1
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
2
|
Human cytomegalovirus lytic infection inhibits replication-dependent histone synthesis and requires stem loop binding protein function. Proc Natl Acad Sci U S A 2022; 119:e2122174119. [PMID: 35344424 PMCID: PMC9169081 DOI: 10.1073/pnas.2122174119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Until now, it was not known if, how, or why pathogenic human viruses might modulate the de novo production of the replication-dependent (RD) histone proteins that decorate their DNA genomes within infected cells. Our finding that human cytomegalovirus (HCMV) inhibits RD histone production affirms that a virus targets this fundamental cellular process. Furthermore, our revelation that HCMV induces, relocalizes, and then commandeers the stem loop–binding protein (SLBP) for a purpose other than RD histone synthesis to support productive replication illuminates the potential for other functions of this highly conserved protein. The critical nature of SLBP for HCMV infection and of RD histone synthesis for cellular DNA replication highlights this process as a target for future antiviral and chemotherapeutic interventions. Replication-dependent (RD) histones are deposited onto human cytomegalovirus (HCMV) genomes at the start of infection. We examined how HCMV affects the de novo production of RD histones and found that viral infection blocked the accumulation of RD histone mRNAs that normally occurs during the S phase. Furthermore, RD histone mRNAs present in HCMV-infected cells did not undergo the unique 3′ processing required for their normal nuclear export and translation. The protein that orchestrates processing in the nucleus, stem loop–binding protein (SLBP), was found predominantly in the cytoplasm, and RD histone proteins were not de novo synthesized in HCMV-infected cells. Intriguingly, however, we found that SLBP was required for the efficient synthesis and assembly of infectious progeny virions. We conclude that HCMV infection attenuates RD histone mRNA accumulation and processing and the de novo protein synthesis of the RD histones, while utilizing SLBP for an alternative purpose to support infectious virion production.
Collapse
|
3
|
Haidar Ahmad S, Al Moussawi F, El Baba R, Nehme Z, Pasquereau S, Kumar A, Molimard C, Monnien F, Algros MP, Karaky R, Stamminger T, Diab Assaf M, Herbein G. Identification of UL69 Gene and Protein in Cytomegalovirus-Transformed Human Mammary Epithelial Cells. Front Oncol 2021; 11:627866. [PMID: 33937031 PMCID: PMC8085531 DOI: 10.3389/fonc.2021.627866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
A growing body of evidence addressing the involvement of human cytomegalovirus (HCMV) in malignancies had directed attention to the oncomodulation paradigm. HCMV-DB infected human mammary epithelial cells (HMECs) in culture showed the emergence of clusters of rapidly proliferating, spheroid-shaped transformed cells named CTH (CMV-Transformed HMECs) cells. CTH cells assessment suggests a direct contribution of HCMV to oncogenesis, from key latent and lytic genes activating oncogenic pathways to fueling tumor evolution. We hypothesized that the presence of HCMV genome in CTH cells is of pivotal importance for determining its oncogenic potential. We previously reported the detection of a long non-coding (lnc) RNA4.9 gene in CTH cells. Therefore, we assessed here the presence of UL69 gene, located nearby and downstream of the lncRNA4.9 gene, in CTH cells. The HCMV UL69 gene in CTH cells was detected using polymerase chain reaction (PCR) and sequencing of UL69 gene was performed using Sanger method. The corresponding amino acid sequence was then blasted against the UL69 sequence derived from HCMV-DB genome using NCBI Protein BLAST tool. A 99% identity was present between the nucleotide sequence present in CTH cells and HCMV-DB genome. UL69 transcript was detected in RNA extracts of CTH cells, using a reverse transcription polymerase chain reaction (RT-PCR) assay, and pUL69 protein was identified in CTH lysates using western blotting. Ganciclovir-treated CTH cells showed a decrease in UL69 gene detection and cellular proliferation. In CTH cells, the knockdown of UL69 with siRNA was assessed by RT-qPCR and western blot to reveal the impact of pUL69 on HCMV replication and CTH cell proliferation. Finally, UL69 gene was detected in breast cancer biopsies. Our results indicate a close link between the UL69 gene detected in the HCMV-DB isolate used to infect HMECs, and the UL69 gene present in transformed CTH cells and tumor biopsies, further highlighting a direct role for HCMV in breast tumor development.
Collapse
Affiliation(s)
- Sandy Haidar Ahmad
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Fatima Al Moussawi
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Zeina Nehme
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France
| | - Amit Kumar
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France
| | - Chloé Molimard
- Department of Pathology, CHRU Besançon, Besançon, France
| | - Franck Monnien
- Department of Pathology, CHRU Besançon, Besançon, France
| | | | - Racha Karaky
- Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | | | - Mona Diab Assaf
- Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Department of Virology, CHRU Besancon, Besancon, France
| |
Collapse
|
4
|
The aryl hydrocarbon receptor facilitates the human cytomegalovirus-mediated G1/S block to cell cycle progression. Proc Natl Acad Sci U S A 2021; 118:2026336118. [PMID: 33723080 DOI: 10.1073/pnas.2026336118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The tryptophan metabolite, kynurenine, is known to be produced at elevated levels within human cytomegalovirus (HCMV)-infected fibroblasts. Kynurenine is an endogenous aryl hydrocarbon receptor (AhR) ligand. Here we show that the AhR is activated following HCMV infection, and pharmacological inhibition of AhR or knockdown of AhR RNA reduced the accumulation of viral RNAs and infectious progeny. RNA-seq analysis of infected cells following AhR knockdown showed that the receptor alters the levels of numerous RNAs, including RNAs related to cell cycle progression. AhR knockdown alleviated the G1/S cell cycle block that is normally instituted in HCMV-infected fibroblasts, consistent with its known ability to regulate cell cycle progression and cell proliferation. In sum, AhR is activated by kynurenine and perhaps other ligands produced during HCMV infection, it profoundly alters the infected-cell transcriptome, and one outcome of its activity is a block to cell cycle progression, providing mechanistic insight to a long-known element of the virus-host cell interaction.
Collapse
|
5
|
Wang YQ, Zhao XY. Human Cytomegalovirus Primary Infection and Reactivation: Insights From Virion-Carried Molecules. Front Microbiol 2020; 11:1511. [PMID: 32765441 PMCID: PMC7378892 DOI: 10.3389/fmicb.2020.01511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous beta-herpesvirus, is able to establish lifelong latency after initial infection. Periodical reactivation occurs after immunosuppression, remaining a major cause of death in immunocompromised patients. HCMV has to reach a structural and functional balance with the host at its earliest entry. Virion-carried mediators are considered to play pivotal roles in viral adaptation into a new cellular environment upon entry. Additionally, one clear difference between primary infection and reactivation is the idea that virion-packaged factors are already formed such that those molecules can be used swiftly by the virus. In contrast, virion-carried mediators have to be transcribed and translated; thus, they are not readily available during reactivation. Hence, understanding virion-carried molecules helps to elucidate HCMV reactivation. In this article, the impact of virion-packaged molecules on viral structure, biological behavior, and viral life cycle will be reviewed.
Collapse
Affiliation(s)
- Yu-Qing Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,PKU-THU Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
6
|
Fabits M, Gonçalves Magalhães V, Chan B, Girault V, Elbasani E, Rossetti E, Saeland E, Messerle M, Pichlmair A, Lisnić VJ, Brinkmann MM. The Cytomegalovirus Tegument Protein UL35 Antagonizes Pattern Recognition Receptor-Mediated Type I IFN Transcription. Microorganisms 2020; 8:microorganisms8060790. [PMID: 32466380 PMCID: PMC7356634 DOI: 10.3390/microorganisms8060790] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/23/2020] [Accepted: 05/23/2020] [Indexed: 12/16/2022] Open
Abstract
The rapid activation of pattern recognition receptor (PRR)-mediated type I interferon (IFN) signaling is crucial for the host response to infection. In turn, human cytomegalovirus (HCMV) must evade this potent response to establish life-long infection. Here, we reveal that the HCMV tegument protein UL35 antagonizes the activation of type I IFN transcription downstream of the DNA and RNA sensors cGAS and RIG-I, respectively. We show that ectopic expression of UL35 diminishes the type I IFN response, while infection with a recombinant HCMV lacking UL35 induces an elevated type I IFN response compared to wildtype HCMV. With a series of luciferase reporter assays and the analysis of signaling kinetics upon HCMV infection, we observed that UL35 downmodulates PRR signaling at the level of the key signaling factor TANK-binding kinase 1 (TBK1). Finally, we demonstrate that UL35 and TBK1 co-immunoprecipitate when co-expressed in HEK293T cells. In addition, we show that a previously reported cellular binding partner of UL35, O-GlcNAc transferase (OGT), post-translationally GlcNAcylates UL35, but that this modification is not required for the antagonizing effect of UL35 on PRR signaling. In summary, we have identified UL35 as the first HCMV protein to antagonize the type I IFN response at the level of TBK1, thereby enriching our understanding of how this important herpesvirus escapes host immune responses.
Collapse
Affiliation(s)
- Markus Fabits
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany;
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (V.G.M.); (B.C.)
| | - Vladimir Gonçalves Magalhães
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (V.G.M.); (B.C.)
| | - Baca Chan
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (V.G.M.); (B.C.)
| | - Virginie Girault
- Institute of Virology, Technical University of Munich, School of Medicine, 81675 Munich, Germany; (V.G.); (A.P.)
| | - Endrit Elbasani
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (E.E.); (M.M.)
| | - Elisa Rossetti
- Janssen Vaccines & Prevention BV, 2333 CN Leiden, The Netherlands; (E.R.); (E.S.)
| | - Eirikur Saeland
- Janssen Vaccines & Prevention BV, 2333 CN Leiden, The Netherlands; (E.R.); (E.S.)
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (E.E.); (M.M.)
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, School of Medicine, 81675 Munich, Germany; (V.G.); (A.P.)
| | - Vanda Juranić Lisnić
- Department for Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany;
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (V.G.M.); (B.C.)
- Correspondence: ; Tel.: +49-531-6181-3069
| |
Collapse
|
7
|
Nogalski MT, Solovyov A, Kulkarni AS, Desai N, Oberstein A, Levine AJ, Ting DT, Shenk T, Greenbaum BD. A tumor-specific endogenous repetitive element is induced by herpesviruses. Nat Commun 2019; 10:90. [PMID: 30626867 PMCID: PMC6327058 DOI: 10.1038/s41467-018-07944-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 11/29/2018] [Indexed: 01/01/2023] Open
Abstract
Tandem satellite repeats account for 3% of the human genome. One of them, Human Satellite II (HSATII), is highly expressed in several epithelial cancers and cancer cell lines. Here we report an acute induction of HSATII RNA in human cells infected with two herpes viruses. We show that human cytomegalovirus (HCMV) IE1 and IE2 proteins cooperate to induce HSATII RNA affecting several aspects of the HCMV replication cycle, viral titers and infected-cell processes. HSATII RNA expression in tissue from two chronic HCMV colitis patients correlates with the strength of CMV antigen staining. Thus, endogenous HSATII RNA synthesis after herpesvirus infections appears to have functionally important consequences for viral replication and may provide a novel insight into viral pathogenesis. The HSATII induction seen in both infected and cancer cells suggests possible convergence upon common HSATII-based regulatory mechanisms in these seemingly disparate diseases.
Collapse
Affiliation(s)
- Maciej T Nogalski
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Alexander Solovyov
- Department of Medicine, Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anupriya S Kulkarni
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Niyati Desai
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Adam Oberstein
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Arnold J Levine
- The Simons Center for Systems Biology, School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, 08540, USA
| | - David T Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Thomas Shenk
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Benjamin D Greenbaum
- Department of Medicine, Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
8
|
Abstract
Sleeping Beauty (SB) is a synthetic transposon that was constructed based on sequences of transpositionally inactive elements isolated from fish genomes. SB is a Tc1/mariner superfamily transposon following a cut-and-paste transpositional reaction, during which the element-encoded transposase interacts with its binding sites in the terminal inverted repeats of the transposon, promotes the assembly of a synaptic complex, catalyzes excision of the element out of its donor site, and integrates the excised transposon into a new location in target DNA. SB transposition is dependent on cellular host factors. Transcriptional control of transposase expression is regulated by the HMG2L1 transcription factor. Synaptic complex assembly is promoted by the HMGB1 protein and regulated by chromatin structure. SB transposition is highly dependent on the nonhomologous end joining (NHEJ) pathway of double-strand DNA break repair that generates a transposon footprint at the excision site. Through its association with the Miz-1 transcription factor, the SB transposase downregulates cyclin D1 expression that results in a slowdown of the cell-cycle in the G1 phase, where NHEJ is preferentially active. Transposon integration occurs at TA dinucleotides in the target DNA, which are duplicated at the flanks of the integrated transposon. SB shows a random genome-wide insertion profile in mammalian cells when launched from episomal vectors and "local hopping" when launched from chromosomal donor sites. Some of the excised transposons undergo a self-destructive autointegration reaction, which can partially explain why longer elements transpose less efficiently. SB became an important molecular tool for transgenesis, insertional mutagenesis, and gene therapy.
Collapse
|
9
|
Ding B, Qin Y, Chen M. Nucleocapsid proteins: roles beyond viral RNA packaging. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:213-26. [PMID: 26749541 PMCID: PMC7169677 DOI: 10.1002/wrna.1326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
Abstract
Viral nucleocapsid proteins (NCs) enwrap the RNA genomes of viruses to form NC–RNA complexes, which act as a template and are essential for viral replication and transcription. Beyond packaging viral RNA, NCs also play important roles in virus replication, transcription, assembly, and budding by interacting with viral and host cellular proteins. Additionally, NCs can inhibit interferon signaling response and function in cell stress response, such as inducing apoptosis. Finally, NCs can be the target of vaccines, benefiting from their conserved gene sequences. Here, we summarize important findings regarding the additional functions of NCs as much more than structural RNA‐binding proteins, with specific emphasis on (1) their association with the viral life cycle, (2) their association with host cells, and (3) as ideal candidates for vaccine development. WIREs RNA 2016, 7:213–226. doi: 10.1002/wrna.1326 This article is categorized under:
RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications Translation > Translation Regulation
Collapse
Affiliation(s)
- Binbin Ding
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yali Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Mingzhou Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
10
|
Spector DH. Human cytomegalovirus riding the cell cycle. Med Microbiol Immunol 2015; 204:409-19. [PMID: 25776080 DOI: 10.1007/s00430-015-0396-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/19/2015] [Indexed: 12/25/2022]
Abstract
Human cytomegalovirus (HCMV) infection modulates the host cell cycle to create an environment that is optimal for viral gene expression, DNA replication, and production of infectious virus. The virus mostly infects quiescent cells and thus must push the cell into G1 phase of the cell cycle to co-opt the cellular mechanisms that could be used for DNA synthesis. However, at the same time, cellular functions must be subverted such that synthesis of viral DNA is favored over that of the host. The molecular mechanisms by which this is accomplished include altered RNA transcription, changes in the levels and activity of cyclin-dependent kinases, and other proteins involved in cell cycle control, posttranslational modifications of proteins, modulation of protein stability through targeted effects on the ubiquitin-proteasome degradation pathway, and movement of proteins to different cellular locations. When the cell is in the optimal G0/G1 phase, multiple signaling pathways are altered to allow rapid induction of viral gene expression once negative factors have been eliminated. For the most part, the cell cycle will stop prior to initiation of host cell DNA synthesis (S phase), although many cell cycle proteins characteristic of the S/G2/M phase accumulate. The environment of a cell progressing through the cell cycle and dividing is not favorable for viral replication, and HCMV has evolved ways to sense whether cells are in S/G2 phase, and if so, to prevent initiation of viral gene expression until the cells cycle back to G1. A major target of HCMV is the anaphase-promoting complex E3 ubiquitin ligase, which is responsible for the ubiquitination and subsequent degradation of cyclins A and B and other cell cycle proteins at specific phases in the cell cycle. This review will discuss the effects of HCMV infection on cell cycle regulatory pathways, with the focus on selected viral proteins that are responsible for these effects.
Collapse
Affiliation(s)
- Deborah H Spector
- Department of Cellular and Molecular Medicine, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093-0712, USA,
| |
Collapse
|
11
|
McBride R, van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses 2014; 6:2991-3018. [PMID: 25105276 PMCID: PMC4147684 DOI: 10.3390/v6082991] [Citation(s) in RCA: 638] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/12/2022] Open
Abstract
The coronavirus nucleocapsid (N) is a structural protein that forms complexes with genomic RNA, interacts with the viral membrane protein during virion assembly and plays a critical role in enhancing the efficiency of virus transcription and assembly. Recent studies have confirmed that N is a multifunctional protein. The aim of this review is to highlight the properties and functions of the N protein, with specific reference to (i) the topology; (ii) the intracellular localization and (iii) the functions of the protein.
Collapse
Affiliation(s)
- Ruth McBride
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape 7535, South Africa.
| | - Marjorie van Zyl
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape 7535, South Africa.
| | - Burtram C Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape 7535, South Africa.
| |
Collapse
|
12
|
Xiaofei E, Kowalik TF. The DNA damage response induced by infection with human cytomegalovirus and other viruses. Viruses 2014; 6:2155-85. [PMID: 24859341 PMCID: PMC4036536 DOI: 10.3390/v6052155] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/02/2014] [Accepted: 05/08/2014] [Indexed: 12/12/2022] Open
Abstract
Viruses use different strategies to overcome the host defense system. Recent studies have shown that viruses can induce DNA damage response (DDR). Many of these viruses use DDR signaling to benefit their replication, while other viruses block or inactivate DDR signaling. This review focuses on the effects of DDR and DNA repair on human cytomegalovirus (HCMV) replication. Here, we review the DDR induced by HCMV infection and its similarities and differences to DDR induced by other viruses. As DDR signaling pathways are critical for the replication of many viruses, blocking these pathways may represent novel therapeutic opportunities for the treatment of certain infectious diseases. Lastly, future perspectives in the field are discussed.
Collapse
Affiliation(s)
- E Xiaofei
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation St, Worcester, MA 01605, USA.
| | - Timothy F Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation St, Worcester, MA 01605, USA.
| |
Collapse
|
13
|
Woodson EN, Anderson MS, Loftus MS, Kedes DH. Progressive accumulation of activated ERK2 within highly stable ORF45-containing nuclear complexes promotes lytic gammaherpesvirus infection. PLoS Pathog 2014; 10:e1004066. [PMID: 24722398 PMCID: PMC3983062 DOI: 10.1371/journal.ppat.1004066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 02/27/2014] [Indexed: 11/19/2022] Open
Abstract
De novo infection with the gammaherpesvirus Rhesus monkey rhadinovirus (RRV), a close homolog of the human oncogenic pathogen, Kaposi's sarcoma-associated herpesvirus (KSHV), led to persistent activation of the MEK/ERK pathway and increasing nuclear accumulation of pERK2 complexed with the RRV protein, ORF45 (R45) and cellular RSK. We have previously shown that both lytic gene expression and virion production are dependent on the activation of ERK [1]. Using confocal microscopy, sequential pull-down assays and FRET analyses, we have demonstrated that pERK2-R45-RSK2 complexes were restricted to the nucleus but that the activated ERK retained its ability to phosphorylate nuclear substrates throughout infection. Furthermore, even with pharmacologic inhibition of MEK beginning at 48 h p.i., pERK2 but not pERK1, remained elevated for at least 10 h, showing first order decay and a half-life of nearly 3 hours. Transfection of rhesus fibroblasts with R45 alone also led to the accumulation of nuclear pERK2 and addition of exogenous RSK augmented this effect. However, knock down of RSK during bona fide RRV infection had little to no effect on pERK2 accumulation or virion production. The cytoplasmic pools of pERK showed no co-localization with either RSK or R45 but activation of pERK downstream targets in this compartment was evident throughout infection. Together, these observations suggest a model in which R45 interacts with pERK2 to promote its nuclear accumulation, thereby promoting lytic viral gene expression while also preserving persistent and robust activation of both nuclear and cytoplasmic ERK targets.
Collapse
Affiliation(s)
- Evonne N. Woodson
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Melissa S. Anderson
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Matthew S. Loftus
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Dean H. Kedes
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Internal Medicine, Division of Infectious Diseases and International Health, University of Virginia Health Systems, Charlottesville, Virginia, United States of America
| |
Collapse
|
14
|
Abstract
UNLABELLED Lytic infection by herpesviruses induces cell cycle arrest at the G1/S transition. This appears to be a function of multiple herpesvirus proteins, but only a minority of herpesvirus proteins have been examined for cell cycle effects. To gain a more comprehensive understanding of the viral proteins that contribute to G1/S arrest, we screened a library of over 200 proteins from herpes simplex virus type 1, human cytomegalovirus, and Epstein-Barr virus (EBV) for effects on the G1/S interface, using HeLa fluorescent, ubiquitination-based cell cycle indicator (Fucci) cells in which G1/S can be detected colorimetrically. Proteins from each virus were identified that induce accumulation of G1/S cells, predominantly tegument, early, and capsid proteins. The identification of several capsid proteins in this screen suggests that incoming viral capsids may function to modulate cellular processes. The cell cycle effects of selected EBV proteins were further verified and examined for effects on p53 and p21 as regulators of the G1/S transition. Two EBV replication proteins (BORF2 and BMRF1) were found to induce p53 but not p21, while a previously uncharacterized tegument protein (BGLF2) was found to induce p21 protein levels in a p53-independent manner. Proteomic analyses of BGLF2-interacting proteins identified interactions with the NIMA-related protein kinase (NEK9) and GEM-interacting protein (GMIP). Silencing of either NEK9 or GMIP induced p21 without affecting p53 and abrogated the ability of BGLF2 to further induce p21. Collectively, these results suggest multiple viral proteins contribute to G1/S arrest, including BGLF2, which induces p21 levels likely by interfering with the functions of NEK9 and GMIP. IMPORTANCE Most people are infected with multiple herpesviruses, whose proteins alter the infected cells in several ways. During lytic infection, the viral proteins block cell proliferation just before the cellular DNA replicates. We used a novel screening method to identify proteins from three different herpesviruses that contribute to this block. Several of the proteins we identified had previously unknown functions or were structural components of the virion. Subsets of these proteins from Epstein-Barr virus were studied for their effects on the cell cycle regulatory proteins p53 and p21, thereby identifying two proteins that induce p53 and one that induces p21 (BGLF2). We identified interactions of BGLF2 with two human proteins, both of which regulate p21, suggesting that BGLF2 induces p21 by interfering with the functions of these two host proteins. Our study indicates that multiple herpesvirus proteins contribute to the cell proliferation block, including components of the incoming virions.
Collapse
|
15
|
Abstract
To replicate their genomes in cells and generate new progeny, viruses typically require factors provided by the cells that they have infected. Subversion of the cellular machinery that controls replication of the infected host cell is a common activity of many viruses. Viruses employ different strategies to deregulate cell cycle checkpoint controls and modulate cell proliferation pathways. A number of DNA and RNA viruses encode proteins that target critical cell cycle regulators to achieve cellular conditions that are beneficial for viral replication. Many DNA viruses induce quiescent cells to enter the cell cycle; this is thought to increase pools of deoxynucleotides and thus, facilitate viral replication. In contrast, some viruses can arrest cells in a particular phase of the cell cycle that is favorable for replication of the specific virus. Cell cycle arrest may inhibit early cell death of infected cells, allow the cells to evade immune defenses, or help promote virus assembly. Although beneficial for the viral life cycle, virus-mediated alterations in normal cell cycle control mechanisms could have detrimental effects on cellular physiology and may ultimately contribute to pathologies associated with the viral infection, including cell transformation and cancer progression and maintenance. In this chapter, we summarize various strategies employed by DNA and RNA viruses to modulate the replication cycle of the virus-infected cell. When known, we describe how these virus-associated effects influence replication of the virus and contribute to diseases associated with infection by that specific virus.
Collapse
Affiliation(s)
- Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania USA
| | - Mariana C. Gadaleta
- Dept of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, USA
| |
Collapse
|
16
|
Poole E, Bain M, Teague L, Takei Y, Laskey R, Sinclair J. The cellular protein MCM3AP is required for inhibition of cellular DNA synthesis by the IE86 protein of human cytomegalovirus. PLoS One 2012; 7:e45686. [PMID: 23094019 PMCID: PMC3477159 DOI: 10.1371/journal.pone.0045686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 08/24/2012] [Indexed: 11/18/2022] Open
Abstract
Like all DNA viruses, human cytomegalovirus (HCMV) infection is known to result in profound effects on host cell cycle. Infection of fibroblasts with HCMV is known to induce an advance in cell cycle through the G0-G1 phase and then a subsequent arrest of cell cycle in early S-phase, presumably resulting in a cellular environment optimum for high levels of viral DNA replication whilst precluding replication of cellular DNA. Although the exact mechanisms used to arrest cell cycle by HCMV are unclear, they likely involve a number of viral gene products and evidence points to the ability of the virus to prevent licensing of cellular DNA synthesis. One viral protein known to profoundly alter cell cycle is the viral immediate early 86 (IE86) protein - an established function of which is to initially drive cells into early S phase but then inhibit cellular DNA synthesis. Here we show that, although IE86 interacts with the cellular licensing factor Cdt1, it does not inhibit licensing of cellular origins. Instead, IE86-mediated inhibition of cellular DNA synthesis requires mini-chromosome-maintenance 3 (MCM3) associated protein (MCM3AP), which can cause subsequent inhibition of initiation of cellular DNA synthesis in a licensing-independent manner.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Mark Bain
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Linda Teague
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Yoshinori Takei
- Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Ron Laskey
- Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - John Sinclair
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Nascimento R, Costa H, Parkhouse RME. Virus manipulation of cell cycle. PROTOPLASMA 2012; 249:519-528. [PMID: 21986922 DOI: 10.1007/s00709-011-0327-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/28/2011] [Indexed: 05/31/2023]
Abstract
Viruses depend on host cell resources for replication and access to those resources may be limited to a particular phase of the cell cycle. Thus manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment. For example, viruses capable of infecting nondividing cells induce S phase in order to activate the host DNA replication machinery and provide the nucleotide triphosphates necessary for viral DNA replication (Flemington in J Virol 75:4475-4481, 2001; Sullivan and Pipas in Microbiol Mol Biol Rev 66:179-202, 2002). Viruses have developed several strategies to subvert the cell cycle by association with cyclin and cyclin-dependent kinase complexes and molecules that regulate their activity. Viruses tend to act on cellular proteins involved in a network of interactions in a way that minimal protein-protein interactions lead to a major effect. The complex and interactive nature of intracellular signaling pathways controlling cell division affords many opportunities for virus manipulation strategies. Taking the maxim "Set a thief to catch a thief" as a counter strategy, however, provides us with the very same virus evasion strategies as "ready-made tools" for the development of novel antivirus therapeutics. The most obvious are attenuated virus vaccines with critical evasion genes deleted. Similarly, vaccines against viruses causing cancer are now being successfully developed. Finally, as viruses have been playing chess with our cell biology and immune responses for millions of years, the study of their evasion strategies will also undoubtedly reveal new control mechanisms and their corresponding cellular intracellular signaling pathways.
Collapse
Affiliation(s)
- R Nascimento
- Instituto Gulbenkian de Ciencia, Oeiras, Portugal.
| | | | | |
Collapse
|
18
|
Bian T, Gibbs JD, Örvell C, Imani F. Respiratory syncytial virus matrix protein induces lung epithelial cell cycle arrest through a p53 dependent pathway. PLoS One 2012; 7:e38052. [PMID: 22662266 PMCID: PMC3360651 DOI: 10.1371/journal.pone.0038052] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/02/2012] [Indexed: 12/31/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the major cause of viral respiratory infections in children. Our previous study showed that the RSV infection induced lung epithelial cell cycle arrest, which enhanced virus replication. To address the mechanism of RSV-induced cell cycle arrest, we examined the contribution of RSV-matrix (RSV-M) protein. In this report, we show that in both the A549 cell line and primary human bronchial epithelial (PHBE) cells, transfection with RSV-M protein caused the cells to proliferate at a slower rate than in control cells. The cell cycle analysis showed that RSV-M protein induced G1 phase arrest in A549 cells, and G1 and G2/M phase arrest in PHBE cells. Interestingly, RSV-M expression induced p53 and p21 accumulation and decreased phosphorylation of retinoblastoma protein (Rb). Further, induction of cell cycle arrest by RSV-M was not observed in a p53-deficient epithelial cell line (H1299). However, cell cycle arrest was restored after transfection of p53 cDNA into H1299 cells. Taken together, these results indicate that RSV-M protein regulates lung epithelial cell cycle through a p53-dependent pathway, which enhances RSV replication.
Collapse
Affiliation(s)
- Tao Bian
- Laboratory of Respiratory Biology, National Institute of Environmental Human Science, Durham, North Carolina, United States of America
| | - John D. Gibbs
- Global Vaccines, Inc., Durham, North Carolina, United States of America
| | - Claes Örvell
- Huddinge University Hospital, Department of Clinical Virology, Karolinska Institute, Stockholm, Sweden
| | - Farhad Imani
- ViraSource Laboratories, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
19
|
A novel bat herpesvirus encodes homologues of major histocompatibility complex classes I and II, C-type lectin, and a unique family of immune-related genes. J Virol 2012; 86:8014-30. [PMID: 22623774 DOI: 10.1128/jvi.00723-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses or herpesviral sequences have been identified in various bat species. Here, we report the isolation, cell tropism, and complete genome sequence of a novel betaherpesvirus from the bat Miniopterus schreibersii (MsHV). In primary cell culture, MsHV causes cytopathic effects (CPE) and reaches peak virus production 2 weeks after infection. MsHV was found to infect and replicate less efficiently in a feline kidney cell, CRFK, and failed to replicate in 13 other cell lines tested. Sequencing of the MsHV genome using the 454 system, with a 224-fold coverage, revealed a genome size of 222,870 bp. The genome was extensively analyzed in comparison to those of related viruses. Of the 190 predicted open reading frames (ORFs), 40 were identified as herpesvirus core genes. Among 93 proteins with identifiable homologues in tree shrew herpesvirus (THV), human cytomegalovirus (HCMV), or rat cytomegalovirus (RCMV), most had highest sequence identities with THV counterparts. However, the MsHV genome organization is colinear with that of RCMV rather than that of THV. The following unique features were discovered in the MsHV genome. One predicted protein, B125, is similar to human herpesvirus 6 (HHV-6) U94, a homologue of the parvovirus Rep protein. For the unique ORFs, 7 are predicted to encode major histocompatibility complex (MHC)-related proteins, 2 to encode MHC class I homologues, and 3 to encode MHC class II homologues; 4 encode the homologues of C-type lectin- or natural killer cell lectin-like receptors;, and the products of a unique gene family, the b149 family, of 16 members, have no significant sequence identity with known proteins but exhibit immunoglobulin-like beta-sandwich domains revealed by three-dimensional (3D) structural prediction. To our knowledge, MsHV is the first virus genome known to encode MHC class II homologues.
Collapse
|
20
|
The cellular protein SPT6 is required for efficient replication of human cytomegalovirus. J Virol 2011; 86:2011-20. [PMID: 22171252 DOI: 10.1128/jvi.06776-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The human cytomegalovirus tegument protein UL69 has been shown to be required for efficient viral replication at low multiplicities of infection. Several functions have been associated with UL69, including its ability to regulate cell cycle progression, translation, and the export of viral transcripts from the nucleus to the cytoplasm. However, it remains unclear which, if any, of these activities contribute to the phenotype observed with the UL69 deletion mutant. UL69 has been shown to interact with the cellular protein SPT6. The functional significance of this interaction has never been examined in the context of an infection. To address this, we generated UL69 mutant viruses that were unable to interact with SPT6 and determined what effect these mutations had on virus replication. Abolishing UL69's ability to interact with the SPT6 protein inhibited virus replication to levels indistinguishable from those observed following infection with the UL69 deletion mutant. Surprisingly, abolishing UL69's interaction with SPT6 also resulted in the impairment of UL69 shuttling activity. Finally, we demonstrate that inhibition of SPT6 expression by short hairpin RNA (shRNA) knockdown inhibits wild-type virus replication. Taken together, our results demonstrate that UL69's ability to interact with SPT6 plays a critical role in viral replication.
Collapse
|
21
|
Abstract
Viral replication is a complex process relying on a network of interacting viral and cellular proteins, in which particularly protein kinases play an important regulatory role. The specific phosphorylation of substrate proteins induces activation, inactivation, or other functional modification and thus determines virus-host cell interregulation. During herpesviral infections, both viral and cellular protein kinases are expressed and provide activities crucial for the efficiency of virus replication. The protein kinase pUL97 encoded by human cytomegalovirus (HCMV) is a multifunctional regulatory enzyme which exerts strong regulatory effects on early and late steps of the viral replication cycle. A number of interacting proteins and substrates of pUL97 have been described, including retinoblastoma (Rb) protein, nuclear lamins and viral pUL69. Recently, it was demonstrated that pUL97 has structural and functional resemblance to cyclin-dependent protein kinases (CDKs) and thus represents a CDK ortholog. pUL97 can phosphorylate and inactivate Rb, resulting in a stimulation of cell cycle progression. In addition, the association of pUL97 activity with nucleocytoplasmic export of viral capsids has been demonstrated by several investigators. We could show that pUL97 is able to phosphorylate nuclear lamins and to contribute to the HCMV-induced reorganization of the nuclear lamina. On the basis of very recent findings, it is becoming increasingly clear that pUL97 is a component of a multiprotein nuclear egress complex (NEC). The NEC contains a small number of egress proteins involved in the recruitment of protein kinases, such as pUL97 and cellular protein kinase C (PKC), to specific sites of the nuclear lamina. Current information about the composition, function, and regulatory complexity of the NEC leads to a mechanistic concept which may set the key features of HCMV nuclear egress in a new light.
Collapse
|
22
|
Proteomic profiling of the human cytomegalovirus UL35 gene products reveals a role for UL35 in the DNA repair response. J Virol 2011; 86:806-20. [PMID: 22072767 DOI: 10.1128/jvi.05442-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human cytomegalovirus infections involve the extensive modification of host cell pathways, including cell cycle control, the regulation of the DNA damage response, and averting promyelocytic leukemia (PML)-mediated antiviral responses. The UL35 gene from human cytomegalovirus is important for viral gene expression and efficient replication and encodes two proteins, UL35 and UL35a, whose mechanism of action is not well understood. Here, affinity purification coupled with mass spectrometry was used to identify previously unknown human cellular targets of UL35 and UL35a. We demonstrate that both viral proteins interact with the ubiquitin-specific protease USP7, and that UL35 expression can alter USP7 subcellular localization. In addition, UL35 (but not UL35a) was found to associate with three components of the Cul4(DCAF1) E3 ubiquitin ligase complex (DCAF1, DDB1, and DDA1) previously shown to be targeted by the HIV-1 Vpr protein. The coimmunoprecipitation and immunofluorescence microscopy of DCAF1 mutants revealed that the C-terminal region of DCAF1 is required for association with UL35 and mediates the dramatic relocalization of DCAF1 to UL35 nuclear bodies, which also contain conjugated ubiquitin. As previously reported for the Vpr-DCAF1 interaction, UL35 (but not UL35a) expression resulted in the accumulation of cells in the G(2) phase of the cell cycle, which is typical of a DNA damage response, and activated the G(2) checkpoint in a DCAF1-dependent manner. In addition, UL35 (but not UL35a) induced γ-H2AX and 53BP1 foci, indicating the activation of DNA damage and repair responses. Therefore, the identified interactions suggest that UL35 can contribute to viral replication through the manipulation of host responses.
Collapse
|
23
|
Feichtinger S, Stamminger T, Müller R, Graf L, Klebl B, Eickhoff J, Marschall M. Recruitment of cyclin-dependent kinase 9 to nuclear compartments during cytomegalovirus late replication: importance of an interaction between viral pUL69 and cyclin T1. J Gen Virol 2011; 92:1519-1531. [PMID: 21450947 DOI: 10.1099/vir.0.030494-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cyclin-dependent protein kinases (CDKs) are important regulators of cellular processes and are functionally integrated into the replication of human cytomegalovirus (HCMV). Recently, a regulatory impact of CDK activity on the viral mRNA export factor pUL69 was shown. Here, specific aspects of the mode of interaction between CDK9/cyclin T1 and pUL69 are described. Intracellular localization was studied in the presence of a novel selective CDK9 inhibitor, R22, which exerts anti-cytomegaloviral activity in vitro. A pronounced R22-induced formation of nuclear speckled aggregation of pUL69 was demonstrated. Multi-labelling confocal laser-scanning microscopy revealed that CDK9 and cyclin T1 co-localized perfectly with pUL69 in individual speckles. The effects were similar to those described recently for the broad CDK inhibitor roscovitine. Co-immunoprecipitation and yeast two-hybrid analyses showed that cyclin T1 interacted with both CDK9 and pUL69. The interaction region of pUL69 for cyclin T1 could be attributed to aa 269-487. Moreover, another component of CDK inhibitor-induced speckled aggregates was identified with RNA polymerase II, supporting earlier reports that strongly suggested an association of pUL69 with transcription complexes. Interestingly, when using a UL69-deleted recombinant HCMV, no speckled aggregates were formed by CDK inhibitor treatment. This indicated that pUL69 is the defining component of aggregates and generally may represent a crucial viral interactor of cyclin T1. In conclusion, these data emphasize that HCMV inter-regulation with CDK9/cyclin T1 is at least partly based on a pUL69-cylin T1 interaction, thus contributing to the importance of CDK9 for HCMV replication.
Collapse
Affiliation(s)
- Sabine Feichtinger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Regina Müller
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Laura Graf
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | - Manfred Marschall
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
24
|
The human cytomegalovirus gene UL79 is required for the accumulation of late viral transcripts. J Virol 2011; 85:4841-52. [PMID: 21367901 DOI: 10.1128/jvi.02344-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study, we adopted a conditional protein genetic approach to characterize the role of the human cytomegalovirus (HCMV) gene UL79 during virus infection. We constructed ADddUL79, a recombinant HCMV in which the annotated UL79 open reading frame (ORF) was tagged with the destabilization domain of a highly unstable variant of the human FKBP12 protein (ddFKBP). The ddFKBP domain targets the tagged protein for rapid proteasomal degradation, but the synthetic ligand Shield-1 can stabilize ddFKBP, allowing accumulation of the tagged protein. ADddUL79 failed to replicate without Shield-1, but it grew at wild-type levels with Shield-1 or in human foreskin fibroblasts overexpressing hemagglutinin (HA)-tagged UL79 (HF-UL79HA cells), indicating an essential role of UL79 and the effectiveness of this approach. Without Shield-1, representative immediate-early and early viral proteins as well as viral DNA accumulated normally, but late transcripts and proteins were markedly reduced. UL79 was transcribed with early-late kinetics, which was also regulated via a positive-feedback loop. Using HF-UL79HA cells, we found that the UL79 protein localized to viral replication compartments during HCMV infection. Finally, we created a second UL79 mutant virus (ADinUL79(stop)) in which the UL79 ORF was disrupted by a stop codon mutation and found that ADinUL79(stop) phenocopied ADddUL79 under the destabilizing condition. Taking these results together, we conclude that UL79 acts after viral DNA replication to promote the accumulation of late viral transcripts. Importantly, the comparative analysis of ADddUL79 and ADinUL79(stop) viruses provide additional proof for the power of the protein stability-based conditional approach to dissect the role of viral factors in HCMV biology.
Collapse
|
25
|
Binding of the human cytomegalovirus (HCMV) tegument protein UL69 to UAP56/URH49 is not required for efficient replication of HCMV. J Virol 2010; 84:9649-54. [PMID: 20610707 DOI: 10.1128/jvi.00669-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The human cytomegalovirus (HCMV) tegument protein UL69 is important for efficient viral replication at low multiplicities of infection. Several molecular mechanisms by which UL69 contributes to HCMV replication have been proposed, including UL69's ability to interact with the mRNA export factors UAP56 and URH49 to facilitate the shuttling of viral mRNAs from the nuclei of infected cells. Using a UL69 viral mutant that is unable to bind UAP56 and URH49, we demonstrated that UL69's interaction with UAP56 or URH49 does not contribute to the growth phenotype associated with the UL69 deletion mutant.
Collapse
|
26
|
Human cytomegalovirus protein pUL117 targets the mini-chromosome maintenance complex and suppresses cellular DNA synthesis. PLoS Pathog 2010; 6:e1000814. [PMID: 20333247 PMCID: PMC2841624 DOI: 10.1371/journal.ppat.1000814] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 02/08/2010] [Indexed: 01/20/2023] Open
Abstract
Modulation of host DNA synthesis is essential for many viruses to establish productive infections and contributes to viral diseases. Human cytomegalovirus (HCMV), a large DNA virus, blocks host DNA synthesis and deregulates cell cycle progression. We report that pUL117, a viral protein that we recently identified, is required for HCMV to block host DNA synthesis. Mutant viruses in which pUL117 was disrupted, either by frame-shift mutation or by a protein destabilization-based approach, failed to block host DNA synthesis at times after 24 hours post infection in human foreskin fibroblasts. Furthermore, pUL117-deficient virus stimulated quiescent fibroblasts to enter S-phase, demonstrating the intrinsic ability of HCMV to promote host DNA synthesis, which was suppressed by pUL117. We examined key proteins known to be involved in inhibition of host DNA synthesis in HCMV infection, and found that many were unlikely involved in the inhibitory activity of pUL117, including geminin, cyclin A, and viral protein IE2, based on their expression patterns. However, the ability of HCMV to delay the accumulation of the mini-chromosome maintenance (MCM) complex proteins, represented by MCM2 and MCM4, and prevent their loading onto chromatin, was compromised in the absence of pUL117. When expressed alone, pUL117 slowed cell proliferation, delayed DNA synthesis, and inhibited MCM accumulation. Knockdown of MCM proteins by siRNA restored the ability of pUL117-deficient virus to block cellular DNA synthesis. Thus, targeting MCM complex is one mechanism pUL117 employs to help block cellular DNA synthesis during HCMV infection. Our finding substantiates an emerging picture that deregulation of MCM is a conserved strategy for many viruses to prevent host DNA synthesis and helps to elucidate the complex strategy used by a large DNA virus to modulate cellular processes to promote infection and pathogenesis. Inhibition of host DNA synthesis is pivotal for many viruses to establish productive infection and cause disease. Human cytomegalovirus (HCMV) is the top viral cause of birth defects in newborns and leads to life-threatening diseases in individuals with compromised immunity. HCMV blocks host DNA synthesis and creates a cellular environment to replicate its own genome. We report here that pUL117, a novel viral protein that we recently identified, is required for HCMV to block host DNA synthesis. Mechanistically, pUL117 is necessary and sufficient to reduce the accumulation of the mini-chromosome maintenance (MCM) complex, a replicative helicase that unwinds the origin and initiates cellular DNA replication. During HCMV infection pUL117 may also have a direct role in preventing MCM loading onto chromatin. Importantly, knockdown of MCM proteins restored the ability of pUL117-deficient virus to block cellular DNA synthesis. Thus, targeting MCM function is a mechanism for pUL117 to help block cellular DNA synthesis during HCMV infection. Several proteins encoded by other viruses have also been reported to subvert MCM function by distinct mechanisms and inhibit host DNA synthesis when over-expressed in host cells. Therefore, MCM has emerged as a conserved target for viruses to prevent host DNA synthesis. Our results illustrate a novel strategy that HCMV uses to manipulate this critical cellular factor during infection. This study helps to elucidate the sophisticated strategies used by a large DNA virus to modulate cellular processes to promote infection and pathogenesis and may also shed light on the regulation of eukaryotic DNA replication.
Collapse
|
27
|
Human cytomegalovirus UL69 protein facilitates translation by associating with the mRNA cap-binding complex and excluding 4EBP1. Proc Natl Acad Sci U S A 2010; 107:2640-5. [PMID: 20133758 DOI: 10.1073/pnas.0914856107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
4EBP1 is phosphorylated by the mTORC1 kinase. When mTORC1 activity is inhibited, hypophosphorylated 4EBP1 binds and sequesters eIF4E, a component of the mRNA cap-binding complex, and blocks translation. As a consequence, mTORC1 activity is needed to maintain active translation. The human cytomegalovirus pUL38 protein preserves mTORC1 activity, keeping most of the E4BP1 in the infected cell in a hyperphosphorylated, inactive state. Here we report that a second viral protein, pUL69, also antagonizes the activity of 4EBP1, but by a separate mechanism. pUL69 interacts directly with eIF4A1, an element of the cap-binding complex, and the poly(A)-binding protein, which binds to the complex. When pUL69 accumulates during infection with wild-type virus, 4EBP1 is excluded from the complex. However, 4EBP1 is present in the cap-binding complex after infection with a pUL69-deficient virus, coincident with reduced accumulation of several late virus-coded proteins. We propose that pUL69 supports translation in human cytomegalovirus-infected cells by excluding hypophosphorylated 4EBP1 from the cap-binding complex.
Collapse
|
28
|
Cleavage specificity of the UL48 deubiquitinating protease activity of human cytomegalovirus and the growth of an active-site mutant virus in cultured cells. J Virol 2009; 83:12046-56. [PMID: 19759126 DOI: 10.1128/jvi.00411-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The human cytomegalovirus (HCMV) open reading frame UL48 encodes a 253-kDa tegument protein that is closely associated with the capsid and was recently shown to have ubiquitin-specific protease activity (J. Wang, A. N. Loveland, L. M. Kattenhorn, H. L. Ploegh, and W. Gibson, J. Virol. 80:6003-6012, 2006). Here, we examined the cleavage specificity of this deubiquitinase (DUB) and replication characteristics of an active-site mutant virus. The purified catalytic domain of the UL48 DUB (1 to 359 amino acids), corresponding to the herpes simplex virus UL36(USP) DUB (L. M. Kattenhorn, G. A. Korbel, B. M. Kessler, E. Spooner, and H. L. Ploegh, Mol. Cell 19:547-557, 2005), efficiently released ubiquitin but not ubiquitin-like modifications from a hemagglutinin peptide substrate. Mutating the active-site residues Cys24 or His162 (C24S and H162A, respectively) abolished this activity. The HCMV UL48 and HSV UL36(USP) DUBs cleaved both Lys48- and Lys63-linked ubiquitin dimers and oligomers, showing more activity toward Lys63 linkages. The DUB activity of the full-length UL48 protein immunoprecipitated from virus-infected cells also showed a better cleavage of Lys63-linked ubiquitinated substrates. An HCMV (Towne) mutant virus in which the UL48 DUB activity was destroyed [UL48(C24S)] produced 10-fold less progeny virus and reduced amounts of viral proteins compared to wild-type virus at a low multiplicity of infection. The mutant virus also produced perceptibly less overall deubiquitination than the wild-type virus. Our findings demonstrate that the HCMV UL48 DUB contains both a ubiquitin-specific carboxy-terminal hydrolase activity and an isopeptidase activity that favors ubiquitin Lys63 linkages and that these activities can influence virus replication in cultured cells.
Collapse
|
29
|
Human cytomegalovirus UL28 and UL29 open reading frames encode a spliced mRNA and stimulate accumulation of immediate-early RNAs. J Virol 2009; 83:10187-97. [PMID: 19625400 DOI: 10.1128/jvi.00396-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We have identified a spliced transcript that contains sequences from the HCMV UL29 and UL28 open reading frames. It contains amino-terminal UL29 sequences followed by UL28 sequences, and it includes a poly(A) signal derived from the 3'-untranslated region following the UL26 open reading frame. UL29/28 RNA is expressed with early kinetics, and a virus containing a FLAG epitope inserted at the amino terminus of UL29 expressed a tagged approximately 79-kDa protein, pUL29/28, that was detected at 6 h postinfection. The virus also expressed a less-abundant tagged 41-kDa protein, which corresponds in size to a protein that could be produced by translation of an unspliced UL29/28 transcript. Consistent with this prediction, both unspliced and spliced UL29/28 transcript was present in RNA isolated from polysomes. FLAG-tagged protein from the UL29/28 locus accumulated within nuclear viral replication centers during the early phase of infection. Late after infection it was present in the cytoplasm as well, and the protein was present and resistant to proteinase treatment in partially purified preparations of viral particles. Disruption of the UL29/28 locus by mutation resulted in a 10-fold decrease in the levels of DNA replication along with a similar reduction in virus yield. Quantitative reverse transcription-PCR analysis revealed an approximately 2-fold decrease in immediate-early gene expression at 4 to 10 h postinfection compared to the wild-type virus, and transient expression of pUL29/28 activated the major immediate-early promoter. Our results argue that the UL29/28 locus contributes to activation of immediate-early gene expression.
Collapse
|
30
|
The conserved UL24 family of human alpha, beta and gamma herpesviruses induces cell cycle arrest and inactivation of the cyclinB/cdc2 complex. Arch Virol 2009; 154:1143-9. [DOI: 10.1007/s00705-009-0420-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 06/01/2009] [Indexed: 11/27/2022]
|
31
|
Thomas M, Rechter S, Milbradt J, Auerochs S, Müller R, Stamminger T, Marschall M. Cytomegaloviral protein kinase pUL97 interacts with the nuclear mRNA export factor pUL69 to modulate its intranuclear localization and activity. J Gen Virol 2009; 90:567-578. [PMID: 19218201 DOI: 10.1099/vir.0.005827-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus encodes a number of phosphorylation-regulated proteins, including the autophosphorylating protein kinase pUL97 and the nuclear mRNA export factor pUL69. Recently, it was reported that the kinase inhibitor roscovitine induces an intranuclear aggregation of pUL69 in infected fibroblasts. Here, we demonstrate that pUL97-specific kinase inhibitors induce a similar pUL69 aggregation. Furthermore, a direct pUL69-pUL97 interaction was demonstrated by coimmunoprecipitation analyses. Deletion mapping identified the domains required for interaction in both proteins (1-140/478-532 in pUL69 and 231-336 in pUL97). Further analysis of the immunoprecipitates by in vitro kinase assays demonstrated the phosphorylation of pUL69 by pUL97. However, catalytically inactive mutants of pUL97 and interaction-negative fragments of pUL69 were phosphorylation-negative. Moreover, an analysis of the pUL69-mediated nuclear RNA export indicated a correlation of the export efficiency with the presence of active pUL97 kinase. These data suggest a specific pUL69-pUL97 interaction and pUL97-mediated phosphorylation which influences the regulatory activities of pUL69.
Collapse
Affiliation(s)
- Marco Thomas
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Sabine Rechter
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Jens Milbradt
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Sabrina Auerochs
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Regina Müller
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| |
Collapse
|
32
|
Rechter S, Scott GM, Eickhoff J, Zielke K, Auerochs S, Müller R, Stamminger T, Rawlinson WD, Marschall M. Cyclin-dependent Kinases Phosphorylate the Cytomegalovirus RNA Export Protein pUL69 and Modulate Its Nuclear Localization and Activity. J Biol Chem 2009; 284:8605-13. [PMID: 19179338 DOI: 10.1074/jbc.m805693200] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Replication of human cytomegalovirus (HCMV) is subject to regulation by cellular protein kinases. Recently, we and others reported that inhibition of cyclin-dependent protein kinases (CDKs) or the viral CDK ortholog pUL97 can induce intranuclear speckled aggregation of the viral mRNA export factor, pUL69. Here we provide the first evidence for a direct regulatory role of CDKs on pUL69 functionality. Although replication of all HCMV strains was dependent on CDK activity, we found strain-specific differences in the amount of CDK inhibitor-induced pUL69 aggregate formation. In all cases analyzed, the inhibitor-induced pUL69 aggregates were clearly localized within viral replication centers but not subnuclear splicing, pore complex, or aggresome structures. The CDK9 and cyclin T1 proteins colocalized with these pUL69 aggregates, whereas other CDKs behaved differently. Phosphorylation analyses in vivo and in vitro demonstrated pUL69 was strongly phosphorylated in HCMV-infected fibroblasts and that CDKs represent a novel class of pUL69-phosphorylating kinases. Moreover, the analysis of CDK inhibitors in a pUL69-dependent nuclear mRNA export assay provided evidence for functional impairment of pUL69 under suppression of CDK activity. Thus, our data underline the crucial importance of CDKs for HCMV replication, and indicate a direct impact of CDK9-cyclin T1 on the nuclear localization and activity of the viral regulator pUL69.
Collapse
Affiliation(s)
- Sabine Rechter
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen 91054, Germany, GPC Biotech AG, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hume AJ, Kalejta RF. Regulation of the retinoblastoma proteins by the human herpesviruses. Cell Div 2009; 4:1. [PMID: 19146698 PMCID: PMC2636798 DOI: 10.1186/1747-1028-4-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 01/15/2009] [Indexed: 01/21/2023] Open
Abstract
Viruses are obligate intracellular parasites that alter the environment of infected cells in order to replicate more efficiently. One way viruses achieve this is by modulating cell cycle progression. The main regulators of progression out of G0, through G1, and into S phase are the members of the retinoblastoma (Rb) family of tumor suppressors. Rb proteins repress the transcription of genes controlled by the E2F transcription factors. Because the expression of E2F-responsive genes is required for cell cycle progression into the S phase, Rb arrests the cell cycle in G0/G1. A number of viral proteins directly target Rb family members for inactivation, presumably to create an environment more hospitable for viral replication. Such viral proteins include the extensively studied oncoproteins E7 (from human papillomavirus), E1A (from adenovirus), and the large T (tumor) antigen (from simian virus 40). Elucidating how these three viral proteins target and inactivate Rb has proven to be an invaluable approach to augment our understanding of both normal cell cycle progression and carcinogenesis. In addition to these proteins, a number of other virally-encoded inactivators of the Rb family have subsequently been identified including a surprising number encoded by human herpesviruses. Here we review how the human herpesviruses modulate Rb function during infection, introduce the individual viral proteins that directly or indirectly target Rb, and speculate about what roles Rb modulation by these proteins may play in viral replication, pathogenesis, and oncogenesis.
Collapse
Affiliation(s)
- Adam J Hume
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706-1596, USA.
| | | |
Collapse
|
34
|
Major tegument protein pp65 of human cytomegalovirus is required for the incorporation of pUL69 and pUL97 into the virus particle and for viral growth in macrophages. J Virol 2008; 83:2480-90. [PMID: 19116255 DOI: 10.1128/jvi.01818-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tegument protein pp65 of human cytomegalovirus (HCMV) represents the major component of mature virus particles. Nevertheless, deletion of pp65 has been shown to have no effects on virus replication and morphogenesis in fibroblasts in vitro. We have studied the HCMV virion composition in the absence of pp65 and viral growth of a pp65 stop mutant in different cell types, including monocyte-derived macrophages. Two stop codons at amino acids 11 and 12 of pp65 were introduced by bacterial artificial chromosome mutagenesis into the endotheliotropic strain TB40/E. Clear changes of the tegument composition could be observed in purified mutant virus particles, where the amount of tegument protein pUL25 was drastically reduced. In addition, pUL69 and the virally encoded protein kinase UL97 were undetectable in the pp65 stop mutant. Expression of pUL69 in infected cells was unaltered while pUL25 accumulated in the absence of pp65, thus demonstrating that only incorporation into virus particles is dependent on pp65. Coimmunoprecipitation experiments using lysates of infected cells revealed an interaction between pUL69 and pp65. This interaction was verified in pull-down experiments using transfected cells, which showed that pp65 and pUL69 do not require the presence of other viral proteins for their interaction. We conclude that pp65 is required for the incorporation of other viral proteins into the virus particle and thus is involved in the protein-protein interaction network leading to normal tegument formation. When studying growth kinetics of the pp65 stop mutant in different cell types, we found a severe impairment of viral growth in monocyte-derived macrophages, showing for the first time a strong cell-specific role of pp65 in viral growth.
Collapse
|
35
|
Yurochko AD. Human cytomegalovirus modulation of signal transduction. Curr Top Microbiol Immunol 2008; 325:205-20. [PMID: 18637508 DOI: 10.1007/978-3-540-77349-8_12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An upregulation of cellular signaling pathways is observed in multiple cell types upon human cytomegalovirus (HCMV) infection, suggesting that a global feature of HCMV infection is the activation of the host cell. HCMV initiates and maintains cellular signaling through a multitiered process that is dependent on a series of events: (1) the viral glycoprotein ligand interacts with its cognate receptor, (2) cellular enzymes and viral tegument proteins present in the incoming virion are released and (3) a variety of viral gene products are expressed. Viral-mediated cellular modification has differential outcomes depending on the cell type infected. In permissive cell types, such as diploid fibroblasts, the upregulation of cellular signaling pathways following infection can initiate the viral gene cascade and promote the efficient transcription of multiple viral gene classes. In other cell types, such as endothelial cells and monocytes/macrophages, the upregulation of cellular pathways initiates functional host changes that allow viral spread to multiple organ systems. Together, the modification of signaling processes appears to be part of a thematic strategy deployed by the virus to direct the required functional changes in target cells that ultimately promote viral survival and persistence in the host.
Collapse
Affiliation(s)
- A D Yurochko
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway Shreveport, LA 71130-3932, USA.
| |
Collapse
|
36
|
Interactions of human cytomegalovirus proteins with the nuclear transport machinery. Curr Top Microbiol Immunol 2008; 325:167-85. [PMID: 18637506 DOI: 10.1007/978-3-540-77349-8_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Accurate cellular localization is crucial for the effective function of most viral macromolecules and nuclear translocation is central to the function of herpesviral proteins that are involved in processes such as transcription and DNA replication. The passage of large molecules between the cytoplasm and nucleus, however, is restricted, and this restriction affords specific mechanisms that control nucleocytoplasmic exchange. In this review, we focus on two cytomegalovirus-encoded proteins, pUL69 and pUL84, that are able to shuttle between the nucleus and the cytoplasm. Both viral proteins use unconventional interactions with components of the cellular transport machinery: pUL69 binds to the mRNA export factor UAP56, and this interaction is crucial for pUL69-mediated nuclear export of unspliced RNA; pUL84 docks to importin-alpha proteins via an unusually large protein domain that contains functional leucine-rich nuclear export signals, thus serving as a complex bidirectional transport domain. Selective interference with these unconventional interactions, which disturbs the intracellular trafficking of important viral regulatory proteins, may constitute a novel and attractive principle for antiviral therapy.
Collapse
|
37
|
Abstract
SUMMARY Human cytomegalovirus (HCMV) is a common, medically relevant human herpesvirus. The tegument layer of herpesvirus virions lies between the genome-containing capsids and the viral envelope. Proteins within the tegument layer of herpesviruses are released into the cell upon entry when the viral envelope fuses with the cell membrane. These proteins are fully formed and active and control viral entry, gene expression, and immune evasion. Most tegument proteins accumulate to high levels during later stages of infection, when they direct the assembly and egress of progeny virions. Thus, viral tegument proteins play critical roles at the very earliest and very last steps of the HCMV lytic replication cycle. This review summarizes HCMV tegument composition and structure as well as the known and speculated functions of viral tegument proteins. Important directions for future investigation and the challenges that lie ahead are identified and discussed.
Collapse
|
38
|
Bain M, Sinclair J. The S phase of the cell cycle and its perturbation by human cytomegalovirus. Rev Med Virol 2008; 17:423-34. [PMID: 17676653 DOI: 10.1002/rmv.551] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human cytomegalovirus (HCMV) is a complex human herpesvirus that is known to productively infect a wide range of cell types. In addition, it has been suggested to contribute to some proliferative disorders, particularly atherosclerosis. Consistent with this, a number of studies have shown that HCMV profoundly affects normal cell cycle control. Specifically, the virus can stimulate early entry into S phase thus ensuring adequate resources for viral DNA replication. Importantly, however, the virus concomitantly inhibits potentially competing cellular DNA synthesis allowing cellular precursors to be used for viral but not cellular DNA replication. The mechanisms by which HCMV perturbs S phase entry involve interactions between the virus and the cellular replication machinery such that formation of competent pre-replication complexes (Pre-RC) at cellular origins of replication is restricted in infected cells.
Collapse
Affiliation(s)
- Mark Bain
- Department of Medicine, University of Cambridge Clinical School, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | | |
Collapse
|
39
|
Kalejta RF. Functions of human cytomegalovirus tegument proteins prior to immediate early gene expression. Curr Top Microbiol Immunol 2008; 325:101-15. [PMID: 18637502 DOI: 10.1007/978-3-540-77349-8_6] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins within the tegument layer of herpesviruses such as human cytomegalovirus (HCMV) are released into the cell upon entry when the viral envelope fuses with the cell membrane. These proteins are fully formed and active, and they mediate key events at the very start of the lytic infectious cycle, including the delivery of the viral genome to the nucleus and the initiation of viral gene expression. This review examines what is known about tegument protein function prior to the immediate early (IE) phase of the viral lytic replication cycle and identifies key questions that need to be answered to better understand how these proteins promote HCMV infection so that antiviral treatments that target these important viral regulators can be developed.
Collapse
Affiliation(s)
- R F Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706-1596, USA.
| |
Collapse
|
40
|
Transposon–Host Cell Interactions in the Regulation of Sleeping Beauty Transposition. TRANSPOSONS AND THE DYNAMIC GENOME 2008. [DOI: 10.1007/7050_2008_042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
41
|
Abstract
Human cytomegalovirus (HCMV) has evolved numerous strategies to commandeer the host cell for producing viral progeny. The virus manipulates host cell cycle pathways from the early stages of infection to stimulate viral DNA replication at the expense of cellular DNA synthesis. At the same time, cell cycle checkpoints are by-passed, preventing apoptosis and allowing sufficient time for the assembly of infectious virus.
Collapse
Affiliation(s)
- V Sanchez
- Deaprtment of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College Station, TX 77843-1266, USA
| | | |
Collapse
|
42
|
Nascimento R, Parkhouse RME. Murine gammaherpesvirus 68 ORF20 induces cell-cycle arrest in G2 by inhibiting the Cdc2-cyclin B complex. J Gen Virol 2007; 88:1446-1453. [PMID: 17412972 DOI: 10.1099/vir.0.82589-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The objective of this work was to identify novel viral 'evasion' genes without homology in the database through functional assays. Using this approach, the 'unassigned', conserved murine gammaherpesvirus ORF20 gene was shown to localize in the nucleus and to induce cell-cycle arrest followed by apoptosis in both mouse and human cells. Such growth-arrested cells did not express phospho-histone H3, demonstrating that the virus protein caused arrest at the G2 stage of the cell cycle. To characterize the mechanism further, Western blots of ORF20-recombinant lentivirus-infected cells were developed with antibodies to cyclin B1, Cdc2 and phospho-Tyr-15-Cdc2. This analysis revealed a relative increase in cyclin B and phospho-Tyr-15-Cdc2, from 24 to 72 h after infection with recombinant lentivirus. The demonstration that Cdc2 is in its inactive phosphorylated form and the clearly increased levels of cyclin B indicated that the virus gene blocks the progression of cells into mitosis by acting at the level of the Cdc2-cyclin B complex. To confirm this result, the Cdc2-cyclin B complex in ORF20-expressing cells was shown to be essentially without kinase activity. As the ORF20 gene is conserved in all herpesvirus, it may be presumed to have evolved to fulfil an important, as yet undefined, biological role in host-cell modification.
Collapse
Affiliation(s)
- R Nascimento
- Instituto Gulbenkian de Ciência, Apartado 14, Oeiras, Portugal
| | - R M E Parkhouse
- Instituto Gulbenkian de Ciência, Apartado 14, Oeiras, Portugal
| |
Collapse
|
43
|
Seo JY, Britt WJ. Sequence requirements for localization of human cytomegalovirus tegument protein pp28 to the virus assembly compartment and for assembly of infectious virus. J Virol 2007; 80:5611-26. [PMID: 16699042 PMCID: PMC1472139 DOI: 10.1128/jvi.02630-05] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus UL99 open reading frame encodes a 190-amino-acid (aa) tegument protein, pp28, that is myristoylated and phosphorylated. pp28 is essential for assembly of infectious virus, and nonenveloped virions accumulate in the cytoplasm of cells infected with recombinant viruses with a UL99 deletion. pp28 is localized to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) in transfected cells, while in infected cells, it is localized together with other virion proteins in a juxtanuclear compartment termed the assembly compartment (AC). We investigated the sequence requirements for pp28 trafficking to the AC and assembly of infectious virus. Our studies indicated that the first 30 to 35 aa were required for localization of pp28 to the ERGIC in transfected cells. Mutant forms of pp28 containing only the first 35 aa localized with other virion structural proteins to cytoplasmic compartments early in infection, but localization to the AC at late times required a minimum of 50 aa. In agreement with previous reports, we demonstrated that the deletion of a cluster of acidic amino acids (aa 44 to 59) prevented wild-type trafficking of pp28 and recovery of infectious virus. A recombinant virus expressing only the first 50 aa was replication competent, and this mutant, pp28, localized to the AC in cells infected with this virus. These findings argued that localization of pp28 to the AC was essential for assembly of infectious virus and raised the possibility that amino acids in the amino terminus of pp28 have additional roles in the envelopment and assembly of the virion other than simply localizing pp28 to the AC.
Collapse
Affiliation(s)
- Jun-Young Seo
- Department of Microbiology, School of Medicine, University of Alabama in Birmingham, Birmingham, AL 35233, USA
| | | |
Collapse
|
44
|
Harrison SM, Dove BK, Rothwell L, Kaiser P, Tarpey I, Brooks G, Hiscox JA. Characterisation of cyclin D1 down-regulation in coronavirus infected cells. FEBS Lett 2007; 581:1275-86. [PMID: 17359980 PMCID: PMC7094712 DOI: 10.1016/j.febslet.2007.02.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 01/30/2007] [Accepted: 02/13/2007] [Indexed: 01/02/2023]
Abstract
The positive strand RNA coronavirus, infectious bronchitis virus (IBV), induces a G2/M phase arrest and reduction in the G1 and G1/S phase transition regulator cyclin D1. Quantitative real-time RT-PCR and Western blot analysis demonstrated that cyclin D1 was reduced post-transcriptionally within infected cells independently of the cell-cycle stage at the time of infection. Confocal microscopy revealed that cyclin D1 decreased in IBV-infected cells as infection progressed and inhibition studies indicated that a population of cyclin D1 could be targeted for degradation by a virus mediated pathway. In contrast to the SARS-coronavirus, IBV nucleocapsid protein did not interact with cyclin D1.
Collapse
Affiliation(s)
- Sally M. Harrison
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Brian K. Dove
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Lisa Rothwell
- Institute for Animal Health (Compton Laboratory), UK
| | - Pete Kaiser
- Institute for Animal Health (Compton Laboratory), UK
| | | | - Gavin Brooks
- School of Pharmacy, University of Reading, Reading, UK
| | - Julian A. Hiscox
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
45
|
Sanchez V, Spector DH. Cyclin-dependent kinase activity is required for efficient expression and posttranslational modification of human cytomegalovirus proteins and for production of extracellular particles. J Virol 2006; 80:5886-96. [PMID: 16731927 PMCID: PMC1472584 DOI: 10.1128/jvi.02656-05] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have previously shown that the addition of the cyclin-dependent kinase (cdk) inhibitor Roscovitine at the beginning of infection of cells with human cytomegalovirus (HCMV) significantly disrupts immediate-early gene expression and the progression of the infection. In the present study, we have examined the effects of cdk inhibition on late viral events by delaying addition of Roscovitine until 24 h postinfection. Although viral DNA replication was inhibited two- to threefold by treatment of infected cells with Roscovitine, the drop did not correspond to the 1- to 2-log-unit decrease in virus titer. Quantification of viral DNA in the supernatant from cells revealed that there was a significant reduction in the production or release of extracellular particles. We observed a lag in the expression of several viral proteins but there was a significant decrease in the steady-state levels of IE2-86. Likewise, the steady-state level of the essential tegument protein UL32 (pp150) was reduced. The levels of pp150 and IE2-86 mRNA were not greatly affected by treatment with Roscovitine and thus did not correlate with the reduced levels of protein. In contrast, the expression of the tegument protein ppUL69 was higher in drug-treated samples, and the protein accumulated in a hyperphosphorylated form. ppUL69 localized to intranuclear aggregates that did not overlap with viral replication centers in cells treated with Roscovitine. Taken together, these data indicate that cdk activity is required at multiple steps during HCMV infection, including the expression, modification, and localization of virus-encoded proteins.
Collapse
Affiliation(s)
- Veronica Sanchez
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0712, USA
| | | |
Collapse
|
46
|
Petrik DT, Schmitt KP, Stinski MF. Inhibition of cellular DNA synthesis by the human cytomegalovirus IE86 protein is necessary for efficient virus replication. J Virol 2006; 80:3872-83. [PMID: 16571804 PMCID: PMC1440472 DOI: 10.1128/jvi.80.8.3872-3883.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) expresses several proteins that manipulate normal cellular functions, including cellular transcription, apoptosis, immune response, and cell cycle control. The IE2 gene, which is expressed from the HCMV major immediate-early (MIE) promoter, encodes the IE86 protein. IE86 is a multifunctional protein that is essential for viral replication. The functions of IE86 include transactivation of cellular and viral early genes, negative autoregulation of the MIE promoter, induction of cell cycle progression from G0/G1 to G1/S, and arresting cell cycle progression at the G1/S transition in p53-positive human foreskin fibroblast (HFF) cells. Mutations were introduced into the IE2 gene in the context of the viral genome using bacterial artificial chromosomes (BACs). From these HCMV BACs, a recombinant virus (RV) with a single amino acid substitution in the IE86 protein was isolated that replicates slower and to lower titers than wild-type HCMV. HFF cells infected with the Q548R RV undergo cellular DNA synthesis and do not arrest at any point in the cell cycle. The Q548R RV is able to negatively autoregulate the MIE promoter, transactivate viral early genes, activate cellular E2F-responsive genes, and produce infectious virus. This is the first report of a viable recombinant HCMV that is unable to inhibit cellular DNA synthesis in infected HFF cells.
Collapse
Affiliation(s)
- Dustin T Petrik
- Interdisciplinary Graduate Program in Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
47
|
Surjit M, Liu B, Chow VTK, Lal SK. The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. J Biol Chem 2006; 281:10669-81. [PMID: 16431923 PMCID: PMC7995956 DOI: 10.1074/jbc.m509233200] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 01/17/2006] [Indexed: 11/15/2022] Open
Abstract
Deregulation of the cell cycle is a common strategy employed by many DNA and RNA viruses to trap and exploit the host cell machinery toward their own benefit. In many coronaviruses, the nucleocapsid protein (N protein) has been shown to inhibit cell cycle progression although the mechanism behind this is poorly understood. The N protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) bears signature motifs for binding to cyclin and phosphorylation by cyclin-dependent kinase (CDK) and has recently been reported by us to get phosphorylated by the cyclin-CDK complex (Surjit, M., Kumar, R., Mishra, R. N., Reddy, M. K., Chow, V. T., and Lal, S. K. (2005) J. Virol. 79, 11476-11486). In the present study, we prove that the N protein of SARS-CoV can inhibit S phase progression in mammalian cell lines. N protein expression was found to directly inhibit the activity of the cyclin-CDK complex, resulting in hypophosphorylation of retinoblastoma protein with a concomitant down-regulation in E2F1-mediated transactivation. Coexpression of E2F1 under such conditions could restore the expression of S phase genes. Analysis of RXL and CDK phosphorylation mutant N protein identified the mechanism of inhibition of CDK4 and CDK2 activity to be different. Whereas N protein could directly bind to cyclin D and inhibit the activity of CDK4-cyclin D complex; inhibition of CDK2 activity appeared to be achieved in two different ways: indirectly by down-regulation of protein levels of CDK2, cyclin E, and cyclin A and by direct binding of N protein to CDK2-cyclin complex. Down-regulation of E2F1 targets was also observed in SARS-CoV-infected VeroE6 cells. These data suggest that the S phase inhibitory activity of the N protein may have major significance during viral pathogenesis.
Collapse
Affiliation(s)
- Milan Surjit
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Rd., New Delhi 110067, India
| | | | | | | |
Collapse
|
48
|
Munger J, Yu D, Shenk T. UL26-deficient human cytomegalovirus produces virions with hypophosphorylated pp28 tegument protein that is unstable within newly infected cells. J Virol 2006; 80:3541-8. [PMID: 16537622 PMCID: PMC1440364 DOI: 10.1128/jvi.80.7.3541-3548.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus UL26 open reading frame encodes proteins of 21 and 27 kDa that result from the use of two different in-frame initiation codons. The UL26 protein is a constituent of the virion and thus is delivered to cells upon viral entry. We have characterized a mutant of human cytomegalovirus in which the UL26 open reading frame has been deleted. The UL26 deletion mutant has a profound growth defect, the magnitude of which is dependent on the multiplicity of infection. Two very early defects were discovered. First, even though they were present in normal amounts within mutant virions, the UL99-coded pp28 and UL83-coded pp65 tegument proteins were present in reduced amounts at the earliest times assayed within newly infected cells; second, there was a delay in immediate-early mRNA and protein accumulation. Further analysis revealed that although wild-type levels of the pp28 tegument protein were present in UL26 deletion mutant virions, the protein was hypophosphorylated. We conclude that the UL26 protein influences the normal phosphorylation of at least pp28 in virions and possibly additional tegument proteins. We propose that the hypophosphorylation of tegument proteins causes their destabilization within newly infected cells, perhaps disrupting the normal detegumentation process and leading to a delay in the onset of immediate-early gene expression.
Collapse
Affiliation(s)
- Joshua Munger
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | |
Collapse
|
49
|
Walisko O, Izsvák Z, Szabó K, Kaufman CD, Herold S, Ivics Z. Sleeping Beauty transposase modulates cell-cycle progression through interaction with Miz-1. Proc Natl Acad Sci U S A 2006; 103:4062-7. [PMID: 16537485 PMCID: PMC1449646 DOI: 10.1073/pnas.0507683103] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We used the Sleeping Beauty (SB) transposable element as a tool to probe transposon-host cell interactions in vertebrates. The Miz-1 transcription factor was identified as an interactor of the SB transposase in a yeast two-hybrid screen. Through its association with Miz-1, the SB transposase down-regulates cyclin D1 expression in human cells, as evidenced by differential gene expression analysis using microarray hybridization. Down-regulation of cyclin D1 results in a prolonged G(1) phase of the cell cycle and retarded growth of transposase-expressing cells. G(1) slowdown is associated with a decrease of cyclin D1/cdk4-specific phosphorylation of the retinoblastoma protein. Both cyclin D1 down-regulation and the G(1) slowdown induced by the transposase require Miz-1. A temporary G(1) arrest enhances transposition, suggesting that SB transposition is favored in the G(1) phase of the cell cycle, where the nonhomologous end-joining pathway of DNA repair is preferentially active. Because nonhomologous end-joining is required for efficient SB transposition, the transposase-induced G(1) slowdown is probably a selfish act on the transposon's part to maximize the chance for a successful transposition event.
Collapse
Affiliation(s)
- Oliver Walisko
- *Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany
| | - Zsuzsanna Izsvák
- *Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany
- Institutes of Biochemistry and
| | - Kornélia Szabó
- Genetics, Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Hungary; and
| | | | - Steffi Herold
- Institute for Molecular Biology and Tumor Research, University of Marburg, D-35033 Marburg, Germany
| | - Zoltán Ivics
- *Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany
- To whom correspondence should be addressed at:
Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, D-13092 Berlin, Germany. E-mail:
| |
Collapse
|
50
|
Lischka P, Toth Z, Thomas M, Mueller R, Stamminger T. The UL69 transactivator protein of human cytomegalovirus interacts with DEXD/H-Box RNA helicase UAP56 to promote cytoplasmic accumulation of unspliced RNA. Mol Cell Biol 2006; 26:1631-43. [PMID: 16478985 PMCID: PMC1430265 DOI: 10.1128/mcb.26.5.1631-1643.2006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 12/13/2005] [Indexed: 11/20/2022] Open
Abstract
The UL69 gene product of human cytomegalovirus belongs to a family of regulatory proteins conserved among all herpesviruses that have in part been characterized as posttranscriptional transactivators participating in the nuclear export of RNA. Recent experiments suggested that pUL69 also acts as a posttranscriptional activator since it was demonstrated that nucleocytoplasmic shuttling via a CRM1-independent nuclear export signal is a prerequisite for its stimulatory effect on gene expression. Based on these findings we initiated studies to investigate the role of pUL69 in mRNA export and demonstrate that pUL69 efficiently promotes the cytoplasmic accumulation of unspliced RNA. Furthermore, we show that this pUL69 activity is linked to the cellular mRNA export machinery by direct protein interaction with the highly related DEXD/H-box RNA helicases UAP56 and URH49. Particularly, we identified a 12-amino-acid domain within the N terminus of pUL69 which is required for binding to UAP56 and URH49, and we could demonstrate that UAP56 interaction and nucleocytoplasmic shuttling are both prerequisites for pUL69-mediated mRNA export. Thus, we identified a novel cellular target which provides a herpesviral regulatory protein with access to a conserved cellular transport system in order to promote nuclear export of unspliced RNA.
Collapse
Affiliation(s)
- Peter Lischka
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | | | | | | | | |
Collapse
|