Fluorescent Antibody Technique, Indirect
- GTP Phosphohydrolases/metabolism
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- HeLa Cells
- Humans
- In Situ Hybridization, Fluorescence
- Introns
- Karyopherins
- Microscopy, Immunoelectron
- Plasmids
- Protein Binding
- Protein Precursors/genetics
- Protein Precursors/metabolism
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Cytoplasmic and Nuclear
- Ribonucleoproteins/metabolism
- Thiazoles/pharmacology
- Thiazolidines
- ran GTP-Binding Protein/metabolism
- Exportin 1 Protein
Collapse
Affiliation(s)
- T Kimura
- Departments of; Microbiology and; Physiology, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan
| | | | | | | | | |
Collapse
|