1
|
HIV-1 Vaccines Based on Antibody Identification, B Cell Ontogeny, and Epitope Structure. Immunity 2018; 48:855-871. [DOI: 10.1016/j.immuni.2018.04.029] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
|
2
|
Residues in the gp41 Ectodomain Regulate HIV-1 Envelope Glycoprotein Conformational Transitions Induced by gp120-Directed Inhibitors. J Virol 2017; 91:JVI.02219-16. [PMID: 28003492 DOI: 10.1128/jvi.02219-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/15/2016] [Indexed: 01/08/2023] Open
Abstract
Interactions between the gp120 and gp41 subunits of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer maintain the metastable unliganded form of the viral spike. Binding of gp120 to the receptor, CD4, changes the Env conformation to promote gp120 interaction with the second receptor, CCR5 or CXCR4. CD4 binding also induces the transformation of Env into the prehairpin intermediate, in which the gp41 heptad repeat 1 (HR1) coiled coil is assembled at the trimer axis. In nature, HIV-1 Envs must balance the requirements to maintain the noncovalent association of gp120 with gp41 and to evade the host antibody response with the need to respond to CD4 binding. Here we show that the gp41 HR1 region contributes to gp120 association with the unliganded Env trimer. Changes in particular amino acid residues in the gp41 HR1 region decreased the efficiency with which Env moved from the unliganded state. Thus, these gp41 changes decreased the sensitivity of HIV-1 to cold inactivation and ligands that require Env conformational changes to bind efficiently. Conversely, these gp41 changes increased HIV-1 sensitivity to small-molecule entry inhibitors that block Env conformational changes induced by CD4. Changes in particular gp41 HR1 amino acid residues can apparently affect the relative stability of the unliganded state and CD4-induced conformations. Thus, the gp41 HR1 region contributes to the association with gp120 and regulates Env transitions from the unliganded state to downstream conformations.IMPORTANCE The development of an efficient vaccine able to prevent HIV infection is a worldwide priority. Knowledge of the envelope glycoprotein structure and the conformational changes that occur after receptor engagement will help researchers to develop an immunogen able to elicit antibodies that block HIV-1 transmission. Here we identify residues in the HIV-1 transmembrane envelope glycoprotein that stabilize the unliganded state by modulating the transitions from the unliganded state to the CD4-bound state.
Collapse
|
3
|
Leaman DP, Zwick MB. Increased functional stability and homogeneity of viral envelope spikes through directed evolution. PLoS Pathog 2013; 9:e1003184. [PMID: 23468626 PMCID: PMC3585149 DOI: 10.1371/journal.ppat.1003184] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 12/21/2012] [Indexed: 11/19/2022] Open
Abstract
The functional HIV-1 envelope glycoprotein (Env) trimer, the target of anti-HIV-1 neutralizing antibodies (Abs), is innately labile and coexists with non-native forms of Env. This lability and heterogeneity in Env has been associated with its tendency to elicit non-neutralizing Abs. Here, we use directed evolution to overcome instability and heterogeneity of a primary Env spike. HIV-1 virions were subjected to iterative cycles of destabilization followed by replication to select for Envs with enhanced stability. Two separate pools of stable Env variants with distinct sequence changes were selected using this method. Clones isolated from these viral pools could withstand heat, denaturants and other destabilizing conditions. Seven mutations in Env were associated with increased trimer stability, primarily in the heptad repeat regions of gp41, but also in V1 of gp120. Combining the seven mutations generated a variant Env with superior homogeneity and stability. This variant spike moreover showed resistance to proteolysis and to dissociation by detergent. Heterogeneity within the functional population of hyper-stable Envs was also reduced, as evidenced by a relative decrease in a proportion of virus that is resistant to the neutralizing Ab, PG9. The latter result may reflect a change in glycans on the stabilized Envs. The stabilizing mutations also increased the proportion of secreted gp140 existing in a trimeric conformation. Finally, several Env-stabilizing substitutions could stabilize Env spikes from HIV-1 clades A, B and C. Spike stabilizing mutations may be useful in the development of Env immunogens that stably retain native, trimeric structure. A vaccine is needed to prevent HIV/AIDS but eliciting potent neutralizing antibodies (Abs) against primary isolates has been a major stumbling block. The target of HIV-1 neutralizing antibodies is the native envelope glycoprotein (Env) trimer that is displayed on the surface of the virus. Virion associated Env typically elicits antibodies that cannot neutralize primary viruses. However, because native Env trimers can dissociate and coexist with non-fusogenic forms of Env interpreting these results are difficult. Here, we used directed evolution to select for virions that display native Env with increased stability and homogeneity. HIV-1 virions were subjected to increasingly harsh treatments that destabilize Env trimers, and the variants that survived each treatment were expanded. We could identify seven different mutations in Env that increased its stability of function in the face of multiple destabilizing treatments. When these mutations were combined, the resulting mutant Env trimers were far more stable than the original Env protein. Incorporating trimer-stabilizing mutations into Env-based immunogens should facilitate vaccine research by mitigating the confounding effects of non-native byproducts of Env decay. A similar approach may be used on other pathogens with potential vaccine targets that are difficult to isolate and maintain in a native form.
Collapse
Affiliation(s)
- Daniel P. Leaman
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael B. Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Xiang SH, Pacheco B, Bowder D, Yuan W, Sodroski J. Characterization of a dual-tropic human immunodeficiency virus (HIV-1) strain derived from the prototypical X4 isolate HXBc2. Virology 2013; 438:5-13. [PMID: 23369572 DOI: 10.1016/j.virol.2013.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/21/2012] [Accepted: 01/02/2013] [Indexed: 11/25/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) coreceptor usage and tropism can be modulated by the V3 loop sequence of the gp120 exterior envelope glycoprotein. For coreceptors, R5 viruses use CCR5, X4 viruses use CXCR4, and dual-tropic (R5X4) viruses use either CCR5 or CXCR4. To understand the requirements for dual tropism, we derived and analyzed a dual-tropic variant of an X4 virus. Changes in the V3 base, which allow gp120 to interact with the tyrosine-sulfated CCR5 N-terminus, and deletion of residues 310/311 in the V3 tip were necessary for efficient CCR5 binding and utilization. Thus, both sets of V3 changes allowed CCR5 utilization with retention of the ability to use CXCR4. We also found that the stable association of gp120 with the trimeric envelope glycoprotein complex in R5X4 viruses, as in X4 viruses, is less sensitive to V3 loop changes than gp120-trimer association in R5 viruses.
Collapse
Affiliation(s)
- Shi-hua Xiang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Microbiology and Immunobiology, Division of AIDS, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
5
|
Lineage-specific differences between human and simian immunodeficiency virus regulation of gp120 trimer association and CD4 binding. J Virol 2012; 86:8974-86. [PMID: 22696649 DOI: 10.1128/jvi.01076-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metastable conformations of the gp120 and gp41 envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) must be maintained in the unliganded state of the envelope glycoprotein trimer. Binding of gp120 to the primary receptor, CD4, triggers the transition to an open conformation of the trimer, promoting interaction with the CCR5 chemokine receptor and ultimately leading to gp41-mediated virus-cell membrane fusion and entry. Topological layers in the gp120 inner domain contribute to gp120-trimer association in the unliganded state and to CD4 binding. Here we describe similarities and differences between HIV-1 and SIVmac gp120. In both viruses, the gp120 N/C termini and the inner domain β-sandwich and layer 2 support the noncovalent association of gp120 with the envelope glycoprotein trimer. Layer 1 of the SIVmac gp120 inner domain contributes more to trimer association than the corresponding region of HIV-1 gp120. On the other hand, layer 1 plays an important role in stabilizing the CD4-bound conformation of HIV-1 but not SIVmac gp120 and thus contributes to HIV-1 binding to CD4. In SIVmac, CD4 binding is instead enhanced by tryptophan 375, which fills the Phe 43 cavity of gp120. Activation of SIVmac by soluble CD4 is dependent on tryptophan 375 and on layer 1 residues that determine a tight association of gp120 with the trimer. Distinct biological requirements for CD4 usage have resulted in lineage-specific differences in the HIV-1 and SIV gp120 structures that modulate trimer association and CD4 binding.
Collapse
|
6
|
Saha P, Bhattacharyya S, Kesavardhana S, Miranda ER, Ali PSS, Sharma D, Varadarajan R. Designed Cyclic Permutants of HIV-1 gp120: Implications for Envelope Trimer Structure and Immunogen Design. Biochemistry 2012; 51:1836-47. [DOI: 10.1021/bi300003v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Piyali Saha
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | - Sannula Kesavardhana
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | - P. Shaik Syed Ali
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Deepak Sharma
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Raghavan Varadarajan
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
7
|
HIV-2 A-subtype gp125c₂-v₃-c₃ mutations and their association with CCR5 and CXCR4 tropism. Arch Virol 2011; 156:1943-51. [PMID: 21814863 DOI: 10.1007/s00705-011-1075-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/11/2011] [Indexed: 10/17/2022]
Abstract
The early events of the HIV replication cycle involve the interaction between viral envelope glycoproteins and their cellular CD4-chemokine (CCR5/CXCR4) receptor complex. In this study, for the first time, the HIV-2 A-subtype gp125(C2-V3-C3) mutations and their tropism association were characterized by analyzing 149 HIV-2 sequences from the Los Alamos database. The analysis has strengthened the importance of C2-V3-C3 region as a determinant factor for co-receptor selection. Moreover, statistically significant correlations were observed between C2-V3-C3 mutations, and several correlated mutations were associated with CXCR4 and CCR5 co-receptor usage. A dendrogram showed two distinct clusters, with numerous associated mutations grouped, thus dividing CCR5- and CXCR4-tropic viruses. Fourteen X4-tropic virus mutations, all in V3 and C3 domains and forming highly significant subclusters, were found. Finally, R5 associations, two strong subclusters were observed, grouping several C2-V3-C3 mutated positions. These data indicate the possible contribution of C2-V3-C3 mutational patterns in regulating HIV-2 tropism.
Collapse
|
8
|
Flow cytometry based identification of simian immunodeficiency virus Env-specific B lymphocytes. J Immunol Methods 2011; 370:75-85. [PMID: 21689659 DOI: 10.1016/j.jim.2011.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 05/19/2011] [Accepted: 05/31/2011] [Indexed: 12/12/2022]
Abstract
SIV infection of macaques is the most widely employed model for preclinical AIDS vaccine and pathogenesis research. In macaques, high-titer virus-specific antibodies are induced by infection, and antibody responses can drive evolution of viral escape variants. However, neutralizing antibodies (Nabs) induced in response to SIVmac239 and SIVmac251 infection or immunization are generally undetectable or of low titer, and the identification and cloning of potent Nabs from SIVmac-infected macaques remains elusive. Based on recent advances in labeling HIV-specific B lymphocytes [1-3], we have generated recombinant, secreted, soluble SIVmac envelope (Env) proteins (gp120 and gp140) for detection and quantification of SIVmac Env-specific B lymphocytes. In contrast to HIV-1, we found that soluble SIVmac239 gp140 retains the ability to form stable oligomers without the necessity for introducing additional, stabilizing modifications. Soluble oligomeric gp140 reacted with rhesus anti-SIV Env-specific monoclonal antibodies (MAbs), and was used to deplete Env-specific antibodies with SIV neutralization capability from plasma taken from a rhesus macaque immunized with live attenuated SIVmac239∆nef. Soluble gp120 and gp140 bound to SIV-specific immortalized B cells, and to SIV Env-specific B lymphocytes in peripheral blood of immunized animals. These reagents will be useful for analyzing development of Env-specific B cell responses in preclinical studies using SIV-infected or vaccinated rhesus macaques.
Collapse
|
9
|
Dimonte S, Mercurio F, Svicher V, D'Arrigo R, Perno CF, Ceccherini-Silberstein F. Selected amino acid mutations in HIV-1 B subtype gp41 are associated with specific gp120v₃ signatures in the regulation of co-receptor usage. Retrovirology 2011; 8:33. [PMID: 21569409 PMCID: PMC3117778 DOI: 10.1186/1742-4690-8-33] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 05/12/2011] [Indexed: 12/30/2022] Open
Abstract
Background The third variable loop (V3) of the HIV-1 gp120 surface protein is a major determinant of cellular co-receptor binding. However, HIV-1 can also modulate its tropism through other regions in gp120, such as V1, V2 and C4 regions, as well as in the gp41 protein. Moreover, specific changes in gp41 are likely to be responsible for of damage in gp120-CCR5 interactions, resulting in potential resistance to CCR5 inhibitors. In order to genetically characterize the two envelope viral proteins in terms of co-receptor usage, we have analyzed 526 full-length env sequences derived from HIV-1 subtype-B infected individuals, from our and public (Los Alamos) databases. The co-receptor usage was predicted by the analysis of V3 sequences using Geno2Pheno (G2P) algorithm. The binomial correlation phi coefficient was used to assess covariation among gp120V3 and gp41 mutations; subsequently the average linkage hierarchical agglomerative clustering was performed. Results According to G2P false positive rate (FPR) values, among 526 env-sequences analyzed, we further characterized 196 sequences: 105 with FPR <5% and 91 with FPR >70%, for X4-using and R5-using viruses, respectively. Beyond the classical signatures at 11/25 V3 positions (S11S and E25D, R5-tropic viruses; S11KR and E25KRQ, X4-tropic viruses), other specific V3 and gp41 mutations were found statistically associated with the co-receptor usage. Almost all of these specific gp41 positions are exposed on the surface of the glycoprotein. By the covariation analysis, we found several statistically significant associations between V3 and gp41 mutations, especially in the context of CXCR4 viruses. The topology of the dendrogram showed the existence of a cluster associated with R5-usage involving E25DV3, S11SV3, T22AV3, S129DQgp41 and A96Ngp41 signatures (bootstrap = 0.88). Conversely, a large cluster was found associated with X4-usage involving T8IV3, S11KRV3, F20IVYV3, G24EKRV3, E25KRV3, Q32KRV3, A30Tgp41, A189Sgp41, N195Kgp41 and L210Pgp41 mutations (bootstrap = 0.84). Conclusions Our results show that gp120V3 and several specific amino acid changes in gp41 are associated together with CXCR4 and/or CCR5 usage. These findings implement previous observations that determinants of tropism may reside outside the V3-loop, even in the gp41. Further studies will be needed to confirm the degree to which these gp41 mutations contribute directly to co-receptor use.
Collapse
|
10
|
An efficient production and characterization of HIV-1 gp41 ectodomain with fusion peptide in Escherichia coli system. J Biotechnol 2011; 153:48-55. [PMID: 21419812 DOI: 10.1016/j.jbiotec.2011.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 03/08/2011] [Accepted: 03/10/2011] [Indexed: 11/22/2022]
Abstract
We demonstrated a high level expression and purification of recombinant human immunodeficiency virus type 1 gp41 ectodomain (gp41e-FP) using glass bead approach with a final yield of 12±2mg/L bacterial culture. The proper folding of gp41e-FP encompassing the fusion peptide (FP) was ascertained by circular dichroism (CD) measurement and recognition by NC-1 antibody. The latter assay revealed stabilization of the gp41 coiled coil structure in the presence of liposome dispersion. The differential affinity of gp41e-FP and gp41e (devoid of FP) by NC-1 suggested an aggregated state for gp41e-FP and/or possible proximity of the fusion peptide domain to the coiled coil structure of gp41 ectodomain. Perfluorooctanoate (PFO)-PAGE electrophoresis experiment revealed the trimeric propensity of the recombinant gp41e-FP. In comparison to gp41e, the lipid mixing activity of gp41e-FP was two-fold higher suggesting a role of FP in promoting membrane fusion. The present approach to efficiently and quantitatively preparing the functional full-length recombinant gp41 ectodomain protein can be employed for structural and biomedical investigations and the extraction of other inclusion body-embedded recombinant proteins.
Collapse
|
11
|
Jones KL, Smyth RP, Pereira CF, Cameron PU, Lewin SR, Jaworowski A, Mak J. Early events of HIV-1 infection: can signaling be the next therapeutic target? J Neuroimmune Pharmacol 2011; 6:269-83. [PMID: 21373988 DOI: 10.1007/s11481-011-9268-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 02/23/2011] [Indexed: 01/08/2023]
Abstract
Intracellular signaling events are signposts of biological processes, which govern the direction and action of biological activities. Through millions of years of evolution, pathogens, such as viruses, have evolved to hijack host cell machinery to infect their targets and are therefore dependent on host cell signaling for replication. This review will detail our current understanding of the signaling events that are important for the early steps of HIV-1 replication. More specifically, the therapeutic potential of signaling events associated with chemokine coreceptors, virus entry, viral synapses, and post-entry processes will be discussed. We argue that these pathways may represent novel targets for antiviral therapy.
Collapse
Affiliation(s)
- Kate L Jones
- Centre for Virology, Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | | | | | | | | | | | | |
Collapse
|
12
|
Conformational characterization of aberrant disulfide-linked HIV-1 gp120 dimers secreted from overexpressing cells. J Virol Methods 2010; 168:155-61. [PMID: 20471426 DOI: 10.1016/j.jviromet.2010.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/01/2010] [Accepted: 05/06/2010] [Indexed: 11/23/2022]
Abstract
The envelope (Env) glycoproteins of human immunodeficiency virus (HIV-1) mediate viral entry and are also the primary target of neutralizing antibodies. The gp160 envelope glycoprotein precursor undergoes proteolytic cleavage in the Golgi complex to produce the gp120 exterior glycoprotein and the gp41 transmembrane glycoprotein, which remain associated non-covalently in the trimeric Env complex. Monomeric soluble gp120 has been used extensively to investigate conformational states, structure, antigenicity and immunogenicity of the HIV-1 Env glycoproteins. Expression of gp120 alone (without gp41) leads to the accumulation not only of monomeric gp120 but also an aberrant dimeric form. The gp120 dimers were sensitive to reducing agents. The formation of gp120 dimers was disrupted by a single amino acid change in the inner domain, and was reduced by removal of the V1/V2 variable loops or the N and C termini. Epitopes on the gp120 inner domain and the chemokine receptor-binding surface were altered or occluded by gp120 dimerization. Awareness of the existence and properties of gp120 dimers should assist interpretation of studies of this key viral protein.
Collapse
|
13
|
Neutralization efficiency is greatly enhanced by bivalent binding of an antibody to epitopes in the V4 region and the membrane-proximal external region within one trimer of human immunodeficiency virus type 1 glycoproteins. J Virol 2010; 84:7114-23. [PMID: 20463081 DOI: 10.1128/jvi.00545-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Most antibodies are multivalent, with the potential to bind with high avidity. However, neutralizing antibodies commonly bind to virions monovalently. Bivalent binding of a monoclonal antibody (MAb) to a virion has been documented only in a single case. Thus, the role of high avidity in antibody-mediated neutralization of viruses has not been defined clearly. In this study, we demonstrated that when an artificial 2F5 epitope was inserted in the gp120 V4 region so that an HIV-1 envelope glycoprotein (Env) trimer contains a natural 2F5 epitope in the gp41 membrane-proximal envelope region (MPER) and an artificially engineered 2F5 epitope in the gp120 V4 region, bivalent 2F5 IgG achieved greatly enhanced neutralization efficiency, with a 50% inhibitory concentration (IC(50)) decrease over a 2-log scale. In contrast, the monovalent 2F5 Fab fragment did not exhibit any appreciable change in neutralization efficiency in the same context. These results demonstrate that bivalent binding of 2F5 IgG to a single HIV-1 Env trimer results in dramatic enhancement of neutralization, probably through an increase in binding avidity. Furthermore, we demonstrated that bivalent binding of MAb 2F5 to the V4 region and MPER of an HIV-1 Env trimer can be achieved only in a specific configuration, providing an important insight into the structure of a native/infectious HIV-1 Env trimer. This specific binding configuration also establishes a useful standard that can be applied to evaluate the biological relevance of structural information on the HIV-1 Env trimer.
Collapse
|
14
|
Finzi A, Xiang SH, Pacheco B, Wang L, Haight J, Kassa A, Danek B, Pancera M, Kwong PD, Sodroski J. Topological layers in the HIV-1 gp120 inner domain regulate gp41 interaction and CD4-triggered conformational transitions. Mol Cell 2010; 37:656-67. [PMID: 20227370 DOI: 10.1016/j.molcel.2010.02.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 01/14/2010] [Accepted: 02/13/2010] [Indexed: 11/18/2022]
Abstract
The entry of human immunodeficiency virus (HIV-1) into cells is initiated by binding of the gp120 exterior envelope glycoprotein to the receptor, CD4. How does CD4 binding trigger conformational changes in gp120 that allow the gp41 transmembrane envelope glycoprotein to mediate viral-cell membrane fusion? The transition from the unliganded to the CD4-bound state is regulated by two potentially flexible topological layers (layers 1 and 2) in the gp120 inner domain. Both layers apparently contribute to the noncovalent association of unliganded gp120 with gp41. After CD4 makes initial contact with the gp120 outer domain, layer 1-layer 2 interactions strengthen gp120-CD4 binding by reducing the off rate. Layer 1-layer 2 interactions also destabilize the activated state induced on HIV-1 by treatment with soluble CD4. Thus, despite lack of contact with CD4, the gp120 inner-domain layers govern CD4 triggering by participating in conformational transitions within gp120 and regulating the interaction with gp41.
Collapse
Affiliation(s)
- Andrés Finzi
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Blish CA, Sather DN, Sellhorn G, Stamatatos L, Sun Y, Srivastava I, Barnett SW, Cleveland B, Overbaugh J, Hu SL. Comparative immunogenicity of subtype a Human Immunodeficiency Virus type 1 envelope exhibiting differential exposure of conserved neutralization epitopes. J Virol 2010; 84:2573-84. [PMID: 20015987 PMCID: PMC2820908 DOI: 10.1128/jvi.01687-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 12/07/2009] [Indexed: 11/20/2022] Open
Abstract
Development of broadly cross-reactive neutralizing antibodies (NAbs) remains a major goal of HIV-1 vaccine development, but most candidate envelope immunogens have had limited ability to cross-neutralize heterologous strains. To evaluate the immunogenicity of subtype A variants of HIV-1, rabbits were immunized with pairs of closely related subtype A envelopes from the same individual. In each immunogen pair, one variant was readily neutralized by a variety of monoclonal antibodies and plasma antibodies, while the other was neutralization resistant, suggesting differences in the exposures of key epitopes. The breadth of the antibody response was evaluated against subtype A, B, C, and D variants of HIV-1. The specificity of the immunogen-derived neutralizing antibody response was also compared to that of the infected individuals from whom these variants were cloned. None of the immunogens produced broad neutralizing antibodies in immunized animals, and most of the neutralizing antibodies were directed to the variable loops, particularly the V3 loop. No detectable antibodies to either of the potentially exposed conserved epitopes, the membrane proximal external region, or the CD4 binding site were found with immunized rabbits. In contrast, relatively little of the neutralizing activity within the plasma samples of the infected individuals was directed to linear epitopes within the variable loops. These data indicate that immunogens designed to expose conserved regions did not enhance generation of broadly neutralizing antibodies in comparison with the immunogens that failed to expose those regions using this immunization approach.
Collapse
Affiliation(s)
- Catherine A Blish
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Characterization of neutralizing antibody responses elicited by clade A envelope immunogens derived from early transmitted viruses. J Virol 2008; 82:5912-21. [PMID: 18400850 DOI: 10.1128/jvi.00389-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vast majority of studies with candidate immunogens based on the human immunodeficiency virus envelope (Env) have been conducted with Env proteins derived from clade B viruses isolated during chronic infection. Whether non-clade B Env protein immunogens will elicit antibodies with epitope specificities that are similar to those of antibodies elicited by clade B Envs and whether the antibodies elicited by Envs derived from early transmitted viruses will be similar to those elicited by Envs derived from viruses isolated during chronic infection are currently unknown. Here we performed immunizations with four clade A Envs, cloned directly from the peripheral blood of infected individuals during acute infection, which differed in lengths and extents of glycosylation. The antibody responses elicited by these four Envs were compared to each other and to those elicited by a well-characterized clade B Env immunogen derived from the SF162 virus, which was isolated during chronic infection. Only one clade A Env, the one with the fewer glycosylation sites, elicited homologous neutralizing antibodies (NAbs); these did not target the V1, V2, or V3 regions. In contrast, all four clade A Envs elicited anti-V3 NAbs against "easy-to-neutralize" clade B and clade A isolates, irrespective of the variable region length and extent of glycosylation of the Env used as an immunogen. These anti-V3 NAbs did not access their epitopes on homologous and heterologous clade A, or B, neutralization-resistant viruses. The length and extent of glycosylation of the variable regions on the clade A Env immunogens tested did not affect the breadth of the elicited NAbs. Our data also indicate that the development of cross-reactive NAbs against clade A viruses faces similar hurdles to the development of cross-reactive anti-clade B NAbs.
Collapse
|
17
|
Comparative evaluation of trimeric envelope glycoproteins derived from subtype C and B HIV-1 R5 isolates. Virology 2007; 372:273-90. [PMID: 18061231 DOI: 10.1016/j.virol.2007.10.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/19/2007] [Accepted: 10/18/2007] [Indexed: 11/20/2022]
Abstract
We previously reported that an envelope (Env) glycoprotein immunogen (o-gp140DeltaV2SF162) containing a partial deletion in the second variable loop (V2) derived from the R5-tropic HIV-1 isolate SF162 partially protected vaccinated rhesus macaques against pathogenic SHIV(SF162P4) virus. Extending our studies to subtype C isolate TV1, we have purified o-gp140DeltaV2TV1 (subtype C DeltaV2 trimer) to homogeneity, performed glycosylation analysis, and determined its ability to bind CD4, as well as a panel of well-characterized neutralizing monoclonal antibodies (mAb). In general, critical epitopes are preserved on the subtype C DeltaV2 trimer; however, we did not observe significant binding for the b12 mAb. The molecular mass of subtype C DeltaV2 trimer was found to be 450 kDa, and the hydrodynamic radius was found to be 10.87 nm. Our data suggest that subtype C DeltaV2 trimer binds to CD4 with an affinity comparable to o-gp140DeltaV2SF162 (subtype B DeltaV2 trimer). Using isothermal titration calorimetric (ITC) analysis, we demonstrated that all three CD4 binding sites (CD4-BS) in both subtype C and B trimers are exposed and accessible. However, compared to subtype B trimer, the three CD4-BS in subtype C trimer have different affinities for CD4, suggesting a cooperativity of CD4 binding in subtype C trimer but not in subtype B trimer. Negative staining electron microscopy of the subtype C DeltaV2 trimer has demonstrated that it is in fact a trimer. These results highlight the importance of studying subtype C Env, and also of developing appropriate subtype C-specific reagents that may be used for better immunological characterization of subtype C Env for developing an AIDS vaccine.
Collapse
|
18
|
Engineered disulfide bonds in herpes simplex virus type 1 gD separate receptor binding from fusion initiation and viral entry. J Virol 2007; 82:700-9. [PMID: 18032483 DOI: 10.1128/jvi.02192-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein D (gD) is the receptor binding protein of herpes simplex virus (HSV) and binds to at least two distinct protein receptors, herpesvirus entry mediator (HVEM) and nectin-1. While both receptor binding regions are found within the first 234 amino acids, a crystal structure shows that the C terminus of the gD ectodomain normally occludes the receptor binding sites. Receptor binding must therefore displace the C terminus, and this conformational change is postulated to be required for inducing fusion via gB and gH/gL. When cysteine residues are introduced at positions 37 and 302 of gD, a disulfide bond is formed that stabilizes the C terminus and prevents binding to either receptor. We speculated that if disulfide bonds were engineered further upstream, receptor binding might be separated from the induction of fusion. To test this, we made five additional double cysteine mutants, each potentially introducing a disulfide bond between the ectodomain C terminus and the core of the gD ectodomain. The two mutants predicted to impose the greatest constraint were unable to bind receptors or mediate cell-cell fusion. However, the three mutants with the most flexible C terminus bound well to both HVEM and nectin-1. Two of these mutants were impaired in cell-cell fusion and null-virus complementation. Importantly, a third mutant in this group was nonfunctional in both assays. This mutant clearly separates the role of gD in triggering fusion from its role in receptor binding. Based upon the properties of the panel of mutants we conclude that fusion requires greater flexibility of the gD ectodomain C terminus than does receptor binding.
Collapse
|
19
|
Forsell MNE, McInerney GM, Dosenovic P, Hidmark ÅS, Eriksson C, Liljeström P, Grundner C, Karlsson Hedestam GB. Increased human immunodeficiency virus type 1 Env expression and antibody induction using an enhanced alphavirus vector. J Gen Virol 2007; 88:2774-2779. [PMID: 17872531 DOI: 10.1099/vir.0.83060-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viral vectors encoding heterologous vaccine antigens are potent inducers of cellular immune responses, but they are generally less efficient at stimulating humoral immunity. To improve the induction of antibody responses by Semliki Forest virus-based vaccines, a vector encoding a translation-enhancer element and a novel internal signal sequence for increased expression and secretion of soluble antigens was designed. Approximately tenfold more human immunodeficiency virus type 1 gp120 was secreted into culture supernatants of infected cells using the enhanced vector compared with the parental vector. This translated into a significant increase in gp120-specific antibodies in immunized mice, suggesting that antigen-expression levels from the parental vector are limiting for induction of antibody responses. These data encourage the use of the enhanced vector for elicitation of immune responses against heterologous antigens during vaccination.
Collapse
Affiliation(s)
- Mattias N E Forsell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden, and Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden, and Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| | - Pia Dosenovic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden, and Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| | - Åsa S Hidmark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden, and Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| | - Christopher Eriksson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden, and Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden, and Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| | - Christoph Grundner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden, and Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| | - Gunilla B Karlsson Hedestam
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden, and Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| |
Collapse
|
20
|
Adaptation of the human immunodeficiency virus type 1 envelope glycoproteins to new world monkey receptors. J Virol 2007; 82:346-57. [PMID: 17959679 DOI: 10.1128/jvi.01299-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection encounters an early block in the cells of New World monkeys because the CD4 receptor does not efficiently support HIV-1 entry. We adapted HIV-1(NL4-3) and HIV-1(KB9), two HIV-1 variants with different envelope glycoproteins, to replicate efficiently in cells expressing the CD4 and CXCR4 proteins of the common marmoset, a New World monkey. The HIV-1(NL4-3) adaptation involves three gp120 changes that result in a specific increase in affinity for the marmoset CD4 glycoprotein. The already high affinity of the HIV-1(KB9) envelope glycoproteins for marmoset CD4 did not significantly change as a result of the adaptation. Instead, changes in the gp120 variable loops and gp41 ectodomain resulted in improved replication in cells expressing the marmoset receptors. HIV-1(KB9) became relatively sensitive to neutralization by soluble CD4 and antibodies as a result of the adaptation. These results demonstrate the distinct mechanistic pathways by which the HIV-1 envelope glycoproteins can adapt to less-than-optimal CD4 molecules and provide HIV-1 variants that can overcome some of the early blocks in New World monkey cells.
Collapse
|
21
|
Crooks ET, Moore PL, Franti M, Cayanan CS, Zhu P, Jiang P, de Vries RP, Wiley C, Zharkikh I, Schülke N, Roux KH, Montefiori DC, Burton DR, Binley JM. A comparative immunogenicity study of HIV-1 virus-like particles bearing various forms of envelope proteins, particles bearing no envelope and soluble monomeric gp120. Virology 2007; 366:245-62. [PMID: 17580087 PMCID: PMC2080857 DOI: 10.1016/j.virol.2007.04.033] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 03/08/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
To assess the potential of native Envelope glycoprotein (Env) trimers as neutralizing antibody vaccines, we immunized guinea pigs with three types of VLPs and soluble gp120. Particles included "SOS-VLPs" (bearing disulfide-shackled functional trimers), "UNC-VLPs" (bearing uncleaved nonfunctional Env) and "naked VLPs" (bearing no Env). The SOS-VLPs were found to have a density of about 27 native trimers per particle, approximately twice that of live inactivated HIV-1 preparations. As immunogens, UNC- and SOS-VLP rapidly elicited anti-gp120 antibodies focused on the V3 loop and the gp120 coreceptor binding site. Reactivity to the gp41 immunodominant domain was absent in SOS-VLP sera, presumably because gp120-gp41 association is stabilized, effectively covering this epitope. Gp120-immune sera reacted with the receptor binding sites of gp120 and were less focused on the V3 loop. Some Env-VLP sera neutralized primary isolates at modest titers. The measurement of neutralization was found to be affected by the cell lines used. Depending on the assay particulars, non-Env specific antibodies in VLP sera could enhance infection, or nonspecifically neutralize. However, a neutralization assay using TZM-BL cells was essentially clear of these effects. We also describe a native trimer binding assay to confirm neutralization activity in a manner that completely eliminates nonspecific effects. Overall, our data suggests that Env-VLP sera were primarily focused on nonfunctional forms of Env on VLP surfaces, possibly gp120/gp41 monomers and not the trimers. Therefore, to make progress toward a more effective VLP-based vaccine, we will need to find ways to refocus the attention of B cells on native trimers.
Collapse
Affiliation(s)
- Emma T. Crooks
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121
| | - Penny L. Moore
- National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa
| | - Michael Franti
- Progenics Pharmaceuticals, 777 Old Saw Mill River Rd., Tarrytown, NY 10591
| | | | - Ping Zhu
- Department of Biological Science, and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Pengfei Jiang
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121
| | - Robbert P. de Vries
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Cheryl Wiley
- The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla CA 92037
| | - Irina Zharkikh
- The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla CA 92037
| | - Norbert Schülke
- Millennium Pharmaceuticals, Inc., 35 Landsdowne Street, Cambridge, MA 02139
| | - Kenneth H. Roux
- Department of Biological Science, and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - David C. Montefiori
- Duke University, Department of Surgery, La Salle Straight Extensions, Durham, NC 27710
| | - Dennis R. Burton
- The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla CA 92037
| | - James M. Binley
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121
- *corresponding author: James M. Binley, Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego CA 92121. tel: (858) 909 5142. fax: (858) 455 3804.
| |
Collapse
|
22
|
McBurney SP, Young KR, Ross TM. Membrane embedded HIV-1 envelope on the surface of a virus-like particle elicits broader immune responses than soluble envelopes. Virology 2006; 358:334-46. [PMID: 17011011 DOI: 10.1016/j.virol.2006.08.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 08/07/2006] [Accepted: 08/22/2006] [Indexed: 11/24/2022]
Abstract
Virally regulated HIV-1 particles were expressed from DNA plasmids encoding Gag, protease, reverse transcriptase, Vpu, Tat, Rev, and Env. The sequences for integrase, Vpr, Vif, Nef, and the long terminal repeats (LTRs) were deleted. Mutations were engineered into the VLP genome to produce particles deficient in activities associated with viral reverse transcriptase, RNase H, and RNA packaging. Each plasmid efficiently secreted particles from primate cells in vitro and particles were purified from the supernatants and used as immunogens. Mice (BALB/c) were vaccinated intranasally (day 1 and weeks 3 and 6) with purified VLPs and the elicited immunity was compared to particles without Env (Gag(p55)), to soluble monomeric Env(gp120), or to soluble trimerized Env(gp140). Only mice vaccinated with VLPs had robust anti-Env cellular immunity. In contrast, all mice had high titer anti-Env serum antibody (IgG). However, VLP-vaccinated mice had antisera that detected a broader number of linear Env peptides, had anti-Env mucosal IgA and IgG, as well as higher titers of serum neutralizing antibodies. VLPs elicited high titer antibodies that recognized linear regions in V4-C5 and the ectodomain of gp41, but did not recognize V3. These lentiviral VLPs are effective mucosal immunogens that elicit broader immunity against Env determinants in both the systemic and mucosal immune compartments than soluble forms of Env.
Collapse
Affiliation(s)
- Sean P McBurney
- Center for Vaccine Research for Emerging Diseases and Biodefense, University of Pittsburgh School of Medicine, 9047 Biomedical Sciences Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
23
|
Abstract
The glycoprotein (gp) 120 subunit is an important part of the envelope spikes that decorate the surface of HIV-1 and a major target for neutralizing antibodies. However, immunization with recombinant gp120 does not elicit neutralizing antibodies against multiple HIV-1 isolates (broadly neutralizing antibodies), and gp120 failed to demonstrate vaccine efficacy in recent clinical trials. Ongoing crystallographic studies of gp120 molecules from HIV-1 and SIV increasingly reveal how conserved regions, which are the targets of broadly neutralizing antibodies, are concealed from immune recognition. Based on this structural insight and that from studies of antibody structures, a number of strategies are being pursued to design immunogens that can elicit broadly neutralizing antibodies to gp120. These include (a) the construction of mimics of the viral envelope spike and (b) the design of antigens specifically tailored to induce broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Ralph Pantophlet
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
24
|
Thangudu RR, Vinayagam A, Pugalenthi G, Manonmani A, Offmann B, Sowdhamini R. Native and modeled disulfide bonds in proteins: knowledge-based approaches toward structure prediction of disulfide-rich polypeptides. Proteins 2006; 58:866-79. [PMID: 15645448 DOI: 10.1002/prot.20369] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Structure prediction and three-dimensional modeling of disulfide-rich systems are challenging due to the limited number of such folds in the structural databank. We exploit the stereochemical compatibility of substructures in known protein structures to accommodate disulfide bonds in predicting the structures of disulfide-rich polypeptides directly from disulfide connectivity pattern and amino acid sequence in the absence of structural homologs and any other structural information. This knowledge-based approach is illustrated using structure prediction of 40 nonredundant bioactive disulfide-rich polypeptides such as toxins, growth factors, and endothelins available in the structural databank. The polypeptide conformation could be predicted in 35 out of 40 nonredundant entries (87%). Nonhomologous templates could be identified and models could be obtained within 2 A deviation from the query in 29 peptides (72%). This procedure can be accessed from the World Wide Web (http://www.ncbs.res.in/ approximately faculty/mini/dsdbase/dsdbase.html).
Collapse
Affiliation(s)
- Ratna Rajesh Thangudu
- Laboratoire de Biochimie et Génétique Moléculaire, Université de La Réunion, La Réunion, France
| | | | | | | | | | | |
Collapse
|
25
|
Krambovitis E, Porichis F, Spandidos DA. HIV entry inhibitors: a new generation of antiretroviral drugs. Acta Pharmacol Sin 2005; 26:1165-73. [PMID: 16174430 DOI: 10.1111/j.1745-7254.2005.00193.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIDS is presently treatable, and patients can have a good prognosis due to the success of highly active antiretroviral therapy (HAART), but it is still not curable or preventable. High toxicity of HAART, and the emergence of drug resistance add to the imperative to continue research into new strategies and interventions. Considerable progress in the understanding of HIV attachment and entry into host cells has suggested new possibilities for rationally designing agents that interfere with this process. The approval and introduction of the fusion inhibitor enfuvirtide (Fuzeon) for clinical use signals a new era in AIDS therapeutics. Here we review the crucial steps the virus uses to achieve cell entry, which merit attention as potential targets, and the compounds at pre-clinical and clinical development stages, reported to effectively inhibit cell entry.
Collapse
Affiliation(s)
- Elias Krambovitis
- Department of Applied Biochemistry and Immunology, Institute of Molecular Biology and Biotechnology, Vassilika Vouton, Heraklion, Crete, Greece.
| | | | | |
Collapse
|
26
|
Forsell MNE, Li Y, Sundbäck M, Svehla K, Liljeström P, Mascola JR, Wyatt R, Karlsson Hedestam GB. Biochemical and immunogenic characterization of soluble human immunodeficiency virus type 1 envelope glycoprotein trimers expressed by semliki forest virus. J Virol 2005; 79:10902-14. [PMID: 16103142 PMCID: PMC1193613 DOI: 10.1128/jvi.79.17.10902-10914.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The current lack of envelope glycoprotein immunogens that elicit broadly neutralizing antibody responses remains a major challenge for human immunodeficiency virus type 1 (HIV-1) vaccine development. However, the recent design and construction of stable soluble gp140 trimers have shown that some neutralization breadth can be achieved by using immunogens that better mimic the functional viral spike complex. The use of genetic delivery systems to drive the in vivo expression of such immunogens for the stimulation of neutralizing antibodies against HIV-1 may offer advantages by maintaining the quaternary structure of the trimeric envelope glycoproteins. Here, we describe the biochemical and immunogenic properties of soluble HIV-1 envelope glycoprotein trimers expressed by recombinant Semliki Forest virus (rSFV). The results presented here demonstrate that rSFV supports the expression of stable soluble gp140 trimers that retain recognition by conformationally sensitive antibodies. Further, we show that rSFV particle immunizations efficiently primed immune responses as measured after a single boost with purified trimeric gp140 protein, resulting in a Th1-biased antibody response. This differed from the Th2-biased antibody response obtained after repeated immunizations with purified gp140 protein trimers. Despite this difference, both regimens stimulated neutralizing antibody responses of similar potency. This suggests that rSFV may be a useful component of a viral vector prime-protein boost regimen aimed at stimulating both cell-mediated immune responses and neutralizing antibodies against HIV-1.
Collapse
Affiliation(s)
- Mattias N E Forsell
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Said EA, Courty J, Svab J, Delbé J, Krust B, Hovanessian AG. Pleiotrophin inhibits HIV infection by binding the cell surface-expressed nucleolin. FEBS J 2005; 272:4646-59. [PMID: 16156786 DOI: 10.1111/j.1742-4658.2005.04870.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The growth factor pleiotrophin (PTN) has been reported to bind heparan sulfate and nucleolin, two components of the cell surface implicated in the attachment of HIV-1 particles to cells. Here we show that PTN inhibits HIV-1 infection by its capacity to inhibit HIV-1 particle attachment to the surface of permissive cells. The beta-sheet domains of PTN appear to be implicated in this inhibitory effect on the HIV infection, in particular the domain containing amino acids 60-110. PTN binding to the cell surface is mediated by high and low affinity binding sites. Other inhibitors of HIV attachment known to bind specifically surface expressed nucleolin, such as the pseudopeptide HB-19 and the cytokine midkine prevent the binding of PTN to its low affinity-binding site. Confocal immunofluorescence laser microscopy revealed that the cross-linking of surface-bound PTN with a specific antibody results in the clustering of cell surface-expressed nucleolin and the colocalization of both PTN and nucleolin signals. Following its binding to surface-nucleolin, PTN is internalized by a temperature sensitive mechanism, a process which is inhibited by HB-19 and is independent of heparan and chondroitin sulfate proteoglycans. Nevertheless, proteoglycans might play a role in the concentration of PTN on the cell surface for a more efficient interaction with nucleolin. Our results demonstrate for the first time that PTN inhibits HIV infection and suggest that the cell surface-expressed nucleolin is a low affinity receptor for PTN binding to cells and it is also implicated in PTN entry into cells by an active process.
Collapse
Affiliation(s)
- Elias A Said
- UPR 2228 CNRS, UFR Biomédicale des Saints-Pères, Paris, France.
| | | | | | | | | | | |
Collapse
|
28
|
Mische CC, Yuan W, Strack B, Craig S, Farzan M, Sodroski J. An alternative conformation of the gp41 heptad repeat 1 region coiled coil exists in the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor. Virology 2005; 338:133-43. [PMID: 15950253 DOI: 10.1016/j.virol.2005.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 04/07/2005] [Accepted: 05/04/2005] [Indexed: 11/23/2022]
Abstract
The human immunodeficiency virus (HIV-1) transmembrane envelope glycoprotein, gp41, which mediates virus-cell fusion, exists in at least three different conformations within the trimeric envelope glycoprotein complex. The structures of the prefusogenic and intermediate states are unknown; structures representing the postfusion state have been solved. In the postfusion conformation, three helical heptad repeat 2 (HR2) regions pack in an antiparallel fashion into the hydrophobic grooves on the surface of a triple-helical coiled coil formed by the heptad repeat 1 (HR1) regions. We studied the prefusogenic conformation of gp41 by mutagenic alteration of membrane-anchored and soluble forms of the HIV-1 envelope glycoproteins. Our results indicate that, in the HIV-1 envelope glycoprotein precursor, the gp41 HR1 region is in a conformation distinct from that of a trimeric coiled coil. Thus, the central gp41 coiled coil is formed during the transition of the HIV-1 envelope glycoproteins from the precursor state to the receptor-bound intermediate.
Collapse
Affiliation(s)
- Claudia C Mische
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
29
|
Grundner C, Li Y, Louder M, Mascola J, Yang X, Sodroski J, Wyatt R. Analysis of the neutralizing antibody response elicited in rabbits by repeated inoculation with trimeric HIV-1 envelope glycoproteins. Virology 2005; 331:33-46. [PMID: 15582651 DOI: 10.1016/j.virol.2004.09.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 07/09/2004] [Accepted: 09/17/2004] [Indexed: 10/26/2022]
Abstract
The elicitation of broadly neutralizing antibodies directed against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, gp120 and gp41, remains a major challenge. Attempts to utilize monomeric gp120 as an immunogen to elicit high titers of neutralizing antibodies have been disappointing. Envelope glycoprotein constructs that better reflect the trimeric structure of the functional envelope spike have exhibited improved immunogenicity compared with monomeric gp120. We have described soluble gp140 ectodomain constructs with a heterologous trimerization motif; these have previously been shown to elicit antibodies in mice that were able to neutralize a number of HIV-1 isolates, among them primary isolate viruses. Recently, solid-phase proteoliposomes retaining the envelope glycoproteins as trimeric spikes in a physiologic membrane setting have been described. Here, we compare the immunogenic properties of these two trimeric envelope glycoprotein formulations and monomeric gp120 in rabbits. Both trimeric envelope glycoprotein preparations generated neutralizing antibodies more effectively than gp120. In contrast to monomeric gp120, the trimeric envelope glycoproteins elicited neutralizing antibodies with some breadth of neutralization. Furthermore, repeated boosting with the soluble trimeric formulations resulted in an increase in potency that allowed neutralization of a subset of neutralization-resistant HIV-1 primary isolates. We demonstrate that the neutralization is concentration-dependent, is mediated by serum IgG and that the major portion of the neutralizing activity is not directed against the gp120 V3 loop. Thus, mimics of the trimeric envelope glycoprotein spike described here elicit HIV-1-neutralizing antibodies that could contribute to a protective immune response and provide platforms for further modifications to improve the efficiency of this process.
Collapse
Affiliation(s)
- Christoph Grundner
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Connolly SA, Landsburg DJ, Carfi A, Whitbeck JC, Zuo Y, Wiley DC, Cohen GH, Eisenberg RJ. Potential nectin-1 binding site on herpes simplex virus glycoprotein d. J Virol 2005; 79:1282-95. [PMID: 15613355 PMCID: PMC538551 DOI: 10.1128/jvi.79.2.1282-1295.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Four glycoproteins (gD, gB, gH, and gL) are essential for herpes simplex virus (HSV) entry into cells. An early step of fusion requires gD to bind one of several receptors, such as nectin-1 or herpesvirus entry mediator (HVEM). We hypothesize that a conformational change in gD occurs upon receptor binding that triggers the other glycoproteins to mediate fusion. Comparison of the crystal structures of gD alone and gD bound to HVEM reveals that upon HVEM binding, the gD N terminus transitions from a flexible stretch of residues to a hairpin loop. To address the contribution of this transition to the ability of gD to trigger fusion, we attempted to "lock" the gD N terminus into a looped conformation by engineering a disulfide bond at its N and C termini. The resulting mutant (gD-A3C/Y38C) failed to trigger fusion in the absence of receptor, suggesting that formation of the loop is not the sole fusion trigger. Unexpectedly, although gD-A3C/Y38C bound HVEM, it failed to bind nectin-1. This was due to the key role played by Y38 in interacting with nectin-1. Since tyrosines are often "hot spot" residues at the center of protein-protein interfaces, we mutated residues that surround Y38 on the same face of gD and tested their binding and functional properties. Our results suggest that this region of gD is important for nectin-1 interaction and is distinct from but partially overlaps the site of HVEM binding. Unique gD mutants with altered receptor usage generated in this study may help dissect the roles played by various HSV receptors during infection.
Collapse
Affiliation(s)
- Sarah A Connolly
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang X, Tomov V, Kurteva S, Wang L, Ren X, Gorny MK, Zolla-Pazner S, Sodroski J. Characterization of the outer domain of the gp120 glycoprotein from human immunodeficiency virus type 1. J Virol 2004; 78:12975-86. [PMID: 15542649 PMCID: PMC525028 DOI: 10.1128/jvi.78.23.12975-12986.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The core of the gp120 glycoprotein from human immunodeficiency virus type 1 (HIV-1) is comprised of three major structural domains: the outer domain, the inner domain, and the bridging sheet. The outer domain is exposed on the HIV-1 envelope glycoprotein trimer and contains binding surfaces for neutralizing antibodies such as 2G12, immunoglobulin G1b12, and anti-V3 antibodies. We expressed the outer domain of HIV-1(YU2) gp120 as an independent protein, termed OD1. OD1 efficiently bound 2G12 and a large number of anti-V3 antibodies, indicating its structural integrity. Immunochemical studies with OD1 indicated that antibody responses against the outer domain of the HIV-1 gp120 envelope glycoprotein are rare in HIV-1-infected human sera that potently neutralize the virus. Surprisingly, such outer-domain-directed antibody responses are commonly elicited by immunization with recombinant monomeric gp120. Immunization with soluble, stabilized HIV-1 envelope glycoprotein trimers elicited antibody responses that more closely resembled those in the sera of HIV-1-infected individuals. These results underscore the qualitatively different humoral immune responses elicited during natural infection and after gp120 vaccination and help to explain the failure of gp120 as an effective vaccine.
Collapse
Affiliation(s)
- Xinzhen Yang
- Dana-Farber Cancer Institute, 44 Binney St., JFB 824, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bower JF, Yang X, Sodroski J, Ross TM. Elicitation of neutralizing antibodies with DNA vaccines expressing soluble stabilized human immunodeficiency virus type 1 envelope glycoprotein trimers conjugated to C3d. J Virol 2004; 78:4710-9. [PMID: 15078953 PMCID: PMC387675 DOI: 10.1128/jvi.78.9.4710-4719.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Accepted: 12/24/2003] [Indexed: 11/20/2022] Open
Abstract
DNA vaccines expressing the envelope (Env) of human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting immune responses. Oligomeric or trimeric (gp140) forms of Env that more closely mimic the native proteins on the virion are often more effective immunogens than monomeric (gp120) envelopes. In this study, several forms of Env constructed from the HIV-1 isolate YU-2 (HIV-1(YU-2)) were tested for their immunogenic potential: a trimeric form of uncleaved (-) Env stabilized with a synthetic trimer motif isolated from the fibritin (FT) protein of the T4 bacteriophage, sgp140(YU-2)(-/FT), was compared to sgp140(YU-2)(-) without a synthetic trimerization domain, as well as to monomeric gp120(YU-2). DNA plasmids were constructed to express Env alone or fused to various copies of murine C3d (mC3d). BALB/c mice were vaccinated (day 1 and week 4) with DNA expressing a codon-optimized envelope gene insert, alone or fused to mC3d. Mice were subsequently boosted (week 8) with the DNA or recombinant Env protein. All mice had high anti-Env antibody titers regardless of the use of mC3d. Sera from mice vaccinated with DNA expressing non-C3d-fused trimers elicited neutralizing antibodies against homologous HIV-1(YU-2) virus infection in vitro. In contrast, sera from mice inoculated with DNA expressing Env-C3d protein trimers elicited antibody that neutralized both homologous HIV-1(YU-2) and heterologous HIV-1(ADA), albeit at low titers. Therefore, DNA vaccines expressing trimeric envelopes coupled to mC3d, expressed in vivo from codon-optimized sequences, elicit low titers of neutralizing antibodies against primary isolates of HIV-1.
Collapse
Affiliation(s)
- Joseph F Bower
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
33
|
Vinayagam A, Pugalenthi G, Rajesh R, Sowdhamini R. DSDBASE: a consortium of native and modelled disulphide bonds in proteins. Nucleic Acids Res 2004; 32:D200-2. [PMID: 14681394 PMCID: PMC308760 DOI: 10.1093/nar/gkh026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 08/16/2003] [Accepted: 09/03/2003] [Indexed: 11/13/2022] Open
Abstract
DSDBASE is a database of disulphide bonds in proteins, which provides information on native disulphides and those that are stereochemically possible between pairs of residues for all known protein structural entries. The modelling of disulphides has been performed, using MODIP, by the identification of residue pairs that can strainlessly accommodate a covalent cross-link. We also assess the stereochemical quality of the covalent cross-link and grade them appropriately. One of the potential uses of the database is to design site-directed mutants in order to enhance the thermal stability of a protein. The proposed sites of mutations can be viewed specifically with respect to active sites of enzymes and across physiological dimers. The occurrence of native and modelled disulphides increases the dimensions of the database enormously. This database can also be employed for proposing three-dimensional models of disulphide-rich short polypeptides. The database can be accessed from http://www.ncbs.res.in/ approximately faculty/mini/dsdbase/dsdbase.html. Supplementary information can be accessed from http://www.ncbs.res.in/ approximately faculty/mini/dsdbase/nar/suppl.htm.
Collapse
Affiliation(s)
- A Vinayagam
- National Centre for Biological Sciences, UAS-GKVK Campus, Bangalore 560065, India
| | | | | | | |
Collapse
|
34
|
Nishimura Y, Igarashi T, Haigwood NL, Sadjadpour R, Donau OK, Buckler C, Plishka RJ, Buckler-White A, Martin MA. Transfer of neutralizing IgG to macaques 6 h but not 24 h after SHIV infection confers sterilizing protection: implications for HIV-1 vaccine development. Proc Natl Acad Sci U S A 2003; 100:15131-6. [PMID: 14627745 PMCID: PMC299920 DOI: 10.1073/pnas.2436476100] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Passive transfer of high-titered antiviral neutralizing IgG, known to confer sterilizing immunity in pig-tailed monkeys, has been used to determine how soon after virus exposure neutralizing antibodies (NAbs) must be present to block a simian immunodeficiency virus (SIV)/HIV chimeric virus infection. Sterilizing protection was achieved in three of four macaques receiving neutralizing IgG 6 h after intravenous SIV/HIV chimeric virus inoculation as monitored by PCR analyses of and attempted virus isolations from plasma, peripheral blood mononuclear cell, and lymph node specimens. In the fourth animal, the production of progeny virus was suppressed for >4 weeks. A delay in transferring NAbs until 24 h after virus challenge resulted in infection in two of two monkeys. These results suggest that even if a vaccine capable of eliciting broadly reactive NAbs against primary HIV-1 were at hand, the Abs generated must remain at, or rapidly achieve, high levels within a relatively short period after exposure to virus to prevent the establishment of a primate lentivirus infection.
Collapse
Affiliation(s)
- Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Poumbourios P, Maerz AL, Drummer HE. Functional evolution of the HIV-1 envelope glycoprotein 120 association site of glycoprotein 41. J Biol Chem 2003; 278:42149-60. [PMID: 12923196 DOI: 10.1074/jbc.m305223200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interaction surfaces can exhibit structural plasticity, a mechanism whereby an interface adapts to mutations as binding partners coevolve. The HIV-1 envelope glycoprotein gp120-gp41 complex, which is responsible for receptor attachment and membrane fusion, represents an extreme example of a coevolving complex as up to 35% amino acid sequence divergence has been observed in these proteins among HIV-1 isolates. In this study, the function of conserved gp120 contact residues, Leu593, Trp596, Gly597, Lys601, and Trp610 within the disulfide-bonded region of gp41, was examined in envelope glycoproteins derived from diverse HIV-1 isolates. We found that the gp120-gp41 association function of the disulfide-bonded region is conserved. However, the contribution of individual residues to gp41 folding and/or stability, gp120-gp41 association, membrane fusion function, and viral entry varied from isolate to isolate. In gp120-gp41 derived from the dual-tropic isolate, HIV-189.6, the importance of Trp596 for fusion function was dependent on the chemokine receptor utilized as a fusion cofactor. Thus, the engagement of alternative chemokine receptors may evoke distinct fusion-activation signals involving the site of gp120-gp41 association. An examination of chimeric glycoproteins revealed that the isolate-specific functional contributions of particular gp120-contact residues are influenced by the sequence of gp120 hypervariable regions 1, 2, and 3. These data indicate that the gp120-gp41 association site is structurally and functionally adaptable, perhaps to maintain a functional glycoprotein complex in a setting of host selective pressures driving the rapid coevolution of gp120 and gp41.
Collapse
Affiliation(s)
- Pantelis Poumbourios
- Virology Unit, St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia.
| | | | | |
Collapse
|
36
|
Srivastava IK, Stamatatos L, Kan E, Vajdy M, Lian Y, Hilt S, Martin L, Vita C, Zhu P, Roux KH, Vojtech L, C Montefiori D, Donnelly J, Ulmer JB, Barnett SW. Purification, characterization, and immunogenicity of a soluble trimeric envelope protein containing a partial deletion of the V2 loop derived from SF162, an R5-tropic human immunodeficiency virus type 1 isolate. J Virol 2003; 77:11244-59. [PMID: 14512572 PMCID: PMC224963 DOI: 10.1128/jvi.77.20.11244-11259.2003] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope (Env) glycoprotein of human immunodeficiency virus type 1 (HIV-1) is the major target of neutralizing antibody responses and is likely to be a critical component of an effective vaccine against AIDS. Although monomeric HIV envelope subunit vaccines (gp120) have induced high-titer antibody responses and neutralizing antibodies against laboratory-adapted HIV-1 strains, they have failed to induce neutralizing antibodies against diverse heterologous primary HIV isolates. Most probably, the reason for this failure is that the antigenic structure(s) of these previously used immunogens does not mimic that of the functional HIV envelope, which is a trimer, and thus these immunogens do not elicit high titers of relevant functional antibodies. We recently reported that an Env glycoprotein immunogen (o-gp140SF162DeltaV2) containing a partial deletion in the second variable loop (V2) derived from the R5-tropic HIV-1 isolate SF162, when used in a DNA priming-protein boosting vaccine regimen in rhesus macaques, induced neutralizing antibodies against heterologous subtype B primary isolates as well as protection to the vaccinated animals upon challenge with pathogenic SHIV(SF162P4) virus. Here we describe the purification of this protein to homogeneity, its characterization as trimer, and its ability to induce primary isolate-neutralizing responses in rhesus macaques. Optimal mutations in the primary and secondary protease cleavage sites of the env gene were identified that resulted in the stable secretion of a trimeric Env glycoprotein in mammalian cell cultures. We determined the molecular mass and hydrodynamic radius (R(h)) using a triple detector analysis (TDA) system. The molecular mass of the oligomer was found to be 324 kDa, close to the expected M(w) of a HIV envelope trimer protein (330 kDa), and the hydrodynamic radius was 7.27 nm. Negative staining electron microscopy of o-gp140SF162DeltaV2 showed that it is a trimer with considerable structural flexibility and supported the data obtained by TDA. The structural integrity of the purified trimeric protein was also confirmed by determinations of its ability to bind the HIV receptor, CD4, and its ability to bind a panel of well-characterized neutralizing monoclonal antibodies. No deleterious effect of V2 loop deletion was observed on the structure and conformation of the protein, and several critical neutralization epitopes were preserved and well exposed on the purified o-gp140SF162DeltaV2 protein. In an intranasal priming and intramuscular boosting regimen, this protein induced high titers of functional antibodies, which neutralized the vaccine strain, i.e., SF162. These results highlight a potential role for the trimeric o-gp140SF162DeltaV2 Env immunogen in a successful HIV vaccine.
Collapse
|
37
|
Si Z, Phan N, Kiprilov E, Sodroski J. Effects of HIV type 1 envelope glycoprotein proteolytic processing on antigenicity. AIDS Res Hum Retroviruses 2003; 19:217-26. [PMID: 12689414 DOI: 10.1089/088922203763315722] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Passaged simian-human immunodeficiency virus (SHIV)-HXBc2P 3.2 exhibits resistance to neutralization by most antibodies and soluble CD4 compared with the parental SHIV-HXBc2; these SHIVs are neutralized equivalently by 2G12 antibody. 2G12 antibody bound proteolytically processed, cell surface envelope glycoproteins from these viruses equivalently; by contrast, other antibodies bound less efficiently to HXBc2P 3.2 envelope glycoproteins than to HXBc2 envelope glycoproteins. We have examined the influence of proteolytic processing of the envelope glycoprotein precursor on antigenicity, comparing antibody binding to cleaved and uncleaved cell surface envelope glycoproteins and to uncleaved soluble trimeric envelope glycoproteins. All envelope glycoproteins bound neutralizing antibodies better than nonneutralizing antibodies, suggesting that their general topology is similar. Differences between cleaved HXBc2 and HXBc2P 3.2 envelope glycoproteins in binding a given antibody, which correlated with susceptibility to neutralization, were not evident in uncleaved envelope glycoproteins. These results indicate that proteolytic processing allows subtle but biologically important adjustments in the conformation of HIV-1 envelope glycoproteins.
Collapse
Affiliation(s)
- Zhihai Si
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Division of AIDS, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
38
|
Willey RL, Byrum R, Piatak M, Kim YB, Cho MW, Rossio JL, Bess J, Igarashi T, Endo Y, Arthur LO, Lifson JD, Martin MA. Control of viremia and prevention of simian-human immunodeficiency virus-induced disease in rhesus macaques immunized with recombinant vaccinia viruses plus inactivated simian immunodeficiency virus and human immunodeficiency virus type 1 particles. J Virol 2003; 77:1163-74. [PMID: 12502833 PMCID: PMC140830 DOI: 10.1128/jvi.77.2.1163-1174.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
An effective vaccine against the human immunodeficiency virus type 1 (HIV-1) will very likely have to elicit both cellular and humoral immune responses to control HIV-1 strains of diverse geographic and genetic origins. We have utilized a pathogenic chimeric simian-human immunodeficiency virus (SHIV) rhesus macaque animal model system to evaluate the protective efficacy of a vaccine regimen that uses recombinant vaccinia viruses expressing simian immunodeficiency virus (SIV) and HIV-1 structural proteins in combination with intact inactivated SIV and HIV-1 particles. Following virus challenge, control animals experienced a rapid and complete loss of CD4(+) T cells, sustained high viral loads, and developed clinical disease by 17 to 21 weeks. Although all of the vaccinated monkeys became infected, they displayed reduced postpeak viremia, had no significant loss of CD4(+) T cells, and have remained healthy for more than 15 months postinfection. CD8(+) T-cell and neutralizing antibody responses in vaccinated animals following challenge were demonstrable. Despite the control of disease, virus was readily isolated from the circulating peripheral blood mononuclear cells of all vaccinees at 22 weeks postchallenge, indicating that immunologic control was incomplete. Virus recovered from the animal with the lowest postchallenge viremia generated high virus loads and an irreversible loss of CD4(+) T-cell loss following its inoculation into a naïve animal. These results indicate that despite the protection from SHIV-induced disease, the vaccinated animals still harbored replication-competent and pathogenic virus.
Collapse
Affiliation(s)
- Ronald L Willey
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sanders RW, Vesanen M, Schuelke N, Master A, Schiffner L, Kalyanaraman R, Paluch M, Berkhout B, Maddon PJ, Olson WC, Lu M, Moore JP. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J Virol 2002; 76:8875-89. [PMID: 12163607 PMCID: PMC136973 DOI: 10.1128/jvi.76.17.8875-8889.2002] [Citation(s) in RCA: 361] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope glycoprotein (Env) complex of human immunodeficiency virus type 1 has evolved a structure that is minimally immunogenic while retaining its natural function of receptor-mediated virus-cell fusion. The Env complex is trimeric; its six individual subunits (three gp120 and three gp41 subunits) are associated by relatively weak, noncovalent interactions. The induction of neutralizing antibodies after vaccination with individual Env subunits has proven very difficult, probably because they are inadequate mimics of the native complex. Our hypothesis is that a stable form of the Env complex, perhaps with additional modifications to rationally alter its antigenic structure, may be a better immunogen than the individual subunits. A soluble form of Env, SOS gp140, can be made that has gp120 stably linked to the gp41 ectodomain by an intermolecular disulfide bond. This protein is fully cleaved at the proteolysis site between gp120 and gp41. However, the gp41-gp41 interactions in SOS gp140 are too weak to maintain the protein in a trimeric configuration. Consequently, purified SOS gp140 is a monomer (N. Schülke, M. S. Vesanen, R. W. Sanders, P. Zhu, D. J. Anselma, A. R. Villa, P. W. H. I. Parren, J. M. Binley, K. H. Roux, P. J. Maddon, J. P. Moore, and W. C. Olson, J. Virol. 76:7760-7776, 2002). Here we describe modifications of SOS gp140 that increase its trimer stability. A variant SOS gp140, designated SOSIP gp140, contains an isoleucine-to-proline substitution at position 559 in the N-terminal heptad repeat region of gp41. This protein is fully cleaved, has favorable antigenic properties, and is predominantly trimeric. SOSIP gp140 trimers are noncovalently associated and can be partially purified by gel filtration chromatography. These gp140 trimers are dissociated into monomers by anionic detergents or heat but are relatively resistant to nonionic detergents, high salt concentrations, or exposure to a mildly acidic pH. SOSIP gp140 should be a useful reagent for structural and immunogenicity studies.
Collapse
Affiliation(s)
- Rogier W Sanders
- Department of Microbiology and Immunology, Weill Medical College, Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Schülke N, Vesanen MS, Sanders RW, Zhu P, Lu M, Anselma DJ, Villa AR, Parren PWHI, Binley JM, Roux KH, Maddon PJ, Moore JP, Olson WC. Oligomeric and conformational properties of a proteolytically mature, disulfide-stabilized human immunodeficiency virus type 1 gp140 envelope glycoprotein. J Virol 2002; 76:7760-76. [PMID: 12097589 PMCID: PMC136400 DOI: 10.1128/jvi.76.15.7760-7776.2002] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the further properties of a protein, designated SOS gp140, wherein the association of the gp120 and gp41 subunits of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein is stabilized by an intersubunit disulfide bond. HIV-1(JR-FL) SOS gp140, proteolytically uncleaved gp140 (gp140(UNC)), and gp120 were expressed in stably transfected Chinese hamster ovary cells and analyzed for antigenic and structural properties before and after purification. Compared with gp140(UNC), SOS gp140 reacted more strongly in surface plasmon resonance and radioimmunoprecipitation assays with the neutralizing monoclonal antibodies (MAbs) 2G12 (anti-gp120), 2F5 (anti-gp41), and 17b (to a CD4-induced epitope that overlaps the CCR5-binding site). In contrast, gp140(UNC) displayed the greater reactivity with nonneutralizing anti-gp120 and anti-gp41 MAbs. Immunoelectron microscopy studies suggested a model for SOS gp140 wherein the gp41 ectodomain (gp41(ECTO)) occludes the "nonneutralizing" face of gp120, consistent with the antigenic properties of this protein. We also report the application of Blue Native polyacrylamide gel electrophoresis (BN-PAGE), a high-resolution molecular sizing method, to the study of viral envelope proteins. BN-PAGE and other biophysical studies demonstrated that SOS gp140 was monomeric, whereas gp140(UNC) comprised a mixture of noncovalently associated and disulfide-linked dimers, trimers, and tetramers. The oligomeric and conformational properties of SOS gp140 and gp140(UNC) were largely unaffected by purification. An uncleaved gp140 protein containing the SOS cysteine mutations (SOS gp140(UNC)) was also oligomeric. Surprisingly, variable-loop-deleted SOS gp140 proteins were expressed (although not yet purified) as cleaved, noncovalently associated oligomers that were significantly more stable than the full-length protein. Overall, our findings have relevance for rational vaccine design.
Collapse
Affiliation(s)
- Norbert Schülke
- Progenics Pharmaceuticals Inc., Tarrytown, New York 10591, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Center RJ, Leapman RD, Lebowitz J, Arthur LO, Earl PL, Moss B. Oligomeric structure of the human immunodeficiency virus type 1 envelope protein on the virion surface. J Virol 2002; 76:7863-7. [PMID: 12097599 PMCID: PMC136379 DOI: 10.1128/jvi.76.15.7863-7867.2002] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope protein (Env) of human immunodeficiency virus type 1 forms homo-oligomers in the endoplasmic reticulum. The oligomeric structure of Env is maintained after cleavage in a Golgi compartment and transport to the surfaces of infected cells, where incorporation into budding virions takes place. Here, we use biophysical techniques to assess the oligomeric valency of virion-associated Env prior to fusion activation. Virion-associated Env oligomers were stabilized by chemical cross-linking prior to detergent extraction and were purified by immunoaffinity chromatography. Gel filtration revealed a single predominant oligomeric species, and sedimentation equilibrium analysis-derived mass values indicated a trimeric structure. Determination of the masses of individual Env molecules by scanning transmission electron microscopy demonstrated that virion-associated Env was trimeric, and a triangular morphology was observed in 20 to 30% of the molecules. These results, which firmly establish the oligomeric structure of human immunodeficiency virus virion-associated Env, parallel those of our previous analysis of the simian immunodeficiency virus Env.
Collapse
Affiliation(s)
- Rob J Center
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- L Stamatatos
- Seattle Biomedical Research Institute, Seattle, Washington, USA
| | | |
Collapse
|
43
|
Yang X, Lee J, Mahony EM, Kwong PD, Wyatt R, Sodroski J. Highly stable trimers formed by human immunodeficiency virus type 1 envelope glycoproteins fused with the trimeric motif of T4 bacteriophage fibritin. J Virol 2002; 76:4634-42. [PMID: 11932429 PMCID: PMC155086 DOI: 10.1128/jvi.76.9.4634-4642.2002] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) function as a trimer composed of three gp120 exterior glycoproteins and three gp41 transmembrane proteins. Soluble gp140 glycoproteins composed of the uncleaved ectodomains of gp120 and gp41 form unstable, heterogeneous oligomers, but soluble gp140 trimers can be stabilized by fusion with a C-terminal, trimeric GCN4 motif (X. Yang et al., J. Virol. 74:5716-5725, 2000). To understand the influence of the C-terminal trimerization domain on the properties of soluble HIV-1 envelope glycoprotein trimers, uncleaved, soluble gp140 glycoproteins were stabilized by fusion with another trimeric motif derived from T4 bacteriophage fibritin. The fibritin construct was more stable to heat and reducing conditions than the GCN4 construct. Both GCN4- and fibritin-stabilized soluble gp140 glycoproteins exhibited patterns of neutralizing and nonneutralizing antibody binding expected for the functional envelope glycoprotein spike. Of note, two potently neutralizing antibodies, immunoglobulin G1b12 and 2G12, exhibited the greatest recognition of the stabilized, soluble trimers, relative to recognition of the gp120 monomer. The observed similarities between the GCN4 and fibritin constructs indicate that the HIV-1 envelope glycoprotein ectodomains dictate many of the antigenic and structural features of these fusion proteins. The melting temperatures and ligand recognition properties of the GCN4- and fibritin-stabilized soluble gp140 glycoproteins suggest that these molecules assume conformations distinct from that of the fusion-active, six-helix bundle.
Collapse
Affiliation(s)
- Xinzhen Yang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
44
|
Liu J, Wang S, Hoxie JA, LaBranche CC, Lu M. Mutations that destabilize the gp41 core are determinants for stabilizing the simian immunodeficiency virus-CPmac envelope glycoprotein complex. J Biol Chem 2002; 277:12891-900. [PMID: 11830586 DOI: 10.1074/jbc.m110315200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human and simian immunodeficiency viruses (HIV and SIV) envelope glycoprotein consists of a trimer of two noncovalently and weakly associated subunits, gp120 and gp41. Upon binding of gp120 to cellular receptors, this labile native envelope complex undergoes conformational changes, resulting in a stable trimer-of-hairpins structure in gp41. Formation of the hairpin structure is thought to mediate membrane fusion by placing the viral and cellular membranes in close proximity. An in vitro-derived variant of SIVmac251, denoted CPmac, has acquired an unusually stable virion-associated gp120-gp41 complex. This unique phenotype is conferred by five amino acid substitutions in the gp41 ectodomain. Here we characterize the structural and physicochemical properties of the N40(L6)C38 model of the CPmac gp41 core. The 1.7-A resolution crystal structure of N40(L6)C38 is very similar to the six-helix bundle structure present in the parent SIVmac251 gp41. In both structures, three N40 peptides form a central three-stranded coiled coil, and three C38 peptides pack in an antiparallel orientation into hydrophobic grooves on the coiled-coil surface. Thermal unfolding studies show that the CPmac mutations destabilize the SIVmac251 six-helix bundle by 15 kJ/mol. Our results suggest that the formation of the gp41 trimer-of-hairpins structure is thermodynamically coupled to the conformational stability of the native envelope glycoprotein and raise the intriguing possibility that introduction of mutations to destabilize the six-helix bundle may lead to the stabilization of the trimeric gp120-gp41 complex. This study suggests a potential strategy for the production of stably folded envelope protein immunogens for HIV vaccine development.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
45
|
Puffer BA, Pöhlmann S, Edinger AL, Carlin D, Sanchez MD, Reitter J, Watry DD, Fox HS, Desrosiers RC, Doms RW. CD4 independence of simian immunodeficiency virus Envs is associated with macrophage tropism, neutralization sensitivity, and attenuated pathogenicity. J Virol 2002; 76:2595-605. [PMID: 11861825 PMCID: PMC135960 DOI: 10.1128/jvi.76.6.2595-2605.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the basis for envelope (Env) determinants influencing simian immunodeficiency virus (SIV) tropism, we studied a number of Envs that are closely related to that of SIVmac239, a pathogenic, T-tropic virus that is neutralization resistant. The Envs from macrophage-tropic (M-tropic) virus strains SIVmac316, 1A11, 17E-Fr, and 1100 facilitated infection of CCR5-positive, CD4-negative cells. In contrast, the SIVmac239 Env was strictly dependent upon the presence of CD4 for membrane fusion. We also found that the Envs from M-tropic virus strains, which are less pathogenic in vivo, were very sensitive to antibody-mediated neutralization. Antibodies to the V3-loop, as well as antibodies that block SIV gp120 binding to CCR5, efficiently neutralized CD4-independent, M-tropic Envs but not the 239 Env. However, triggering the 239 Env with soluble CD4, presumably resulting in exposure of the CCR5 binding site, made it as neutralization sensitive as the M-tropic Envs. In addition, mutations of N-linked glycosylation sites in the V1/V2 region, previously shown to enhance antigenicity and immunogenicity, made the 239 Env partially CD4 independent. These findings indicate that Env-based determinants of M tropism of these strains are generally associated with decreased dependence on CD4 for entry into cells. Furthermore, CD4 independence and M tropism are also associated with neutralization sensitivity and reduced pathogenicity, suggesting that the humoral immune response may exert strong selective pressure against CD4-independent M-tropic SIVmac strains. Finally, genetic modification of viral Envs to enhance CD4 independence may also result in improved humoral immune responses.
Collapse
Affiliation(s)
- Bridget A Puffer
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Binley JM, Sanders RW, Master A, Cayanan CS, Wiley CL, Schiffner L, Travis B, Kuhmann S, Burton DR, Hu SL, Olson WC, Moore JP. Enhancing the proteolytic maturation of human immunodeficiency virus type 1 envelope glycoproteins. J Virol 2002; 76:2606-16. [PMID: 11861826 PMCID: PMC135977 DOI: 10.1128/jvi.76.6.2606-2616.2002] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2001] [Accepted: 12/06/2001] [Indexed: 12/31/2022] Open
Abstract
In virus-infected cells, the envelope glycoprotein (Env) precursor, gp160, of human immunodeficiency virus type 1 is cleaved by cellular proteases into a fusion-competent gp120-gp41 heterodimer in which the two subunits are noncovalently associated. However, cleavage can be inefficient when recombinant Env is expressed at high levels, either as a full-length gp160 or as a soluble gp140 truncated immediately N-terminal to the transmembrane domain. We have explored several methods for obtaining fully cleaved Env for use as a vaccine antigen. We tested whether purified Env could be enzymatically digested with purified protease in vitro. Plasmin efficiently cleaved the Env precursor but also cut at a second site in gp120, most probably the V3 loop. In contrast, a soluble form of furin was specific for the gp120-gp41 cleavage site but cleaved inefficiently. Coexpression of Env with the full-length or soluble form of furin enhanced Env cleavage but also reduced Env expression. When the Env cleavage site (REKR) was mutated in order to see if its use by cellular proteases could be enhanced, several mutants were found to be processed more efficiently than the wild-type protein. The optimal cleavage site sequences were RRRRRR, RRRRKR, and RRRKKR. These mutations did not significantly alter the capacity of the Env protein to mediate fusion, so they have not radically perturbed Env structure. Furthermore, unlike that of wild-type Env, expression of the cleavage site mutants was not significantly reduced by furin coexpression. Coexpression of Env cleavage site mutants and furin is therefore a useful method for obtaining high-level expression of processed Env.
Collapse
Affiliation(s)
- James M Binley
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Srivastava IK, Stamatatos L, Legg H, Kan E, Fong A, Coates SR, Leung L, Wininger M, Donnelly JJ, Ulmer JB, Barnett SW. Purification and characterization of oligomeric envelope glycoprotein from a primary R5 subtype B human immunodeficiency virus. J Virol 2002; 76:2835-47. [PMID: 11861851 PMCID: PMC135955 DOI: 10.1128/jvi.76.6.2835-2847.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) continues to be a major public health problem throughout the world, with high levels of mortality and morbidity associated with AIDS. Considerable efforts to develop an effective vaccine for HIV have been directed towards the generation of cellular, humoral, and mucosal immune responses. A major emphasis of our work has been toward the evaluation of oligomeric (o-gp140) forms of the HIV type 1 (HIV-1) envelope protein for their ability to induce neutralizing antibody responses. We have derived stable CHO cell lines expressing o-gp140 envelope protein from the primary non-syncytium-inducing (R5) subtype B strain HIV-1(US4). We have developed an efficient purification strategy to purify oligomers to near homogeneity. Using a combination of three detectors measuring intrinsic viscosity, light scattering, and refractive index, we calculated the molecular mass of the oligomer to be 474 kDa, consistent with either a trimer or a tetramer. The hydrodynamic radius (R(h)) of o-gp140 was determined to be 8.40 nm, compared with 5.07 nm for the monomer. The relatively smaller R(h) of the oligomer suggests that there are indeed differences between the foldings of o-gp140 and gp120. To assess the structural integrity of the purified trimers, we performed a detailed characterization of the glycosylation profile of o-gp140, its ability to bind soluble CD4, and also its ability to bind to a panel of monoclonal antibodies with known epitope specificities for the CD4 binding site, the CD4 inducible site, the V3 loop, and gp41. Immunogenicity studies with rabbits indicated that the purified o-gp140 protein was highly immunogenic and induced high-titer, high-avidity antibodies directed predominantly against conformational epitopes. These observations confirm the structural integrity of purified o-gp140 and its potential as a vaccine antigen.
Collapse
Affiliation(s)
- Indresh K Srivastava
- Department of Immunology and Infectious Diseases, Chiron Corporation, Emeryville, California 94608, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zeder-Lutz G, Hoebeke J, Van Regenmortel MH. Differential recognition of epitopes present on monomeric and oligomeric forms of gp160 glycoprotein of human immunodeficiency virus type 1 by human monoclonal antibodies. ACTA ACUST UNITED AC 2001; 268:2856-66. [PMID: 11358501 DOI: 10.1046/j.1432-1327.2001.02167.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanism of infectivity neutralization of human immunodeficiency virus type 1 (HIV-1) by Ig is poorly understood. Three human monoclonal antibodies (mAbs 1b12, 2G12 and 2F5) that are able to neutralize primary isolates of HIV-1 in vitro have been shown to act synergistically. In the present study this synergy was analyzed by measuring the epitope accessibility and binding kinetics for these three mAbs with respect to monomeric and oligomeric env protein gp160 IIIB using surface plasmon resonance. The results indicate that oligomerization of gp160 affects the accessibility of some of the epitopes recognized by the mAbs and provide some insight into the mechanism of synergy between different anti-(HIV-1) mAbs.
Collapse
Affiliation(s)
- G Zeder-Lutz
- UPR 9021 CNRS Immunochimie des peptides et des virus. Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | |
Collapse
|
49
|
Louis JM, Bewley CA, Clore GM. Design and properties of N(CCG)-gp41, a chimeric gp41 molecule with nanomolar HIV fusion inhibitory activity. J Biol Chem 2001; 276:29485-9. [PMID: 11418583 DOI: 10.1074/jbc.c100317200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The design and characterization of a chimeric protein, termed N(CCG)-gp41, derived from the ectodomain of human immunodeficiency virus (HIV), type I gp41 is described. N(CCG)-gp41 features an exposed trimeric coiled-coil comprising the N-terminal helices of the gp41 ectodomain. The trimeric coiled-coil is stabilized both by fusion to a minimal thermostable ectodomain of gp41 and by engineered intersubunit disulfide bonds. N(CCG)-gp41 is shown to inhibit HIV envelope-mediated cell fusion at nanomolar concentrations with an IC(50) of 16.1 +/- 2.8 nm. It is proposed that N(CCG)-gp41 targets the exposed C-terminal region of the gp41 ectodomain in its pre-hairpin intermediate state, thereby preventing the formation of the fusogenic form of the gp41 ectodomain, which comprises a highly stable trimer of hairpins arranged in a six-helix bundle. N(CCG)-gp41 has potential as a therapeutic agent for the direct inhibition of HIV cell entry, as an anti-HIV vaccine, and as a component of a rapid throughput assay for screening for small molecule inhibitors of HIV envelope-mediated cell fusion. It is anticipated that antibodies raised against N(CCG)-gp41 may target the trimeric coiled-coil of N-terminal helices of the gp41 ectodomain that is exposed in the pre-hairpin intermediate state in a manner analogous to peptides derived from the C-terminal helix of gp41 that are currently in clinical trials.
Collapse
Affiliation(s)
- J M Louis
- Laboratories of Chemical Physics and Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
50
|
Losman B, Bolmstedt A, Schønning K, Westin C, Fenyö EM, Olofsson S. Protection of neutralization epitopes in the V3 loop of oligomeric human immunodeficiency virus type 1 glycoprotein 120 by N-linked oligosaccharides in the V1 region. AIDS Res Hum Retroviruses 2001; 17:1067-76. [PMID: 11485624 DOI: 10.1089/088922201300343753] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The V3 region of the human immunodeficiency virus type 1 envelope protein gp120 constitutes a potential neutralization target, but the oligosaccharide of one conserved N-glycosylation site in this region protects it from neutralizing antibodies. Here, we determined whether N-linked glycans of other gp120 domains were also involved in protection of V3 neutralization epitopes. Two molecular clones of HIV-1, one lacking three N-linked glycans of the V1 region (HIV-1(3N/V1)) and another lacking three N-linked glycans of the C2 region (HIV-1(3N/C2)), were created and characterized. gp120 from both mutated viral clones had higher electrophoretic mobilities than gp120 from wild-type virus, confirming loss of N-linked glycans. Wild-type virus and both mutant clones replicated equally well in established T cell lines and all three viruses were able to utilize CXCR4 but not CCR5 as a coreceptor. The induced mutations increased gp120 affinity for CXCR4 but caused no corresponding increase in viral ability to replicate in T cell lines. HIV-1(3N/V1) was neutralized at about 25 times lower concentrations of an antibody to the V3 region than were wild-type virus and HIV-1(3N/C2). Soluble, monomeric gp120 from HIV-1(3N/V1) and wild type virus had identical avidity for the V3 antibody, indicating that the V1 glycans were able to shield V3 only in oligomeric but not monomeric gp120. In conclusion, one or more N-linked glycans of gp120 V1 is engaged in protection of the V3 region from potential neutralizing antibodies, and this effect is dependent on the oligomeric organization of gp120/gp41.
Collapse
Affiliation(s)
- B Losman
- Department of Clinical Virology, University of Göteborg, S-413 46 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|