1
|
Oral Immunization with Recombinant Vaccinia Virus Prime and Intramuscular Protein Boost Provides Protection against Intrarectal Simian-Human Immunodeficiency Virus Challenge in Macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 23:204-12. [PMID: 26718849 DOI: 10.1128/cvi.00597-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) acquisition occurs predominantly through mucosal transmission. We hypothesized that greater mucosal immune responses and protective efficacy against mucosal HIV-1 infection may be achieved by prime-boost immunization at mucosal sites. We used a macaque model to determine the safety, immunogenicity, and protective efficacy of orally delivered, replication-competent but attenuated recombinant vaccinia viruses expressing full-length HIV-1 SF162 envelope (Env) or simian immunodeficiency virus (SIV) Gag-Pol proteins. We examined the dose and route that are suitable for oral immunization with recombinant vaccinia viruses. We showed that sublingual inoculation of two vaccinia virus-naive pigtailed macaques with 5 × 10(8) PFU of recombinant vaccinia viruses was safe. However, sublingual inoculation with a higher dose or tonsillar inoculation resulted in secondary oral lesions, indicating the need to optimize the dose and route for oral immunization with replication-competent vaccinia virus vectors. Oral priming alone elicited antibody responses to vaccinia virus and to the SF162 Env protein. Intramuscular immunization with the SF162 gp120 protein at either 20 or 21 weeks postpriming resulted in a significant boost in antibody responses in both systemic and mucosal compartments. Furthermore, we showed that immune responses induced by recombinant vaccinia virus priming and intramuscular protein boosting provided protection against intrarectal challenge with the simian-human immunodeficiency virus SHIV-SF162-P4.
Collapse
|
2
|
Nakatani-Webster E, Hu SL, Atkins WM, Catalano CE. Assembly and characterization of gp160-nanodiscs: A new platform for biochemical characterization of HIV envelope spikes. J Virol Methods 2015; 226:15-24. [PMID: 26424619 DOI: 10.1016/j.jviromet.2015.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/21/2015] [Accepted: 09/25/2015] [Indexed: 01/12/2023]
Abstract
The human immunodeficiency virus (HIV) is the causative agent of acquired immune deficiency syndrome (AIDS) and is thus responsible for significant morbidity and mortality worldwide. Despite considerable effort, preparation of an effective vaccine for AIDS has been elusive and it has become clear that a fundamental understanding of the relevant antigenic targets on HIV is essential. The Env trimer spike is the only viral antigen present on the surface of the viral particle and it is the target of all broadly neutralizing antibodies isolated to date. Thus, a soluble, homogeneous, and well-defined preparation of Env trimers is an important first step toward biochemical and structural characterization of the antigenic spike. Phospholipid bilayer nanodiscs represent a relatively new technology that can serve as a platform for the assembly of membrane proteins into a native membrane-like environment. Here we describe the preparation and characterization of unprocessed full-length, natively glycoslyated gp160 Env proteins incorporated into nanodiscs (gp160-ND). The particles are soluble and well defined in the absence of detergent, and possess a morphology anticipated of Env incorporated into a lipid ND. Importantly, the gp160-NDs retain CD4 and Env antibody binding characteristics expected of a functional trimer spike and their incorporation into a lipid membrane allows interrogation of epitopes associated with the membrane-proximal ectodomain region of gp41. These studies provide the groundwork for the use of gp160-ND in more detailed biochemical and structural studies that may set the stage for their use in vaccine development.
Collapse
Affiliation(s)
- Eri Nakatani-Webster
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, H-172 Health Sciences Building, Box 357610, Seattle, WA 98195, United States
| | - Shiu-Lok Hu
- Department of Pharmaceutics, School of Pharmacy, University of Washington, H272 Health Sciences Building, Box 357610, Seattle, WA 98195, United States
| | - William M Atkins
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, H-172 Health Sciences Building, Box 357610, Seattle, WA 98195, United States
| | - Carlos Enrique Catalano
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, H-172 Health Sciences Building, Box 357610, Seattle, WA 98195, United States.
| |
Collapse
|
3
|
McBurney SP, Landucci G, Forthal DN, Ross TM. Evaluation of heterologous vaginal SHIV SF162p4 infection following vaccination with a polyvalent Clade B virus-like particle vaccine. AIDS Res Hum Retroviruses 2012; 28:1063-72. [PMID: 22214267 PMCID: PMC3423648 DOI: 10.1089/aid.2011.0351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The vast diversity of HIV-1 infections has greatly impeded the development of a successful HIV-1/AIDS vaccine. Previous vaccine work has demonstrated limited levels of protection against SHIV/SIV infection, but protection was observed only when the challenge virus was directly matched to the vaccine strain. As it is likely impossible to directly match the vaccine strain to all infecting strains in nature, it is necessary to develop an HIV-1 vaccine that can protect against a heterologous viral challenge. In this study we investigated the ability of polyvalent and consensus vaccines to protect against a heterologous clade B challenge. Rhesus macaques were vaccinated with ConB or PolyB virus-like particle vaccines. All vaccines were highly immunogenic with high titers of antibody found in all vaccinated groups against SIV Gag. Antibody responses were also observed against a diverse panel of clade B envelopes. Following vaccination nonhuman primates (NHPs) were challenged via the vaginal route with SHIV(SF162p4). The PolyB vaccine induced a 66.7% reduction in the rate of infection as well as causing a two log reduction in viral burden if infection was not blocked. ConB vaccination had no effect on either the infection rate or viral burden. These results indicate that a polyvalent clade-matched vaccine is better able to protect against a heterologous challenge as compared to a consensus vaccine.
Collapse
Affiliation(s)
- Sean P. McBurney
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Graduate Program in Molecular Virology and Microbiology and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gary Landucci
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California
| | - Donald N. Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California
| | - Ted M. Ross
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Graduate Program in Molecular Virology and Microbiology and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Sastri J, Campbell EM. Recent insights into the mechanism and consequences of TRIM5α retroviral restriction. AIDS Res Hum Retroviruses 2011; 27:231-8. [PMID: 21247355 DOI: 10.1089/aid.2010.0367] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cellular factor TRIM5α inhibits infection by numerous retroviruses in a species-specific manner. The TRIM5α protein from rhesus macaques (rhTRIM5α) restricts infection by HIV-1 while human TRIM5α (huTRIM5α) restricts infection by murine leukemia virus (MLV). In owl monkeys a related protein TRIM-Cyp restricts HIV-1 infection. Several models have been proposed for retroviral restriction by TRIM5 proteins (TRIM5α and TRIM-Cyp). These models collectively suggest that TRIM5 proteins mediate restriction by directly binding to specific determinants in the viral capsid. Through their ability to self-associate TRIM5 proteins compartmentalize the viral capsid core and mediate its abortive disassembly via a poorly understood mechanism that is sensitive to proteasome inhibitors. In this review, we discuss TRIM5-mediated restriction in detail. We also discuss how polymorphisms within human and rhesus macaque populations have been demonstrated to affect disease progression of immunodeficiency viruses in these species.
Collapse
Affiliation(s)
- Jaya Sastri
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Edward M. Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
5
|
Lim SY, Rogers T, Chan T, Whitney JB, Kim J, Sodroski J, Letvin NL. TRIM5alpha Modulates Immunodeficiency Virus Control in Rhesus Monkeys. PLoS Pathog 2010; 6:e1000738. [PMID: 20107597 PMCID: PMC2809762 DOI: 10.1371/journal.ppat.1000738] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 12/22/2009] [Indexed: 11/18/2022] Open
Abstract
The cytoplasmic TRIM5α proteins of certain mammalian lineages efficiently recognize the incoming capsids of particular retroviruses and potently restrict infection in a species-specific manner. Successful retroviruses have evolved capsids that are less efficiently recognized by the TRIM5α proteins of the natural hosts. To address whether TRIM5α contributes to the outcome of retroviral infection in a susceptible host species, we investigated the impact of TRIM5 polymorphisms in rhesus monkeys on the course of a simian immunodeficiency virus (SIV) infection. Full-length TRIM5α cDNAs were derived from each of 79 outbred monkeys and sequenced. Associations were explored between the expression of particular TRIM5 alleles and both the permissiveness of cells to SIV infection in vitro and clinical sequelae of SIV infection in vivo. Natural variation in the TRIM5α B30.2(SPRY) domain influenced the efficiency of SIVmac capsid binding and the in vitro susceptibility of cells from the monkeys to SIVmac infection. We also show the importance in vivo of the interaction of SIVmac with different allelic forms of TRIM5, demonstrating that particular alleles are associated with as much as 1.3 median log difference in set-point viral loads in SIVmac-infected rhesus monkeys. Moreover, these allelic forms of TRIM5 were associated with the extent of loss of central memory (CM) CD4+ T cells and the rate of progression to AIDS in the infected monkeys. These findings demonstrate a central role for TRIM5α in limiting the replication of an immunodeficiency virus infection in a primate host. The cytoplasmic TRIM5α restricts the replication of a broad range of retroviruses in a species-specific manner. In the present study we show that TRIM5α is more than a species barrier for retroviruses. We show that naturally occurring B30.2(SPRY) polymorphisms affect retrovirus infection. These observations demonstrate the importance of SIV/B30.2(SPRY) interactions in vivo. These findings are the first demonstration of the importance of such a pathogen/host protein interaction in vivo. Importantly, the striking variability in the clinical course of HIV-infected individuals has long puzzled the biomedical community. A large number of investigators have devoted considerable effort to determine what genetically determined factors might contribute to the containment of HIV replication, reasoning that an understanding of the determinants of effective control of HIV spread will provide important targets for both drug and vaccine development. Our demonstration in the present study that B30.2(SPRY) polymorphisms have a dramatic effect on the clinical outcome of an AIDS virus infection highlight the extraordinary importance of TRIM5α on the control of an AIDS virus infection.
Collapse
Affiliation(s)
- So-Yon Lim
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas Rogers
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tiffany Chan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James B. Whitney
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonghwa Kim
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Norman L. Letvin
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
McBurney SP, Ross TM. Human immunodeficiency virus-like particles with consensus envelopes elicited broader cell-mediated peripheral and mucosal immune responses than polyvalent and monovalent Env vaccines. Vaccine 2009; 27:4337-49. [PMID: 19389453 PMCID: PMC9707700 DOI: 10.1016/j.vaccine.2009.04.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 04/08/2009] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
Abstract
Envelope (Env) sequences from human immunodeficiency virus (HIV) strains can vary by 15-20% within a single clade and as much as 35% between clades. Previous AIDS vaccines based upon a single isolate often could not elicit protective immune responses against heterologous viral challenges. In order to address the vast sequence diversity in Env sequences, consensus sequences were constructed for clade B and clade C envelopes and delivered to the mouse lung mucosa on the surface of virus-like particles (VLP). Consensus sequences decrease the genetic difference between the vaccine strain and any given viral isolate. The elicited immune responses were compared to a mixture of VLPs with Envs from primary viral isolates. This polyvalent vaccine approach contains multiple, diverse Envs to increase the breadth of epitopes recognized by the immune response and thereby increase the potential number of primary isolates recognized. Both consensus and polyvalent clade B Env VLP vaccines elicited cell-mediated immune responses that recognized a broader number of clade B Env peptides than a control monovalent Env VLP vaccine in both the systemic and the mucosal immune compartments. All three clade C Env vaccine strategies elicited similar responses to clade C peptides. However, both the consensus B and C Env VLP vaccines were more effective at eliciting cross-reactive cellular immune responses to epitopes in other clades. This is the first study to directly compare the breadth of cell-mediated immune responses elicited by consensus and polyvalent Env vaccines.
Collapse
Affiliation(s)
- Sean P. McBurney
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ted M. Ross
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Ma J, Jiang C, Lin Y, Wang X, Zhao L, Xiang W, Shao Y, Shen R, Kong X, Zhou J. In vivo evolution of the gp90 gene and consistently low plasma viral load during transient immune suppression demonstrate the safety of an attenuated equine infectious anemia virus (EIAV) vaccine. Arch Virol 2009; 154:867-73. [PMID: 19363668 DOI: 10.1007/s00705-009-0378-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
To study the in vivo evolution of the attenuated Chinese equine infectious anemia virus (EIAV) vaccine, viral gp90 gene variation and virus replication in immunosuppressed hosts were investigated. The results showed that after vaccination, the gp90 gene followed an evolutionary trend of declining diversity. The trend coincided with the maturation of immunity to EIAV, and eventually, the gp90 gene became highly homologous. The sequences of these predominant quasispecies were consistently detected up to 18 months after vaccination. Furthermore, after transient immune suppression with dexamethasone, the plasma viral RNA copy number of the vaccine strain in three vaccinated ponies remained consistently below the "pathogenic threshold" level, while the viral load increased by 25,000-fold in the positive control of an inapparent carrier of the parental virulent strain. This study is the first to provide evidence for the safety of an attenuated lentiviral vaccine with decreased genomic diversity and consistently low viral replication under suppressed immunity.
Collapse
Affiliation(s)
- Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sealy R, Slobod KS, Flynn P, Branum K, Surman S, Jones B, Freiden P, Lockey T, Howlett N, Hurwitz JL. Preclinical and clinical development of a multi-envelope, DNA-virus-protein (D-V-P) HIV-1 vaccine. Int Rev Immunol 2009; 28:49-68. [PMID: 19241253 DOI: 10.1080/08830180802495605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The human immune system has evolved to recognize antigenic diversity, a strength that has been harnessed by vaccine developers to combat numerous pathogens (e.g., pneumococcus, influenza virus, rotavirus). In each case, vaccine cocktails were formulated to include antigenic variants of the target. To combat HIV-1 diversity, we assembled a cocktail vaccine comprising dozens of envelopes, delivered as recombinant DNA, vaccinia virus, and protein for testing in a clinical trial. One vaccinee has now completed vaccinations with no serious adverse events. Preliminary analyses demonstrate early proof-of-principle that a multi-envelope vaccine can elicit neutralizing antibody responses toward heterologous HIV-1 in humans.
Collapse
Affiliation(s)
- Robert Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
McBurney SP, Ross TM. Viral sequence diversity: challenges for AIDS vaccine designs. Expert Rev Vaccines 2008; 7:1405-17. [PMID: 18980542 DOI: 10.1586/14760584.7.9.1405] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Among the greatest challenges facing AIDS vaccine development is the intrinsic diversity among circulating populations of HIV-1 in various geographical locations and the need to develop vaccines that can elicit enduring protective immunity to variant HIV-1 strains. While variation is observed in all of the viral proteins, the greatest diversity is localized to the viral envelope glycoproteins, evidently reflecting the predominant role of these proteins in eliciting host immune recognition and responses that result in progressive evolution of the envelope proteins during persistent infection. Interestingly, while envelope glycoprotein variation is widely assumed to be a major obstacle to AIDS vaccine development, there is very little experimental data in animal or human lentivirus systems addressing this critical issue. In this review, the state of vaccine development to address envelope diversity will be presented, focusing on the use of centralized and polyvalent sequence design as mechanisms to elicit broadly reactive immune responses.
Collapse
Affiliation(s)
- Sean P McBurney
- University of Pittsburgh, School of Medicine, Center for Vaccine Research, Program in Molecular Virology and Microbiology, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
10
|
Abstract
Development of an HIV/AIDS vaccine has been slow because classical approaches to vaccine development have not yielded a vaccine. Encouragingly, new approaches using recombinant viral vectors, DNA vaccines, and combinations of different vectors in heterologous prime/boost regimens are yielding vaccines capable of controlling virulent immunodeficiency virus challenges in non-human primate models. These new vaccines elicit T cells capable of recognizing and killing virus-infected cells. Brief synopses are given for six vaccines currently advancing in human trials.
Collapse
Affiliation(s)
- H L Robinson
- Yerkes National Primate Research Center, Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
11
|
Polacino P, Cleveland B, Zhu Y, Kimata JT, Overbaugh J, Anderson D, Hu SL. Immunogenicity and protective efficacy of Gag/Pol/Env vaccines derived from temporal isolates of SIVmne against cognate virus challenge. J Med Primatol 2007; 36:254-65. [PMID: 17669214 DOI: 10.1111/j.1600-0684.2007.00243.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND We used the SIVmne model to examine the relative immunogenicity and protective efficacy of vaccines derived from temporal isolates of lentivirus infection. SIVmne170 is a molecular clone isolated from a pig-tailed macaque 170 weeks after inoculation with SIVmneCL8. METHODS We immunized pig-tailed macaques with Gag/Pol/Env vaccines derived from CL8 or 170 and examined their protective efficacy against CL8, 170, or chimeras 8/170 and 170/8, containing the 5' or 3' half of the respective parental genomes. RESULTS As expected, CL8 vaccines protected animals against the CL8, but not the 170 virus. Surprisingly, 170 vaccines not only failed to protect against the 170 virus, but also the less pathogenic CL8. Chimeric virus challenges revealed that the envelope antigen of CL8 represents an important target for protective immunity. CONCLUSIONS These results underscore the potential importance of targeting transmitted viruses through judicious choice of immunogens from early isolates for vaccine development.
Collapse
Affiliation(s)
- Patricia Polacino
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Tasca S, Tsai L, Trunova N, Gettie A, Saifuddin M, Bohm R, Chakrabarti L, Cheng-Mayer C. Induction of potent local cellular immunity with low dose X4 SHIV(SF33A) vaginal exposure. Virology 2007; 367:196-211. [PMID: 17574643 PMCID: PMC2756750 DOI: 10.1016/j.virol.2007.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 04/25/2007] [Accepted: 05/15/2007] [Indexed: 11/15/2022]
Abstract
Intravaginal inoculation of rhesus macaques with varying doses of the CXCR4 (X4)-tropic SHIV(SF33A) isolate revealed a threshold inoculum for establishment of systemic virus infection and a dose dependency in overall viral burden and CD4+ T cell depletion. While exposure to inoculum size of 1000 or greater 50% tissue infectious dose (TCID(50)) resulted in high viremia and precipitous CD4+ T cell loss, occult infection was observed in seven of eight macaques exposed to 500 TCID(50) of the same virus. The latter was characterized by intermittent detection of low level virus with no evidence of seroconversion or CD4+ T cell decline, but with signs of an ongoing antiviral T cell immune response. Upon vaginal re-challenge with the same limiting dose 11-12 weeks after the first, classic pathogenic X4 SHIV(SF33A) infection was established in four of the seven previously exposed seronegative macaques, implying enhanced susceptibility to systemic infection with prior exposure. Pre-existing peripheral SIV gag-specific CD4+ T cells were more readily demonstrable in macaques that became systemically infected following re-exposure than those that were not. In contrast, early presence of circulating polyfunctional cytokine secreting CD8+ T cells or strong virus-specific proliferative responses in draining lymph nodes and in the gut associated lymphoid tissue (GALT) following the first exposure was associated with protection from systemic re-infection. These studies identify the gut and lymphoid tissues proximal to the genital tract as sites of robust CD8 T lymphocyte responses that contribute to containment of virus spread following vaginal transmission.
Collapse
Affiliation(s)
- Silvana Tasca
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Ave, 7 Floor, New York, NY 10016
| | - Lily Tsai
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Ave, 7 Floor, New York, NY 10016
| | - Nataliya Trunova
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Ave, 7 Floor, New York, NY 10016
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Ave, 7 Floor, New York, NY 10016
| | - Mohammed Saifuddin
- CONRAD, Eastern Virginia Medical School, 1611 North Kent Street Suite 806, Arlington, VA 22209
| | - Rudolf Bohm
- Tulane National Primate Research Center, Tulane University Medical Center, 18702 Three Rivers Road, Covington, LA 70433
| | - Lisa Chakrabarti
- Institut Pasteur, Unite d'Immunologie Virale, 28 rue du Dr roux, 75724 Paris Cedex 15, France
| | - Cecilia Cheng-Mayer
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Ave, 7 Floor, New York, NY 10016
| |
Collapse
|
13
|
Burke B, Derby NR, Kraft Z, Saunders CJ, Dai C, Llewellyn N, Zharkikh I, Vojtech L, Zhu T, Srivastava IK, Barnett SW, Stamatatos L. Viral evolution in macaques coinfected with CCR5- and CXCR4-tropic SHIVs in the presence or absence of vaccine-elicited anti-CCR5 SHIV neutralizing antibodies. Virology 2006; 355:138-51. [PMID: 16920175 DOI: 10.1016/j.virol.2006.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/08/2006] [Accepted: 07/11/2006] [Indexed: 11/21/2022]
Abstract
Macaques were immunized with SF162 Env-based gp140 immunogens and challenged simultaneously with the CCR5-tropic homologous SHIV(SF162P4) and the CXCR4-tropic heterologous SHIV(SF33A) viruses. Both mock-immunized and immunized animals became dually infected. Prior immunization preferentially reduced the viral replication of the homologous virus during primary infection but the relative replication of the two coinfecting viruses during chronic infection was unaffected by prior immunization, despite the fact that five of six immunized animals maintained a significantly lower overall viral replication that the control animals. Neutralizing antibodies participated in controlling the replication of SHIV(SF162P4), but not that of SHIV(SF33A). Dual infection resulted in the emergence and predominance within the circulating CCR5 virus pool, of a variant with a distinct neutralization phenotype. The signature of this variant was the presence of three amino acid changes in gp120, two of which were located in the receptor and coreceptor binding sites. Also, a significant fraction of the viruses circulating in the blood, as early as two weeks post-infection, was recombinants and prior immunization did not prevent their emergence. These findings provide new insights into the dynamic interaction of CCR5- and CXCR4-tropic HIV isolates that are potentially relevant in better understanding HIV-mediated pathogenesis.
Collapse
Affiliation(s)
- Brian Burke
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Letvin NL, Mascola JR, Sun Y, Gorgone DA, Buzby AP, Xu L, Yang ZY, Chakrabarti B, Rao SS, Schmitz JE, Montefiori DC, Barker BR, Bookstein FL, Nabel GJ. Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys. Science 2006; 312:1530-3. [PMID: 16763152 PMCID: PMC2365913 DOI: 10.1126/science.1124226] [Citation(s) in RCA: 320] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vaccine-induced cellular immunity controls virus replication in simian immunodeficiency virus (SIV)-infected monkeys only transiently, leading to the question of whether such vaccines for AIDS will be effective. We immunized monkeys with plasmid DNA and replication-defective adenoviral vectors encoding SIV proteins and then challenged them with pathogenic SIV. Although these monkeys demonstrated a reduction in viremia restricted to the early phase of SIV infection, they showed a prolonged survival. This survival was associated with preserved central memory CD4+ T lymphocytes and could be predicted by the magnitude of the vaccine-induced cellular immune response. These immune correlates of vaccine efficacy should guide the evaluation of AIDS vaccines in humans.
Collapse
Affiliation(s)
- Norman L Letvin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Xu R, Srivastava IK, Kuller L, Zarkikh I, Kraft Z, Fagrouch Z, Letvin NL, Heeney JL, Barnett SW, Stamatatos L. Immunization with HIV-1 SF162-derived Envelope gp140 proteins does not protect macaques from heterologous simian-human immunodeficiency virus SHIV89.6P infection. Virology 2006; 349:276-89. [PMID: 16527321 DOI: 10.1016/j.virol.2006.01.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 01/19/2006] [Accepted: 01/26/2006] [Indexed: 11/21/2022]
Abstract
Immunization by the SF162gp140 or the DeltaV2gp140 HIV-1 envelope proteins results in the generation of strong homologous neutralizing antibodies (NAbs) that offer similar degree of protection from disease-development to macaques challenged with homologous virus. These two immunogens elicit weak cross-reactive NAbs and their effectiveness against heterologous challenge is currently unknown. To examine this issue, we immunized macaques with SIVGag p55 and either the SF162gp140 or the DeltaV2gp140 and challenged them intravenously with SHIV-89.6P. All animals became infected but previous immunization with SF162gp140 accelerated the development of anti-SHIV89.6P neutralizing antibody responses following infection. DeltaV2gp140 is derived from SF162gp140 following the deletion of 30 amino acids and one N-linked glycosylation site from the V2 loop. Our results suggest that even small differences in HIV Envelope immunogen structure can affect the neutralizing antibody responses generated following infection.
Collapse
Affiliation(s)
- Rong Xu
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Verity EE, Williams LA, Haddad DN, Choy V, O'Loughlin C, Chatfield C, Saksena NK, Cunningham A, Gelder F, McPhee DA. Broad neutralization and complement-mediated lysis of HIV-1 by PEHRG214, a novel caprine anti-HIV-1 polyclonal antibody. AIDS 2006; 20:505-15. [PMID: 16470114 DOI: 10.1097/01.aids.0000210604.78385.95] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To assess the potency, breadth of action, and mechanism of action of the polyclonal goat anti-HIV antibody, PEHRG214. DESIGN Typical human antibody responses to HIV-1 infection are unable to neutralize virus efficiently, clear the infection, or prevent disease progression. However, more potent neutralizing antibodies may be capable of playing a pivotal role in controlling HIV replication in vivo. PEHRG214 is a polyclonal caprine antibody raised against purified HIV-associated proteins, such that epitopes that are immunologically silent in humans may potentially be recognized in another species. It has been administered safely to HIV-infected individuals in Phase I clinical trials. METHODS The anti-HIV activity of PEHRG214 was assessed using neutralization and virion lysis assays. The target proteins for PEHRG214 activity were investigated using flow cytometry and by adsorption of anti-cell antibodies from the antibody cocktail. RESULTS PEHRG214 strongly neutralized a diverse range of primary HIV-1 isolates, encompassing subtypes A to E and both CCR5 and CXCR4 phenotypes. Neutralization was enhanced by the presence of complement. PEHRG214 also induced complement-mediated lysis of all HIV-1 isolates tested, and recognized or cross-reacted with a number of host cell proteins. Lysis was abrogated by adsorption with T and/or B cells expressing GPI-linked proteins, but not by GPI-deficient B cells or red blood cells. CONCLUSIONS PEHRG214 was found to potently neutralize and lyse HIV-1 particles. By targeting host cell proteins present in the viral envelope, which are conserved among all strains tested, PEHRG214 potentially opens up a highly novel means of eliminating circulating virus in infected individuals.
Collapse
Affiliation(s)
- Erin E Verity
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mori K, Sugimoto C, Ohgimoto S, Nakayama EE, Shioda T, Kusagawa S, Takebe Y, Kano M, Matano T, Yuasa T, Kitaguchi D, Miyazawa M, Takahashi Y, Yasunami M, Kimura A, Yamamoto N, Suzuki Y, Nagai Y. Influence of glycosylation on the efficacy of an Env-based vaccine against simian immunodeficiency virus SIVmac239 in a macaque AIDS model. J Virol 2005; 79:10386-96. [PMID: 16051831 PMCID: PMC1182680 DOI: 10.1128/jvi.79.16.10386-10396.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The envelope glycoprotein (Env) of human immunodeficiency viruses (HIVs) and simian immunodeficiency viruses (SIVs) is heavily glycosylated, and this feature has been speculated to be a reason for the insufficient immune control of these viruses by their hosts. In a macaque AIDS model, we demonstrated that quintuple deglycosylation in Env altered a pathogenic virus, SIVmac239, into a novel attenuated mutant virus (delta5G). In delta5G-infected animals, strong protective immunity against SIVmac239 was elicited. These HIV and SIV studies suggested that an understanding of the role of glycosylation is critical in defining not only the virological properties but also the immunogenicity of Env, suggesting that glycosylation in Env could be modified for the development of effective vaccines. To examine the effect of deglycosylation, we constructed prime-boost vaccines consisting of Env from SIVmac239 and delta5G and compared their immunogenicities and vaccine efficacies by challenge infection with SIVmac239. Vaccination-induced immune responses differed between the two vaccine groups. Both Env-specific cellular and humoral responses were higher in wild-type (wt)-Env-immunized animals than in delta5G Env-immunized animals. Following the challenge, viral loads in SIVmac239 Env (wt-Env)-immunized animals were significantly lower than in vector controls, with controlled viral replication in the chronic phase. Unexpectedly, viral loads in delta5G Env-immunized animals were indistinguishable from those in vector controls. This study demonstrated that the prime-boost Env vaccine was effective against homologous SIVmac239 challenge. Changes in glycosylation affected both cell-mediated and humoral immune responses and vaccine efficacy.
Collapse
Affiliation(s)
- Kazuyasu Mori
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Since the discovery of simian immunodeficiency viruses (SIV) causing AIDS-like diseases in Asian macaques, non-human primates (NHP) have played an important role in AIDS vaccine research. A multitude of vaccines and immunization approaches have been evaluated, including live attenuated viruses, DNA vaccines, viral and bacterial vectors, subunit proteins, and combinations thereof. Depending on the particular vaccine and model used, varying degrees of protection have been achieved, including prevention of infection, reduction of viral load, and amelioration of disease. In a few instances, potential safety concerns and vaccine-enhanced pathogenicity have also been noted. In the past decade, sophisticated methodologies have been developed to define the mechanisms of protective immunity. However, a clear road map for HIV vaccine development has yet to emerge. This is in part because of the intrinsic nature of the surrogate model and in part because of the improbability of any single model to fully capture the complex interactions of natural HIV infection in humans. The lack of standardization, the limited models available, and the incomplete understanding of the immunobiology of NHP contribute to the difficulty to extrapolate findings from such models to HIV vaccine development. Until efficacy data become available from studies of parallel vaccine concepts in humans and macaques, the predictive value of any NHP model remains unknown. Towards this end, greater appreciation of the utility and limitations of the NHP model and further developments to better mimic HIV infection in humans will likely help inform future AIDS vaccine efforts.
Collapse
Affiliation(s)
- Shiu-Lok Hu
- Department of Pharmaceutics and Washington National Primate Research Center, University of Washington, Seattle, 98121, USA.
| |
Collapse
|
20
|
Zhan X, Martin LN, Slobod KS, Coleclough C, Lockey TD, Brown SA, Stambas J, Bonsignori M, Sealy RE, Blanchard JL, Hurwitz JL. Multi-envelope HIV-1 vaccine devoid of SIV components controls disease in macaques challenged with heterologous pathogenic SHIV. Vaccine 2005; 23:5306-20. [PMID: 16095768 DOI: 10.1016/j.vaccine.2005.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2005] [Revised: 07/05/2005] [Accepted: 07/06/2005] [Indexed: 11/27/2022]
Abstract
A central obstacle to the design of a global HIV-1 vaccine is virus diversity. Pathogen diversity is not unique to HIV-1, and has been successfully conquered in other fields by the creation of vaccine cocktails. Here we describe the testing of an HIV-1 envelope cocktail vaccine. Six macaques received the vaccine, delivered by successive immunizations with recombinant DNA, recombinant vaccinia virus and recombinant envelope proteins. Following vaccination, animals developed a diversity of anti-envelope antibody binding and neutralizing activities toward proteins and viruses that were not represented by sequence in the vaccine. T-cells were also elicited, as measured by gamma-interferon production assays with envelope-derived peptide pools. Vaccinated and control animals were then challenged with the heterologous pathogenic SHIV, 89.6P. Vaccinated monkeys experienced significantly lower virus titers and better maintenance of CD4+ T-cells than unvaccinated controls. The B- and T-cell immune responses were far superior post-challenge in the vaccinated group. Four of six vaccinated animals and only one of six control animals survived a 44-week observation period post-challenge. The present report is the first to describe pathogenic SHIV disease control mediated by a heterologous HIV-1 vaccine, devoid of 89.6 or SIV derivatives.
Collapse
Affiliation(s)
- Xiaoyan Zhan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Letvin NL, Huang Y, Chakrabarti BK, Xu L, Seaman MS, Beaudry K, Korioth-Schmitz B, Yu F, Rohne D, Martin KL, Miura A, Kong WP, Yang ZY, Gelman RS, Golubeva OG, Montefiori DC, Mascola JR, Nabel GJ. Heterologous envelope immunogens contribute to AIDS vaccine protection in rhesus monkeys. J Virol 2004; 78:7490-7. [PMID: 15220422 PMCID: PMC434100 DOI: 10.1128/jvi.78.14.7490-7497.2004] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Because a strategy to elicit broadly neutralizing anti-human immunodeficiency virus type 1 (HIV-1) antibodies has not yet been found, the role of an Env immunogen in HIV-1 vaccine candidates remains undefined. We sought to determine whether an HIV-1 Env immunogen genetically disparate from the Env of the challenge virus can contribute to protective immunity. We vaccinated Indian-origin rhesus monkeys with Gag-Pol-Nef immunogens, alone or in combination with Env immunogens that were either matched or mismatched with the challenge virus. These animals were then challenged with a pathogenic simian-human immunodeficiency virus. The vaccine regimen included a plasmid DNA prime and replication-defective adenoviral vector boost. Vaccine regimens that included the matched or mismatched Env immunogens conferred better protection against CD4(+) T-lymphocyte loss than that seen with comparable regimens that did not include Env immunogens. This increment in protective immunity was associated with anamnestic Env-specific cellular immunity that developed in the early days following viral challenge. These data suggest that T-lymphocyte immunity to Env can broaden the protective cellular immune response to HIV despite significant sequence diversity of the strains of the Env immunogens and can contribute to immune protection in this AIDS vaccine model.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Adenoviridae/genetics
- Adenoviridae/immunology
- Animals
- CD4 Lymphocyte Count
- Fusion Proteins, gag-pol/genetics
- Fusion Proteins, gag-pol/immunology
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- HIV Infections/prevention & control
- HIV-1/immunology
- Humans
- Macaca mulatta
- RNA, Viral/blood
- Recombinant Proteins/immunology
- SAIDS Vaccines/administration & dosage
- SAIDS Vaccines/immunology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Immunodeficiency Virus/immunology
- T-Lymphocytes/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Norman L Letvin
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892-3005, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhu T, Hu SL, Feng F, Polacino P, Liu H, Hwangbo Y, Learn GH, Mullins JI, Corey L. Persistence of low levels of simian immunodeficiency virus in macaques that were transiently viremic by conventional testing. Virology 2004; 323:208-19. [PMID: 15193917 DOI: 10.1016/j.virol.2004.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 12/16/2003] [Accepted: 03/08/2004] [Indexed: 11/16/2022]
Abstract
Transient SIV viremia after experimental SIV challenge has been documented. Whether SIV persists in these transiently viremic macaques remains unclear. In the present study, we applied a sensitive PCR and found persistent low levels of SIVmne infection (LLSI) (range: 0.1-5.3 SIV DNA copies/10(6) PBMC) in seven macaques that were transiently positive by conventional assays, which was 10(2)- to 10(6)-fold less than those of SIVmne infected monkeys with typical disease progression. SIV envelope V1 sequences remained homogeneous in these macaques for the 6-year study period, with a mean evolution rate of 0.005% per site per year, which was not different from zero (P = 0.612) and significantly lower than that (0.56-1.18%) in macaques with progressive infection of SIVmne. LLSI macaques have remained free from SIV-associated illness, and are still alive 10 years after virus inoculation. Understanding the mechanisms underlying this outcome may provide valuable insight into therapy and vaccine development.
Collapse
Affiliation(s)
- Tuofu Zhu
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Haigwood NL, Montefiori DC, Sutton WF, McClure J, Watson AJ, Voss G, Hirsch VM, Richardson BA, Letvin NL, Hu SL, Johnson PR. Passive immunotherapy in simian immunodeficiency virus-infected macaques accelerates the development of neutralizing antibodies. J Virol 2004; 78:5983-95. [PMID: 15140996 PMCID: PMC415787 DOI: 10.1128/jvi.78.11.5983-5995.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Passively transferred neutralizing antibodies can block lentivirus infection, but their role in postexposure prophylaxis is poorly understood. In this nonhuman-primate study, the effects of short-term antibody therapy on 5-year disease progression, virus load, and host immunity were explored. We reported previously that postinfection passive treatment with polyclonal immune globulin with high neutralizing titers against SIVsmE660 (SIVIG) significantly improved the 67-week health of SIVsmE660-infected Macaca mulatta macaques. Four of six treated macaques maintained low or undetectable levels of virus in plasma, compared with one of ten controls, while two rapid progressors controlled viremia only as long as the SIVIG was present. SIVIG treatment delayed the de novo production of envelope (Env)-specific antibodies by 8 weeks (13). We show here that differences in disease progression were also significant at 5 years postinfection, excluding rapid progressors (P = 0.05). Macaques that maintained </=10(3) virus particles per ml of plasma and </=30 infectious virus particles per 10(6) mononuclear cells from peripheral blood and lymph nodes had delayed disease onset. All macaques that survived beyond 18 months had measurable Gag-specific CD8(+) cytotoxic T cells, regardless of treatment. Humoral immunity in survivors beyond 20 weeks was strikingly different in the SIVIG and control groups. Despite a delay in Env-specific binding antibodies, de novo production of neutralizing antibodies was significantly accelerated in SIVIG-treated macaques. Titers of de novo neutralizing antibodies at week 12 were comparable to levels achieved in controls only by week 32 or later. Acceleration of de novo simian immunodeficiency virus immunity in the presence of passively transferred neutralizing antibodies is a novel finding with implications for postexposure prophylaxis and vaccines.
Collapse
Affiliation(s)
- Nancy L Haigwood
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Suite 500, Seattle, WA 98109-5219, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhan X, Slobod KS, Surman S, Brown SA, Coleclough C, Hurwitz JL. Minor components of a multi-envelope HIV vaccine are recognized by type-specific T-helper cells. Vaccine 2004; 22:1206-13. [PMID: 15003649 DOI: 10.1016/j.vaccine.2003.09.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 09/18/2003] [Accepted: 09/24/2003] [Indexed: 11/25/2022]
Abstract
HIV has thus far evaded control by vaccines, in part due to the high diversity among viral isolates. To effectively target HIV diversity, we propose that multi-envelope HIV vaccines should be designed. We hypothesize that minor components of complex envelope cocktail vaccines can be immunogenic and can thus elicit unique T-cell responses. To test our hypothesis, we first defined unique T-helper cell determinants on 1007 (clade B) and UG92005 (UG, clade D) gp140 envelope proteins delivered by DNA vaccination. Peptide-specific T-helper cell responses were then used as markers for type-specific immune activity. Results showed that type-specific responses could indeed be generated when an envelope protein was represented as only 1 part per 100 of the total vaccine. We also found that type-specific T-helper cell responses were elicited and sustained toward an envelope that appeared only once within a sequential prime/boost/boost regimen. Our results illustrate the flexibility and durability of immune responses toward individual components of mixed envelope vaccines and encourage the continued development of vaccine cocktails for the control of HIV.
Collapse
Affiliation(s)
- Xiaoyan Zhan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 332 N. Lauderdale St., Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
25
|
Fultz PN, Stallworth J, Porter D, Novak M, Anderson MJ, Morrow CD. Immunogenicity in pig-tailed macaques of poliovirus replicons expressing HIV-1 and SIV antigens and protection against SHIV-89.6P disease. Virology 2003; 315:425-37. [PMID: 14585346 DOI: 10.1016/s0042-6822(03)00546-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the search for an effective vaccine against the human immunodeficiency virus (HIV), novel ways to deliver viral antigens are being evaluated. One such approach is the use of nonreplicating viral vectors encoding HIV and/or SIV genes that are expressed after infection of host cells. Nonreplicating poliovirus vectors, termed replicons, that expressed HIV-1/HXB2 and SIVmac239 gag and various HIV-1 env genes from different clades were tested for immunogenicity and protective efficacy against intravenous challenge of pig-tailed macaques with SHIV-89.6P. To maximize both cellular and humoral immune responses, a prime-boost regimen was used. Initially, macaques were immunized four times over 35 weeks by either the intranasal and intrarectal or the intramuscular (im) route with mixtures of poliovirus replicons expressing HIV-1 gag and multiple env genes. Immunization with replicons alone induced both serum antibodies and lymphocyte proliferative responses. After boosting with purified Env protein, neutralizing antibodies to SHIV-89.6P were induced in four of five immunized animals. In a second experiment, four macaques were immunized im three times over 27 weeks with replicons expressing the SIVmac239 gag and HIV-1/HXB2 env genes. All immunized animals were then boosted twice with purified HIV-1-89.6 rgp140-Env and SIVmac239 p55-Gag proteins. Four control animals received only the two protein inoculations. Immunized and control animals were then challenged intravenously with the pathogenic SHIV-89.6P. After challenge the animals were monitored for virus isolation from peripheral blood mononuclear cells and plasma viremia and for changes in virus-specific antibody titers. Naïve pig-tailed macaques experienced rapid loss of CD4(+) T cells and died between 38 and 62 weeks after infection. In contrast, macaques immunized with replicons and proteins rapidly cleared plasma virus and did not experience sustained loss of CD4(+) lymphocytes. Furthermore, two of the four macaques that were immunized only with purified proteins maintained high viral burdens and lost greater than 95% of their CD4(+) lymphocytes within 2 to 4 weeks after challenge. Thus, poliovirus replicons expressing HIV-1 and SIV antigens were immunogenic in pig-tailed macaques and appeared to enhance the protective effects observed after administration of purified proteins alone.
Collapse
Affiliation(s)
- Patricia N Fultz
- Department of Microbiology, University of Alabama School of Medicine Birmingham, AL 35294, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Vaccines play important roles in preventing infectious diseases caused by different pathogens. However, some pathogens such as HIV-1 challenge current vaccine strategy. Poor immunogenicity and the high mutation rate of HIV-1 make great difficulties in inducing potent immune responses strong enough to prevent infection via vaccination. Epitope-vaccine, which could intensively enhance predefined epitope-specific immune responses, was suggested as a new strategy against HIV-1 and HIV-1 mutation. Epitope-vaccines afford powerful approaches to elicit potent, broad and complete immune protection against not only primary homologous viral isolates but also heterologous viral mutants. Although most studies are still preliminary now, epitope-vaccine as a novel strategy against the AIDS epidemic has great developmental potential. To trigger T-cell-dependent IgG antibody responses and improve affinities of the epitope-specific antibodies, approaches such as recombinant multi-epitope-vaccination and prime-boosting vaccination were suggested. Cellular immune responses, especially CTL responses, could also be elicited and enhanced in addition to humoral immune responses. Developed epitope-vaccines activating both arms of the immune system would benefit prevention and immunotherapy not only against HIV but also other chronic infections.
Collapse
Affiliation(s)
- Zuqiang Liu
- Laboratory of Immunology, Research Center for Medical Science, Department of Biology, Tsinghua University, Beijing 100084, PR China
| | | | | |
Collapse
|
27
|
Crotty S, Andino R. Implications of high RNA virus mutation rates: lethal mutagenesis and the antiviral drug ribavirin. Microbes Infect 2002; 4:1301-7. [PMID: 12443894 DOI: 10.1016/s1286-4579(02)00008-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The antiviral drug ribavirin exhibits strong antiviral activity against a broad range of RNA viruses. This drug is currently used clinically to treat hepatitis C virus infections, respiratory syncytial virus infections, and Lassa fever virus infections. Although ribavirin was discovered in 1972, its mechanism of action has remained unclear until recently. Using poliovirus as an RNA virus model, it was shown that ribavirin is a virus mutagen, and it was proposed that the primary mechanism of action of ribavirin is via lethal mutagenesis of the RNA virus genomes. This represents a novel antiviral mechanism of action and provides a model for the development of new antiviral strategies. In this review we discuss the genetic explanations, evolutionary implications, and drug development opportunities associated with RNA virus mutagenesis.
Collapse
Affiliation(s)
- Shane Crotty
- Department of Microbiology and Immunology, University of California, San Francisco 94143, USA.
| | | |
Collapse
|
28
|
Abstract
Fifteen years after the first, definitive reports of HIV-1-specific, CD8+ T cells [147,148], there is ample evidence for the importance of these cells in control of HIV-1 infection. As much is known of their role in the natural history of HIV-1 infection and their cellular and molecular mechanisms of reactivity than of T-cell responses to any other human virus. Indeed, HIV-1-related research has led the scientific field in revealing many new, fundamental principles of cellular immunity in the last 15 years. From these data, there are multiple, posited mechanisms for loss of CD8+ T-cell control of HIV-1 infection. These include both intrinsic defects in T-cell function and loss of T-cell recognition of HIV-1 because of its extraordinary genetic diversity and disruption of antigen presentation. Efforts have begun on devising approaches to reverse these immune defects in infected individuals and develop vaccines that induce T-cell immunity for protection from infection. Combination antiretroviral drug regimens now provide exceptional, long-lasting control of HIV-1 infection, even though they do not restore anti-HIV-1 T-cell immunity fully in persons with chronic HIV-1 infection. Very encouraging results show that such treatment can maintain normal T-cell reactivity specific for this virus in some persons with early HIV-1 infection. Unfortunately, the antiviral treatment does not cure the host of this persistent, latent virus. This has led to new strategies for immunotherapeutic intervention to enhance the level and breadth of the T-cell repertoire specific for the host's residual virus in persons with chronic HIV-1 infection. Although the principles of immunotherapy stem from early in the last century, modern era approaches are integrating highly sophisticated, molecular and cell biology reagents and methods for control of HIV-1 infection. The most promising immunotherapies are autologous virus activated in vivo by STI or administered in autologous DC that have been engineered ex vivo. There are also compelling rationales supported by animal models and early clinical trials for use of cytokines and chemokines as recombinant proteins or DNA to augment anti-HIV-1 T-cell reactivity and trafficking of T cells and APC to tissue sites of infection. For prevention of HIV-1 infection, the discouragingly poor results of vaccine development in the late 1980s and early 1990s have led to very encouraging, recent studies in monkeys that show partially protective and possibly sterilizing immunity. Finally, clinical trials of new-generation DNA and live vector vaccines already have indications of improved induction of HIV-1-specific T-cell responses. Knowledge of HIV-1-specific T-cell immunity and its role in protection from HIV-1 infection and disease must continue to expand until the goal of complete control of HIV-1 infection is accomplished.
Collapse
Affiliation(s)
- Paolo Piazza
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, 425 Parran Hall, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
29
|
Abstract
Great progress has been made with respect to our understanding of the immunopathogenesis of AIDS and the infectious agent, HIV, that causes the disease. HIV, a human retrovirus with tropism for CD4(+) T cells and monocytes, induces a decrease of T-cell counts, T-cell dysfunction, and, ultimately, immunodeficiency. HIV also causes B-cell dysfunction characterized by polyclonal activation, hypergammaglobulinemia, and lack of specific antibody responses. Chemokine receptors-mainly CCR5 and CXCR4-have been found to be necessary for viral entry into the host cell, a step that can be inhibited by chemokine-related molecules that are ligands for those receptors. After HIV infection, a strong cellular immunity develops and partially controls viral replication. It can take several years for HIV infection to become clinically evident. Studies in long-term nonprogressors have shown the determinant roles of both helper and cytotoxic T cells in the control of HIV disease. Advances in HIV immunology research are currently being applied in the development of prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Javier Chinen
- Allergy and Immunology Program, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
30
|
Barouch DH, Kunstman J, Kuroda MJ, Schmitz JE, Santra S, Peyerl FW, Krivulka GR, Beaudry K, Lifton MA, Gorgone DA, Montefiori DC, Lewis MG, Wolinsky SM, Letvin NL. Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature 2002; 415:335-9. [PMID: 11797012 DOI: 10.1038/415335a] [Citation(s) in RCA: 561] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Potent virus-specific cytotoxic T lymphocyte (CTL) responses elicited by candidate AIDS vaccines have recently been shown to control viral replication and prevent clinical disease progression after pathogenic viral challenges in rhesus monkeys. Here we show that viral escape from CTL recognition can result in the eventual failure of this partial immune protection. Viral mutations that escape from CTL recognition have been previously described in humans infected with human immunodeficiency virus (HIV) and monkeys infected with simian immunodeficiency virus (SIV). In a cohort of rhesus monkeys that were vaccinated and subsequently infected with a pathogenic hybrid simian-human immunodeficiency virus (SHIV), the frequency of viral sequence mutations within CTL epitopes correlated with the level of viral replication. A single nucleotide mutation within an immunodominant Gag CTL epitope in an animal with undetectable plasma viral RNA resulted in viral escape from CTLs, a burst of viral replication, clinical disease progression, and death from AIDS-related complications. These data indicate that viral escape from CTL recognition may be a major limitation of the CTL-based AIDS vaccines that are likely to be administered to large human populations over the next several years.
Collapse
Affiliation(s)
- Dan H Barouch
- Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Research East Room 113, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Clinical investigation in humans and experimental lentivirus infection in nonhuman primates have advanced our understanding of immune responses that control HIV-1 disease. Recently, immunization approaches in macaques have shown that the immune response can control viremia and improve clinical outcome. When such vaccine strategies are formulated to be similarly immunogenic in humans, they could form the basis for the development of candidate AIDS vaccines that would prevent infection, suppress progression to disease or reduce HIV-1 transmission in humans.
Collapse
Affiliation(s)
- J R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
32
|
Crotty S, Miller CJ, Lohman BL, Neagu MR, Compton L, Lu D, Lü FX, Fritts L, Lifson JD, Andino R. Protection against simian immunodeficiency virus vaginal challenge by using Sabin poliovirus vectors. J Virol 2001; 75:7435-52. [PMID: 11462016 PMCID: PMC114979 DOI: 10.1128/jvi.75.16.7435-7452.2001] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we provide the first report of protection against a vaginal challenge with a highly virulent simian immunodeficiency virus (SIV) by using a vaccine vector. New poliovirus vectors based on Sabin 1 and 2 vaccine strain viruses were constructed, and these vectors were used to generate a series of new viruses containing SIV gag, pol, env, nef, and tat in overlapping fragments. Two cocktails of 20 transgenic polioviruses (SabRV1-SIV and SabRV2-SIV) were inoculated into seven cynomolgus macaques. All monkeys produced substantial anti-SIV serum and mucosal antibody responses. SIV-specific cytotoxic T-lymphocyte responses were detected in three of seven monkeys after vaccination. All 7 vaccinated macaques, as well as 12 control macaques, were challenged vaginally with pathogenic SIVmac251. Strikingly, four of the seven vaccinated animals exhibited substantial protection against the vaginal SIV challenge. All 12 control monkeys became SIV positive. In two of the seven SabRV-SIV-vaccinated monkeys we found no virological evidence of infection following challenge, indicating that these two monkeys were completely protected. Two additional SabRV-SIV-vaccinated monkeys exhibited a pronounced reduction in postacute viremia to <10(3) copies/ml, suggesting that the vaccine elicited an effective cellular immune response. Three of six control animals developed clinical AIDS by 48 weeks postchallenge. In contrast, all seven vaccinated monkeys remained healthy as judged by all clinical parameters. These results demonstrate the efficacy of SabRV as a potential human vaccine vector, and they show that the use of a vaccine vector cocktail expressing an array of defined antigenic sequences can be an effective vaccination strategy in an outbred population.
Collapse
Affiliation(s)
- S Crotty
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143-0414, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hosie MJ, Dunsford T, Klein D, Willett BJ, Cannon C, Osborne R, Macdonald J, Spibey N, Mackay N, Jarrett O, Neil JC. Vaccination with inactivated virus but not viral DNA reduces virus load following challenge with a heterologous and virulent isolate of feline immunodeficiency virus. J Virol 2000; 74:9403-11. [PMID: 11000209 PMCID: PMC112369 DOI: 10.1128/jvi.74.20.9403-9411.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been shown that cats can be protected against infection with the prototypic Petaluma strain of feline immunodeficiency virus (FIV(PET)) using vaccines based on either inactivated virus particles or replication-defective proviral DNA. However, the utility of such vaccines in the field is uncertain, given the absence of consistent protection against antigenically distinct strains and the concern that the Petaluma strain may be an unrepresentative, attenuated isolate. Since reduction of viral pathogenicity and dissemination may be useful outcomes of vaccination, even in the absence of complete protection, we tested whether either of these vaccine strategies ameliorates the early course of infection following challenge with heterologous and more virulent isolates. We now report that an inactivated virus vaccine, which generates high levels of virus neutralizing antibodies, confers reduced virus loads following challenge with two heterologous isolates, FIV(AM6) and FIV(GL8). This vaccine also prevented the marked early decline in CD4/CD8 ratio seen in FIV(GL8)-infected cats. In contrast, DNA vaccines based on either FIV(PET) or FIV(GL8), which induce cell-mediated responses but no detectable antiviral antibodies, protected a fraction of cats against infection with FIV(PET) but had no measurable effect on virus load when the infecting virus was FIV(GL8). These results indicate that the more virulent FIV(GL8) is intrinsically more resistant to vaccinal immunity than the FIV(PET) strain and that a broad spectrum of responses which includes virus neutralizing antibodies is a desirable goal for lentivirus vaccine development.
Collapse
Affiliation(s)
- M J Hosie
- Department of Veterinary Pathology, University of Glasgow Veterinary School, Glasgow G61 1QH, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Johnston MI. The role of nonhuman primate models in AIDS vaccine development. MOLECULAR MEDICINE TODAY 2000; 6:267-70. [PMID: 10859562 DOI: 10.1016/s1357-4310(00)01724-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although animal models have been useful in guiding vaccine development, HIV/AIDS models have not yielded a clear correlate of immunity nor given consistent results on the potential efficacy of various vaccine approaches. Further development and improved uniformity in the use of animal models would maximize their potential to meet the urgent worldwide need for a safe and effective HIV vaccine.
Collapse
Affiliation(s)
- M I Johnston
- National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-7628, USA.
| |
Collapse
|
35
|
Seth A, Ourmanov I, Schmitz JE, Kuroda MJ, Lifton MA, Nickerson CE, Wyatt L, Carroll M, Moss B, Venzon D, Letvin NL, Hirsch VM. Immunization with a modified vaccinia virus expressing simian immunodeficiency virus (SIV) Gag-Pol primes for an anamnestic Gag-specific cytotoxic T-lymphocyte response and is associated with reduction of viremia after SIV challenge. J Virol 2000; 74:2502-9. [PMID: 10684264 PMCID: PMC111738 DOI: 10.1128/jvi.74.6.2502-2509.2000] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/1999] [Accepted: 12/08/1999] [Indexed: 11/20/2022] Open
Abstract
The immunogenicity and protective efficacy of a modified vaccinia virus Ankara (MVA) recombinant expressing the simian immunodeficiency virus (SIV) Gag-Pol proteins (MVA-gag-pol) was explored in rhesus monkeys expressing the major histocompatibility complex (MHC) class I allele, MamuA*01. Macaques received four sequential intramuscular immunizations with the MVA-gag-pol recombinant virus or nonrecombinant MVA as a control. Gag-specific cytotoxic T-lymphocyte (CTL) responses were detected in all MVA-gag-pol-immunized macaques by both functional assays and flow cytometric analyses of CD8(+) T cells that bound a specific MHC complex class I-peptide tetramer, with levels peaking after the second immunization. Following challenge with uncloned SIVsmE660, all macaques became infected; however, viral load set points were lower in MVA-gag-pol-immunized macaques than in the MVA-immunized control macaques. MVA-gag-pol-immunized macaques exhibited a rapid and substantial anamnestic CTL response specific for the p11C, C-M Gag epitope. The level at which CTL stabilized after resolution of primary viremia correlated inversely with plasma viral load set point (P = 0.03). Most importantly, the magnitude of reduction in viremia in the vaccinees was predicted by the magnitude of the vaccine-elicited CTL response prior to SIV challenge.
Collapse
Affiliation(s)
- A Seth
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Polacino PS, Stallard V, Klaniecki JE, Pennathur S, Montefiori DC, Langlois AJ, Richardson BA, Morton WR, Benveniste RE, Hu SL. Role of immune responses against the envelope and the core antigens of simian immunodeficiency virus SIVmne in protection against homologous cloned and uncloned virus challenge in Macaques. J Virol 1999; 73:8201-15. [PMID: 10482571 PMCID: PMC112838 DOI: 10.1128/jvi.73.10.8201-8215.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that envelope (gp160)-based vaccines, used in a live recombinant virus priming and subunit protein boosting regimen, protected macaques against intravenous and intrarectal challenges with the homologous simian immunodeficiency virus SIVmne clone E11S. However, the breadth of protection appears to be limited, since the vaccines were only partially effective against intravenous challenge by the uncloned SIVmne. To examine factors that could affect the breadth and the efficacy of this immunization approach, we studied (i) the effect of priming by recombinant vaccinia virus; (ii) the role of surface antigen gp130; and (iii) the role of core antigens (Gag and Pol) in eliciting protective immunity. Results indicate that (i) priming with recombinant vaccinia virus was more effective than subunit antigen in eliciting protective responses; (ii) while both gp130 and gp160 elicited similar levels of SIV-specific antibodies, gp130 was not as effective as gp160 in protection, indicating a possible role for the transmembrane protein in presenting functionally important epitopes; and (iii) although animals immunized with core antigens failed to generate any neutralizing antibody and were infected upon challenge, their virus load was 50- to 100-fold lower than that of the controls, suggesting the importance of cellular immunity or other core-specific immune responses in controlling acute infection. Complete protection against intravenous infection by the pathogenic uncloned SIVmne was achieved by immunization with both the envelope and the core antigens. These results indicate that immune responses to both antigens may contribute to protection and thus argue for the inclusion of multiple antigens in recombinant vaccine designs.
Collapse
Affiliation(s)
- P S Polacino
- Regional Primate Research Center, University of Washington, Seattle, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hammond SA, Raabe ML, Issel CJ, Montelaro RC. Evaluation of antibody parameters as potential correlates of protection or enhancement by experimental vaccines to equine infectious anemia virus. Virology 1999; 262:416-30. [PMID: 10502520 DOI: 10.1006/viro.1999.9939] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated in trials of a variety of experimental vaccines to equine infectious anemia virus (EIAV) a remarkable spectrum of efficacy ranging from sterilizing protection to severe enhancement of virus replication and disease, depending on the immunization strategy used. This range of vaccine efficacy observed in vivo offers a unique opportunity for evaluating potential in vitro immune correlates of protection and enhancement. We describe here a comprehensive analysis and comparison of EIAV envelope-specific antibody responses elicited by attenuated, inactivated whole virus and envelope subunit vaccines to EIAV, and we evaluate the potential of in vitro antibody assays as correlates of protection or enhancement. Thus vaccine-induced serum antibody responses in experimentally immunized ponies at the day of challenge were assayed using a panel of quantitative, qualitative, and functional in vitro assays, including end-point titer of total and isotypic IgG, serum antibody avidity, conformational dependence, and serum neutralization. The results of these studies revealed substantial differences in the EIAV envelope-specific antibody responses elicited by the different vaccines, indicating the importance of envelope glycoprotein antigen presentation in determining the specificity of vaccine immunity. Although no single in vitro parameter provided a statistically significant correlate of protection or enhancement, the use of multiple parameters (titer, avidity index, and conformation ratio) could be used as a reliable correlate of vaccine protection and that the level of vaccine protection was closely associated with the development of mature antibody responses. These studies demonstrate the importance of using multiple antibody assays to evaluate lentiviral vaccine responses and emphasize the need for the development of new in vitro antibody assays that may provide more insight into vaccine protection and enhancement.
Collapse
Affiliation(s)
- S A Hammond
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | | | | | | |
Collapse
|
38
|
Almond N, Jenkins A, Jones S, Arnold C, Silvera P, Kent K, Mills KHG, Stott EJ. The appearance of escape variants in vivo does not account for the failure of recombinant envelope vaccines to protect against simian immunodeficiency virus. J Gen Virol 1999; 80 ( Pt 9):2375-2382. [PMID: 10501490 DOI: 10.1099/0022-1317-80-9-2375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The presence or evolution of immune escape variants has been proposed to account for the failure of recombinant envelope vaccines to protect macaques against challenge with simian immunodeficiency virus (SIVmac). To address this issue, two groups of three cynomolgus macaques were immunized with recombinant SIV Env vaccines using two different vaccine schedules. One group of macaques received four injections of recombinant SIV gp120 in SAF-1 containing threonyl muramyl dipeptide as adjuvant. A second group were primed twice with recombinant vaccinia virus expressing SIV gp160 and then boosted twice with recombinant SIV gp120. Both vaccine schedules elicited neutralizing antibodies to Env. However, on the day of challenge, titres of anti-Env antibodies measured by ELISA were higher in macaques primed with recombinant vaccinia virus. Following intravenous challenge with 10 monkey infectious doses of the SIVmac J5M challenge stock, five of the six immunized macaques and all four naive controls became infected. The virus burdens in PBMC of macaques that were primed with recombinant vaccinia virus were lower than those of naive controls, as determined by virus titration and quantitative DNA PCR. Sequence analysis was performed on SIV env amplified from the blood of immunized and naive infected macaques. No variation of SIV env sequence was observed, even in macaques with a reduced virus load, suggesting that the appearance of immune escape variants does not account for the incomplete protection observed. In addition, this study indicates that the measurement of serum neutralizing antibodies may not provide a useful correlate for protection elicited by recombinant envelope vaccines.
Collapse
Affiliation(s)
- N Almond
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK1
| | - A Jenkins
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK1
| | - S Jones
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK1
| | - C Arnold
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK1
| | - P Silvera
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK1
| | - K Kent
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK1
| | - K H G Mills
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK1
| | - E J Stott
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK1
| |
Collapse
|
39
|
Warren JT, Levinson MA. AIDS preclinical vaccine development: biennial survey of HIV, SIV, and SHIV challenge studies in vaccinated nonhuman primates. J Med Primatol 1999; 28:249-73. [PMID: 10593492 DOI: 10.1111/j.1600-0684.1999.tb00276.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J T Warren
- AIDS Vaccine Evaluation Group, The EMMES Corporation, Potomac, MD 20854, USA.
| | | |
Collapse
|
40
|
Mossman SP, Pierce CC, Robertson MN, Watson AJ, Montefiori DC, Rabin M, Kuller L, Thompson J, Lynch JB, Morton WR, Benveniste RE, Munn R, Hu SL, Greenberg P, Haigwood NL. Immunization against SIVmne in macaques using multigenic DNA vaccines. J Med Primatol 1999; 28:206-13. [PMID: 10593487 DOI: 10.1111/j.1600-0684.1999.tb00271.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
All structural and regulatory genes of SIVmne were cloned into mammalian expression vectors to optimize expression in vitro and immunogenicity in mice. Macaca fascicularis were immunized four times with plasmid DNA (n = 4), or two DNA priming inoculations followed by two boosts of recombinant gp160 plus Gag-Pol particles (n = 4). Following intrarectal challenge with SIVmne, all macaques became infected. Three monkeys immunized with DNA alone maintained low plasma virus loads by 1 year post-challenge; the fourth exhibited high virus loads and significant CD4+ cell decline. Two of the DNA plus boost and three control macaques had high virus loads and associated CD4+ cell decline. Both vaccine protocols elicited antibodies and comparable helper T-cell proliferative responses to gp160. Cytokine mRNA levels in activated peripheral blood mononuclear cells (PBMC) taken at time of challenge suggested a dominant T helper (Th) 1 state in three DNA-immunized and one protein-boosted macaque, which correlated with low virus loads and high CD4+ cell counts post-challenge.
Collapse
Affiliation(s)
- S P Mossman
- Seattle Biomedical Research Institute, WA 98109-1651, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Robinson HL, Montefiori DC, Johnson RP, Manson KH, Kalish ML, Lifson JD, Rizvi TA, Lu S, Hu SL, Mazzara GP, Panicali DL, Herndon JG, Glickman R, Candido MA, Lydy SL, Wyand MS, McClure HM. Neutralizing antibody-independent containment of immunodeficiency virus challenges by DNA priming and recombinant pox virus booster immunizations. Nat Med 1999; 5:526-34. [PMID: 10229229 DOI: 10.1038/8406] [Citation(s) in RCA: 313] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eight different protocols were compared for their ability to raise protection against immunodeficiency virus challenges in rhesus macaques. The most promising containment of challenge infections was achieved by intradermal DNA priming followed by recombinant fowl pox virus booster immunizations. This containment did not require neutralizing antibody and was active for a series of challenges ending with a highly virulent virus with a primary isolate envelope heterologous to the immunizing strain.
Collapse
Affiliation(s)
- H L Robinson
- Yerkes Regional Primate Research Center, Atlanta, Georgia 30329, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Polacino P, Stallard V, Montefiori DC, Brown CR, Richardson BA, Morton WR, Benveniste RE, Hu SL. Protection of macaques against intrarectal infection by a combination immunization regimen with recombinant simian immunodeficiency virus SIVmne gp160 vaccines. J Virol 1999; 73:3134-46. [PMID: 10074165 PMCID: PMC104075 DOI: 10.1128/jvi.73.4.3134-3146.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1998] [Accepted: 01/03/1999] [Indexed: 11/20/2022] Open
Abstract
We previously reported that immunization with recombinant simian immunodeficiency virus SIVmne envelope (gp160) vaccines protected macaques against intravenous challenge by the cloned homologous virus E11S but that this protection was only partially effective against the uncloned virus, SIVmne. In the present study, we examine the protective efficacy of this immunization regimen against infection by a mucosal route. We found that the same gp160-based vaccines were highly effective against intrarectal infection not only with the E11S clone but also with the uncloned SIVmne. Protection against mucosal infection is therefore achievable by parenteral immunization with recombinant envelope vaccines. Protection appears to correlate with high levels of SIV-specific antibodies and, in animals protected against the uncloned virus, the presence of serum-neutralizing activities. To understand the basis for the differential efficacies against the uncloned virus by the intravenous versus the intrarectal routes, we examined viral sequences recovered from the peripheral blood mononuclear cells of animals early after infection by both routes. We previously showed that the majority (85%) of the uncloned SIVmne challenge stock contained V1 sequences homologous to the molecular clone from which the vaccines were made (E11S type), with the remainder (15%) containing multiple conserved changes (the variant types). In contrast to intravenously infected animals, from which either E11S-type or the variant type V1 sequences could be recovered in significant proportions, animals infected intrarectally had predominantly E11S-type sequences. Preferential transmission or amplification of the E11S-type viruses may therefore account in part for the enhanced efficacy of the recombinant gp160 vaccines against the uncloned virus challenge by the intrarectal route compared with the intravenous route.
Collapse
Affiliation(s)
- P Polacino
- Regional Primate Research Center, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|