1
|
Venturini C, Breuer J. Cytomegalovirus Genetic Diversity and Evolution: Insights into Genotypes and Their Role in Viral Pathogenesis. Pathogens 2025; 14:50. [PMID: 39861011 PMCID: PMC11768282 DOI: 10.3390/pathogens14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous virus that infects most of the human population and causes significant morbidity and mortality, particularly among immunocompromised individuals. Understanding CMV's genetic diversity and evolutionary dynamics is crucial for elucidating its pathogenesis and developing effective therapeutic interventions. This review provides a comprehensive examination of CMV's genetic diversity and evolution, focussing on the role of different genotypes in viral pathogenesis.
Collapse
Affiliation(s)
- Cristina Venturini
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK;
| | | |
Collapse
|
2
|
Wojciechowicz K, Spodzieja M, Lisowska KA, Wardowska A. The role of the BTLA-HVEM complex in the pathogenesis of autoimmune diseases. Cell Immunol 2022; 376:104532. [PMID: 35537322 DOI: 10.1016/j.cellimm.2022.104532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
|
3
|
A Novel Multiplexed Enzyme-Linked Immunosorbent Assay for the Detection of IgG Seroreactivity to Cytomegalovirus (CMV) UL144. J Clin Microbiol 2021; 59:e0096421. [PMID: 34076473 DOI: 10.1128/jcm.00964-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with human cytomegalovirus (CMV) is common and may have grave consequences in transplant recipients and congenitally infected children. Diagnosis of CMV infection is based on detection of specific antibodies and molecular assays. The incorporation of CMV serological assays into diagnostic algorithms requires careful evaluation and interpretation. Very few serological assays measure CMV infection by a specific strain. We developed an enzyme-linked immunosorbent assay (ELISA) using CMV-encoded UL144 as the antigen. UL144 encodes three major genotypes, A, B, and C, and recombinants. The ELISA was developed with the three UL144 proteins and optimized as a multiplex assay. Sera from 55 positive and 59 negative CMV IgG, determined by the clinical microbiology laboratory, were used for evaluation and optimization. A cutoff optical density (OD) that distinguishes UL144 antibody-positive from antibody-negative sera was established. UL144 A, B, C, and combinations of these antigens were detected in sera. An assay threshold of 0.1 was established and, from a total of 303 sera, the overall sensitivity, specificity, and positive and negative predictive values of the multiplex ELISA were 86.72% (95% confidence interval [CI] 79.59% to 92.07%), 96.57% (92.69% to 98.73%), 94.40% (88.45% to 97.38%), and 91.60% (87.50% to 94.44%), respectively. The inter- and intraassay median coefficients of variation were 0.06 (interquartile range [IQR] 0.56, 0.2) and 0.171 (IQR 0.038, 0.302), respectively. No cross-reactivity was observed with HSV-positive CMV-negative sera. This ELISA gives simple and reproducible results for detection of anti-CMV UL144 IgG. It may assist in differentiating natural infection from CMV vaccines that lack UL144, and may provide an important tool for epidemiological studies of CMV strains.
Collapse
|
4
|
Galitska G, Coscia A, Forni D, Steinbrueck L, De Meo S, Biolatti M, De Andrea M, Cagliani R, Leone A, Bertino E, Schulz T, Santoni A, Landolfo S, Sironi M, Cerboni C, Dell'Oste V. Genetic Variability of Human Cytomegalovirus Clinical Isolates Correlates With Altered Expression of Natural Killer Cell-Activating Ligands and IFN-γ. Front Immunol 2021; 12:532484. [PMID: 33897679 PMCID: PMC8062705 DOI: 10.3389/fimmu.2021.532484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2021] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection often leads to systemic disease in immunodeficient patients and congenitally infected children. Despite its clinical significance, the exact mechanisms contributing to HCMV pathogenesis and clinical outcomes have yet to be determined. One of such mechanisms involves HCMV-mediated NK cell immune response, which favors viral immune evasion by hindering NK cell-mediated cytolysis. This process appears to be dependent on the extent of HCMV genetic variation as high levels of variability in viral genes involved in immune escape have an impact on viral pathogenesis. However, the link between viral genome variations and their functional effects has so far remained elusive. Thus, here we sought to determine whether inter-host genetic variability of HCMV influences its ability to modulate NK cell responses to infection. For this purpose, five HCMV clinical isolates from a previously characterized cohort of pediatric patients with confirmed HCMV congenital infection were evaluated by next-generation sequencing (NGS) for genetic polymorphisms, phylogenetic relationships, and multiple-strain infection. We report variable levels of genetic characteristics among the selected clinical strains, with moderate variations in genome regions associated with modulation of NK cell functions. Remarkably, we show that different HCMV clinical strains differentially modulate the expression of several ligands for the NK cell-activating receptors NKG2D, DNAM-1/CD226, and NKp30. Specifically, the DNAM-1/CD226 ligand PVR/CD155 appears to be predominantly upregulated by fast-replicating (“aggressive”) HCMV isolates. On the other hand, the NGK2D ligands ULBP2/5/6 are downregulated regardless of the strain used, while other NK cell ligands (i.e., MICA, MICB, ULBP3, Nectin-2/CD112, and B7-H6) are not significantly modulated. Furthermore, we show that IFN-γ; production by NK cells co-cultured with HCMV-infected fibroblasts is directly proportional to the aggressiveness of the HCMV clinical isolates employed. Interestingly, loss of NK cell-modulating genes directed against NK cell ligands appears to be a common feature among the “aggressive” HCMV strains, which also share several gene variants across their genomes. Overall, even though further studies based on a higher number of patients would offer a more definitive scenario, our findings provide novel mechanistic insights into the impact of HCMV genetic variability on NK cell-mediated immune responses.
Collapse
Affiliation(s)
- Ganna Galitska
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Alessandra Coscia
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Diego Forni
- Laboratory of Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Lars Steinbrueck
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Simone De Meo
- Laboratory of Molecular Immunology and Immunopathology, Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Matteo Biolatti
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Marco De Andrea
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.,Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, Novara, Italy
| | - Rachele Cagliani
- Laboratory of Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Agata Leone
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Enrico Bertino
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Thomas Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Angela Santoni
- Laboratory of Molecular Immunology and Immunopathology, Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Santo Landolfo
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Manuela Sironi
- Laboratory of Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Cristina Cerboni
- Laboratory of Molecular Immunology and Immunopathology, Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Dell'Oste
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Bitra A, Nemčovičová I, Picarda G, Doukov T, Wang J, Benedict CA, Zajonc DM. Structure of human cytomegalovirus UL144, an HVEM orthologue, bound to the B and T cell lymphocyte attenuator. J Biol Chem 2019; 294:10519-10529. [PMID: 31126984 DOI: 10.1074/jbc.ra119.009199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/23/2019] [Indexed: 11/06/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus that has co-evolved with the host immune system to establish lifelong persistence. HCMV encodes many immunomodulatory molecules, including the glycoprotein UL144. UL144 is a structural mimic of the tumor necrosis factor receptor superfamily member HVEM (herpesvirus entry mediator), which binds to the various ligands LIGHT, LTα, BTLA, CD160, and gD. However, in contrast to HVEM, UL144 only binds BTLA, inhibiting T-cell activation. Here, we report the crystal structure of the UL144-BTLA complex, revealing that UL144 utilizes residues from its N-terminal cysteine-rich domain 1 (CRD1) to interact uniquely with BTLA. The shorter CRD2 loop of UL144 also alters the relative orientation of BTLA binding with both N-terminal CRDs. By employing structure-guided mutagenesis, we have identified a mutant of BTLA (L123A) that interferes with HVEM binding but preserves UL144 interactions. Furthermore, our results illuminate structural differences between UL144 and HVEM that explain its binding selectivity and highlight it as a suitable scaffold for designing superior, immune inhibitory BTLA agonists.
Collapse
Affiliation(s)
- Aruna Bitra
- From the Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California 92037
| | - Ivana Nemčovičová
- the Biomedical Research Center, Slovak Academy of Sciences, SK 84505 Bratislava, Slovakia
| | - Gaelle Picarda
- From the Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California 92037
| | - Tzanko Doukov
- the Stanford Synchrotron Radiation Lightsource, SLAC, Menlo Park, California 94025, and
| | - Jing Wang
- From the Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California 92037
| | - Chris A Benedict
- From the Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California 92037
| | - Dirk M Zajonc
- From the Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California 92037, .,the Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Garcia de Figueiredo G, Marques AA, Mussi-Pinhata MM, Silva WA, Yamamoto AY. Is the mixture of human cytomegalovirus genotypes frequent in infants with congenital infection at birth in a high seroprevalence population? J Med Virol 2018; 90:1389-1397. [DOI: 10.1002/jmv.25205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/13/2018] [Indexed: 11/06/2022]
Affiliation(s)
| | - Adriana Aparecida Marques
- Center for Medical Genetics at General Hospital of Ribeirão Preto, Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | | | - Wilson Araújo Silva
- Center for Medical Genetics at General Hospital of Ribeirão Preto, Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
- Department of Genetics, Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - Aparecida Yulie Yamamoto
- Department of Pediatrics, Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
- Center for Medical Genetics at General Hospital of Ribeirão Preto, Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| |
Collapse
|
7
|
Barani R, Mani M, Sarangan G, Soundararajan P, Palani G, Srikanth P. CMV genotyping using different samples in post renal transplant recipients with CMV disease. CANADIAN JOURNAL OF BIOTECHNOLOGY 2017. [DOI: 10.24870/cjb.2017-a80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Stangherlin LM, de Paula FN, Icimoto MY, Ruiz LGP, Nogueira ML, Braz ASK, Juliano L, da Silva MCC. Positively Selected Sites at HCMV gB Furin Processing Region and Their Effects in Cleavage Efficiency. Front Microbiol 2017; 8:934. [PMID: 28588572 PMCID: PMC5441137 DOI: 10.3389/fmicb.2017.00934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/08/2017] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus is a ubiquitous infectious agent that affects mainly immunosuppressed, fetuses, and newborns. The virus has several polymorphic regions, in particular in the envelope glycoproteins. The UL55 gene encodes the glycoprotein B that has a variable region, containing a furin cleavage site and according to the variability different genotypes are characterized. Here we investigated variability and existence of selective pressure on the UL55 variable region containing the furin cleavage site in 213 clinical sequences from patients worldwide. We showed the occurrence of positive selective pressure on gB codons 461 and 462, near the furin cleavage site. Cleavage analysis of synthesized peptides demonstrated that most mutations confer better cleavage by furin, suggesting that evolution is acting in order to increase the efficiency cleavage and supporting the hypothesis that gB processing is important in the host. We also demonstrated that peptides containing sequences, that characterize genotypes gB2 and 3, are differentially cleaved by furin. Our data demonstrate for the first time that variability in the cleavage site is related to degree of gB processing by furin.
Collapse
Affiliation(s)
- Lucas M Stangherlin
- Center for Natural Sciences and Humanities, Federal University of ABCSanto André, Brazil
| | - Felipe N de Paula
- Center for Natural Sciences and Humanities, Federal University of ABCSanto André, Brazil.,Pasteur InstituteSão Paulo, Brazil
| | - Marcelo Y Icimoto
- Department of Biophysics, Paulista Medical School, Federal University of São PauloSão Paulo, Brazil
| | - Leonardo G P Ruiz
- Medical School of São José do Rio PretoSão José do Rio Preto, Brazil
| | | | - Antônio S K Braz
- Center for Natural Sciences and Humanities, Federal University of ABCSanto André, Brazil
| | - Luiz Juliano
- Department of Biophysics, Paulista Medical School, Federal University of São PauloSão Paulo, Brazil
| | - Maria C C da Silva
- Center for Natural Sciences and Humanities, Federal University of ABCSanto André, Brazil
| |
Collapse
|
9
|
Polymorphisms and features of cytomegalovirus UL144 and UL146 in congenitally infected neonates with hepatic involvement. PLoS One 2017; 12:e0171959. [PMID: 28222150 PMCID: PMC5319779 DOI: 10.1371/journal.pone.0171959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/28/2017] [Indexed: 10/25/2022] Open
Abstract
Human cytomegalovirus is a significant agent of hepatic involvement in neonates. In this study, we investigated the polymorphisms and features of the viral genes UL144 and UL146 as well as their significance to congenital hepatic involvement. In 79 neonates with congenital cytomegalovirus infection and hepatic involvement, full length UL144 and UL146 were successfully amplified in 73.42% and 60.76% of cases, respectively. Sequencing indicated that both genes were hypervariable. Notably, UL144 genotype B was highly associated with aspartate aminotransferase (P = 0.028) and lactate dehydrogenase (P = 0.046). Similarly, UL146 genotype G1 and G13 were significantly associated with CMV IgM (P = 0.026), CMV IgG (P = 0.034), alanine aminotransferase (P = 0.019), and aspartate aminotransferase (P = 0.032). In conclusion, dominant UL144 (genotype B) and UL146 (genotype G1 and G13) genotypes are associated with elevated levels of enzymes and CMV IgM and IgG of cytomegalovirus infection.
Collapse
|
10
|
Kaminski H, Fishman JA. The Cell Biology of Cytomegalovirus: Implications for Transplantation. Am J Transplant 2016; 16:2254-69. [PMID: 26991039 DOI: 10.1111/ajt.13791] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/17/2016] [Accepted: 03/07/2016] [Indexed: 01/25/2023]
Abstract
Interpretation of clinical data regarding the impact of cytomegalovirus (CMV) infection on allograft function is complicated by the diversity of viral strains and substantial variability of cellular receptors and viral gene expression in different tissues. Variation also exists in nonspecific (monocytes and dendritic cells) and specific (NK cells, antibodies) responses that augment T cell antiviral activities. Innate immune signaling pathways and expanded pools of memory NK cells and γδ T cells also serve to amplify host responses to infection. The clinical impact of specific memory T cell anti-CMV responses that cross-react with graft antigens and alloantigens is uncertain but appears to contribute to graft injury and to the abrogation of allograft tolerance. These responses are modified by diverse immunosuppressive regimens and by underlying host immune deficits. The impact of CMV infection on the transplant recipient reflects cellular changes and corresponding host responses, the convergence of which has been termed the "indirect effects" of CMV infection. Future studies will clarify interactions between CMV infection and allograft injury and will guide interventions that may enhance clinical outcomes in transplantation.
Collapse
Affiliation(s)
- H Kaminski
- Kidney Transplant Unit, CHU Bordeaux Pellegrin, Place Raba Léon, Bordeaux, France
| | - J A Fishman
- Transplant Infectious Disease and Immunocompromised Host Program and MGH Transplant Center, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
11
|
Chen HP, Jiang JK, Chan CH, Teo WH, Yang CY, Chen YC, Chou TY, Lin CH, Chan YJ. Genetic polymorphisms of the human cytomegalovirus UL144 gene in colorectal cancer and its association with clinical outcome. J Gen Virol 2016; 96:3613-3623. [PMID: 26450180 DOI: 10.1099/jgv.0.000308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human cytomegalovirus (HCMV) has been increasingly detected in colorectal cancer (CRC), and genetic polymorphisms in HCMV affect its pathogenesis. This study aimed to investigate HCMV genetic polymorphisms in CRC and its correlation with the clinical outcomes. We performed PCR and sequencing of a viral immunomodulatory gene, UL144, in clinical isolates and CRC specimens. The nucleotide and amino acid sequences were aligned, and a phylogenetic tree was constructed. The clinical, pathological and survival data were compared among tumours with different UL144 genotypes. HCMV was detected in 49 (47.8 %) of the tumour specimens. Genotype A predominated in 43 samples (22/43; 51.2 %) with successful sequencing, followed by genotype B (13/43; 30.2 %) and genotype C (8/43; 18.6 %). The genotypic distribution was similar to that of the clinical isolates and those reported in other Asian populations. The amino acid sequence of genotype B was the most conserved. For stage II and III CRC patients with HCMV-positive tumours, disease-free survival (DFS) varied among the three major genotypes (P50.0046). The presence of genotype B virus in the tumours was associated with a shorter DFS and independently predicted tumour recurrence in a multivariate Cox proportional hazards model (hazard ratio, 5.79; 95 % confidence interval, 1.30–25.81; P50.021). By reverse transcription PCR, tumour samples with genotype B viruses had the highest rate of UL144 expression. Our results suggest that genetic polymorphisms of HCMV UL144 are associated with clinical outcome in CRC and that HCMV may play an immunomodulatory role in the tumour microenvironment of CRC.
Collapse
Affiliation(s)
- Hsin-Pai Chen
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Kai Jiang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Hao Chan
- Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Huai Teo
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yung Yang
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Yen-Chung Chen
- Department of Pathology, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Teh-Ying Chou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Jiun Chan
- Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Microbiology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Murrell I, Wilkie GS, Davison AJ, Statkute E, Fielding CA, Tomasec P, Wilkinson GWG, Stanton RJ. Genetic Stability of Bacterial Artificial Chromosome-Derived Human Cytomegalovirus during Culture In Vitro. J Virol 2016; 90:3929-43. [PMID: 26842472 PMCID: PMC4810542 DOI: 10.1128/jvi.02858-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/21/2016] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED Clinical human cytomegalovirus (HCMV) strains invariably mutate when propagatedin vitro Mutations in gene RL13 are selected in all cell types, whereas in fibroblasts mutants in the UL128 locus (UL128L; genes UL128, UL130, and UL131A) are also selected. In addition, sporadic mutations are selected elsewhere in the genome in all cell types. We sought to investigate conditions under which HCMV can be propagated without incurring genetic defects. Bacterial artificial chromosomes (BACs) provide a stable, genetically defined source of viral genome. Viruses were generated from BACs containing the genomes of strains TR, TB40, FIX, and Merlin, as well as from Merlin-BAC recombinants containing variant nucleotides in UL128L from TB40-BAC4 or FIX-BAC. Propagation of viruses derived from TR-BAC, TB40-BAC4, and FIX-BAC in either fibroblast or epithelial cells was associated with the generation of defects around the prokaryotic vector, which is retained in the unique short (US) region of viruses. This was not observed for Merlin-BAC, from which the vector is excised in derived viruses; however, propagation in epithelial cells was consistently associated with mutations in the unique longb' (UL/b') region, all impacting on gene UL141. Viruses derived from Merlin-BAC in fibroblasts had mutations in UL128L, but mutations occurred less frequently with recombinants containing UL128L nucleotides from TB40-BAC4 or FIX-BAC. Viruses derived from a Merlin-BAC derivative in which RL13 and UL128L were either mutated or repressed were remarkably stable in fibroblasts. Thus, HCMV containing a wild-type gene complement can be generatedin vitroby deriving virus from a self-excising BAC in fibroblasts and repressing RL13 and UL128L. IMPORTANCE Researchers should aim to study viruses that accurately represent the causative agents of disease. This is problematic for HCMV because clinical strains mutate rapidly when propagatedin vitro, becoming less cell associated, altered in tropism, more susceptible to natural killer cells, and less pathogenic. Following isolation from clinical material, HCMV genomes can be stabilized by cloning into bacterial artificial chromosomes (BACs), and then virus is regenerated by DNA transfection. However, mutations can occur not only during isolation prior to BAC cloning but also when virus is regenerated. We have identified conditions under which BAC-derived viruses containing an intact, wild-type genome can be propagatedin vitrowith minimal risk of mutants being selected, enabling studies of viruses expressing the gene complement of a clinical strain. However, even under these optimized conditions, sporadic mutations can occur, highlighting the advisability of sequencing the HCMV stocks used in experiments.
Collapse
Affiliation(s)
- Isa Murrell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Gavin S Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Evelina Statkute
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ceri A Fielding
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Peter Tomasec
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Gavin W G Wilkinson
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard J Stanton
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
13
|
Lassalle F, Depledge DP, Reeves MB, Brown AC, Christiansen MT, Tutill HJ, Williams RJ, Einer-Jensen K, Holdstock J, Atkinson C, Brown JR, van Loenen FB, Clark DA, Griffiths PD, Verjans GM, Schutten M, Milne RS, Balloux F, Breuer J. Islands of linkage in an ocean of pervasive recombination reveals two-speed evolution of human cytomegalovirus genomes. Virus Evol 2016; 2:vew017. [PMID: 30288299 PMCID: PMC6167919 DOI: 10.1093/ve/vew017] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human cytomegalovirus (HCMV) infects most of the population worldwide, persisting throughout the host's life in a latent state with periodic episodes of reactivation. While typically asymptomatic, HCMV can cause fatal disease among congenitally infected infants and immunocompromised patients. These clinical issues are compounded by the emergence of antiviral resistance and the absence of an effective vaccine, the development of which is likely complicated by the numerous immune evasins encoded by HCMV to counter the host's adaptive immune responses, a feature that facilitates frequent super-infections. Understanding the evolutionary dynamics of HCMV is essential for the development of effective new drugs and vaccines. By comparing viral genomes from uncultivated or low-passaged clinical samples of diverse origins, we observe evidence of frequent homologous recombination events, both recent and ancient, and no structure of HCMV genetic diversity at the whole-genome scale. Analysis of individual gene-scale loci reveals a striking dichotomy: while most of the genome is highly conserved, recombines essentially freely and has evolved under purifying selection, 21 genes display extreme diversity, structured into distinct genotypes that do not recombine with each other. Most of these hyper-variable genes encode glycoproteins involved in cell entry or escape of host immunity. Evidence that half of them have diverged through episodes of intense positive selection suggests that rapid evolution of hyper-variable loci is likely driven by interactions with host immunity. It appears that this process is enabled by recombination unlinking hyper-variable loci from strongly constrained neighboring sites. It is conceivable that viral mechanisms facilitating super-infection have evolved to promote recombination between diverged genotypes, allowing the virus to continuously diversify at key loci to escape immune detection, while maintaining a genome optimally adapted to its asymptomatic infectious lifecycle.
Collapse
Affiliation(s)
- Florent Lassalle
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Daniel P. Depledge
- Division of Infection and Immunity, University College London, London, United
Kingdom
| | - Matthew B. Reeves
- Division of Infection and Immunity, University College London, London, United
Kingdom
| | | | - Mette T. Christiansen
- Division of Infection and Immunity, University College London, London, United
Kingdom
| | - Helena J. Tutill
- Division of Infection and Immunity, University College London, London, United
Kingdom
| | - Rachel J. Williams
- Division of Infection and Immunity, University College London, London, United
Kingdom
| | | | | | - Claire Atkinson
- Department of Virology, Royal Free Hospital, London, United Kingdom
| | - Julianne R. Brown
- Microbiology, Virology and Infection Prevention and Control, Camelia Botnar
Laboratories, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United
Kingdom
| | | | - Duncan A. Clark
- Department of Virology, Barts Health NHS Trust, London, United Kingdom
| | - Paul D. Griffiths
- Division of Infection and Immunity, University College London, London, United
Kingdom
| | | | - Martin Schutten
- Department of Viroscience, Erasmus, MC Rotterdam, the Netherlands
| | - Richard S.B. Milne
- Division of Infection and Immunity, University College London, London, United
Kingdom
| | - Francois Balloux
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, United
Kingdom
| |
Collapse
|
14
|
Brañas P, Blázquez-Gamero D, Galindo A, Prieto C, Olabarrieta I, Cuadrado I, Folgueira L. Cytomegalovirus Genotype Distribution Among Congenitally and Postnatally Infected Patients: Association of Particular Glycoprotein (g)B and gN Types With Symptomatic Disease. Open Forum Infect Dis 2015; 2:ofv151. [PMID: 26613094 PMCID: PMC4653958 DOI: 10.1093/ofid/ofv151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/30/2015] [Indexed: 01/15/2023] Open
Abstract
Background. Human cytomegalovirus is a leading cause of congenital infection, and there are limited data on prognosis markers in disease development. We aimed to study 3 virology targets (glycoprotein [g]B, gN, and UL144) to assess their correlation with congenital infection and various organ system involvement. Methods. Forty-eight congenital cases and 58 postnatally infected children were included (2003–2014). Genotyping for the 3 targets and distribution among the cohorts were investigated, and the relationship between the gB, gN, and UL144 types with clinical manifestations in congenital infection was also studied. Results. All of the genotypes were similarly represented among cohorts, and the most prevalent were the UL144B, gB1, and gN1 genotypes. The gB2 genotype was associated with abnormal image findings by ultrasound and/or magnetic resonance in congenital infection (odds ratio [OR], 6.2; 95% confidence interval [CI], 1.1–34.3; P = .036); the gN1 genotype was associated with an elevated risk of developing neurological disorders (OR, 7.0; 95% CI, 1.1–45.9; P = .043). Both gN1 and gB2 were independent factors for symptomatic infection. Statistical analyses showed no association between any UL144 genotype and disease severity. Conclusions. All of the genotypes can be involved in congenital infection, although the gB2 and gN1 genotypes might be associated with a more serious illness.
Collapse
Affiliation(s)
- Patricia Brañas
- Department of Clinical Microbiology ; Instituto de Investigación Biomédica "i+12"
| | | | - Alberto Galindo
- Fetal Medicine Unit, Department of Obstetrics and Gynecology , Hospital Universitario 12 de Octubre
| | - Columbiana Prieto
- Department of Clinical Microbiology ; Instituto de Investigación Biomédica "i+12"
| | - Iciar Olabarrieta
- Department of Pediatrics , Hospital Universitario Severo Ochoa , Leganés
| | - Irene Cuadrado
- Department of Pediatrics , Hospital Universitario de Getafe , Madrid , Spain
| | - Lola Folgueira
- Department of Clinical Microbiology ; Instituto de Investigación Biomédica "i+12"
| |
Collapse
|
15
|
Strain Variation and Disease Severity in Congenital Cytomegalovirus Infection: In Search of a Viral Marker. Infect Dis Clin North Am 2015; 29:401-14. [PMID: 26154664 DOI: 10.1016/j.idc.2015.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The wide spectrum of congenital cytomegalovirus (CMV) disease and known differences in the biology and in vitro growth of CMV strains continue to drive studies in search for specific viral genetic determinants that may predict severity of congenital CMV disease. Several CMV genes have been studied in detail in congenitally infected children, but the complexity of the viral genome and differences in the definition of symptomatic disease versus asymptomatic CMV infection continue to raise questions related to what constitutes a pathogenic CMV strain.
Collapse
|
16
|
High-throughput analysis of human cytomegalovirus genome diversity highlights the widespread occurrence of gene-disrupting mutations and pervasive recombination. J Virol 2015; 89:7673-7695. [PMID: 25972543 DOI: 10.1128/jvi.00578-15] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human cytomegalovirus is a widespread pathogen of major medical importance. It causes significant morbidity and mortality in the immunocompromised and congenital infections can result in severe disabilities or stillbirth. Development of a vaccine is prioritized, but no candidate is close to release. Although correlations of viral genetic variability with pathogenicity are suspected, knowledge about strain diversity of the 235kb genome is still limited. In this study, 96 full-length human cytomegalovirus genomes from clinical isolates were characterized, quadrupling the available information for full-genome analysis. These data provide the first high-resolution map of human cytomegalovirus interhost diversity and evolution. We show that cytomegalovirus is significantly more divergent than all other human herpesviruses and highlight hotspots of diversity in the genome. Importantly, 75% of strains are not genetically intact, but contain disruptive mutations in a diverse set of 26 genes, including immunomodulative genes UL40 and UL111A. These mutants are independent from culture passaging artifacts and circulate in natural populations. Pervasive recombination, which is linked to the widespread occurrence of multiple infections, was found throughout the genome. Recombination density was significantly higher than in other human herpesviruses and correlated with strain diversity. While the overall effects of strong purifying selection on virus evolution are apparent, evidence of diversifying selection was found in several genes encoding proteins that interact with the host immune system, including UL18, UL40, UL142 and UL147. These residues may present phylogenetic signatures of past and ongoing virus-host interactions. IMPORTANCE Human cytomegalovirus has the largest genome of all viruses that infect humans. Currently, there is a great interest in establishing associations between genetic variants and strain pathogenicity of this herpesvirus. Since the number of publicly available full-genome sequences is limited, knowledge about strain diversity is highly fragmented and biased towards a small set of loci. Combined with our previous work, we have now contributed 101 complete genome sequences. We have used these data to conduct the first high-resolution analysis of interhost genome diversity, providing an unbiased and comprehensive overview of cytomegalovirus variability. These data are of major value to the development of novel antivirals and a vaccine and to identify potential targets for genotype-phenotype experiments. Furthermore, they have enabled a thorough study of the evolutionary processes that have shaped cytomegalovirus diversity.
Collapse
|
17
|
Oka N, Suzuki T, Inoue T, Kobayashi T, Ohashi Y. Polymorphisms in cytomegalovirus genotype in immunocompetent patients with corneal endotheliitis or iridocyclitis. J Med Virol 2015; 87:1441-5. [PMID: 25963863 DOI: 10.1002/jmv.24239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 12/28/2022]
Abstract
Cytomegalovirus (CMV) that caused corneal endotheliitis and iridocyclitis in immunocompetent patients was genotyped. The gB type1 was detected in seven endotheliitis samples (77.8%) and five iridocyclitis samples (100%), and the gB type 3 was detected in two endotheliitis samples (22.2%). The UL144 type 1 was found in five endotheliitis samples (45.5%) and five iridocyclitis samples (83.3%). The UL144 type 2 was found in two endotheliitis samples (18.2%) and one iridocyclitis sample (16.7%). The gB type 1 was predominant in endotheliitis and iridocyclitis, and the CMV genotypes in eyes with endotheliitis and iridocyclitis were similar.
Collapse
Affiliation(s)
- Naoko Oka
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Japan
| | - Takashi Suzuki
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Japan
| | - Tomoyuki Inoue
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Japan
| | - Takeshi Kobayashi
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Japan
| | - Yuichi Ohashi
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Japan
| |
Collapse
|
18
|
Paradowska E, Studzińska M, Suski P, Kasztelewicz B, Wiśniewska-Ligier M, Zawilińska B, Gaj Z, Nowakowska D. Human cytomegalovirus UL55, UL144, and US28 genotype distribution in infants infected congenitally or postnatally. J Med Virol 2015; 87:1737-48. [DOI: 10.1002/jmv.24222] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Edyta Paradowska
- Laboratory of Molecular Virology and Biological Chemistry; Institute of Medical Biology; Polish Academy of Sciences; Lodz Poland
| | - Mirosława Studzińska
- Laboratory of Molecular Virology and Biological Chemistry; Institute of Medical Biology; Polish Academy of Sciences; Lodz Poland
| | - Patrycja Suski
- Laboratory of Molecular Virology and Biological Chemistry; Institute of Medical Biology; Polish Academy of Sciences; Lodz Poland
| | - Beata Kasztelewicz
- Department of Clinical Microbiology and Immunology; The Children's Memorial Health Institute; Warsaw Poland
| | | | - Barbara Zawilińska
- Department of Virology; Jagiellonian University Medical College; Cracow Poland
| | - Zuzanna Gaj
- Department of Fetal-Maternal Medicine and Gynaecology; Polish Mother's Memorial Hospital Research Institute; Lodz Poland
| | - Dorota Nowakowska
- Department of Fetal-Maternal Medicine and Gynaecology; Polish Mother's Memorial Hospital Research Institute; Lodz Poland
- Department of Fetal-Maternal Medicine and Gynaecology; 3rd Chair of Gynaecology and Obstetrics; Medical University; Lodz Poland
| |
Collapse
|
19
|
Abstract
In celebrating the 60th anniversary of the first isolation of human cytomegalovirus (HCMV), we reflect on the merits and limitations of the viral strains currently being used to develop urgently needed treatments. HCMV research has been dependent for decades on the high-passage strains AD169 and Towne, heavily exploiting their capacity to replicate efficiently in fibroblasts. However, the genetic integrity of these strains is so severely compromised that great caution needs to be exercised when considering their past and future use. It is now evident that wild-type HCMV strains are not readily propagated in vitro. HCMV mutants are rapidly selected during isolation in fibroblasts, reproducibly affecting gene RL13, the UL128 locus (which includes genes UL128, UL130 and UL131A) and often the UL/b′ region. As a result, the virus becomes less cell associated, altered in tropism and less pathogenic. This problem is not restricted to high-passage strains, as even low-passage strains can harbour biologically significant mutations. Cloning and manipulation of the HCMV genome as a bacterial artificial chromosome (BAC) offers a means of working with stable, genetically defined strains. To this end, the low-passage strain Merlin genome was cloned as a BAC and sequentially repaired to match the viral sequence in the original clinical sample from which Merlin was derived. Restoration of UL128L to wild type was detrimental to growth in fibroblasts, whereas restoration of RL13 impaired growth in all cell types tested. Stable propagation of phenotypically wild-type virus could be achieved only by placing both regions under conditional expression. In addition to the development of these tools, the Merlin transcriptome and proteome have been characterized in unparalleled detail. Although Merlin may be representative of the clinical agent, high-throughput whole-genome deep sequencing studies have highlighted the remarkable high level of interstrain variation present in circulating virus. There is a need to develop systems capable of addressing the significance of this diversity, free from the confounding effects of genetic changes associated with in vitro adaptation. The generation of a set of BAC clones, each containing the genome of a different HCMV strain repaired to match the sequence in the clinical sample, would provide a pathway to address the biological and clinical effects of natural variation in wild-type HCMV.
Collapse
|
20
|
Sachithanandham J, Kannangai R, Pulimood SA, Desai A, Abraham AM, Abraham OC, Ravi V, Samuel P, Sridharan G. Significance of Epstein-Barr virus (HHV-4) and CMV (HHV-5) infection among subtype-C human immunodeficiency virus-infected individuals. Indian J Med Microbiol 2015; 32:261-9. [PMID: 25008818 DOI: 10.4103/0255-0857.136558] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
PURPOSE Opportunistic viral infections are one of the major causes of morbidity and mortality in HIV infection and their molecular detection in the whole blood could be a useful diagnostic tool. OBJECTIVE The frequency of opportunistic DNA virus infections among HIV-1-infected individuals using multiplex real-time PCR assays was studied. MATERIALS AND METHODS The subjects were in two groups; group 1: Having CD4 counts<100 cells/µl (n=118) and the group 2: counts>350 cells/µl (n=173). Individuals were classified by WHO clinical staging system. Samples from 70 healthy individuals were tested as controls. In-house qualitative multiplex real-time PCR was standardised and whole blood samples from 291 were tested, followed by quantitative real-time PCR for positives. In a proportion of samples genotypes of Epstein-Barr virus (EBV) and CMV were determined. RESULTS The two major viral infections observed were EBV and CMV. The univariate analysis of CMV load showed significant association with cryptococcal meningitis, oral hairy leukoplakia (OHL), CMV retinitis, CD4 counts and WHO staging (P<0.05) while the multivariate analysis showed an association with OHL (P=0.02) and WHO staging (P=0.05). Univariate analysis showed an association of EBV load with CD4 counts and WHO staging (P<0.05) and multivariate analysis had association only with CD4 counts. The CMV load was significantly associated with elevated SGPT and SGOT level (P<0.05) while the EBV had only with SGOT. CONCLUSION This study showed an association of EBV and CMV load with CD4+ T cell counts, WHO staging and elevated liver enzymes. These viral infections can accelerate HIV disease and multiplex real-time PCR can be used for the early detection. Genotype 1 and 2 of EBV and genotype gB1 and gB2 of CMV were the prevalent in the HIV-1 subtype C-infected south Indians.
Collapse
Affiliation(s)
| | - R Kannangai
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Genotype distribution, viral load and clinical characteristics of infants with postnatal or congenital cytomegalovirus infection. PLoS One 2014; 9:e108018. [PMID: 25268349 PMCID: PMC4182318 DOI: 10.1371/journal.pone.0108018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/17/2014] [Indexed: 11/19/2022] Open
Abstract
Background Congenital cytomegalovirus infection is a leading cause of long-term sequelae. Cytomegalovirus is also frequently transmitted to preterm infants postnatally, but these infections are mostly asymptomatic. A correlation between cytomegalovirus genotypes and clinical manifestations has been reported previously in infants with congenital infection, but not in preterm infants with postnatal infection. Objectives The main objective of this study was to investigate cytomegalovirus genotype distribution in postnatal and congenital cytomegalovirus infection and its association with disease severity. Methods Infants admitted to the neonatal intensive care unit of the University Medical Center Utrecht, The Netherlands between 2003–2010 and diagnosed with postnatal or congenital cytomegalovirus infection were included. Classification of cytomegalovirus isolates in genotypes was performed upon amplification and sequencing of the cytomegalovirus UL55 (gB) and UL144 genes. Clinical data, cerebral abnormalities, neurodevelopmental outcome and viral load were studied in relation to genotype distribution. Results Genotyping results were obtained from 58 preterm infants with postnatal cytomegalovirus infection and 13 infants with congenital cytomegalovirus infection. Postnatal disease was mild in all preterm infants and all had favourable outcome. Infants with congenital infection were significantly more severely affected than infants with postnatal infection. Seventy-seven percent of these infants were symptomatic at birth, 2/13 died and 3/13 developed long-term sequelae (median follow-up 6 (range 2–8) years). The distribution of cytomegalovirus genotypes was comparable for postnatal and congenital infection. UL55 genotype 1 and UL144 genotype 3 were predominant genotypes in both groups. Conclusions Distribution of UL55 and UL144 genotypes was similar in asymptomatic postnatal and severe congenital CMV infection suggesting that other factors rather than cytomegalovirus UL55 and UL144 genotype are responsible for the development of severe disease.
Collapse
|
22
|
Fu X, Li L, Huang C, Li X, Wang H, Xie Z, Chen Z. Polymorphism of human cytomegalovirus (HCMV) UL144 gene in low passage clinical isolates. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0353-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Sijmons S, Van Ranst M, Maes P. Genomic and functional characteristics of human cytomegalovirus revealed by next-generation sequencing. Viruses 2014; 6:1049-72. [PMID: 24603756 PMCID: PMC3970138 DOI: 10.3390/v6031049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 01/08/2023] Open
Abstract
The complete genome of human cytomegalovirus (HCMV) was elucidated almost 25 years ago using a traditional cloning and Sanger sequencing approach. Analysis of the genetic content of additional laboratory and clinical isolates has lead to a better, albeit still incomplete, definition of the coding potential and diversity of wild-type HCMV strains. The introduction of a new generation of massively parallel sequencing technologies, collectively called next-generation sequencing, has profoundly increased the throughput and resolution of the genomics field. These increased possibilities are already leading to a better understanding of the circulating diversity of HCMV clinical isolates. The higher resolution of next-generation sequencing provides new opportunities in the study of intrahost viral population structures. Furthermore, deep sequencing enables novel diagnostic applications for sensitive drug resistance mutation detection. RNA-seq applications have changed the picture of the HCMV transcriptome, which resulted in proof of a vast amount of splicing events and alternative transcripts. This review discusses the application of next-generation sequencing technologies, which has provided a clearer picture of the intricate nature of the HCMV genome. The continuing development and application of novel sequencing technologies will further augment our understanding of this ubiquitous, but elusive, herpesvirus.
Collapse
Affiliation(s)
- Steven Sijmons
- Laboratory of Clinical Virology, Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, Leuven BE-3000, Belgium.
| | - Marc Van Ranst
- Laboratory of Clinical Virology, Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, Leuven BE-3000, Belgium.
| | - Piet Maes
- Laboratory of Clinical Virology, Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, Leuven BE-3000, Belgium.
| |
Collapse
|
24
|
Šedý JR, Bjordahl RL, Bekiaris V, Macauley MG, Ware BC, Norris PS, Lurain NS, Benedict CA, Ware CF. CD160 activation by herpesvirus entry mediator augments inflammatory cytokine production and cytolytic function by NK cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:828-36. [PMID: 23761635 DOI: 10.4049/jimmunol.1300894] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lymphocyte activation is regulated by costimulatory and inhibitory receptors, of which both B and T lymphocyte attenuator (BTLA) and CD160 engage herpesvirus entry mediator (HVEM). Notably, it remains unclear how HVEM functions with each of its ligands during immune responses. In this study, we show that HVEM specifically activates CD160 on effector NK cells challenged with virus-infected cells. Human CD56(dim) NK cells were costimulated specifically by HVEM but not by other receptors that share the HVEM ligands LIGHT, Lymphotoxin-α, or BTLA. HVEM enhanced human NK cell activation by type I IFN and IL-2, resulting in increased IFN-γ and TNF-α secretion, and tumor cell-expressed HVEM activated CD160 in a human NK cell line, causing rapid hyperphosphorylation of serine kinases ERK1/2 and AKT and enhanced cytolysis of target cells. In contrast, HVEM activation of BTLA reduced cytolysis of target cells. Together, our results demonstrate that HVEM functions as a regulator of immune function that activates NK cells via CD160 and limits lymphocyte-induced inflammation via association with BTLA.
Collapse
Affiliation(s)
- John R Šedý
- Infectious and Inflammatory Disease Center, Sanford
- Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
The myeloid transcription factor GATA-2 regulates the viral UL144 gene during human cytomegalovirus latency in an isolate-specific manner. J Virol 2013; 87:4261-71. [PMID: 23365437 DOI: 10.1128/jvi.03497-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It is generally accepted that, following primary infection, human cytomegalovirus (HCMV) establishes lifelong latency in CD34(+) progenitor cells and other derivative cells of the myeloid lineage. In this study, we show that the viral UL144 gene is expressed during latent infection in two cell types of the myeloid lineage, CD34(+) and CD14(+) monocytes, and that the UL144 protein is functional in latently infected monocytes. However, this latency-associated expression of UL144 occurs only in certain isolates of HCMV and depends on the presence of functional GATA-2 transcription factor binding sites in the UL144 promoter, in contrast to the viral latency-associated gene LUNA, which we also show is regulated by GATA-2 but expressed uniformly during latent infection independent of the virus isolate. Taken together, these data suggest that the HCMV latency-associated transcriptome may be virus isolate specific and dependent on the repertoire of transcription factor binding sites in the promoters of latency-associated genes.
Collapse
|
26
|
Association of neurotropic viruses in HIV-infected individuals who died of secondary complications of tuberculosis, cryptococcosis, or toxoplasmosis in South India. J Clin Microbiol 2013; 51:1022-5. [PMID: 23284020 DOI: 10.1128/jcm.03321-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The frequencies of 10 opportunistic DNA viruses were determined by multiplex real-time PCR in paired cerebrospinal fluid (CSF) and brain tissue of HIV-infected individuals. In the CSF, viruses were detectable in 45/55 cases: JC virus (JCV) in 62%, Epstein-Barr virus (EBV) in 44%, cytomegalovirus (CMV) in 25%, varicella-zoster virus (VZV) in 3.6%, herpes simplex virus 1 (HSV-1) in 1.8%, and human herpesvirus 6 (HHV-6) in 1.8% of cases. A single virus was detectable in 20 cases, 19 cases had coinfection with two viruses, and 6 cases were positive for three viruses. JCV was detectable in the CSF of 62% of cases and in 42% of brain tissues, with higher loads in progressive multifocal leukoencephalopathy (PML) (P < 0.05).
Collapse
|
27
|
Stack G, Stacey MA, Humphreys IR. Herpesvirus exploitation of host immune inhibitory pathways. Viruses 2012; 4:1182-201. [PMID: 23012619 PMCID: PMC3446756 DOI: 10.3390/v4081182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/21/2012] [Accepted: 07/23/2012] [Indexed: 12/21/2022] Open
Abstract
Herpesviruses employ a plethora of mechanisms to circumvent clearance by host immune responses. A key feature of mammalian immune systems is the employment of regulatory pathways that limit immune responsiveness. The primary functions of these mechanisms are to control autoimmunity and limit exuberant responses to harmless antigen in mucosal surfaces. However, such pathways can be exploited by viral pathogens to enable acute infection, persistence and dissemination. Herein, we outline the current understanding of inhibitory pathways in modulating antiviral immunity during herpesvirus infections in vivo and discuss strategies employed by herpesviruses to exploit these pathways to limit host antiviral immunity.
Collapse
Affiliation(s)
- Gabrielle Stack
- Institute of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK.
| | | | | |
Collapse
|
28
|
Vogel JU, Otte J, Koch F, Gümbel H, Doerr HW, Cinatl J. Role of human cytomegalovirus genotype polymorphisms in AIDS patients with cytomegalovirus retinitis. Med Microbiol Immunol 2012; 202:37-47. [PMID: 22669631 DOI: 10.1007/s00430-012-0244-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/08/2012] [Indexed: 12/20/2022]
Abstract
Although several host factors have been identified to influence the course of HCMV infection, it still remains unclear why in AIDS patients without highly active antiretroviral therapy human cytomegalovirus (HCMV) retinitis is one of the most common opportunistic infections, whereas in other immunosuppressed individuals it has a low incidence. It was suggested that HCMV glycoprotein B strains may be suitable as marker for virulence and HCMV retinitis. Moreover, UL144 ORF, a member of the TNF-α receptor superfamily, may play a crucial role in innate defences and adaptive immune response of HCMV infection. Furthermore, sequence analyses of HCMV genes UL128, UL130, and UL131A as major determinants of virus entry and replication in epithelial and other cell types were performed. To evaluate the association of sequence variability of depicted viral genes with HCMV retinitis and in vitro growth properties in retinal pigment epithelial cells (RPE) and human foreskin fibroblasts (HFF), we compared 14 HCMV isolates obtained from vitreous fluid and urine of AIDS patients with clinically proven HCMV retinitis. Isolates were analyzed by PCR cycle sequencing and phylogenetic analysis. In addition, sequences of HCMV strains AF1, U8, U11, VR1814, and its cell culture adapted derivates were included. Sequence analysis of gB yielded three genetic subtypes (gB type 1 (5 isolates), gB type 2 (12 isolates), and gB type 3 (5 Isolates)), whereas sequence analysis of UL144 showed a greater diversity (7 isolates type 1A, 2 isolates type 1C, 7 isolates type 2, and 3 isolates type 3). In contrast, the UL128, UL130, and UL131A genes of all low-passage isolates were highly conserved and showed no preferential clustering. Moreover, in HFF and RPE cells, all of our HCMV isolates replicated efficiently independently of their genetic subtype. In conclusion, beside a possible link between the gB subtype 2 and HCMV retinitis, our study found no direct evidence for a connection between UL144/UL128/UL130/UL131A genotypes and the incidence of HCMV retinitis in AIDS patients.
Collapse
Affiliation(s)
- Jens-Uwe Vogel
- Institute of Medical Virology, Goethe University Hospital, Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
James SH, Prichard MN. The genetic basis of human cytomegalovirus resistance and current trends in antiviral resistance analysis. Infect Disord Drug Targets 2012; 11:504-13. [PMID: 21827431 DOI: 10.2174/187152611797636668] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 06/25/2010] [Indexed: 11/22/2022]
Abstract
Infections due to resistant human cytomegalovirus (CMV) are an emerging problem, particularly in immunocompromised hosts. When managing such patients, clinicians should be aware of the possibility of developing CMV antiviral resistance, especially while on prolonged therapy or if severe immunosuppression is present. CMV resistance to current antiviral agents is mediated by alterations in either the UL97 kinase or DNA polymerase, encoded by the UL97 and UL54 genes, respectively. UL97 mutations are capable of conferring resistance to ganciclovir, while UL54 mutations can impart resistance to ganciclovir, cidofovir, and foscarnet. If treatment failure is suspected to be due to antiviral resistance, CMV resistance analysis should be obtained. Phenotypic resistance assays performed on clinical isolates measure antiviral susceptibilities directly, but are laborious and time-consuming. Therefore, genotypic resistance analysis has become the more common means of diagnosing CMV resistance. Mutations in UL97 or UL54 may be clinically associated with resistance, but their effect on antiviral susceptibility must be confirmed by marker transfer techniques such as recombinant phenotyping.
Collapse
Affiliation(s)
- S H James
- University of Alabama at Birmingham, Birmingham, AL 35233-1711, USA.
| | | |
Collapse
|
30
|
Kim Y, Lee S, Kim S, Kim D, Ahn JH, Ahn K. Human cytomegalovirus clinical strain-specific microRNA miR-UL148D targets the human chemokine RANTES during infection. PLoS Pathog 2012; 8:e1002577. [PMID: 22412377 PMCID: PMC3297591 DOI: 10.1371/journal.ppat.1002577] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/26/2012] [Indexed: 02/07/2023] Open
Abstract
The human cytomegalovirus (HCMV) clinical strain Toledo and the attenuated strain AD169 exhibit a striking difference in pathogenic potential and cell tropism. The virulent Toledo genome contains a 15-kb segment, which is present in all virulent strains but is absent from the AD169 genome. The pathogenic differences between the 2 strains are thought to be associated with this additional genome segment. Cytokines induced during viral infection play major roles in the regulation of the cellular interactions involving cells of the immune and inflammatory systems and consequently determine the pathogenic outcome of infection. The chemokine RANTES (Regulated on activation, normal T-cell expressed and secreted) attracts immune cells during inflammation and the immune response, indicating a role for RANTES in viral pathogenesis. Here, we show that RANTES was downregulated in human foreskin fibroblast (HFF) cells at a later stage after infection with the Toledo strain but not after infection with the AD169 strain. miR-UL148D, the only miRNA predicted from the UL/b' sequences of the Toledo genome, targeted the 3′-untranslated region of RANTES and induced degradation of RANTES mRNA during infection. While wild-type Toledo inhibited expression of RANTES in HFF cells, Toledo mutant virus in which miR-UL148D is specifically abrogated did not repress RANTES expression. Furthermore, miR-UL148D-mediated downregulation of RANTES was inhibited by treatment with a miR-UL148D-specific inhibitor designed to bind to the miR-UL148D sequence via an antisense mechanism, supporting the potential value of antisense agents as therapeutic tools directed against HCMV. Our findings identify a viral microRNA as a novel negative regulator of the chemokine RANTES and provide clues for understanding the pathogenesis of the clinical strains of HCMV. Unlike the attenuated HCMV strain AD169, the clinical isolates of HCMV, including the Toledo strain, are virulent and can cause disease in healthy adults. Toledo differs from AD169 in that Toledo contains a 15-kb DNA segment, encoding at least 19 ORFs and a single microRNA known as miR-UL148D. This 15-kb segment is believed to be a major determinant of the virulence and pathogenicity of the Toledo clinical strain. The CC–chemokine RANTES recruits immune cells during viral infection, suggesting that it may play a role in virus-related diseases. Here, we show that RANTES mRNA was degraded in human foreskin fibroblast cells during infection with Toledo but not during infection with AD169. The degradation of RANTES mRNA was mediated by miR-UL148D, the only viral microRNA predicted from the 15–kb segment of the Toledo genome. Accordingly, the levels of secreted RANTES in infected cells with ToledoΔmiR-UL148D in which miR-UL148D was deleted were higher than those in infected cells with Toledo. Our results reveal that a viral microRNA could be a novel potential therapeutic target and provide important insights into understanding the differences in pathogenic potential between clinical and attenuated strains.
Collapse
Affiliation(s)
- Youngkyun Kim
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sanghyun Lee
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sungchul Kim
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Donghyun Kim
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Kwangseog Ahn
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
31
|
He R, Ma Y, Qi Y, Jiang S, Wang N, Li M, Ji Y, Sun Z, Ruan Q. Characterization of human cytomegalovirus UL146 transcripts. Virus Res 2012; 163:223-8. [DOI: 10.1016/j.virusres.2011.09.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 01/14/2023]
|
32
|
Engel P, Angulo A. Viral Immunomodulatory Proteins: Usurping Host Genes as a Survival Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 738:256-76. [DOI: 10.1007/978-1-4614-1680-7_15] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Paradowska E, Studzińska M, Nowakowska D, Wilczyński J, Rycel M, Suski P, Gaj Z, Kaczmarek B, Zbróg Z, Leśnikowski ZJ. Distribution of UL144, US28 and UL55 genotypes in Polish newborns with congenital cytomegalovirus infections. Eur J Clin Microbiol Infect Dis 2011; 31:1335-45. [PMID: 22048843 DOI: 10.1007/s10096-011-1447-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/01/2011] [Indexed: 12/23/2022]
Abstract
Human cytomegalovirus (HCMV) is the most common congenital infection. HCMV strains display genetic variability in different regions. Distribution of HCMV genotypes in the population of congenitally infected newborns from Central Poland and viral load in newborns' blood is described and discussed. HCMV isolates were analysed by sequencing at three sites on the genome: the UL144 tumour necrosis factor-alpha (TNFα)-like receptor gene, the US28 beta-chemokine receptor gene and the UL55 envelope glycoprotein B (gB) gene. The newborns' blood was examined for HCMV DNA with a nested (UL144, UL55) or heminested (US28) polymerase chain reaction, and the genotypes were determined by sequence analysis. HCMV DNA was detectable in 25 out of 55 examined newborns born by HCMV-infected mothers (45.5%). The blood viral load in mother-infant pairs was determined. Most of the newborns had identical virus genotype, gB2 (96%), UL144 B1 (88%) and US28 A2 (84%). These genotypes were detected in all newborns with asymptomatic congenital infection. The occurrence of UL144 B1 or US28 A2 genotypes in the babies examined was significant in comparison to other genotypes (p=0.0002 and p=0.040 respectively). There was no association between specific gB subtypes in all patients groups (p=0.463). There was no correlation between HCMV genotypes and the outcome.
Collapse
Affiliation(s)
- E Paradowska
- Institute of Medical Biology, Polish Academy of Sciences, Laboratory of Molecular Virology and Biological Chemistry, Lodowa 106, 93-232, Lodz, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang N, Ma Y, Sun Z, Qi Y, Ji Y, He R, Li M, Ruan Q. Transcriptional features and transcript structure of UL145 in different strains of human cytomegalovirus. J Med Virol 2011; 83:2151-6. [DOI: 10.1002/jmv.22241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Schleiss MR. Congenital cytomegalovirus infection: molecular mechanisms mediating viral pathogenesis. Infect Disord Drug Targets 2011; 11:449-465. [PMID: 21827434 PMCID: PMC3869401 DOI: 10.2174/187152611797636721] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/21/2011] [Indexed: 05/31/2023]
Abstract
Human cytomegalovirus (CMV) is responsible for approximately 40,000 congenital infections in the United States each year. Congenital CMV disease frequently produces serious neurodevelopmental disability, as well as vision impairment and sensorineural hearing loss. Development of a CMV vaccine is therefore considered to be a major public health priority. The mechanisms by which CMV injures the fetus are complex and likely include a combination of direct fetal injury induced by pathologic virally-encoded gene products, an inability of the maternal immune response to control infection, and the direct impact of infection on placental function. CMV encodes gene products that function, both at the RNA and the protein level, to interfere with many cellular processes. These include gene products that modify the cell cycle; interfere with apoptosis; induce an inflammatory response; mediate vascular injury; induce site-specific breakage of chromosomes; promote oncogenesis; dysregulate cellular proliferation; and facilitate evasion of host immune responses. This minireview summarizes current concepts regarding these aspects of the molecular virology of CMV and the potential pathogenic impact of viral gene expression on the developing fetus. Areas for potential development of novel therapeutic intervention are suggested for improving the outcome of this disabling congenital infection.
Collapse
Affiliation(s)
- Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Minneapolis, MN 55455, USA.
| |
Collapse
|
36
|
He R, Ma Y, Qi Y, Wang N, Li M, Ji Y, Sun Z, Jiang S, Ruan Q. Characterization of the transcripts of human cytomegalovirus UL144. Virol J 2011; 8:299. [PMID: 21669005 PMCID: PMC3141681 DOI: 10.1186/1743-422x-8-299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/14/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The genome of human cytomegalovirus (HCMV) has been studied extensively, particularly in the UL/b' region. In this study, transcripts of one of the UL/b' genes, UL144, were identified in 3 HCMV isolates obtained from urine samples of congenitally infected infants. METHODS Northern blot hybridization, cDNA library screening, and RACE-PCR were used. RESULTS We identified at least 4 differentially regulated 3'-coterminal transcripts of UL144 in infected cells of 1,300, 1,600, 1,700, and 3,500 nucleotides (nt). The 1600 nt transcript was the major form of UL144 mRNA. The largest transcript initiated from the region within the UL141 open reading frame (ORF) and included UL141, UL142, UL143, UL144, and UL145 ORFs. CONCLUSIONS These findings reveal the complex nature of the transcription of the UL144 gene in clinical isolates.
Collapse
Affiliation(s)
- Rong He
- Clinical Genetics Department, The Affiliated Shengjing Hospital, China Medical University, 110004 Shenyang, Liaoning of China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hayashi S, Kimura H, Oshiro M, Kato Y, Yasuda A, Suzuki C, Watanabe Y, Morishima T, Hayakawa M. Transmission of cytomegalovirus via breast milk in extremely premature infants. J Perinatol 2011; 31:440-5. [PMID: 21164427 DOI: 10.1038/jp.2010.150] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE We prospectively evaluated the rate of postnatal cytomegalovirus (CMV) transmission through breast milk in extremely premature infants to address the impact of CMV infection on preterm infants during lactation. STUDY DESIGN A total of 25 mothers and 27 infants (two sets of twins) with birth weights <1000 g and/or gestational ages <28 weeks were enrolled in the study. They were mostly fed frozen-thawed breast milk. Breast milk, serum and urine samples were collected every 2 weeks and screened for CMV infection using the real-time polymerase chain reaction. RESULT All of the 21 CMV-seropositive mothers had detectable CMV DNA in their breast milk, with a peak at 4 to 6 weeks postpartum. CMV infection was confirmed in only one infant (4.3%) who displayed almost no clinical symptoms. CONCLUSION At our institutes, we mainly use frozen-thawed breast milk. We found low CMV transmission rates even in extremely premature infants, and the CMV-positive infant did not develop serious symptoms.
Collapse
Affiliation(s)
- S Hayashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Puchhammer-Stöckl E, Görzer I. Human cytomegalovirus: an enormous variety of strains and their possible clinical significance in the human host. Future Virol 2011. [DOI: 10.2217/fvl.10.87] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human cytomegalovirus (HCMV) does not exist as one defined virus genotype, but as a variety of different strains. Several studies have investigated the significance of specific viral genotypes for the clinical course of HCMV infection. Upon reinfection, patients may acquire additional HCMV strains, and infections with a mixture of HCMV strains appear to be quite common. The analysis of such mixed infections has become increasingly important, not only for investigating the clinical implications of mixed-genotype infections, but also for understanding the pathogenesis of subsequent reinfections with HCMV strains, and this is also of importance for HCMV vaccine development. This article summarizes the clinical implications of infection with individual HCMV genotypes and focuses on infection with mixed populations of HCMV strains.
Collapse
Affiliation(s)
| | - Irene Görzer
- Department of Virology, Medical University Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| |
Collapse
|
39
|
The canonical and unconventional ligands of the herpesvirus entry mediator. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:353-62. [PMID: 21153339 DOI: 10.1007/978-1-4419-6612-4_36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Human cytomegalovirus UL144 is associated with viremia and infant development sequelae in congenital infection. J Clin Microbiol 2010; 48:3956-62. [PMID: 20810771 DOI: 10.1128/jcm.01133-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human cytomegalovirus (HCMV) strains may be genotyped based on polymorphisms that exist within the UL144 gene, which is one of 19 viral genes lost in attenuated laboratory strains. In the present study, UL144 genotypes in congenitally infected babies (congenital cytomegalovirus [cCMV]) were determined, and the relationship between the genotype, viral load, cytokine profile, and patient developmental outcome was investigated. All cCMV infections identified during 2006 and 2007 were included (n = 29). A portion of the infants were clinically assessed at birth and at 12 to 18 months postinfection for cCMV clinical sequelae (n = 18/29). The plasma viral load (PVL) was requested for 23/29 patients, and the UL144 genotype was determined (n = 27/29). The cytokine profile in patient plasma or serum was assessed (n = 20/29). UL144 genotypes A, B, and C were detected within the cCMV population at 33.3%, 29.6%, and 25.9%, respectively. UL144 A and C were associated with a high PVL (P < 0.04). Furthermore, a significant association between the developmental outcome and UL144 A and C was observed (P < 0.04). Only patients infected with UL144 B and A/B were described as having a normal clinical outcome. In addition, a significant correlation between interleukin 10 (IL-10) levels and the PVL was observed (P < 0.04); however, there was no association between the genotype and the cytokine profile. The present study determined that the specific detection of UL144 genotypes A and C was indicative of serious cCMV infection and more likely to lead to long-term cCMV-associated clinical manifestations. The inclusion of HCMV UL144 genotyping along with the recommended PVL monitoring following cCMV diagnosis may aid prediction of the clinical outcome.
Collapse
|
41
|
|
42
|
Abstract
SUMMARY Cytokines mediate key communication pathways essential for regulation of immune responses. Full activation of antigen-responding lymphocytes requires cooperating signals from the tumor necrosis factor (TNF)-related cytokines and their specific receptors. LIGHT, a lymphotoxin-beta (LTbeta)-related TNF family member, modulates T-cell activation through two receptors, the herpesvirus entry mediator (HVEM) and indirectly through the LT-beta receptor. An unexpected finding revealed a non-canonical binding site on HVEM for the immunoglobulin superfamily member, B and T lymphocyte attenuator (BTLA), and an inhibitory signaling protein suppressing T-cell activation. Thus, HVEM can act as a molecular switch between proinflammatory and inhibitory signaling. The non-canonical HVEM-BTLA pathway also acts to counter LTbetaR signaling that promotes the proliferation of antigen-presenting dendritic cells (DCs) within lymphoid tissue microenvironments. These results indicate LTbeta receptor and HVEM-BTLA pathways form an integrated signaling circuit. Targeting these cytokine pathways with specific antagonists (antibody or decoy receptor) can alter lymphocyte differentiation and activation. Alternately, agonists directed at their cell surface receptors can restore homeostasis and potentially reset immune and inflammatory processes, which may be useful in treating autoimmune and infectious diseases and cancer.
Collapse
Affiliation(s)
- Carl F Ware
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
43
|
Qi Y, Ma YP, He R, Sun ZR, Ji YH, Huang YJ, Ruan Q. Sequence conservation of human cytomegalovirus UL140 open reading frame in clinical strains. ACTA ACUST UNITED AC 2009; 23:23-7. [PMID: 18437906 DOI: 10.1016/s1001-9294(09)60005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the variability of human cytomegalovirus (HCMV) UL140 open reading frame (ORF) in clinical strains, and to explore the relationship between the variability of UL140 ORF and different symptoms of HC-MV infection. METHODS HCMV UL140 ORF was amplified by polymerase chain reaction and sequenced selectedly in 30 clinical strains. RESULTS UL140 ORF of all clinical strains was amplified successfully. Compared with that of Toledo strain, the nucleotide and amino acid sequence identities among all strains were 96.5%-100.0% and 95.2%-100.0%, respectively. All of the nucleotide changes were substitutions. The post-translational modification sites were conserved. The result of phylogenetic tree showed that the strains did not cluster according to different clinical symptoms. CONCLUSION HCMV UL140 ORF in clinical strains is highly conserved, which may play an important role in HC-MV infection.
Collapse
Affiliation(s)
- Ying Qi
- Virus Laboratory, Shengjing Hospital, China Medical University, Shenyang 110004.
| | | | | | | | | | | | | |
Collapse
|
44
|
Miller-Kittrell M, Sparer TE. Feeling manipulated: cytomegalovirus immune manipulation. Virol J 2009; 6:4. [PMID: 19134204 PMCID: PMC2636769 DOI: 10.1186/1743-422x-6-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 01/09/2009] [Indexed: 02/03/2023] Open
Abstract
No one likes to feel like they have been manipulated, but in the case of cytomegalovirus (CMV) immune manipulation, we do not really have much choice. Whether you call it CMV immune modulation, manipulation, or evasion, the bottom line is that CMV alters the immune response in such a way to allow the establishment of latency with lifelong shedding. With millions of years of coevolution within their hosts, CMVs, like other herpesviruses, encode numerous proteins that can broadly influence the magnitude and quality of both innate and adaptive immune responses. These viral proteins include both homologues of host proteins, such as MHC class I or chemokine homologues, and proteins with little similarity to any other known proteins, such as the chemokine binding protein. Although a strong immune response is launched against CMV, these virally encoded proteins can interfere with the host's ability to efficiently recognize and clear virus, while others induce or alter specific immune responses to benefit viral replication or spread within the host. Modulation of host immunity allows survival of both the virus and the host. One way of describing it would be a kind of "mutually assured survival" (as opposed to MAD, Mutually Assured Destruction). Evaluation of this relationship provides important insights into the life cycle of CMV as well as a greater understanding of the complexity of the immune response to pathogens in general.
Collapse
Affiliation(s)
- Mindy Miller-Kittrell
- Department of Microbiology, University of Tennessee, 1414 Cumberland Ave, Knoxville, TN, USA.
| | | |
Collapse
|
45
|
Sedý JR, Spear PG, Ware CF. Cross-regulation between herpesviruses and the TNF superfamily members. Nat Rev Immunol 2008; 8:861-73. [PMID: 18949019 DOI: 10.1038/nri2434] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herpesviruses have evolved numerous strategies to subvert host immune responses so they can coexist with their host species. These viruses 'co-opt' host genes for entry into host cells and then express immunomodulatory genes, including mimics of members of the tumour-necrosis factor (TNF) superfamily, that initiate and alter host-cell signalling pathways. TNF superfamily members have crucial roles in controlling herpesvirus infection by mediating the direct killing of infected cells and by enhancing immune responses. Despite these strong immune responses, herpesviruses persist in a latent form, which suggests a dynamic relationship between the host immune system and the virus that results in a balance between host survival and viral control.
Collapse
Affiliation(s)
- John R Sedý
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | | | | |
Collapse
|
46
|
Revello MG, Campanini G, Piralla A, Furione M, Percivalle E, Zavattoni M, Gerna G. Molecular epidemiology of primary human cytomegalovirus infection in pregnant women and their families. J Med Virol 2008; 80:1415-25. [PMID: 18551604 DOI: 10.1002/jmv.21243] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The source of human cytomegalovirus (HCMV) infection was investigated in 29 pregnant women with primary HCMV infection by comparing DNA sequences of UL146, UL144 and a portion of UL55 gene of HCMV strains circulating within each family. Thirteen families were identified in which the pregnant woman, the husband and/or a child were shedding HCMV. In three of these families, both the woman and the husband suffered from a concomitant primary HCMV infection. Phylogenetic analysis of UL146, UL144, and UL55 genes indicated that strains circulating within each family were identical, whereas strains from different families appeared to be distinct. However, identical UL146, UL144, and UL55 DNA sequences were observed sporadically among unrelated strains. A child rather than the husband was the virus source for the great majority of pregnant women. No association was observed between UL144 polymorphisms and intrauterine transmission.
Collapse
Affiliation(s)
- Maria Grazia Revello
- Servizio di Virologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy.
| | | | | | | | | | | | | |
Collapse
|
47
|
Heo J, Petheram S, Demmler G, Murph JR, Adler SP, Bale J, Sparer TE. Polymorphisms within human cytomegalovirus chemokine (UL146/UL147) and cytokine receptor genes (UL144) are not predictive of sequelae in congenitally infected children. Virology 2008; 378:86-96. [PMID: 18556037 DOI: 10.1016/j.virol.2008.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 03/31/2008] [Accepted: 05/06/2008] [Indexed: 11/26/2022]
Abstract
Human cytomegalovirus (HCMV) viral chemokine, UL146, and TNF alpha-like receptor UL144 genes show a high degree of hypervariability in clinical isolates. These proteins are predicted to be immune modulators and may contribute to the pathogenesis of HCMV infections. We analyzed the UL146 and UL144 genetic variation of 51 HCMV isolates from congenitally infected children and 13 isolates from children in childcare. There was no statistically significant correlation between UL146 and UL144 genotypes and HCMV disease and/or sequelae. However, there were some groups that had a relatively large proportion of asymptomatic outcomes. These included UL146 group 8 (7/8 asymptomatic) and UL146 group 10 (3/3 asymptomatic). UL144 group B had 11/15 (73%) asymptomatic. UL146 and UL144 genes remained stable in serial isolates from children in daycare for intervals up to three years. These results indicate that most UL146 and UL144 genotypes do not predict clinical sequelae following congenital HCMV infections.
Collapse
Affiliation(s)
- Jinho Heo
- The University of Tennessee, Department of Microbiology, 1414 Cumberland Ave., Knoxville, TN 37996, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Biancotto A, Iglehart SJ, Lisco A, Vanpouille C, Grivel JC, Lurain NS, Reichelderfer PS, Margolis LB. Upregulation of human cytomegalovirus by HIV type 1 in human lymphoid tissue ex vivo. AIDS Res Hum Retroviruses 2008; 24:453-62. [PMID: 18327985 DOI: 10.1089/aid.2007.0155] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 copathogens are believed to play a critical role in progression to AIDS. Human cytomegalovirus (HCMV) has a high prevalence in the general population and is a common copathogen in HIV-1-infected individuals. Important events in copathogen interactions with HIV-1 take place in lymphoid tissue where critical events in HIV-1 disease occur. Here, we used an experimental system of human lymphoid tissue ex vivo to investigate interactions of HCMV with HIV-1. We inoculated ex vivo blocks of human lymphoid tissue with a recombinant strain of HCMV, expressing the green fluorescent protein, and HIV-1 and monitored viral replication and the phenotype of productively infected cells. HCMV readily replicated in tissue blocks as revealed by the release of HCMV viral DNA and an increasing number of viral-positive cells. Immunophenotyping of HCMV-infected cells showed a preferential infection of activated lymphocytes. The number of these cells significantly increased in HIV-1-coinfected tissues. Accordingly, HCMV replication was enhanced 2- to-3 fold. This upregulation occurred in tissues infected with either CXCR4- or CCR5-utilizing HIV-1. Thus, HIV-1 creates new targets for HCMV, which may explain the strong association of HCMV with HIV-1 infection in vivo. Ex vivo-infected human lymphoid tissue constitutes a model to study the mechanisms of HCMV tissue pathogenesis and its interactions with HIV-1 and this model may provide new targets for anti-HIV-1 therapy.
Collapse
Affiliation(s)
- Angélique Biancotto
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Sarah J. Iglehart
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Andrea Lisco
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Christophe Vanpouille
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Jean-Charles Grivel
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Nell S. Lurain
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois 60612
| | - Patricia S. Reichelderfer
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Leonid B. Margolis
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| |
Collapse
|
49
|
Genetic variations in the gB, UL144 and UL149 genes of human cytomegalovirus strains collected from congenitally and postnatally infected Japanese children. Arch Virol 2008; 153:667-74. [PMID: 18273679 DOI: 10.1007/s00705-008-0044-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 01/28/2008] [Indexed: 12/15/2022]
Abstract
Human cytomegalovirus (CMV) is the leading cause of intrauterine viral infection. The association of genetic polymorphisms in some particular genes with the incidence and severity of congenital infection has been controversial. To address this issue, we analyzed the genotypes of the glycoprotein B (gB), UL144 and UL149 genes of CMV clinical strains obtained from 33 congenitally and 31 postnatally infected Japanese children. Our results demonstrated that (1) CMV strains with any combination of genotypes could be vertically transmitted from mother to fetus, potentially causing neurological abnormalities, (2) the gB3 genotype was more prevalent in the congenital cases than in postnatally infected children (P < 0.05), particularly in congenital cases with sensorineural hearing loss (P = 0.009), (3) there was no relationship between gB genotype and viral load in the urine and dried umbilical cord specimens in the congenital cases, and (4) the UL144 and UL149 genotype distributions had no bias for congenial infection. In future studies, it would be interesting to see whether the gB genotypes serve as a prognostic indicator of CMV-associated diseases.
Collapse
|
50
|
Abstract
Human cytomegalovirus (HCMV) has become a paradigm for viral immune evasion due to its unique multitude of immune-modulatory strategies. HCMV modulates the innate as well as adaptive immune response at every step of its life cycle. It dampens the induction of antiviral interferon-induced genes by several mechanisms. Further striking is the multitude of genes and strategies devoted to modulating and escaping the cellular immune response. Several genes are independently capable of inhibiting antigen presentation to cytolytic T cells by downregulating MHC class I. Recent data revealed an astounding variety of methods in triggering or inhibiting activatory and inhibitory receptors found on NK cells, NKT cells, T cells as well as auxiliary cells of the immune system. The multitude and complexity of these mechanisms is fascinating and continues to reveal novel insights into the host-pathogen interaction and novel cell biological and immunological concepts.
Collapse
Affiliation(s)
- C Powers
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | | | | | | |
Collapse
|