1
|
Wang J, Quan R, He X, Fu Q, Tian S, Zhao L, Li S, Shi L, Li R, Chen B. Hypovirus infection induces proliferation and perturbs functions of mitochondria in the chestnut blight fungus. Front Microbiol 2023; 14:1206603. [PMID: 37448575 PMCID: PMC10336323 DOI: 10.3389/fmicb.2023.1206603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction The chestnut blight fungus, Cryphonectria parasitica, and hypovirus have been used as a model to probe the mechanism of virulence and regulation of traits important to the host fungus. Previous studies have indicated that mitochondria could be the primary target of the hypovirus. Methods In this study, we report a comprehensive and comparative study comprising mitochondrion quantification, reactive oxygen species (ROS) and respiratory efficiency, and quantitative mitochondrial proteomics of the wild-type and virus-infected strains of the chestnut blight fungus. Results and discussion Our data show that hypovirus infection increases the total number of mitochondria, lowers the general ROS level, and increases mitochondrial respiratory efficiency. Quantification of mitochondrial proteomes revealed that a set of proteins functioning in energy metabolism and mitochondrial morphogenesis, as well as virulence, were regulated by the virus. In addition, two viral proteins, p29 and p48, were found to co-fractionate with the mitochondrial membrane and matrix. These results suggest that hypovirus perturbs the host mitochondrial functions to result in hypovirulence.
Collapse
Affiliation(s)
- Jinzi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Protection and Utilization of Marine Resources, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Rui Quan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xipu He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shigen Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lijiu Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shuangcai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Liming Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Wang P, Yang G, Shi N, Zhao C, Hu F, Coutts RHA, Kotta-Loizou I, Huang B. A novel partitivirus orchestrates conidiation, stress response, pathogenicity, and secondary metabolism of the entomopathogenic fungus Metarhizium majus. PLoS Pathog 2023; 19:e1011397. [PMID: 37216409 DOI: 10.1371/journal.ppat.1011397] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
Mycoviruses are widely present in all major groups of fungi but those in entomopathogenic Metarhizium spp. remain understudied. In this investigation, a novel double-stranded (ds) RNA virus is isolated from Metarhizium majus and named Metarhizium majus partitivirus 1 (MmPV1). The complete genome sequence of MmPV1 comprises two monocistronic dsRNA segments (dsRNA 1 and dsRNA 2), which encode an RNA-dependent RNA polymerase (RdRp) and a capsid protein (CP), respectively. MmPV1 is classified as a new member of the genus Gammapartitivirus in the family Partitiviridae based on phylogenetic analysis. As compared to an MmPV1-free strain, two isogenic MmPV1-infected single-spore isolates were compromised in terms of conidiation, and tolerance to heat shock and UV-B irradiation, while these phenotypes were accompanied by transcriptional suppression of multiple genes involved in conidiation, heat shock response and DNA damage repair. MmPV1 attenuated fungal virulence since infection resulted in reduced conidiation, hydrophobicity, adhesion, and cuticular penetration. Additionally, secondary metabolites were significantly altered by MmPV1 infection, including reduced production of triterpenoids, and metarhizins A and B, and increased production of nitrogen and phosphorus compounds. However, expression of individual MmPV1 proteins in M. majus had no impact on the host phenotype, suggesting insubstantive links between defective phenotypes and a single viral protein. These findings indicate that MmPV1 infection decreases M. majus fitness to its environment and its insect-pathogenic lifestyle and environment through the orchestration of the host conidiation, stress tolerance, pathogenicity, and secondary metabolism.
Collapse
Affiliation(s)
- Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Najie Shi
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Cheng Zhao
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Fenglin Hu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Robert H A Coutts
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
3
|
In-Tree Behavior of Diverse Viruses Harbored in the Chestnut Blight Fungus, Cryphonectria parasitica. J Virol 2021; 95:JVI.01962-20. [PMID: 33361433 DOI: 10.1128/jvi.01962-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
The ascomycete Cryphonectria parasitica causes destructive chestnut blight. Biological control of the fungus by virus infection (hypovirulence) has been shown to be an effective control strategy against chestnut blight in Europe. To provide biocontrol effects, viruses must be able to induce hypovirulence and spread efficiently in chestnut trees. Field studies using living trees to date have focused on a selected family of viruses called hypoviruses, especially prototypic hypovirus CHV1, but there are now known to be many other viruses that infect C. parasitica Here, we tested seven different viruses for their hypovirulence induction, biocontrol potential, and transmission properties between two vegetatively compatible but molecularly distinguishable fungal strains in trees. The test included cytosolically and mitochondrially replicating viruses with positive-sense single-stranded RNA or double-stranded RNA genomes. The seven viruses showed different in planta behaviors and were classified into four groups. Group I, including CHV1, had great biocontrol potential and could protect trees by efficiently spreading and converting virulent to hypovirulent cankers in the trees. Group II could induce high levels of hypovirulence but showed much smaller biocontrol potential, likely because of inefficient virus transmission. Group III showed poor performance in hypovirulence induction and biocontrol, while efficiently being transmitted in the infected trees. Group IV could induce hypovirulence and spread efficiently but showed poor biocontrol potential. Nuclear and mitochondrial genotyping of fungal isolates obtained from the treated cankers confirmed virus transmission between the two fungal strains in most isolates. These results are discussed in view of dynamic interactions in the tripartite pathosystem.IMPORTANCE The ascomycete Cryphonectria parasitica causes destructive chestnut blight, which is controllable by hypovirulence-conferring viruses infecting the fungus. The tripartite chestnut/C. parasitica/virus pathosystem involves the dynamic interactions of their genetic elements, i.e., virus transmission and lateral transfer of nuclear and mitochondrial genomes between fungal strains via anastomosis occurring in trees. Here, we tested diverse RNA viruses for their hypovirulence induction, biocontrol potential, and transmission properties between two vegetatively compatible but molecularly distinguishable fungal strains in live chestnut trees. The tested viruses, which are different in genome type (single-stranded or double-stranded RNA) and organization, replication site (cytosol or mitochondria), virus form (encapsidated or capsidless) and/or symptomatology, have been unexplored in the aforementioned aspects under controlled conditions. This study showed intriguing different in-tree behaviors of the seven viruses and suggested that to exert significant biocontrol effects, viruses must be able to induce hypovirulence and spread efficiently in the fungus infecting the chestnut trees.
Collapse
|
4
|
Identification of an RNA Silencing Suppressor Encoded by a Symptomless Fungal Hypovirus, Cryphonectria Hypovirus 4. BIOLOGY 2021; 10:biology10020100. [PMID: 33572564 PMCID: PMC7912522 DOI: 10.3390/biology10020100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary Host antiviral defense/viral counter-defense is an interesting topic in modern virology. RNA silencing is the primary antiviral mechanism in insects, plants, and fungi, while viruses encode and utilize RNA silencing suppressors against the host defense. Hypoviruses are positive-sense single-stranded RNA viruses with phylogenetic affinity to the picorna-like supergroup, including animal poliovirus and plant potyvirus. The prototype hypovirus Cryphonectria hypovirus 1, CHV1, is one of the best-studied fungal viruses. It is known to induce hypovirulence in the chestnut blight fungus, Cryphonectria parasitica, and encode an RNA silencing suppressor. CHV4 is another hypovirus asymptomatically that infects the same host fungus. This study shows that the N-terminal portion of the CHV4 polyprotein, termed p24, is a protease that autocatalytically cleaves itself from the rest of the viral polyprotein, and functions as an antiviral RNA silencing suppressor. Abstract Previously, we have reported the ability of a symptomless hypovirus Cryphonectria hypovirus 4 (CHV4) of the chestnut blight fungus to facilitate stable infection by a co-infecting mycoreovirus 2 (MyRV2)—likely through the inhibitory effect of CHV4 on RNA silencing (Aulia et al., Virology, 2019). In this study, the N-terminal portion of the CHV4 polyprotein, termed p24, is identified as an autocatalytic protease capable of suppressing host antiviral RNA silencing. Using a bacterial expression system, CHV4 p24 is shown to cleave autocatalytically at the di-glycine peptide (Gly214-Gly215) of the polyprotein through its protease activity. Transgenic expression of CHV4 p24 in Cryphonectria parasitica suppresses the induction of one of the key genes of the antiviral RNA silencing, dicer-like 2, and stabilizes the infection of RNA silencing-susceptible virus MyRV2. This study shows functional similarity between CHV4 p24 and its homolog p29, encoded by the symptomatic prototype hypovirus CHV1.
Collapse
|
5
|
Bian R, Andika IB, Pang T, Lian Z, Wei S, Niu E, Wu Y, Kondo H, Liu X, Sun L. Facilitative and synergistic interactions between fungal and plant viruses. Proc Natl Acad Sci U S A 2020; 117:3779-3788. [PMID: 32015104 PMCID: PMC7035501 DOI: 10.1073/pnas.1915996117] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Plants and fungi are closely associated through parasitic or symbiotic relationships in which bidirectional exchanges of cellular contents occur. Recently, a plant virus was shown to be transmitted from a plant to a fungus, but it is unknown whether fungal viruses can also cross host barriers and spread to plants. In this study, we investigated the infectivity of Cryphonectria hypovirus 1 (CHV1, family Hypoviridae), a capsidless, positive-sense (+), single-stranded RNA (ssRNA) fungal virus in a model plant, Nicotiana tabacum CHV1 replicated in mechanically inoculated leaves but did not spread systemically, but coinoculation with an unrelated plant (+)ssRNA virus, tobacco mosaic virus (TMV, family Virgaviridae), or other plant RNA viruses, enabled CHV1 to systemically infect the plant. Likewise, CHV1 systemically infected transgenic plants expressing the TMV movement protein, and coinfection with TMV further enhanced CHV1 accumulation in these plants. Conversely, CHV1 infection increased TMV accumulation when TMV was introduced into a plant pathogenic fungus, Fusarium graminearum In the in planta F. graminearum inoculation experiment, we demonstrated that TMV infection of either the plant or the fungus enabled the horizontal transfer of CHV1 from the fungus to the plant, whereas CHV1 infection enhanced fungal acquisition of TMV. Our results demonstrate two-way facilitative interactions between the plant and fungal viruses that promote cross-kingdom virus infections and suggest the presence of plant-fungal-mediated routes for dissemination of fungal and plant viruses in nature.
Collapse
Affiliation(s)
- Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, 266109 Qingdao, China
| | - Tianxing Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ziqian Lian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Shuang Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Erbo Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Yunfeng Wu
- Key Laboratory of Integrated Pest Management on Crops In Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, 712100 Yangling, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, 710-0046 Kurashiki, Japan
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100 Yangling, China;
- Key Laboratory of Integrated Pest Management on Crops In Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, 712100 Yangling, China
| |
Collapse
|
6
|
Yu J, Park JY, Heo J, Kim K. The ORF2 protein of Fusarium graminearum virus 1 suppresses the transcription of FgDICER2 and FgAGO1 to limit host antiviral defences. MOLECULAR PLANT PATHOLOGY 2020; 21:230-243. [PMID: 31815356 PMCID: PMC6988435 DOI: 10.1111/mpp.12895] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The filamentous fungus Fusarium graminearum possesses an RNA-interference (RNAi) pathway that acts as a defence response against virus infections and exogenous double-stranded (ds) RNA. Fusarium graminearum virus 1 (FgV1), which infects F. graminearum, confers hypovirulence-associated traits such as reduced mycelial growth, increased pigmentation and reduced pathogenicity. In this study, we found that FgV1 can suppress RNA silencing by interfering with the induction of FgDICER2 and FgAGO1, which are involved in RNAi antiviral defence and the hairpin RNA/RNAi pathway in F. graminearum. In an FgAGO1- or FgDICER2-promoter/GFP-reporter expression assay the green fluorescent protein (GFP) transcript levels were reduced in FgV1-infected transformed mutant strains. By comparing transcription levels of FgDICER2 and FgAGO1 in fungal transformed mutants expressing each open reading frame (ORF) of FgV1 with or without a hairpin RNA construct, we determined that reduction of FgDICER2 and FgAGO1 transcript levels requires only the FgV1 ORF2-encoded protein (pORF2). Moreover, we confirmed that the pORF2 binds to the upstream region of FgDICERs and FgAGOs in vitro. These combined results indicate that the pORF2 of FgV1 counteracts the RNAi defence response of F. graminearum by interfering with the induction of FgDICER2 and FgAGO1 in a promoter-dependent manner.
Collapse
Affiliation(s)
- Jisuk Yu
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoulKorea
| | - Ju Yeon Park
- Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
| | - Jeong‐In Heo
- Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
| | - Kook‐Hyung Kim
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoulKorea
- Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| |
Collapse
|
7
|
Aulia A, Andika IB, Kondo H, Hillman BI, Suzuki N. A symptomless hypovirus, CHV4, facilitates stable infection of the chestnut blight fungus by a coinfecting reovirus likely through suppression of antiviral RNA silencing. Virology 2019; 533:99-107. [PMID: 31146252 DOI: 10.1016/j.virol.2019.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 01/10/2023]
Abstract
Field-collected US strain C18 of Cryphonectria parasitica, the chestnut blight fungus, was earlier reported to be infected by a double-stranded RNA virus, mycoreovirus 2 (MyRV2). Next-generation sequencing has revealed co-infection of C18 by a positive-strand RNA virus, hypovirus 4 (CHV4). The current molecular and genetic analyses showed interesting commensal interactions between the two viruses. CHV4 facilitated the stable infection and enhanced vertical transmission of MyRV2, which was readily lost during subculturing and showed reduced vertical transmission in single infections. Deletion of a key antiviral RNA silencing gene, dcl2, in isolate C18 increased stability of MyRV2 in single infections. The ability of CHV4 to facilitate stable infection with MyRV2 appears to be associated with the inhibitory effect of CHV4 on RNA silencing via compromising the induction of transcriptional up-regulation of dcl2. These results suggest that natural infection of isolate C18 by MyRV2 in the field was facilitated by CHV4 co-infection.
Collapse
Affiliation(s)
- Annisa Aulia
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, 710-0046, Japan; Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Ida Bagus Andika
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, 710-0046, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, 710-0046, Japan
| | - Bradley I Hillman
- Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, 710-0046, Japan.
| |
Collapse
|
8
|
Xiong Q, Zhang L, Waletich J, Zhang L, Zhang C, Zheng X, Qian Y, Zhang Z, Wang Y, Cheng Q. Characterization of the Papain-Like Protease p29 of the Hypovirus CHV1-CN280 in Its Natural Host Fungus Cryphonectria parasitica and Nonhost Fungus Magnaporthe oryzae. PHYTOPATHOLOGY 2019; 109:736-747. [PMID: 30592694 DOI: 10.1094/phyto-08-18-0318-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cryphonectria hypovirus 1 strain CN280 (CHV1-CN280) was isolated from North China and exhibited typical hypovirulence-associated traits. We previously reported that CHV1-CN280 was more aggressive and had a higher horizontal transmission ability between Cryphonectria parasitica isolates belonging to different vegetative compatibility groups than two other CHV1 hypoviruses (namely, CHV1-EP713 and CHV1-Euro7), thus displaying greater potential for biological control of chestnut blight. The genome sequence of CHV1-CN280 shared approximately 70% identity with three other hypoviruses (CHV1-EP713, CHV1-Euro7, and CHV1-EP721). The coding region for p29, a papain-like protease encoded by CHV1-CN280 hypovirus, displayed an average of only approximately 60% amino acid identity among them, while the identity between the other three CHV1 isolates was higher than 89%. Protease p29 acted as a virus-encoded determinant responsible for altering fungal host phenotypes in other CHV1 isolates. In this study, the impacts of CHV1-CN280 p29 expression in virus-free C. parasitica were investigated. CHV1-CN280 p29 expression in C. parasitica resulted in significantly reduced sporulation, pigmentation, extracellular laccase activities, and pathogenicity, which is consistent with previous investigations. Subsequently, the potential of CHV1-CN280 p29 as a viral determinant responsible for suppression of host phenotypes in other phytopathogenic fungi such as Magnaporthe oryzae, the causal agent of rice blast disease, was discussed. However, heterologous expression of p29 in M. oryzae induced the opposite effect on sporulation, extracellular laccase activities, and pathogenicity; had no significant effect on pigmentation and mycelial growth; and contributed to extracellular peroxidase activities, suggesting that CHV1-CN280 p29 may disturb a unique regulatory pathway in C. parasitica, rather than a basic regulatory pathway conserved in diverse range of fungi. Alternatively, CHV1-CN280 p29-mediated modulation of fungal phenotypes may be facilitated by the specific interaction between p29 and a special fungal-host component, which exists only with C. parasitica but not M. oryzae.
Collapse
Affiliation(s)
- Qin Xiong
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- 2 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Linqiao Zhang
- 2 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- 3 Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Justin Waletich
- 4 Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A.; and
| | - Linlin Zhang
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Zhang
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyue Zheng
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yulin Qian
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhengguang Zhang
- 2 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- 2 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Cheng
- 5 The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Valli AA, Gallo A, Rodamilans B, López‐Moya JJ, García JA. The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. MOLECULAR PLANT PATHOLOGY 2018; 19:744-763. [PMID: 28371183 PMCID: PMC6638112 DOI: 10.1111/mpp.12553] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
RNA viruses have very compact genomes and so provide a unique opportunity to study how evolution works to optimize the use of very limited genomic information. A widespread viral strategy to solve this issue concerning the coding space relies on the expression of proteins with multiple functions. Members of the family Potyviridae, the most abundant group of RNA viruses in plants, offer several attractive examples of viral factors which play roles in diverse infection-related pathways. The Helper Component Proteinase (HCPro) is an essential and well-characterized multitasking protein for which at least three independent functions have been described: (i) viral plant-to-plant transmission; (ii) polyprotein maturation; and (iii) RNA silencing suppression. Moreover, multitudes of host factors have been found to interact with HCPro. Intriguingly, most of these partners have not been ascribed to any of the HCPro roles during the infectious cycle, supporting the idea that this protein might play even more roles than those already established. In this comprehensive review, we attempt to summarize our current knowledge about HCPro and its already attributed and putative novel roles, and to discuss the similarities and differences regarding this factor in members of this important viral family.
Collapse
Affiliation(s)
| | - Araiz Gallo
- Centro Nacional de Biotecnología (CNB‐CSIC)Madrid28049Spain
| | | | - Juan José López‐Moya
- Center for Research in Agricultural Genomics (CRAG‐CSIC‐IRTA‐UAB‐UB), Campus UABBellaterraBarcelona08193Spain
| | | |
Collapse
|
10
|
Mlinarec J, Nuskern L, Ježić M, Rigling D, Ćurković-Perica M. Molecular evolution and invasion pattern of Cryphonectria hypovirus 1 in Europe: Mutation rate, and selection pressure differ between genome domains. Virology 2018; 514:156-164. [PMID: 29179038 DOI: 10.1016/j.virol.2017.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023]
Abstract
Understanding virus evolution is a fundamental goal of virology, evolutionary biology, and disease epidemiology. We provide a detailed analysis of evolution and origin of Cryphonectria hypovirus 1 (CHV1) populations in Europe, based on the complete genome sequence of all European subtypes. Phylogenetic analyses divided European strains into two closely related clades. Strains of the subtype I belong to the first, while strains of the subtypes F1, D and E belong to the second clade suggesting that the subtypes F1, D and E are more closely related than previously thought. Strains of the subtype F2 appeared to be recombinant; subtypes F1/D/E contributed a larger fraction of sequence while subtype I contributed a smaller fraction. The p29 was the most variable domain, while the replication-associated large ORF B protein was the most conserved domain within the CHV1. Low sequence similarity, predominant negative selection and frequent recombination characterise the evolution of CHV1.
Collapse
Affiliation(s)
- Jelena Mlinarec
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000 Zagreb, Croatia
| | - Lucija Nuskern
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000 Zagreb, Croatia
| | - Marin Ježić
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000 Zagreb, Croatia
| | - Daniel Rigling
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Mirna Ćurković-Perica
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000 Zagreb, Croatia.
| |
Collapse
|
11
|
Du Y, Lin Y, Zhou X, Wang K, Fang S, Deng Q. Full-length sequence and genome analysis of CHV1-CN280, a North China isolate of cryphonectria hypovirus 1. Arch Virol 2017; 162:1811-1818. [PMID: 28247097 DOI: 10.1007/s00705-017-3296-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/13/2017] [Indexed: 11/29/2022]
Abstract
CHV1-CN280 is a North China isolate of cryphonectria hypovirus 1 (CHV1), which has high horizontal transmission ability. The complete genomic sequence of CHV1-CN280 was determined and analyzed. Compared with other reported CHV1s, the genome of CHV1-CN280 shows some significantly different characteristics. The junction of the two open reading frames (ORFs) of CHV1-CN280 is AUGUAUAA, while in other reported CHV1s, it is UAAUG. The genomic sequence of CHV1-CN280 shows a high level of similarity to other reported CHV1s in the 3' portion, but in some sections of the 5' portion (the region around the start codon of ORFA, the region around the predicted cleavage site of p29 and p40, and the 5'-portion of p48 coding region), the nucleotide sequence identity is lower than 50%. The p29 of CHV1-CN280 shares only about 60% identity with other sequenced CHV1 isolates at the amino acid level. Full-length genomic recombination analysis suggests that several recombination events have occurred in the ORFB coding region between CHV1-CN280 and two subtype I CHV1 isolates (CHV1-Euro7 or CHV1-EP721). RT-PCR primers were designed according to the genomic sequence of CHV1-CN280 to study the genetic diversity of CHV1 in East Asia. Phylogenetic analysis showed that the East Asian CHV1s were quite different from the five assigned subtypes in Europe, and seven new CHV1 subtypes were identified in this study.
Collapse
Affiliation(s)
- Yanan Du
- Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Ministry of Education, Jingzhou, 434025, Hubei, China
| | - Yuan Lin
- Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Ministry of Education, Jingzhou, 434025, Hubei, China
| | - Xuan Zhou
- Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Ministry of Education, Jingzhou, 434025, Hubei, China
| | - Kerong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shouguo Fang
- Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Ministry of Education, Jingzhou, 434025, Hubei, China
| | - Qingchao Deng
- Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, College of Agriculture, Yangtze University, Ministry of Education, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
12
|
Chiba S, Suzuki N. Highly activated RNA silencing via strong induction of dicer by one virus can interfere with the replication of an unrelated virus. Proc Natl Acad Sci U S A 2015; 112:E4911-8. [PMID: 26283371 PMCID: PMC4568273 DOI: 10.1073/pnas.1509151112] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viruses often coinfect single host organisms in nature. Depending on the combination of viruses in such coinfections, the interplay between them may be synergistic, apparently neutral with no effect on each other, or antagonistic. RNA silencing is responsible for many cases of interference or cross-protection between viruses, but such antagonistic interactions are usually restricted to closely related strains of the same viral species. In this study, we present an unprecedented example of RNA silencing-mediated one-way interference between unrelated viruses in a filamentous model fungus, Cryphonectria parasitica. The replication of Rosellinia necatrix victorivirus 1 (RnVV1; Totiviridae) was strongly impaired by coinfection with the prototypic member of the genus Mycoreovirus (MyRV1) or a mutant of the prototype hypovirus (Cryphonectria hypovirus 1, CHV1) lacking the RNA silencing suppressor (CHV1-Δp69). This interference was associated with marked transcriptional induction of key genes in antiviral RNA silencing, dicer-like 2 (dcl2) and argonaute-like 2 (agl2), following MyRV1 or CHV1-Δp69 infection. Interestingly, the inhibition of RnVV1 replication was reproduced when the levels of dcl2 and agl2 transcripts were elevated by transgenic expression of a hairpin construct of an endogenous C. parasitica gene. Disruption of dcl2 completely abolished the interference, whereas that of agl2 did not always lead to its abolishment, suggesting more crucial roles of dcl2 in antiviral defense. Taken altogether, these results demonstrated the susceptible nature of RnVV1 to the antiviral silencing in C. parasitica activated by distinct viruses or transgene-derived double-stranded RNAs and provide insight into the potential for broad-spectrum virus control mediated by RNA silencing.
Collapse
Affiliation(s)
- Sotaro Chiba
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
13
|
Marzano SYL, Hobbs HA, Nelson BD, Hartman GL, Eastburn DM, McCoppin NK, Domier LL. Transfection of Sclerotinia sclerotiorum with in vitro transcripts of a naturally occurring interspecific recombinant of Sclerotinia sclerotiorum hypovirus 2 significantly reduces virulence of the fungus. J Virol 2015; 89:5060-71. [PMID: 25694604 PMCID: PMC4403457 DOI: 10.1128/jvi.03199-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/16/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A recombinant strain of Sclerotinia sclerotiorum hypovirus 2 (SsHV2) was identified from a North American Sclerotinia sclerotiorum isolate (328) from lettuce (Lactuca sativa L.) by high-throughput sequencing of total RNA. The 5'- and 3'-terminal regions of the genome were determined by rapid amplification of cDNA ends. The assembled nucleotide sequence was up to 92% identical to two recently reported SsHV2 strains but contained a deletion near its 5' terminus of more than 1.2 kb relative to the other SsHV2 strains and an insertion of 524 nucleotides (nt) that was distantly related to Valsa ceratosperma hypovirus 1. This suggests that the new isolate is a heterologous recombinant of SsHV2 with a yet-uncharacterized hypovirus. We named the new strain Sclerotinia sclerotiorum hypovirus 2 Lactuca (SsHV2L) and deposited the sequence in GenBank with accession number KF898354. Sclerotinia sclerotiorum isolate 328 was coinfected with a strain of Sclerotinia sclerotiorum endornavirus 1 and was debilitated compared to cultures of the same isolate that had been cured of virus infection by cycloheximide treatment and hyphal tipping. To determine whether SsHV2L alone could induce hypovirulence in S. sclerotiorum, a full-length cDNA of the 14,538-nt viral genome was cloned. Transcripts corresponding to the viral RNA were synthesized in vitro and transfected into a virus-free isolate of S. sclerotiorum, DK3. Isolate DK3 transfected with SsHV2L was hypovirulent on soybean and lettuce and exhibited delayed maturation of sclerotia relative to virus-free DK3, completing Koch's postulates for the association of hypovirulence with SsHV2L. IMPORTANCE A cosmopolitan fungus, Sclerotinia sclerotiorum infects more than 400 plant species and causes a plant disease known as white mold that produces significant yield losses in major crops annually. Mycoviruses have been used successfully to reduce losses caused by fungal plant pathogens, but definitive relationships between hypovirus infections and hypovirulence in S. sclerotiorum were lacking. By establishing a cause-and-effect relationship between Sclerotinia sclerotiorum hypovirus Lactuca (SsHV2L) infection and the reduction in host virulence, we showed direct evidence that hypoviruses have the potential to reduce the severity of white mold disease. In addition to intraspecific recombination, this study showed that recent interspecific recombination is an important factor shaping viral genomes. The construction of an infectious clone of SsHV2L allows future exploration of the interactions between SsHV2L and S. sclerotiorum, a widespread fungal pathogen of plants.
Collapse
Affiliation(s)
| | - Houston A Hobbs
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Berlin D Nelson
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, USA
| | - Glen L Hartman
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA United States Department of Agriculture/Agricultural Research Service, Urbana, Illinois, USA
| | - Darin M Eastburn
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Nancy K McCoppin
- United States Department of Agriculture/Agricultural Research Service, Urbana, Illinois, USA
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA United States Department of Agriculture/Agricultural Research Service, Urbana, Illinois, USA
| |
Collapse
|
14
|
Eusebio-Cope A, Suzuki N. Mycoreovirus genome rearrangements associated with RNA silencing deficiency. Nucleic Acids Res 2015; 43:3802-13. [PMID: 25800742 PMCID: PMC4402544 DOI: 10.1093/nar/gkv239] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 03/06/2015] [Indexed: 01/31/2023] Open
Abstract
Mycoreovirus 1 (MyRV1) has 11 double-stranded RNA genome segments (S1 to S11) and confers hypovirulence to the chestnut blight fungus, Cryphonectria parasitica. MyRV1 genome rearrangements are frequently generated by a multifunctional protein, p29, encoded by a positive-strand RNA virus, Cryphonectria hypovirus 1. One of its functional roles is RNA silencing suppression. Here, we explored a possible link between MyRV1 genome rearrangements and the host RNA silencing pathway using wild-type (WT) and mutant strains of both MyRV1 and the host fungus. Host strains included deletion mutants of RNA silencing components such as dicer-like (dcl) and argonaute-like (agl) genes, while virus strains included an S4 internal deletion mutant MyRV1/S4ss. Consequently, intragenic rearrangements with nearly complete duplication of the three largest segments, i.e. S1, S2 and S3, were observed even more frequently in the RNA silencing-deficient strains Δdcl2 and Δagl2 infected with MyRV1/S4ss, but not with any other viral/host strain combinations. An interesting difference was noted between genome rearrangement events in the two host strains, i.e. generation of the rearrangement required prolonged culture for Δagl2 in comparison with Δdcl2. These results suggest a role for RNA silencing that suppresses genome rearrangements of a dsRNA virus.
Collapse
Affiliation(s)
- Ana Eusebio-Cope
- Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Nobuhiro Suzuki
- Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
15
|
Eusebio-Cope A, Sun L, Tanaka T, Chiba S, Kasahara S, Suzuki N. The chestnut blight fungus for studies on virus/host and virus/virus interactions: From a natural to a model host. Virology 2015; 477:164-175. [DOI: 10.1016/j.virol.2014.09.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 09/15/2014] [Accepted: 09/26/2014] [Indexed: 01/03/2023]
|
16
|
Mutagenesis of the catalytic and cleavage site residues of the hypovirus papain-like proteases p29 and p48 reveals alternative processing and contributions to optimal viral RNA accumulation. J Virol 2014; 88:11946-54. [PMID: 25100848 DOI: 10.1128/jvi.01489-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The positive-stranded RNA genome of the prototypic virulence-attenuating hypovirus CHV-1/EP713 contains two open reading frames (ORF), each encoding an autocatalytic papain-like leader protease. Protease p29, derived from the N-terminal portion of ORF A, functions as a suppressor of RNA silencing, while protease p48, derived from the N-terminal portion of ORF B, is required for viral RNA replication. The catalytic and cleavage site residues required for autoproteolytic processing have been functionally mapped in vitro for both proteases but not confirmed in the infected fungal host. We report here the mutagenesis of the CHV-1/EP713 infectious cDNA clone to define the requirements for p29 and p48 cleavage and the role of autoproteolysis in the context of hypovirus replication. Mutation of the catalytic cysteine and histidine residues for either p29 or p48 was tolerated but reduced viral RNA accumulation to ca. 20 to 50% of the wild-type level. Mutation of the p29 catalytic residues caused an accumulation of unprocessed ORF A product p69. Surprisingly, the release of p48 from the ORF B-encoded polyprotein was not prevented by mutation of the p48 catalytic and cleavage site residues and was independent of p29. The results show that, while dispensable for hypovirus replication, the autocatalytic processing of the leader proteases p29 and p48 contributes to optimal virus RNA accumulation. The role of the predicted catalytic residues in autoproteolytic processing of p29 was confirmed in the infected host, while p48 was found to also undergo alternative processing independent of the encoded papain-like protease activities. Importance: Hypoviruses are positive-strand RNA mycoviruses that attenuate virulence of their pathogenic fungal hosts. The prototypic hypovirus CHV-1/EP713, which infects the chestnut bight fungus Cryphonetria parasitica, encodes two papain-like autocatalytic leader proteases, p29 and p48, that also have important functions in suppressing the RNA silencing antiviral defense response and in viral RNA replication, respectively. The mutational analyses of the CHV-1/EP713 infectious cDNA clone, reported here, define the requirements for p29 and p48 cleavage and the functional importance of autoproteolysis in the context of hypovirus replication and exposed an alternative p48 processing pathway independent of the encoded papain-like protease activities. These findings provide additional insights into hypovirus gene expression, replication, and evolution and inform ongoing efforts to engineer hypoviruses for interrogating and modulating fungal virulence.
Collapse
|
17
|
Suzuki N. [Cryphonectria parasitica as a host of fungal viruses: a tool useful to unravel the mycovirus world]. Uirusu 2014; 64:11-24. [PMID: 25765976 DOI: 10.2222/jsv.64.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
There appear to be over a million of fungal species including those that have been unidentified and unreported, where a variety of viruses make a world as well. Studies on a very small number of them conducted during the last two decades demonstrated the infectivity of fungal viruses that had previously been assumed to be inheritable, indigenus and non-infectious. Also, great technical advances were achieved. The chest blight fungus (Cryphonectria parasitica), a phytopathogenic ascomycetous fungus, has emerged as a model filamentous fungus for fungal virology. The genome sequence with annotations, albeit not thorough, many useful research tools, and gene manipulation technologies are available for this fungus. Importantly, C. parasitica can support replication of homologous viruses naturally infecting it, in addition to heterologous viruses infecting another plant pathogenic fungus, Rosellinia necatrix taxonomically belonging to a different order. In this article, I overview general properties of fungal viruses and advantages of the chestnut blight fungus as a mycovirus host. Furthermore, I introduce two recent studies carried out using this fungal host:''Defective interfering RNA and RNA silencing that regulate the replication of a partitivirus'' and'' RNA silencing and RNA recombination''.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Agrivirology Laboratory, Group of Plant/Microbe Interactions, Institute of Plant Science and Resources, Okayama University
| |
Collapse
|
18
|
Dawe AL, Nuss DL. Hypovirus molecular biology: from Koch's postulates to host self-recognition genes that restrict virus transmission. Adv Virus Res 2013; 86:109-47. [PMID: 23498905 DOI: 10.1016/b978-0-12-394315-6.00005-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The idea that viruses can be used to control fungal diseases has been a driving force in mycovirus research since the earliest days. Viruses in the family Hypoviridae associated with reduced virulence (hypovirulence) of the chestnut blight fungus, Cryphonectria parasitica, have held a prominent place in this research. This has been due in part to the severity of the chestnut blight epidemics in North America and Europe and early reports of hypovirulence-mediated mitigation of disease in European forests and successful application for control of chestnut blight in chestnut orchards. A more recent contributing factor has been the development of a hypovirus/C. parasitica experimental system that has overcome many of the challenges associated with mycovirus research, stemming primarily from the exclusive intracellular lifestyle shared by all mycoviruses. This chapter will focus on hypovirus molecular biology with an emphasis on the development of the hypovirus/C. parasitica experimental system and its contributions to fundamental and practical advances in mycovirology and the broader understanding of virus-host interactions and fungal pathogenesis.
Collapse
Affiliation(s)
- Angus L Dawe
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | | |
Collapse
|
19
|
Abstract
Rosellinia necatrix is a filamentous ascomycete that is pathogenic to a wide range of perennial plants worldwide. An extensive search for double-stranded RNA of a large collection of field isolates led to the detection of a variety of viruses. Since the first identification of a reovirus in this fungus in 2002, several novel viruses have been molecularly characterized that include members of at least five virus families. While some cause phenotypic alterations, many others show latent infections. Viruses attenuating the virulence of a host fungus to its plant hosts attract much attention as agents for virocontrol (biological control using viruses) of the fungus, one of which is currently being tested in experimental fields. Like the Cryphonectria parasitica/viruses, the R. necatrix/viruses have emerged as an amenable system for studying virus/host and virus/virus interactions. Several techniques have recently been developed that enhance the investigation of virus etiology, replication, and symptom induction in this mycovirus/fungal host system.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Chuou, Kurashiki, Okayama, Japan
| | | | | |
Collapse
|
20
|
Variations in hypovirus interactions with the fungal-host RNA-silencing antiviral-defense response. J Virol 2012; 86:12933-9. [PMID: 22993160 DOI: 10.1128/jvi.00961-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hypoviruses Cryphonectria hypovirus 1 (CHV-1)/EP713, CHV-1/Euro7, and CHV-1/EP721, which infect the chestnut blight fungus Cryphonectria parasitica, differ in their degrees of virulence attenuation (hypovirulence), symptom expression, and viral RNA accumulation, even though they share between 90% and 99% amino acid sequence identity. In this report we examine whether this variability is influenced by interactions with the C. parasitica Dicer gene dcl2-dependent RNA-silencing antiviral defense response. The mild symptoms exhibited by strains infected with CHV-1/Euro7 and CHV-1/EP721 relative to those with severe hypovirus CHV-1/EP713 did not correlate with a higher induction of the RNA-silencing pathway. Rather, dcl2 transcripts accumulated to a higher level (∼8-fold) following infection by CHV-1/EP713 than following infection by CHV-1/Euro7 (1.2-fold) or CHV-1/EP721 (1.4-fold). The differences in dcl2 transcript accumulation in response to CHV-1/EP713 and CHV-1/EP721 were unrelated to the suppressor of RNA silencing, p29, encoded by the two viruses. Moreover, the coding strand viral RNA levels increased by 33-, 32-, and 16-fold for CHV-1/EP713, CHV-1/Euro7, and CHV-1/EP721, respectively, in Δdcl2 mutant strains. This indicates that a very robust antiviral RNA-silencing response was induced against all three viruses, even though significant differences in the levels of dcl2 transcript accumulation were observed. Unexpectedly, the severe debilitation previously reported for CHV-1/EP713-infected Δdcl2 mutant strains, and observed here for the CHV-1/Euro7-infected Δdcl2 mutant strains, was not observed with infection by CHV-1/EP721. By constructing chimeric viruses containing portions of CHV-1/EP713 and CHV-1/EP721, it was possible to map the region that is associated with the severe debilitation of the Δdcl2 mutant hosts to a 4.1-kb coding domain located in the central part of the CHV-1/EP713 genome.
Collapse
|
21
|
Abstract
RNA interference (RNAi) is a conserved eukaryotic gene regulatory mechanism that uses small noncoding RNAs to mediate posttranscriptional/transcriptional gene silencing. The fission yeast Schizosaccharomyces pombe and the filamentous fungus Neurospora crassa have served as important model systems for RNAi research. Studies on these two organisms and other fungi have contributed significantly to our understanding of the mechanisms and functions of RNAi in eukaryotes. In addition, surprisingly diverse RNAi-mediated processes and small RNA biogenesis pathways have been discovered in fungi. In this review, we give an overview of different fungal RNAi pathways with a focus on their mechanisms and functions.
Collapse
Affiliation(s)
- Shwu-Shin Chang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | | | | |
Collapse
|
22
|
Tanaka T, Eusebio-Cope A, Sun L, Suzuki N. Mycoreovirus genome alterations: similarities to and differences from rearrangements reported for other reoviruses. Front Microbiol 2012; 3:186. [PMID: 22675320 PMCID: PMC3365852 DOI: 10.3389/fmicb.2012.00186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/04/2012] [Indexed: 11/13/2022] Open
Abstract
The family Reoviridae is one of the largest virus families with genomes composed of 9-12 double-stranded RNA segments. It includes members infecting organisms from protists to humans. It is well known that reovirus genomes are prone to various types of genome alterations including intragenic rearrangement and reassortment under laboratory and natural conditions. Recently distinct genetic alterations were reported for members of the genus Mycoreovirus, Mycoreovirus 1 (MyRV1), and MyRV3 with 11 (S1-S11) and 12 genome segments (S1-S12), respectively. While MyRV3 S8 is lost during subculturing of infected host fungal strains, MyRV1 rearrangements undergo alterations spontaneously and inducibly. The inducible MyRV1 rearrangements are different from any other previous examples of reovirus rearrangements in their dependence on an unrelated virus factor, a multifunctional protein, p29, encoded by a distinct virus Cryphonectria parasitica hypovirus 1 (CHV1). A total of 5 MyRV1 variants with genome rearranged segments (S1-S3, S6 and S10) are generated in the background of a single viral strain in the presence of CHV1 p29 supplied either transgenically or by coinfection. MyRV1 S4 and S10 are rearranged, albeit very infrequently, in a CHV1 p29 independent fashion. A variant of MyRV1 with substantial deletions in both S4 and S10, generated through a combined reassortment and rearrangement approach, shows comparable replication levels to the wild-type MyRV1. In vivo and in vitro interactions of CHV1 p29 and MyRV1 VP9 are implicated in the induction of MyRV1 rearrangements. However, the mechanism underlying p29-mediated rearrangements remains largely unknown. MyRV1 S4 rearrangements spontaneously occurred independently of CHV1 p29. In the absence of reverse genetics systems for mycoreoviruses, molecular and biological characterization of these MyRV1 and MyRV3 variants contribute to functional analyses of the protein products encoded by those rearranged segments.
Collapse
Affiliation(s)
- Toru Tanaka
- Agrivirology Laboratory, Institute of Plant Science and Bioresources, Okayama University Kurashiki, Okayama, Japan
| | | | | | | |
Collapse
|
23
|
Mu R, Romero TA, Hanley KA, Dawe AL. Conserved and variable structural elements in the 5' untranslated region of two hypoviruses from the filamentous fungus Cryphonectria parasitica. Virus Res 2011; 161:203-8. [PMID: 21884737 DOI: 10.1016/j.virusres.2011.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 11/16/2022]
Abstract
Virulence-attenuating viruses (hypoviruses) of the filamentous fungus Cryphonectria parasitica, the causative agent of chestnut blight, have become a premier model for understanding the molecular biology of mycoviruses. However, a major gap exists in current understanding of structure and function of the untranslated regions (UTRs) of the hypovirus RNA genome, despite considerable evidence that secondary and tertiary UTR structure plays a crucial role in the control of translation and genome replication in other systems. In this study we have used structure prediction software coupled with RNase digestion studies to develop validated structural models for the 5' UTRs of the two best-characterized members of the Hypoviridae, CHV1-EP713 and CHV1-Euro7. These two hypovirus strains exhibit significant variation in virulence attenuation despite sharing >90% sequence identity. Our models reveal highly structured regions in the 5' UTR of both strains, with numerous stem-loops suggestive of internal ribosome entry sites. However, considerable differences in the size and complexity of structural elements exist between the two strains. These data will guide future, mutagenesis-based studies of the structural requirements for hypovirus genome replication and translation.
Collapse
Affiliation(s)
- Rong Mu
- Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | |
Collapse
|
24
|
Tanaka T, Sun L, Tsutani K, Suzuki N. Rearrangements of mycoreovirus 1 S1, S2 and S3 induced by the multifunctional protein p29 encoded by the prototypic hypovirus Cryphonectria hypovirus 1 strain EP713. J Gen Virol 2011; 92:1949-1959. [PMID: 21508189 DOI: 10.1099/vir.0.031138-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mycoreovirus 1 (MyRV1), a member of the family Reoviridae possessing a genome consisting of 11 dsRNA segments (S1-S11), infects the chestnut blight fungus and reduces its virulence (hypovirulence). Studies have previously demonstrated reproducible induction of intragenic rearrangements of MyRV1 S6 (S6L: almost full-length duplication) and S10 (S10ss: internal deletion of three-quarters of the ORF), mediated by the multifunctional protein p29 encoded by the prototype hypovirus, Cryphonectria hypovirus 1 (CHV1) strain EP713, of the family Hypoviridae with ssRNA genomes. The current study showed that CHV1 p29 also induced rearrangements of the three largest MyRV1 segments, S1, S2 and S3, which encode structural proteins. These rearranged segments involved in-frame extensions of almost two-thirds of the ORFs (S1L, S2L and S3L, respectively), which is rare for a reovirus rearrangement. MyRV1 variants carrying S1L, S2L or S3L always contained S10ss (MyRV1/S1L+S10ss2, MyRV1/S2L+S10ss2 or MyRV1/S3L+S10ss2). Levels of mRNAs for the rearranged and co-existing unaltered genome segments in fungal colonies infected with each of the MyRV1 variants appeared to be comparable to those for the corresponding normal segments in wild-type MyRV1-infected colonies, suggesting that the rearranged segments were fully competent for packaging and transcription. Protein products of the rearranged segments were detectable in fungal colonies infected with S2L MyRV1/S2L+S10ss2 and S3L MyRV1/S3L+S10ss2, whilst S1L-encoded protein remained undetectable. S1L, S2L and S3L were associated with enhancement of the aerial hyphae growth rate. This study has provided additional examples of MyRV1 intragenic rearrangements induced by p29, and suggests that normal S1, S2 and S3 are required for the symptoms caused by MyRV1.
Collapse
Affiliation(s)
- Toru Tanaka
- Agrivirology Laboratory, Institute of Plant Science and Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Liying Sun
- Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Kouhei Tsutani
- Agrivirology Laboratory, Institute of Plant Science and Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Nobuhiro Suzuki
- Agrivirology Laboratory, Institute of Plant Science and Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
25
|
Popov AP, Belov AA, Ivanushkina NE, Tsvetkov IL, Konichev AS. Molecular genetic determinants of intraspecific polymorphism of the phytopathogenic fungus Cryphonectria parasitica. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Li L, Chang SS, Liu Y. RNA interference pathways in filamentous fungi. Cell Mol Life Sci 2010; 67:3849-63. [PMID: 20680389 PMCID: PMC4605205 DOI: 10.1007/s00018-010-0471-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/01/2010] [Accepted: 07/14/2010] [Indexed: 11/28/2022]
Abstract
RNA interference is a conserved homology-dependent post-transcriptional/transcriptional gene silencing mechanism in eukaryotes. The filamentous fungus Neurospora crassa is one of the first organisms used for RNAi studies. Quelling and meiotic silencing by unpaired DNA are two RNAi-related phenomena discovered in Neurospora, and their characterizations have contributed significantly to our understanding of RNAi mechanisms in eukaryotes. A type of DNA damage-induced small RNA, microRNA-like small RNAs and Dicer-independent small silencing RNAs were recently discovered in Neurospora. In addition, there are at least six different pathways responsible for the production of these small RNAs, establishing this fungus as an important model system to study small RNA function and biogenesis. The studies in Cryphonectria, Mucor, Aspergillus and other species indicate that RNAi is widely conserved in filamentous fungi and plays important roles in genome defense. This review summarizes our current understanding of RNAi pathways in filamentous fungi.
Collapse
Affiliation(s)
- Liande Li
- Department of Physiology, ND13.214A, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040 USA
| | - Shwu-shin Chang
- Department of Physiology, ND13.214A, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040 USA
| | - Yi Liu
- Department of Physiology, ND13.214A, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040 USA
| |
Collapse
|
27
|
Proteomic analysis of fungal host factors differentially expressed by Fusarium graminearum infected with Fusarium graminearum virus-DK21. Virus Res 2009; 144:96-106. [PMID: 19374926 DOI: 10.1016/j.virusres.2009.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/28/2009] [Accepted: 04/05/2009] [Indexed: 11/23/2022]
Abstract
Fusarium graminearum virus-DK21 (FgV-DK21), which infects the plant pathogenic F. graminearum, perturbs host developmental processes such as sporulation, morphology, pigmentation, and attenuates the virulence (hypovirulence) of the host. To identify the differentially expressed F. graminearum proteins by FgV-DK21 infection, we have used two-dimensional electrophoresis with mass spectrometry using proteins extracted from virus-free and FgV-DK21-infected strains. A total of 148 spots showing an altered expression were identified by PDQuest program. Among these spots, 33 spots were exclusively analyzed including 14 spots from FgV-DK21-infected and 19 spots from virus-free strains by ESI-MS/MS analyses and successfully identified 23 proteins. Seven proteins including sporulation-specific gene SPS2, triose phosphate isomerase, nucleoside diphosphate kinase, and woronin body major protein precursor were induced or significantly up-regulated by FgV-DK21 infection. A significant decrease or down regulation of 16 proteins including enolase, saccharopine dehydrogenase, flavohemoglobin, mannitol dehydrogenase and malate dehydrogenase caused by FgV-DK21 infection was also identified. Variations of protein expression were also further investigated at the mRNA level by real-time RT-PCR analysis, which confirmed the proteomic data for 9 out of the representative 11 selected proteins including 5 proteins from up-regulated group and 6 proteins from down-regulated group. Further investigation of these differentially expressed proteins will provide novel insights into the molecular responses of F. graminearum to FgV-DK21 infection.
Collapse
|
28
|
Guo LH, Sun L, Chiba S, Araki H, Suzuki N. Coupled termination/reinitiation for translation of the downstream open reading frame B of the prototypic hypovirus CHV1-EP713. Nucleic Acids Res 2009; 37:3645-59. [PMID: 19364811 PMCID: PMC2699510 DOI: 10.1093/nar/gkp224] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cryphonectria hypovirus 1 (CHV1), associated with the picorna-like superfamily, infects the chestnut blight fungus and attenuates the virulence of the host fungus. The genomic RNA of the virus has two continuous open reading frames, A and B, separated by the pentanucleotide UAAUG. We present here evidence suggesting that ORF B is translated from genome-sized virus mRNA by a coupled termination/reinitiation mechanism mediated by the pentamer. In the coupled translation, the overlapping UAA and AUG triplets serve as the stop codon of ORF A and the initiator of ORF B, respectively. This was established by the use of a luciferase assay with a basic construct containing the ORF A sequence and the firefly luciferase gene while retaining the pentamer between the two coding sequences. The proportion of ribosomes reinitiating translation after terminating was determined to be 2.5–4.4% by three independent assay systems in fungal and insect cells. Use of a series of mutant constructs identified two sequence elements, the pentamer and the p40 sequence, that affect the efficiency of coupled translation and virus replication. Together, these results provide the first example of coupled translation facilitated by the pentanucleotide UAAUG in the kingdom Fungi. The mechanism by which the preceding p40-coding sequence promotes reinitiation is discussed.
Collapse
Affiliation(s)
- Li-hua Guo
- State Key Lab of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West 2, Beijing 100094, China
| | | | | | | | | |
Collapse
|
29
|
Abstract
Mycoviruses are widespread in all major groups of plant pathogenic fungi. They are transmitted intracellularly during cell division, sporogenesis, and cell fusion, but apparently lack an extracellular route for infection. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups. Recent advances, however, allowed the establishment of experimental host ranges for a few mycoviruses. Although the majority of known mycoviruses have dsRNA genomes that are packaged in isometric particles, an increasing number of usually unencapsidated mycoviruses with positive-strand RNA genomes have been reported. We discuss selected mycoviruses that cause debilitating diseases and/or reduce the virulence of their phytopathogenic fungal hosts. Such fungal-virus systems are valuable for the development of novel biocontol strategies and for gaining an insight into the molecular basis of fungal virulence. The availability of viral and host genome sequences and of transformation and transfection protocols for some plant pathogenic fungi will contribute to progress in fungal virology.
Collapse
Affiliation(s)
- Said A Ghabrial
- Plant Pathology Department, University of Kentucky, Lexington, Kentucky 40546, USA.
| | | |
Collapse
|
30
|
Powers JG, Sit TL, Qu F, Morris TJ, Kim KH, Lommel SA. A versatile assay for the identification of RNA silencing suppressors based on complementation of viral movement. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:879-90. [PMID: 18533829 DOI: 10.1094/mpmi-21-7-0879] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The cell-to-cell movement of Turnip crinkle virus (TCV) in Nicotiana benthamiana requires the presence of its coat protein (CP), a known suppressor of RNA silencing. RNA transcripts of a TCV construct containing a reporter gene (green fluorescent protein) (TCV-sGFP) in place of the CP open reading frame generated foci of three to five cells. TCV CP delivered in trans by Agrobacterium tumefaciens infiltration potentiated movement of TCV-sGFP and increased foci diameter, on average, by a factor of four. Deletion of the TCV movement proteins in TCV-sGFP (construct TCVDelta92-sGFP) abolished the movement complementation ability of TCV CP. Other known suppressors of RNA silencing from a wide spectrum of viruses also complemented the movement of TCV-sGFP when delivered in trans by Agrobacterium tumefaciens. These include suppressors from nonplant viruses with no known plant movement function, demonstrating that this assay is based solely on RNA silencing suppression. While the TCV-sGFP construct is primarily used as an infectious RNA transcript, it was also subcloned for direct expression from Agrobacterium tumefaciens for simple quantification of suppressor activity based on fluorescence levels in whole leaves. Thus, this system provides the flexibility to assay for suppressor activity in either the cytoplasm or nucleus, depending on the construct employed.
Collapse
Affiliation(s)
- Jason G Powers
- Department of Genetics, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, U.S.A
| | | | | | | | | | | |
Collapse
|
31
|
A host factor involved in hypovirus symptom expression in the chestnut blight fungus, Cryphonectria parasitica. J Virol 2007; 82:740-54. [PMID: 17977965 DOI: 10.1128/jvi.02015-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prototype hypovirus CHV1-EP713 causes virulence attenuation and severe suppression of asexual sporulation and pigmentation in its host, the chestnut blight fungus, Cryphonectria parasitica. We identified a factor associated with symptom induction in C. parasitica using a transformation of C. parasitica strain EP155 with a full-length cDNA clone from a mild mutant virus strain, Cys(72). This was accomplished by using mutagenesis of the transformant fungal strain TCys(72)-1 by random integration of plasmid pHygR, conferring hygromycin resistance. The mutant, namA (after nami-gata, meaning wave shaped), showed an irregular fungal morphology with reduced conidiation and pigmentation while retaining similar levels of virulence and virus accumulation relative to TCys(72)-1- or Cys(72)-infected strain EP155. However, the colony morphology of virus-cured namA (VC-namA) was indistinguishable from those of EP155 and virus-cured TCys(72)-1 [VC-TCys(72)-1]. The phenotypic difference between VC-namA and VC-TCys(72)-1 was found only when these strains infected with the wild type or certain mutant CHV1-EP713 strains but not when infected with Mycoreovirus 1. Sequence analysis of inverse-PCR-amplified genomic DNA fragments and cDNA identified the insertion site of the mutagenic plasmid in exon 8 of the nam-1 gene. NAM-1, comprising 1,257 amino acids, shows sequence similarities to counterparts from other filamentous fungi and possesses the CorA domain that is conserved in a class of Mg(2+) transporters from prokaryotes and eukaryotes. Complementation assays using the wild-type and mutant alleles and targeted disruption of nam-1 showed that nam-1 with an extension of the pHygR-derived sequence contributed to the altered phenotype in the namA mutant. The molecular mechanism underlying virus-specific fungal symptom modulation in VC-namA is discussed.
Collapse
|
32
|
Sun L, Nuss DL, Suzuki N. Synergism between a mycoreovirus and a hypovirus mediated by the papain-like protease p29 of the prototypic hypovirus CHV1-EP713. J Gen Virol 2006; 87:3703-3714. [PMID: 17098988 DOI: 10.1099/vir.0.82213-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infection of the chestnut blight fungus, Cryphonectria parasitica, by the prototypic hypovirus Cryphonectria hypovirus 1-EP713 (CHV1-EP713) or by the type member, Mycoreovirus 1-Cp9B21 (MyRV1-Cp9B21), of a novel genus (Mycoreovirus) of the family Reoviridae results in hypovirulence, but with a different spectrum of phenotypic changes. The former virus depresses pigmentation and conidiation dramatically, whilst the latter virus has little effect on these processes. This study showed that double infection by the two viruses resulted in a phenotype similar to that of CHV1-EP713 singly infected colonies, but with further decreased levels of host conidiation and vegetative growth and increased levels of MyRV1-Cp9B21 genomic dsRNA accumulation (twofold) and vertical transmission (sixfold). In contrast, CHV1-EP713 RNA accumulation was not altered by MyRV1-Cp9B21 infection. It was also found that the papain-like cysteine protease p29, encoded by CHV1-EP713 ORF A, contributes to the phenotypic alterations and transactivation of MyRV1-Cp9B21 replication and transmission. Chromosomally expressed p29 was able to increase MyRV1-Cp9B21 vertical transmission by more than twofold and genomic RNA accumulation by 80 %. Transactivation was abolished by Cys-->Gly mutations at p29 residues 70 and 72 located within the previously identified symptom-determinant domain required for suppression of host pigmentation and sporulation and p29-mediated in trans enhancement of homologous Deltap29 mutant virus RNA replication. Transactivation was not altered by Ser substitutions at the p29 protease catalytic residue Cys(162). These results indicated a link between p29-mediated enhancement of heterologous virus accumulation and transmission and p29-mediated host symptom expression. The role of p29 as a suppressor of RNA silencing is discussed.
Collapse
Affiliation(s)
- Liying Sun
- Agrivirology Laboratory, Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Donald L Nuss
- Center for Biosystems Research, University of Maryland Biotechnology Institute, University of Maryland, College Park, MD 20742, USA
| | - Nobuhiro Suzuki
- Agrivirology Laboratory, Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
33
|
Jacob-Wilk D, Turina M, Van Alfen NK. Mycovirus cryphonectria hypovirus 1 elements cofractionate with trans-Golgi network membranes of the fungal host Cryphonectria parasitica. J Virol 2006; 80:6588-96. [PMID: 16775345 PMCID: PMC1488963 DOI: 10.1128/jvi.02519-05] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 04/09/2006] [Indexed: 11/20/2022] Open
Abstract
The mycovirus cryphonectria hypovirus 1 (CHV1) causes proliferation of vesicles in its host, Cryphonectria parasitica, the causal agent of chestnut blight. These vesicles have previously been shown to contain both CHV1 genomic double-stranded RNA (dsRNA) and RNA polymerase activity. To determine the cellular origins of these virus-induced membrane structures, we compared the fractionation of several cellular and viral markers. Results showed that viral dsRNA, helicase, polymerase, and protease p29 copurify with C. parasitica trans-Golgi network (TGN) markers, suggesting that the virus utilizes the fungal TGN for replication. We also show that the CHV1 protease p29 associates with vesicle membranes and is resistant to treatments that would release peripheral membrane proteins. Thus, p29 behaves as an integral membrane protein of the vesicular fraction derived from the fungal TGN. Protease p29 was also found to be fully susceptible to proteolytic digestion in the absence of detergent and, thus, is wholly or predominantly on the cytoplasmic face of the vesicles. Fractionation analysis of p29 deletion variants showed that sequences in the C terminal of p29 mediate membrane association. In particular, the C-terminal portion of the protein (Met-135-Gly-248) is sufficient for membrane association and is enough to direct p29 to the TGN vesicles in the absence of other viral elements.
Collapse
Affiliation(s)
- Debora Jacob-Wilk
- Department of Plant Pathology, College of Agricultural and Environmental Science, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA.
| | | | | |
Collapse
|
34
|
Graham RL, Sims AC, Brockway SM, Baric RS, Denison MR. The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J Virol 2005; 79:13399-411. [PMID: 16227261 PMCID: PMC1262610 DOI: 10.1128/jvi.79.21.13399-13411.2005] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 08/09/2005] [Indexed: 01/09/2023] Open
Abstract
The positive-stranded RNA genome of the coronaviruses is translated from ORF1 to yield polyproteins that are proteolytically processed into intermediate and mature nonstructural proteins (nsps). Murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) polyproteins incorporate 16 protein domains (nsps), with nsp1 and nsp2 being the most variable among the coronaviruses and having no experimentally confirmed or predicted functions in replication. To determine if nsp2 is essential for viral replication, MHV and SARS-CoV genome RNA was generated with deletions of the nsp2 coding sequence (MHVDeltansp2 and SARSDeltansp2, respectively). Infectious MHVDeltansp2 and SARSDeltansp2 viruses recovered from electroporated cells had 0.5 to 1 log10 reductions in peak titers in single-cycle growth assays, as well as a reduction in viral RNA synthesis that was not specific for any positive-stranded RNA species. The Deltansp2 mutant viruses lacked expression of both nsp2 and an nsp2-nsp3 precursor, but cleaved the engineered chimeric nsp1-nsp3 cleavage site as efficiently as the native nsp1-nsp2 cleavage site. Replication complexes in MHVDeltansp2-infected cells lacked nsp2 but were morphologically indistinguishable from those of wild-type MHV by immunofluorescence. nsp2 expressed in cells by stable retroviral transduction was specifically recruited to viral replication complexes upon infection with MHVDeltansp2. These results demonstrate that while nsp2 of MHV and SARS-CoV is dispensable for viral replication in cell culture, deletion of the nsp2 coding sequence attenuates viral growth and RNA synthesis. These findings also provide a system for the study of determinants of nsp targeting and function.
Collapse
Affiliation(s)
- Rachel L Graham
- Department of Pediatrics, Vanderbilt University Medical Center, D6217 MCN, Nashville, TN 37232-2581, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Whereas most mycoviruses lead 'secret lives', some reduce the ability of their fungal hosts to cause disease in plants. This property, known as hypovirulence, has attracted attention owing to the importance of fungal diseases in agriculture and the limited strategies that are available for the control of these diseases. Using one pathogen to control another is appealing, both intellectually and ecologically. The recent development of an infectious cDNA-based reverse genetics system for members of the Hypoviridae mycovirus family has enabled the analysis of basic aspects of this fascinating virus-fungus-plant interaction, including virus-host interactions, the mechanisms underlying fungal pathogenesis, fungal signalling pathways and the evolution of RNA silencing. Such systems also provide a means for engineering mycoviruses for enhanced biocontrol potential.
Collapse
Affiliation(s)
- Donald L Nuss
- Center for Biosystems Research, 5115 Plant Sciences Building, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA.
| |
Collapse
|
36
|
Affiliation(s)
- Bradley I Hillman
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
37
|
Suzuki N, Maruyama K, Moriyama M, Nuss DL. Hypovirus papain-like protease p29 functions in trans to enhance viral double-stranded RNA accumulation and vertical transmission. J Virol 2003; 77:11697-707. [PMID: 14557655 PMCID: PMC229363 DOI: 10.1128/jvi.77.21.11697-11707.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prototypic hypovirus CHV1-EP713 attenuates virulence (hypovirulence) and alters several physiological processes of the chestnut blight fungus Cryphonectria parasitica. The papain-like protease, p29, and the highly basic protein, p40, derived, respectively, from the N-terminal and C-terminal portions of the CHV1-EP713-encoded open reading frame (ORF) A polyprotein, p69, both contribute to reduced pigmentation and sporulation. The p29 coding region was shown to suppress pigmentation and asexual sporulation in the absence of virus infection in transformed C. parasitica, whereas transformants containing the p40-coding domain exhibited a wild-type, untransformed phenotype. Deletion of either p29 or p40 from the viral genome also results in reduced accumulation of viral RNA. We now show that p29, but not p40, functions in trans to enhance genomic RNA accumulation and vertical transmission of p29 deletion mutant viruses. The frequency of virus transmission through conidia was found to decrease with reduced accumulation of viral genomic double-stranded RNA (dsRNA): from almost 100% for wild-type virus to approximately 50% for Deltap29, and 10 to 20% for Deltap69. When expressed from a chromosomally integrated cDNA copy, p29 elevated viral dsRNA accumulation and transmission for Deltap29 mutant virus to the level shown by wild-type virus. Increased viral RNA accumulation levels were also observed for a Deltap69 mutant lacking almost the entire ORF A sequence. Such enhancements were not detected in transgenic fungal colonies expressing p40. Mutation of p29 residues Cys(70) or Cys(72), strictly conserved in hypovirus p29 and potyvirus HC-Pro, resulted in the loss of both p29-mediated suppressive activity in virus-free transgenic C. parasitica and in trans enhancement of RNA accumulation and transmission, suggesting a linkage between these functional activities. These results suggest that p29 is an enhancer of viral dsRNA accumulation and vertical virus transmission through asexual spores.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Agrivirology Laboratory, Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | | | | | | |
Collapse
|
38
|
Nomura K, Osaki H, Iwanami T, Matsumoto N, Ohtsu Y. Cloning and characterization of a totivirus double-stranded RNA from the plant pathogenic fungus, Helicobasidium mompa Tanaka. Virus Genes 2003; 26:219-26. [PMID: 12876450 DOI: 10.1023/a:1024453111809] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Virus-like particles (VLPs, named HmTV1-17), about 40 nm in diameter were found in the violet root rot fungus Helicobasidium mompa Tanaka strain No. 17, which had been isolated from an apple tree. Purified preparations of HmTV1-17 contained two species of double-stranded RNA (dsRNA), designated 17L and 17S. cDNAs were constructed from HmTV1-17 genomic dsRNAs purified using CF-11 cellulose column chromatography. The sequences of 17L and 17S cDNA comprised 5,207 and 2,096 bp, respectively. Although 17S has no large open reading flame (ORF) on either strand, 17L has two large overlapping ORFs. The 5' located ORF1 encodes the coat protein (CP, 788 amino acids), whereas the gene product of ORF2, which is in the -1 frame relative to ORF1, shows the typical features of a RNA dependent RNA polymerase (RDRP, 845 amino acids). Phylogenetic analysis based on RDRP showed that HmTV1-17 is closely related to Sphaeropsis sapinea SsRV1, a member of the genus Totivirus from filamentous fungus S. sapinea.
Collapse
Affiliation(s)
- Kinya Nomura
- National Institute of Fruit Tree Science, Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | | | | | | | | |
Collapse
|
39
|
Peng CW, Napuli AJ, Dolja VV. Leader proteinase of beet yellows virus functions in long-distance transport. J Virol 2003; 77:2843-9. [PMID: 12584307 PMCID: PMC149760 DOI: 10.1128/jvi.77.5.2843-2849.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2002] [Accepted: 11/22/2002] [Indexed: 11/20/2022] Open
Abstract
The 66-kDa leader proteinase (L-Pro) of the Beet yellows virus (BYV) possesses a nonconserved N-terminal domain and a conserved, papain-like C-terminal domain. Previous work revealed that the N-terminal domain functions in RNA amplification, whereas the C-terminal domain is required for autoproteolysis. Alanine-scanning mutagenesis was applied to complete the functional analysis of L-Pro throughout the virus life cycle. This analysis indicated that the C-terminal domain of L-Pro, in addition to being required for proteolysis, also functions in RNA amplification and that these two functions are genetically separable. Examination of the role of L-Pro in BYV cell-to-cell movement revealed that none of the 20 examined replication-competent mutants was movement defective. In contrast, six of the L-Pro mutations affected the long-distance transport of BYV to various degrees, whereas three mutations completely abolished the transport. Because these mutations were located throughout the protein molecule, both domains of L-Pro function in virus transport. We conclude that in addition to previously identified functions of L-Pro, it also serves as the BYV long-distance transport factor.
Collapse
Affiliation(s)
- Chih-Wen Peng
- Department of Botany and Plant Pathology and Center for Gene Research and Biotechnology, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | |
Collapse
|
40
|
Osaki H, Nomura K, Iwanami T, Kanematsu S, Okabe I, Matsumoto N, Sasaki A, Ohtsu Y. Detection of a double-stranded RNA virus from a strain of the violet root rot fungus Helicobasidium mompa Tanaka. Virus Genes 2002; 25:139-45. [PMID: 12416677 DOI: 10.1023/a:1020105701017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Three double-stranded (ds) RNA species (ca. 1.30, 1.27 and 1.23 x 106) were isolated by CF-11 cellulose chromatography from a strain of the violet root rot fungus Helicobasidium mompa recovered from apple roots. Purified virion preparations contained isometric particles about 25 nm in diameter, and also the same three species of dsRNA isolated from total extracts by CF-11 cellulose chromatography. The molecular mass of the coat protein was about 67 K when estimated by SDS-PAGE. The largest dsRNA (referred to as dsRNA1) contains a single, long open reading frame of 1794 nucleotides that encodes a putative polypeptide containing 598 amino acid residues with a molecular mass of 69.9 K. This polypeptide contains amino acid sequence motifs conserved in putative RNA-dependent RNA polymerases of RNA viruses. Phylogenetic analysis revealed similarities to RNA-dependent RNA polymerases from Atkinsonella hypoxylon 2H virus, a member of the family Partitiviridae.
Collapse
Affiliation(s)
- Hideki Osaki
- National Institute of Fruit Tree Science, Fujimoto, Tsukuba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Suzuki N, Nuss DL. Contribution of protein p40 to hypovirus-mediated modulation of fungal host phenotype and viral RNA accumulation. J Virol 2002; 76:7747-59. [PMID: 12097588 PMCID: PMC136391 DOI: 10.1128/jvi.76.15.7747-7759.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papain-like protease p29, derived from the N-terminal portion of the hypovirus CHV1-EP713-encoded open reading frame (ORF) A polyprotein, p69, was previously shown to contribute to reduced pigmentation and sporulation by the infected host, the chestnut blight fungus Cryphonectria parasitica, while being dispensable for virus replication and attenuation of fungal virulence (hypovirulence). We now report that deletion of the C-terminal portion of p69, which encodes the highly basic protein p40, resulted in replication-competent mutant viruses that were, however, significantly reduced in RNA accumulation. While the Delta p40 mutants retained the ability to confer hypovirulence, Delta p40-infected fungal strains produced more asexual spores than strains infected with either wild-type CHV1-EP713 or a Delta p29 mutant virus. As observed for Delta p29-infected colonies, pigment production was significantly increased in Delta p40-infected fungal strains relative to that in CHV1-EP713-infected strains. Virus-mediated suppression of laccase production was not affected by p40 deletion. A gain-of-function analysis was employed to map the p40 symptom determinant to the N-terminal domain, encompassing p69 amino acid residues Thr(288) to Arg(312). Evidence that the gain of function was due to the encoded protein rather than the corresponding RNA sequence element was provided by introducing frameshift mutations on either side of the activity determinant domain. Moreover, restoration of symptoms correlated with increased accumulation of viral RNA. These results suggest that p40 indirectly contributes to virus-mediated suppression of fungal pigmentation and conidiation by providing an accessory function in hypovirus RNA amplification. A possible role for p40 in facilitating ORF B expression and the relationship between hypovirus RNA accumulation and symptom expression are discussed.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, College Park, Maryland 20742-4450, USA
| | | |
Collapse
|
42
|
Sasaki A, Onoue M, Kanematsu S, Suzaki K, Miyanishi M, Suzuki N, Nuss DL, Yoshida K. Extending chestnut blight hypovirus host range within diaporthales by biolistic delivery of viral cDNA. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:780-789. [PMID: 12182335 DOI: 10.1094/mpmi.2002.15.8.780] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Biolistic bombardment was used to successfully transform three phytopathogenic fungal species with an infectious cDNA clone of the prototypic hypovirus, CHV1-EP713, a genetic element responsible for the virulence attenuation (hypovirulence) of the chestnut blight fungus, Cryphonectria parasitica. The fungal species included two strains each of C. parasitica and Valsa ceratosperma, as well as one strain of Phomopsis G-type (teleomorph Diaporthe Nitschke); all are members of the order Diaporthales but classified into three different genera. A subset of transformants for each of the fungal species contained CHV1-EP713 dsRNA derived from chromosomally integrated viral cDNA. As has been reported for CHV1-EP713 infection of the natural host C parasitica, biolistic introduction of CHV1-EP713 into the new fungal hosts V ceratosperma and Phomopsis G-type resulted in altered colony morphology and, more importantly, reduced virulence. These results suggest a potential for hypoviruses as biological control agents in plant-infecting fungal pathogens other than the chestnut blight fungus and closely related species. In addition, the particle delivery technique offers a convenient means of transmitting hypoviruses to potential host fungi that provides new avenues for fundamental mycovirus research and may have practical applications for conferring hypovirulence directly on infected plants in the field.
Collapse
Affiliation(s)
- Atsuko Sasaki
- Department of Apple Research, National Institute of Fruit Tree Science, National Agricultural Research Organization, Morioka, Iwate, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Peng CW, Peremyslov VV, Snijder EJ, Dolja VV. A replication-competent chimera of plant and animal viruses. Virology 2002; 294:75-84. [PMID: 11886267 DOI: 10.1006/viro.2001.1306] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human, animal, fungal, and plant viruses encode papain-like proteinases that function in polyprotein processing, RNA synthesis, and virus-host interactions. To compare the functional profiles of diverse papain-like proteinases, we replaced a proteinase gene of the beet yellows virus (BYV) with those derived from equine arteritis virus (EAV), foot-and-mouth disease virus (FMDV), and the fungal virus CHV1. We found that, although each of the foreign proteinases efficiently processed the viral polyprotein, only the EAV proteinase supported vigorous replication of the chimeric BYV in plant protoplasts. This result demonstrated that the proteinases of BYV and EAV, but not FMDV or CHV1, provide a function that is critical for genome replication and that is separable from polyprotein processing. Further characterization of the BYV-EAV chimera revealed that BYV proteinase is also required for virus invasion and cell-to-cell movement. Thus, the same viral protein can combine both replication-related functions shared by plant and animal viruses and specialized functions in virus-host interactions.
Collapse
Affiliation(s)
- Chih-Wen Peng
- Department of Botany and Plant Pathology, Center for Gene Research and Biotechnology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
44
|
Dawe AL, Nuss DL. Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis. Annu Rev Genet 2002; 35:1-29. [PMID: 11700275 DOI: 10.1146/annurev.genet.35.102401.085929] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fungal viruses are considered unconventional because they lack an extracellular route of infection and persistently infect their hosts, often in the absence of apparent symptoms. Because mycoviruses are limited to intracellular modes of transmission, they can be considered as intrinsic fungal genetic elements. Such long-term genetic interactions, even involving apparently asymptomatic mycoviruses, are likely to have an impact on fungal ecology and evolution. One of the clearest examples supporting this view is the phenomenon of hypovirulence (virulence attenuation) observed for strains of the chestnut blight fungus, Cryphonectria parasitica, harboring members of the virus family Hypoviridae. The goal of this chapter is to document recent advances in hypovirus molecular genetics and to provide examples of how that progress is leading to the identification of virus-encoded determinants responsible for altering fungal host phenotype, insights into essential and dispensable elements of hypovirus replication, revelations concerning the role of G-protein signaling in fungal pathogenesis, and new avenues for enhancing biological control potential.
Collapse
Affiliation(s)
- A L Dawe
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, College Park, Maryland 20742-4450, USA.
| | | |
Collapse
|
45
|
Peng CW, Peremyslov VV, Mushegian AR, Dawson WO, Dolja VV. Functional specialization and evolution of leader proteinases in the family Closteroviridae. J Virol 2001; 75:12153-60. [PMID: 11711606 PMCID: PMC116111 DOI: 10.1128/jvi.75.24.12153-12160.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the Closteroviridae and Potyviridae families of the plant positive-strand RNA viruses encode one or two papain-like leader proteinases. In addition to a C-terminal proteolytic domain, each of these proteinases possesses a nonproteolytic N-terminal domain. We compared functions of the several leader proteinases using a gene swapping approach. The leader proteinase (L-Pro) of Beet yellows virus (BYV; a closterovirus) was replaced with L1 or L2 proteinases of Citrus tristeza virus (CTV; another closterovirus), P-Pro proteinase of Lettuce infectious yellows virus (LIYV; a crinivirus), and HC-Pro proteinase of Tobacco etch virus (a potyvirus). Each foreign proteinase efficiently processed the chimeric BYV polyprotein in vitro. However, only L1 and P-Pro, not L2 and HC-Pro, were able to rescue the amplification of the chimeric BYV variants. The combined expression of L1 and L2 resulted in an increased RNA accumulation compared to that of the parental BYV. Remarkably, this L1-L2 chimera exhibited reduced invasiveness and inability to move from cell to cell. Similar analyses of the BYV hybrids, in which only the papain-like domain of L-Pro was replaced with those derived from L1, L2, P-Pro, and HC-Pro, also revealed functional specialization of these domains. In subcellular-localization experiments, distinct patterns were observed for the leader proteinases of BYV, CTV, and LIYV. Taken together, these results demonstrated that, in addition to a common proteolytic activity, the leader proteinases of closteroviruses possess specialized functions in virus RNA amplification, virus invasion, and cell-to-cell movement. The phylogenetic analysis suggested that functionally distinct L1 and L2 of CTV originated by a gene duplication event.
Collapse
Affiliation(s)
- C W Peng
- Department of Botany and Plant Pathology and Center for Gene Research and Biotechnology, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | |
Collapse
|
46
|
Yuan W, Hillman BI. In vitro translational analysis of genomic, defective, and satellite RNAs of Cryphonectria hypovirus 3-GH2. Virology 2001; 281:117-23. [PMID: 11222102 DOI: 10.1006/viro.2000.0806] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cryphonectria hypovirus 3-GH2 (CHV3-GH2) is a member of the fungal virus family Hypoviridae that differs from previously characterized members in having a single large open reading frame with the potential to encode a protein of 326 kDa from its 9.8-kb genome. The N-terminal portion of the ORF contains sequence motifs that are somewhat similar to papain-like proteinases identified in other hypoviruses. Translation of the ORF is predicted to release autocatalytically a 32.5-kDa protein. A defective RNA, predicted to encode a 91.6-kDa protein representing most of the N-terminal proteinase fused to the entire putative helicase domain, and two satellite RNAs, predicted to encode very small proteins, also are associated with CHV3-GH2 infected fungal cultures. We performed in vitro translation experiments to examine expression of these RNAs. Translation of three RT-PCR clones representing different lengths of the amino-terminal portion of the ORF of the genomic RNA resulted in autocatalytic release of the predicted 32.5-kDa protein. Site-directed mutagenesis was used to map the processing site between Gly(297) and Thr(298). In vitro translation of multiple independent cDNA clones of CHV3-GH2-defective RNA 2 resulted in protein products of approximately 92 kDa, predicted to be the full-length translation product, 32 kDa, predicted to represent the N-terminal proteinase, and 60 kDa, predicted to represent the C-terminal two-thirds of the full-length product. In vitro translation of cDNA clones representing satellite RNA 4 resulted in products of slightly less than 10 kDa, consistent with the predicted 9.4 kDa product.
Collapse
Affiliation(s)
- W Yuan
- Department of Plant Pathology, Cook College, Foran Hall, Rutgers University, 59 Dudley Rd., New Brunswick, New Jersey 08901-8520, USA
| | | |
Collapse
|
47
|
Peng CW, Dolja VV. Leader proteinase of the beet yellows closterovirus: mutation analysis of the function in genome amplification. J Virol 2000; 74:9766-70. [PMID: 11000252 PMCID: PMC112412 DOI: 10.1128/jvi.74.20.9766-9770.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The beet yellows closterovirus leader proteinase (L-Pro) possesses a C-terminal proteinase domain and a nonproteolytic N-terminal domain. It was found that although L-Pro is not essential for basal-level replication, deletion of its N-terminal domain resulted in a 1, 000-fold reduction in RNA accumulation. Mutagenic analysis of the N-terminal domain revealed its structural flexibility except for the 54-codon-long, 5'-terminal element in the corresponding open reading frame that is critical for efficient RNA amplification at both RNA and protein levels.
Collapse
Affiliation(s)
- C W Peng
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | | |
Collapse
|
48
|
Suzuki N, Geletka LM, Nuss DL. Essential and dispensable virus-encoded replication elements revealed by efforts To develop hypoviruses as gene expression vectors. J Virol 2000; 74:7568-77. [PMID: 10906211 PMCID: PMC112278 DOI: 10.1128/jvi.74.16.7568-7577.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated whether hypoviruses, viral agents responsible for virulence attenuation (hypovirulence) of the chestnut blight fungus Cryphonectria parasitica, could serve as gene expression vectors. The infectious cDNA clone of the prototypic hypovirus CHV1-EP713 was modified to generate 20 different vector candidates. Although transient expression was achieved for a subset of vectors that contained the green fluorescent protein gene from Aequorea victoria, long-term expression (past day 8) was not observed for any vector construct. Analysis of viral RNAs recovered from transfected fungal colonies revealed that the foreign genes were readily deleted from the replicating virus, although small portions of foreign sequences were retained by some vectors after months of replication. However, the results of vector viability and progeny characterization provided unexpected new insights into essential and dispensable elements of hypovirus replication. The N-terminal portion (codons 1 to 24) of the 5'-proximal open reading frame (ORF), ORF A, was found to be required for virus replication, while the remaining 598 codons of this ORF were completely dispensable. Substantial alterations were tolerated in the pentanucleotide UAAUG that contains the ORF A termination codon and the overlapping putative initiation codon of the second of the two hypovirus ORFs, ORF B. Replication competence was maintained following either a frameshift mutation that caused a two-codon extension of ORF A or a modification that produced a single-ORF genomic organization. These results are discussed in terms of determinants of hypovirus replication, the potential utility of hypoviruses as gene expression vectors, and possible mechanisms by which hypoviruses recognize and delete foreign sequences.
Collapse
Affiliation(s)
- N Suzuki
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
49
|
Smart CD, Yuan W, Foglia R, Nuss DL, Fulbright DW, Hillman BI. Cryphonectria hypovirus 3, a virus species in the family hypoviridae with a single open reading frame. Virology 1999; 265:66-73. [PMID: 10603318 DOI: 10.1006/viro.1999.0039] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isolate Grand Haven (GH) 2 is a naturally occurring isolate of the chestnut blight fungus, Cryphonectria parasitica, that is greatly reduced in virulence due to the presence of a double-stranded RNA virus. Unlike many other virus-infected, hypovirulent isolates, GH2 is not substantially reduced in pigmentation, conidiation, or laccase expression compared to its virus-free counterpart. The dsRNA genome of the GH2 virus was cloned, sequenced, and compared to hypovirulence-associated viruses of the family Hypoviridae. GH2 dsRNA is considerably smaller than previously characterized members of the family, 9.8 kb compared to 12.5-12.7 kb for other members. The genome organization of GH2 dsRNA reflected the substantial difference in genome size. Like other members of the family, one strand contained a poly(A)(+) tail at the 3' end and a long sequence with several minicistrons at the 5' end of the same strand. Only a single open reading frame (ORF) of 8622 nucleotides was predicted from deduced translations of the poly(A)(+)-containing strand, however. This contrasts with the two-ORF structures of previously characterized members. Analysis of the deduced ORF of GH2 dsRNA revealed putative proteinase, RNA polymerase, and helicase domains similar to those previously identified in confirmed members of the virus family Hypoviridae. GH2 dsRNA was more distantly related to Cryphonectria hypovirus (CHV) 1-EP713 and CHV2-NB58 than the latter two were to each other but has features in common with each of those viruses. We propose that the GH2 virus be included in this taxon as a member of the genus Hypovirus, representing a strain of a new species, CHV3.
Collapse
Affiliation(s)
- C D Smart
- Department of Botany and Plant Pathology, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | |
Collapse
|