1
|
Pekarčíková L, Knopfová L, Beneš P, Šmarda J. c-Myb regulates NOX1/p38 to control survival of colorectal carcinoma cells. Cell Signal 2016; 28:924-36. [PMID: 27107996 DOI: 10.1016/j.cellsig.2016.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
Abstract
The c-Myb transcription factor is important for maintenance of immature cells of many tissues including colon epithelium. Overexpression of c-Myb occurring in colorectal carcinomas (CRC) as well as in other cancers often marks poor prognosis. However, the molecular mechanism explaining how c-Myb contributes to progression of CRC has not been fully elucidated. To address this point, we investigated the way how c-Myb affects sensitivity of CRC cells to anticancer drugs. Using CRC cell lines expressing exogenous c-myb we show that c-Myb protects CRC cells from the cisplatin-, oxaliplatin-, and doxorubicin-induced apoptosis, elevates reactive oxygen species via up-regulation of NOX1, and sustains the pro-survival p38 MAPK pathway. Using pharmacological inhibitors and gene silencing of p38 and NOX1 we found that these proteins are essential for the protective effect of c-Myb and that NOX1 acts upstream of p38 activation. In addition, our result suggests that transcription of NOX1 is directly controlled by c-Myb and these genes are strongly co-expressed in human tumor tissue of CRC patients. The novel c-Myb/NOX1/p38 signaling axis that protects CRC cells from chemotherapy described in this study could provide a new base for design of future therapies of CRC.
Collapse
Affiliation(s)
- Lucie Pekarčíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Lucia Knopfová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Bies J, Sramko M, Wolff L. Stress-induced phosphorylation of Thr486 in c-Myb by p38 mitogen-activated protein kinases attenuates conjugation of SUMO-2/3. J Biol Chem 2013; 288:36983-93. [PMID: 24257756 DOI: 10.1074/jbc.m113.500264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
c-Myb plays an essential role in regulation of properly balanced hematopoiesis through transcriptional regulation of genes directly controlling cellular processes such as proliferation, differentiation, and apoptosis. The transcriptional activity and protein levels of c-Myb are strictly controlled through post-translational modifications such as phosphorylation, acetylation, ubiquitination, and SUMOylation. Conjugation of small ubiquitin-like modifier (SUMO) proteins has been shown to suppress the transcriptional activity of c-Myb. SUMO-1 modifies c-Myb under physiological conditions, whereas SUMO-2/3 conjugation was reported in cells under stress. Because stress also activates several cellular protein kinases, we investigated whether phosphorylation of c-Myb changes in stressed cells and whether a mutual interplay exists between phosphorylation and SUMOylation of c-Myb. Here we show that several types of environmental stress induce a rapid change in c-Myb phosphorylation. Interestingly, the phosphorylation of Thr(486), located in close proximity to SUMOylation site Lys(499) of c-Myb, is detected preferentially in nonSUMOylated protein and has a negative effect on stress-induced SUMOylation of c-Myb. Stress-activated p38 MAPKs phosphorylate Thr(486) in c-Myb, attenuate its SUMOylation, and increase its proteolytic turnover. Stressed cells expressing a phosphorylation-deficient T486A mutant demonstrate decreased expression of c-Myb target genes Bcl-2 and Bcl-xL and accelerated apoptosis because of increased SUMOylation of the mutant protein. These results suggest that phosphorylation-dependent modulation of c-Myb SUMOylation may be important for proper response of cells to stress. In summary, we have identified a novel regulatory interplay between phosphorylation and SUMOylation of c-Myb that regulates its activity in stressed cells.
Collapse
Affiliation(s)
- Juraj Bies
- From the Laboratory of Cellular Oncology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
3
|
Knopfová L, Beneš P, Pekarčíková L, Hermanová M, Masařík M, Pernicová Z, Souček K, Smarda J. c-Myb regulates matrix metalloproteinases 1/9, and cathepsin D: implications for matrix-dependent breast cancer cell invasion and metastasis. Mol Cancer 2012; 11:15. [PMID: 22439866 PMCID: PMC3325857 DOI: 10.1186/1476-4598-11-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/23/2012] [Indexed: 12/11/2022] Open
Abstract
Background The c-Myb transcription factor is essential for the maintenance of stem-progenitor cells in bone marrow, colon epithelia, and neurogenic niches. c-Myb malfunction contributes to several types of malignancies including breast cancer. However, the function of c-Myb in the metastatic spread of breast tumors remains unexplored. In this study, we report a novel role of c-Myb in the control of specific proteases that regulate the matrix-dependent invasion of breast cancer cells. Results Ectopically expressed c-Myb enhanced migration and ability of human MDA-MB-231 and mouse 4T1 mammary cancer cells to invade Matrigel but not the collagen I matrix in vitro. c-Myb strongly increased the expression/activity of cathepsin D and matrix metalloproteinase (MMP) 9 and significantly downregulated MMP1. The gene coding for cathepsin D was suggested as the c-Myb-responsive gene and downstream effector of the migration-promoting function of c-Myb. Finally, we demonstrated that c-Myb delayed the growth of mammary tumors in BALB/c mice and affected the metastatic potential of breast cancer cells in an organ-specific manner. Conclusions This study identified c-Myb as a matrix-dependent regulator of invasive behavior of breast cancer cells.
Collapse
Affiliation(s)
- Lucia Knopfová
- Department of Experimental Biology, Faculty of Science, Masaryk University, and International Clinical Research Center, CBCE, St. Anne's University Hospital, Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhou Y, Ness SA. Myb proteins: angels and demons in normal and transformed cells. Front Biosci (Landmark Ed) 2011; 16:1109-31. [PMID: 21196221 DOI: 10.2741/3738] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A key regulator of proliferation, differentiation and cell fate, the c-Myb transcription factor regulates the expression of hundreds of genes and is in turn regulated by numerous pathways and protein interactions. However, the most unique feature of c-Myb is that it can be converted into an oncogenic transforming protein through a few mutations that completely change its activity and specificity. The c-Myb protein is a myriad of interactions and activities rolled up in a protein that controls proliferation and differentiation in many different cell types. Here we discuss the background and recent progress that have led to a better understanding of this complex protein, and outline the questions that have yet to be answered.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
5
|
Kitagawa K, Kotake Y, Hiramatsu Y, Liu N, Suzuki S, Nakamura S, Kikuchi A, Kitagawa M. GSK3 regulates the expressions of human and mouse c-Myb via different mechanisms. Cell Div 2010; 5:27. [PMID: 21092141 PMCID: PMC3001421 DOI: 10.1186/1747-1028-5-27] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/21/2010] [Indexed: 11/10/2022] Open
Abstract
Background c-Myb is expressed at high levels in immature progenitors of all the hematopoietic lineages. It is associated with the regulation of proliferation, differentiation and survival of erythroid, myeloid and lymphoid cells, but decreases during the terminal differentiation to mature blood cells. The cellular level of c-Myb is controlled by not only transcriptional regulation but also ubiquitin-dependent proteolysis. We recently reported that mouse c-Myb protein is controlled by ubiquitin-dependent degradation by SCF-Fbw7 E3 ligase via glycogen synthase kinase 3 (GSK3)-mediated phosphorylation of Thr-572 in a Cdc4 phosphodegron (CPD)-dependent manner. However, this critical threonine residue is not conserved in human c-Myb. In this study, we investigated whether GSK3 is involved in the regulatory mechanism for human c-Myb expression. Results Human c-Myb was degraded by ubiquitin-dependent degradation via SCF-Fbw7. Human Fbw7 ubiquitylated not only human c-Myb but also mouse c-Myb, whereas mouse Fbw7 ubiquitylated mouse c-Myb but not human c-Myb. Human Fbw7 mutants with mutations of arginine residues important for recognition of the CPD still ubiquitylated human c-Myb. These data strongly suggest that human Fbw7 ubiquitylates human c-Myb in a CPD-independent manner. Mutations of the putative GSK3 phosphorylation sites in human c-Myb did not affect the Fbw7-dependent ubiquitylation of human c-Myb. Neither chemical inhibitors nor a siRNA for GSK3β affected the stability of human c-Myb. However, depletion of GSK3β upregulated the transcription of human c-Myb, resulting in transcriptional suppression of γ-globin, one of the c-Myb target genes. Conclusions The present observations suggest that human Fbw7 ubiquitylates human c-Myb in a CPD-independent manner, whereas mouse Fbw7 ubiquitylates human c-Myb in a CPD-dependent manner. Moreover, GSK3 negatively regulates the transcriptional expression of human c-Myb but does not promote Fbw7-dependent degradation of human c-Myb protein. Inactivation of GSK3 as well as mutations of Fbw7 may be causes of the enhanced c-Myb expression observed in leukemia cells. We conclude that expression levels of human and mouse c-Myb are regulated via different mechanisms.
Collapse
Affiliation(s)
- Kyoko Kitagawa
- Department of Biochemistry 1, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Geng CD, Vedeckis WV. Use of recombinant cell-permeable small peptides to modulate glucocorticoid sensitivity of acute lymphoblastic leukemia cells. Biochemistry 2010; 49:8892-901. [PMID: 20831260 DOI: 10.1021/bi1007723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glucocorticoid (GC) hormones induce apoptosis in T-cell and pre-B-cell acute lymphoblastic leukemia (ALL) cells. Steroid-mediated apoptosis requires a threshold level of the glucocorticoid receptor (GR) protein, and increasing the intracellular GR levels in ALL cells would augment their hormone sensitivity. A protein transduction domain (PTD) approach was used to accomplish this. We produced an HIV Tat PTD domain fusion protein (Tat-GR(554-777)) that potentially competes for the degradation of GR protein by the ubiquitin-proteasome system and should thus increase its intracellular levels by "stabilizing" the GR. We also designed a fusion peptide for the c-Myb DNA binding domain, Tat-c-Myb DBD, since the biological function of this peptide as a dominant negative inhibitor of the c-Myb protein was already known. Purified, bacterially expressed Tat-c-Myb DBD and Tat-GR(554-777) exhibited highly efficient transduction into cultured ALL cell lines including 697 (pre-B-ALL) and CEM-C7 (T-ALL) cells. As expected, the transduced Tat-c-Myb DBD peptide inhibited steroid-mediated stimulation of a GR promoter-luciferase reporter gene. Significantly, transduced Tat-GR(554-777) effectively increased intracellular GR levels in the GC-resistant T-ALL cell line, CEM-C1, and in the pre-B-ALL 697 cell line. Furthermore, transduction of Tat-GR(554-777) rendered GC-resistant CEM-C1 cells sensitive to steroid killing and further sensitized 697 cells to steroid. The use of Tat-fusion peptide transduction may eventually lead to innovative therapeutic modalities to improve the clinical response of patients suffering from T-cell and pre-B-cell acute lymphoblastic leukemia by increasing steroid responsiveness and perhaps converting steroid-resistant leukemia to a hormone-responsive phenotype.
Collapse
Affiliation(s)
- Chuan-dong Geng
- Department of Biochemistry and Molecular Biology and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | |
Collapse
|
7
|
Myeloid-specific inactivation of p15Ink4b results in monocytosis and predisposition to myeloid leukemia. Blood 2010; 116:979-87. [PMID: 20457873 DOI: 10.1182/blood-2009-08-238360] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inactivation of p15INK4b, an inhibitor of cyclin-dependent kinases, through DNA methylation is one of the most common epigenetic abnormalities in myeloid leukemia. Although this suggests a key role for this protein in myeloid disease suppression, experimental evidence to support this has not been reported. To address whether this event is critical for premalignant myeloid disorders and leukemia development, mice were generated that have loss of p15Ink4b specifically in myeloid cells. The p15Ink4b(fl/fl)-LysMcre mice develop nonreactive monocytosis in the peripheral blood accompanied by increased numbers of myeloid and monocytic cells in the bone marrow resembling the myeloproliferative form of chronic myelomonocytic leukemia. Spontaneous progression from chronic disease to acute leukemia was not observed. Nevertheless, MOL4070LTR retrovirus integrations provided cooperative genetic mutations resulting in a high frequency of myeloid leukemia in knockout mice. Two common retrovirus insertion sites near c-myb and Sox4 genes were identified, and their transcript up-regulated in leukemia, suggesting a collaborative role of their protein products with p15Ink4b-deficiency in promoting malignant disease. This new animal model demonstrates experimentally that p15Ink4b is a tumor suppressor for myeloid leukemia, and its loss may play an active role in the establishment of preleukemic conditions.
Collapse
|
8
|
Kitagawa K, Hiramatsu Y, Uchida C, Isobe T, Hattori T, Oda T, Shibata K, Nakamura S, Kikuchi A, Kitagawa M. Fbw7 promotes ubiquitin-dependent degradation of c-Myb: involvement of GSK3-mediated phosphorylation of Thr-572 in mouse c-Myb. Oncogene 2009; 28:2393-405. [PMID: 19421138 DOI: 10.1038/onc.2009.111] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Expression of oncoprotein c-Myb oscillates during hematopoiesis and hematological malignancies. Its quantity is not only regulated through transcriptional control but also through the ubiquitin-proteasome pathway, accompanied by phosphorylation, although the mechanisms are poorly understood. In this report, we tried to identify an E3 ubiquitin ligase, which targets c-Myb for ubiquitin-dependent degradation. We found that an F-box protein, Fbw7, interacted with c-Myb, which is mutated in numerous cancers. Fbw7 facilitated ubiquitylation and degradation of c-Myb in intact cells. Moreover, depletion of Fbw7 by RNA interference delayed turnover and increased the abundance of c-Myb in myeloid leukemia cells concomitantly, and suppressed the transcriptional level of gamma-globin, which receives transcriptional repression from c-Myb. In addition, we analysed sites required for both ubiquitylation and degradation of c-Myb. We found that Thr-572 is critical for Fbw7-mediated ubiquitylation in mouse c-Myb using site-directed mutagenesis. Fbw7 recognized the phosphorylation of Thr-572, which was mediated by glycogen synthase kinase 3 (GSK3). In consequence, the c-Myb protein was markedly stabilized by the substitution of Thr-572 to Ala. These observations suggest that SCF(Fbw7) ubiquitin ligase regulates phosphorylation-dependent degradation of c-Myb protein.
Collapse
Affiliation(s)
- K Kitagawa
- Department of Biochemistry 1, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fang F, Rycyzyn MA, Clevenger CV. Role of c-Myb during prolactin-induced signal transducer and activator of transcription 5a signaling in breast cancer cells. Endocrinology 2009; 150:1597-606. [PMID: 19036881 PMCID: PMC2659289 DOI: 10.1210/en.2008-1079] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 11/14/2008] [Indexed: 01/17/2023]
Abstract
Implicated in the pathogenesis of breast cancer, prolactin (PRL) mediates its function in part through the prolactin receptor (PRLr)-associated Janus kinase 2 (Jak2)/signal transducer and activator of transcription 5 (Stat5) signaling complex. To delineate the mechanisms of Stat5a regulation in breast cancer, transcription factor-transcription factor (TF-TF) array analysis was employed to identify associated transcriptional regulators. These analyses revealed a PRL-inducible association of Stat5a with the transcription factor and protooncogene c-Myb. Confirmatory co-immunoprecipitation studies using lysates from both T47D and MCF7 breast cancer cells revealed a PRL-inducible association between these transcription factors. Ectopic expression of c-Myb enhanced the PRL-induced expression from both composite and synthetic Stat5a-responsive luciferase reporters. Chromatin immunoprecipitation assays also revealed a PRL-inducible association between c-Myb and endogenous Stat5a-responsive CISH promoter, which was associated with an enhanced expression of CISH gene product at the RNA and protein levels. Small interfering RNA-mediated c-Myb knockdown impaired the PRL-induced mRNA expression of five Stat5-responsive genes. DNA binding-defective mutants of c-Myb, incapable of activating expression from a c-Myb-responsive reporter, maintained their ability to enhance a Stat5a-responsive reporter. At a cellular level, ectopic expression of c-Myb resulted in an increase in T47D proliferation. Taken together, these results indicate that c-Myb potentiates Stat5a-driven gene expression, possibly functioning as a Stat5a coactivator, in human breast cancer.
Collapse
Affiliation(s)
- Feng Fang
- Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
10
|
Opalinska JB, Kalota A, Chattopadhyaya J, Damha M, Gewirtz AM. Nucleic acid therapeutics for hematologic malignancies--theoretical considerations. Ann N Y Acad Sci 2007; 1082:124-36. [PMID: 17145934 DOI: 10.1196/annals.1348.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our work is motivated by the belief that RNA targeted gene silencing agents can be developed into effective drugs for treating hematologic malignancies. In many experimental systems, antisense nucleic acids of various composition, including antisense oligodeoxynucleotides (AS ODNs) and short interfering RNA (siRNA), have been shown to perturb gene expression in a sequence specific manner. Nevertheless, our clinical experience, and those of others, have led us to conclude that the antisense nucleic acids (ASNAs) we, and others, employ need to be optimized with regard to intracellular delivery, targeting, chemical composition, and efficiency of mRNA destruction. We have hypothesized that addressing these critical issues will lead to the development of practical and effective nucleic acid drugs. An overview of our recent work which seeks to addresses these core issues is contained within this review.
Collapse
|
11
|
Singh GP, Ganapathi M, Sandhu KS, Dash D. Intrinsic unstructuredness and abundance of PEST motifs in eukaryotic proteomes. Proteins 2006; 62:309-15. [PMID: 16299712 DOI: 10.1002/prot.20746] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The study of unfolded protein regions has gained importance because of their prevalence and important roles in various cellular functions. These regions have characteristically high net charge and low hydrophobicity. The amino acid sequence determines the intrinsic unstructuredness of a region and, therefore, efforts are ongoing to delineate the sequence motifs, which might contribute to protein disorder. We find that PEST motifs are enriched in the characterized disordered regions as compared with globular ones. Analysis of representative PDB chains revealed very few structures containing PEST sequences and the majority of them lacked regular secondary structure. A proteome-wide study in completely sequenced eukaryotes with predicted unfolded and folded proteins shows that PEST proteins make up a large fraction of unfolded dataset as compared with the folded proteins. Our data also reveal the prevalence of PEST proteins in eukaryotic proteomes (approximately 25%). Functional classification of the PEST-containing proteins shows an over- and under-representation in proteins involved in regulation and metabolism, respectively. Furthermore, our analysis shows that predicted PEST regions do not exhibit any preference to be localized in the C terminals of proteins, as reported earlier.
Collapse
Affiliation(s)
- Gajinder Pal Singh
- Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Delhi, India
| | | | | | | |
Collapse
|
12
|
Corradini F, Cesi V, Bartella V, Pani E, Bussolari R, Candini O, Calabretta B. Enhanced proliferative potential of hematopoietic cells expressing degradation-resistant c-Myb mutants. J Biol Chem 2005; 280:30254-62. [PMID: 15927960 DOI: 10.1074/jbc.m504703200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-myb gene encodes a transcription factor required for proliferation, differentiation, and survival of hematopoietic cells. Expression of c-Myb is often increased in hematological malignancies, but the underlying mechanisms are poorly understood. We show here that c-Myb has a longer half-life (at least 2-fold) in BCR/ABL-expressing than in normal hematopoietic cells. Such enhanced stability was dependent on a phosphatidylinositol 3-kinase (PI-3K)/Akt/GSKIIIbeta pathway(s) as indicated by the suppression of c-Myb expression upon treatment with PI-3K inhibitors or co-expression with dominant negative Akt or constitutively active GSKIIIbeta. Moreover, inhibition of GSKIIIbeta by LiCl enhanced c-Myb expression in parental 32Dcl3 cells. Compared with wild type c-Myb, three mutants (delta(358-452), delta(389-418), and L389A/L396A c-Myb) of the leucine zipper domain had increased stability. However, only expression of delta(358-452) was not affected by inhibition of the PI-3K/Akt pathway and was not enhanced by a proteasome inhibitor, suggesting that leucine zipper-dependent and -independent mechanisms are involved in the regulation of c-Myb stability. Indeed, delta(389-418) carrying four lysine-to-alanine substitutions (delta(389-418) K387A/K428A/K442A/K445A) was as stable as delta(358-452) c-Myb. Compared with full-length c-Myb, constitutive expression of delta(358-452) and delta(389-418) c-Myb in Lin-Sca-1+ mouse marrow cells increased cytokine-dependent primary and secondary colony formation. In K562 cells, expression of delta(358-452), delta(389-418), and L389A/L396A c-Myb led to enhanced proliferation after STI571 treatment. Thus, enhanced stability of c-Myb by activation of PI-3K-dependent pathway(s) might contribute to the higher proliferative potential of BCR/ABL-expressing and, perhaps, other leukemic cells.
Collapse
Affiliation(s)
- Francesca Corradini
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Bashir T, Pagano M. Aberrant ubiquitin-mediated proteolysis of cell cycle regulatory proteins and oncogenesis. Adv Cancer Res 2003; 88:101-44. [PMID: 12665054 DOI: 10.1016/s0065-230x(03)88305-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ubiquitin pathway plays a central role in the regulation of cell growth and cell proliferation by controlling the abundance of key cell cycle proteins. Increasing evidence indicates that unscheduled proteolysis of many cell cycle regulators contributes significantly to tumorigenesis and is indeed found in many types of human cancers. Aberrant proteolysis with oncogenic potential is elicited by two major mechanisms: defective degradation of positive cell cycle regulators (i.e., proto-oncoproteins) and enhanced degradation of negative cell cycle regulators (i.e., tumor suppressor proteins). In many cases, increased protein stability is a result of mutations in the substrate that prevent the recognition of the protein by the ubiquitin-mediated degradation machinery. Alternatively, the specific recognition proteins mediating ubiquitination (ubiquitin ligases) are not expressed or harbor mutations rendering them inactive. In contrast, the overexpression of a ubiquitin ligase may result in the enhanced degradation of a negative cell cycle regulator. This chapter aims to review the involvement of the ubiquitin pathway in the scheduled destruction of some important cell cycle regulators and to discuss the implications of their aberrant degradation for the development of cancer.
Collapse
Affiliation(s)
- Tarig Bashir
- Department of Pathology and NYU Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
14
|
Bies J, Markus J, Wolff L. Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity. J Biol Chem 2002; 277:8999-9009. [PMID: 11779867 DOI: 10.1074/jbc.m110453200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor c-Myb is subject to several types of post-translational modifications, including phosphorylation, acetylation, and ubiquitination. These modifications regulate the transcription and transforming activity as well as the proteolytic stability of c-Myb. Here we report the covalent modification of c-Myb with the small ubiquitin-related protein SUMO-1. Mutational analysis identified two major sumolation sites (Lys(499) and Lys(523)) in the negative regulatory domain. Interestingly, the single mutation K523R completely abolished modification of c-Myb with SUMO-1, suggesting that sumolation of Lys(523) is required for modification of other lysines in c-Myb. In accordance with this observation, we found that the SUMO-1-conjugating enzyme Ubc9 interacted only with a region surrounding Lys(523) (also called the PEST/EVES motif). Experiments aimed at determining the proteolytic stability of sumolated and unmodified forms of c-Myb revealed that at least two covalently attached SUMO-1 molecules dramatically increased the stability of c-Myb. However, mutations of the SUMO-1 modification sites did not alter its stability, suggesting that a mechanism(s) other than competition of ubiquitin and SUMO-1 for the same lysine is involved in the stabilization of sumolated c-Myb protein. Finally, the K523R mutant of c-Myb, entirely deficient in sumolation, was shown to have an increased transactivation capacity on a Myb-responsive promoter, suggesting that SUMO-1 negatively regulates the transactivation function of c-Myb. Thus, modification of c-Myb with SUMO-1 represents a novel mechanism through which the negative regulatory domain can exert its suppressing activity on c-Myb transactivation capacity.
Collapse
Affiliation(s)
- Juraj Bies
- Department of Molecular Virology, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava, Slovakia.
| | | | | |
Collapse
|
15
|
Luger SM, O'Brien SG, Ratajczak J, Ratajczak MZ, Mick R, Stadtmauer EA, Nowell PC, Goldman JM, Gewirtz AM. Oligodeoxynucleotide-mediated inhibition of c-myb gene expression in autografted bone marrow: a pilot study. Blood 2002; 99:1150-8. [PMID: 11830460 DOI: 10.1182/blood.v99.4.1150] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antisense oligodeoxynucleotide (ODN) drugs might be more effective if their delivery was optimized and they were targeted to short-lived proteins encoded by messenger RNA (mRNA) species with equally short half-lives. To test this hypothesis, an ODN targeted to the c-myb proto-oncogene was developed and used to purge marrow autografts administered to allograft-ineligible chronic myelogenous leukemia patients. CD34(+) marrow cells were purged with ODN for either 24 (n = 19) or 72 (n = 5) hours. After purging, Myb mRNA levels declined substantially in approximately 50% of patients. Analysis of bcr/abl expression in long-term culture-initiating cells suggested that purging had been accomplished at a primitive cell level in more than 50% of patients and was ODN dependent. Day-100 cytogenetics were evaluated in surviving patients who engrafted without infusion of unmanipulated "backup" marrow (n = 14). Whereas all patients were approximately 100% Philadelphia chromosome-positive (Ph(+)) before transplantation, 2 patients had complete cytogenetic remissions; 3 patients had fewer than 33% Ph(+) metaphases; and 8 remained 100% Ph(+). One patient's marrow yielded no metaphases, but fluorescent in situ hybridization evaluation approximately 18 months after transplantation revealed approximately 45% bcr/abl(+) cells, suggesting that 6 of 14 patients had originally obtained a major cytogenetic response. Conclusions regarding clinical efficacy of ODN marrow purging cannot be drawn from this small pilot study. Nevertheless, these results lead to the speculation that enhanced delivery of ODN, targeted to critical proteins of short half-life, might lead to the development of more effective nucleic acid drugs and the enhanced clinical utility of these compounds in the future.
Collapse
MESH Headings
- Adult
- Bone Marrow/drug effects
- Bone Marrow/metabolism
- Bone Marrow Purging/methods
- Bone Marrow Transplantation/methods
- Cytogenetic Analysis
- Female
- Fusion Proteins, bcr-abl/analysis
- Gene Expression/drug effects
- Genes, myb/drug effects
- Genes, myb/genetics
- Graft Survival
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Male
- Middle Aged
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Oligodeoxyribonucleotides, Antisense/therapeutic use
- Pilot Projects
- Proto-Oncogene Mas
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/metabolism
- Transplantation, Autologous/methods
- Treatment Outcome
Collapse
Affiliation(s)
- Selina M Luger
- Division of Hematology/Oncology and the Stem Cell Biology/Therapeutics Program, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Acquaviva C, Brockly F, Ferrara P, Bossis G, Salvat C, Jariel-Encontre I, Piechaczyk M. Identification of a C-terminal tripeptide motif involved in the control of rapid proteasomal degradation of c-Fos proto-oncoprotein during the G(0)-to-S phase transition. Oncogene 2001; 20:7563-72. [PMID: 11709728 DOI: 10.1038/sj.onc.1204880] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2001] [Revised: 07/25/2001] [Accepted: 08/01/2001] [Indexed: 11/09/2022]
Abstract
c-Fos proto-oncoprotein is rapidly and transiently expressed in cells undergoing the G(0)-to-S phase transition in response to stimulation for growth by serum. Under these conditions, the rapid decay of the protein occurring after induction is accounted for by efficient recognition and degradation by the proteasome. PEST motifs are sequences rich in Pro, Glu, Asp, Ser and Thr which have been proposed to constitute protein instability determinants. c-Fos contains three such motifs, one of which comprises the C-terminal 20 amino acids and has already been proposed to be the major determinant of c-Fos instability. Using site-directed mutagenesis and an expression system reproducing c-fos gene transient expression in transfected cells, we have analysed the turnover of c-Fos mutants deleted of the various PEST sequences in synchronized mouse embryo fibroblasts. Our data showed no role for the two internal PEST motifs in c-Fos instability. However, deletion of the C-terminal PEST region led to only a twofold stabilization of the protein. Taken together, these data indicate that c-Fos instability during the G0-to-S phase transition is governed by a major non-PEST destabilizer and a C-terminal degradation-accelerating element. Further dissection of c-Fos C-terminal region showed that the degradation-accelerating effect is not contributed by the whole PEST sequence but by a short PTL tripeptide which cannot be considered as a PEST motif and which can act in the absence of any PEST environment. Interestingly, the PTL motif is conserved in other members of the fos multigene family. Nevertheless, its contribution to protein instability is restricted to c-Fos suggesting that the mechanisms whereby the various Fos proteins are broken down are, at least partially, different. MAP kinases-mediated phosphorylation of two serines close to PTL, which are both phosphorylated all over the G(0)-to-S phase transition, have been proposed by others to stabilize c-Fos protein significantly. We, however, showed that the PTL motif does not exert its effect by counteracting a stabilizing effect of these phosphorylations under our experimental conditions.
Collapse
Affiliation(s)
- C Acquaviva
- Institute of Molecular Genetics, UMR5535/IFR24, CNRS, 1919, route de Mende, 34293-Montpellier Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Nicot C, Mahieux R, Pise-Masison C, Brady J, Gessain A, Yamaoka S, Franchini G. Human T-cell lymphotropic virus type 1 Tax represses c-Myb-dependent transcription through activation of the NF-kappaB pathway and modulation of coactivator usage. Mol Cell Biol 2001; 21:7391-402. [PMID: 11585920 PMCID: PMC99912 DOI: 10.1128/mcb.21.21.7391-7402.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The proto-oncogene c-myb is essential for a controlled balance between cell growth and differentiation. Aberrant c-Myb activity has been reported for numerous human cancers, and enforced c-Myb transcription can transform cells of lymphoid origin by stimulating cellular proliferation and inhibiting apoptotic pathways. Here we demonstrate that activation of the NF-kappaB pathway by the HTLV-1 Tax protein leads to transcriptional inactivation of c-Myb. This conclusion was supported by the fact that Tax mutants unable to stimulate the NF-kappaB pathway could not inhibit c-Myb transactivating functions. In addition, inhibition of Tax-mediated NF-kappaB activation by coexpression of IkappaBalpha restored c-Myb transcription, and Tax was unable to block c-Myb transcription in a NEMO knockout cell line. Importantly, physiological stimuli, such as signaling with the cellular cytokines tumor necrosis factor alpha, interleukin 1 beta (IL-1beta), and lipopolysaccharide, also inhibited c-Myb transcription. These results uncover a new link between extracellular signaling and c-Myb-dependent transcription. The mechanism underlying NF-kappaB-mediated repression was identified as sequestration of the coactivators CBP/p300 by RelA. Interestingly, an amino-terminal deletion form of p300 lacking the C/H1 and KIX domains and unable to bind RelA retained the ability to stimulate c-Myb transcription and prevented NF-kappaB-mediated repression.
Collapse
Affiliation(s)
- C Nicot
- Section of Animal Models and Retroviral Vaccines, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Lutz PG, Houzel-Charavel A, Moog-Lutz C, Cayre YE. Myeloblastin is an Myb target gene: mechanisms of regulation in myeloid leukemia cells growth-arrested by retinoic acid. Blood 2001; 97:2449-56. [PMID: 11290610 DOI: 10.1182/blood.v97.8.2449] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A pivotal role has been assigned to Myb in the control of myeloid cell growth. Although Myb is a target of retinoic acid, little is known about the mechanisms by which it may contribute to induced growth arrest in leukemia cells. Indeed, few Myb target genes are known to be linked to proliferation. Myeloblastin is involved in the control of proliferation in myeloid leukemia cells. It is expressed early during hematopoiesis and is a granulocyte colony-stimulating factor-responsive gene. Myeloblastin can confer factor-independent growth to hematopoietic cells, an early step in leukemia transformation. The myeloblastin promoter contains PU.1, C/EBP, and Myb binding sites, each of which are critical for constitutive expression in myeloid cells. Inhibition of myeloblastin expression in leukemia cells growth-arrested by retinoic acid is demonstrated to depend on Myb down-regulation. Myb is shown to induce myeloblastin expression and abolish its down-regulation by retinoic acid. Altogether, the data offer a clue as to how a myeloid-specific transcriptional machinery can be accessible to regulation by retinoic acid and point to myeloblastin as a novel target of Myb. This link between Myb and myeloblastin suggests a previously nonidentified Myb pathway through which growth arrest is induced by retinoic acid in myeloid leukemia cells.
Collapse
Affiliation(s)
- P G Lutz
- Unité INSERM U417, Hôpital Saint Antoine, Paris, France
| | | | | | | |
Collapse
|
19
|
Bies J, Feiková S, Markus J, Wolff L. Phosphorylation-dependent conformation and proteolytic stability of c-Myb. Blood Cells Mol Dis 2001; 27:422-8. [PMID: 11259165 DOI: 10.1006/bcmd.2001.0400] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The c-Myb oncoprotein is a critical regulator of hematopoietic cell proliferation and differentiation. Normal c-Myb is rapidly degraded by the ubiquitin-26S proteasome pathway, and instability determinants have been localized within the negative regulatory domain in the carboxyl terminus. Our recent work has shown that, in myeloid cells, inhibition of cellular Ser/Thr protein phosphatases with okadaic acid (OA) causes a rapid increase in c-Myb phosphorylation and 26S proteasome-dependent breakdown [J. Bies, S. Feikova, D. P. Bottaro, and L. Wolff (2000) Oncogene 19, 2846-2854]. Furthermore, phosphoamino acid analyses revealed that the increase in phosphorylation was mainly on threonine residues. Here we investigated the ability of c-Myb to bind DNA following phosphorylation. Our results suggest that the hyperphosphorylated form of c-Myb binds to DNA with affinity very similar to the hypophosphorylated form. Therefore, the increased proteolytic instability of the former cannot be explained by a difference in DNA-binding capacity. Conformational changes in the carboxyl terminus were proposed previously to be a consequence of phosphorylation because we observed phosphorylation-induced alterations in gel electrophoresis mobilities and alterations in recognition by specific monoclonal antibodies. Further support for this notion has come from this study, in which we have detected new degradation products in electrophoretic mobility shift assays, as well as an increased rate of in vitro proteolysis, following OA treatment. We speculate that these alterations in the conformation of the negative regulatory domain expose epitopes on the surface of c-Myb, which in turn can serve as recognition signal(s) for ubiquitin-26S proteasome proteolytic machinery.
Collapse
Affiliation(s)
- J Bies
- Laboratory of Molecular Virology, Slovak Academy of Sciences, Bratislava, 833 92, Slovakia.
| | | | | | | |
Collapse
|
20
|
Dvorakova M, Kralova J, Karafiat V, Bartunek P, Dvorak M. An ex vivo model to study v-Myb-induced leukemogenicity. Blood Cells Mol Dis 2001; 27:437-45. [PMID: 11259166 DOI: 10.1006/bcmd.2001.0402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The v-myb(AMV) oncogene transforms myelomonocytic cells in vitro and induces acute monoblastic leukemia in chickens. We analyzed the activity of the evolutionarily conserved PEST-like domain (P1 domain) for biochemical and biological activities of v-Myb in ex vivo cultures and in vivo. Deletion of the P1 domain did not affect v-Myb transcriptional activity, intracellular stability, or subcellular localization. However, it resulted in subtle yet important changes in biological activities. Although the mutant DeltaP1 v-Myb protein blocked the terminal differentiation of the monocyte/macrophage lineage as efficiently as the wild type (wt) in ex vivo cultures, it failed to induce the acute phase of monoblastic leukemia, with its fatal consequences, in vivo. Interestingly, in DeltaP1 v-myb-infected animals large numbers of monoblasts, comparable to those induced by wt v-myb, were present in the bone marrow but very few were found in the peripheral blood. The comparison of ex vivo wt- and DeltaP v-Myb bone marrow cells revealed several important features of v-Myb transformation: (i) the proliferation of transformed monoblasts is not an apparent consequence of the differentiation block with these processes being at least in part independent; (ii) the P1 domain is required for proliferation of v-Myb-mediated transformed monoblasts; (iii) the mechanism which renders transformed cells growth factor independent does not involve activation of an autocrine growth factor loop; and (iv) deletion of the P1 domain affects self-adhesion properties of v-myb-transformed monoblasts as well as their interaction with bone marrow stromal cells. These data indicate that the DeltaP1 v-myb mutant and ex vivo bone marrow cell cultures represent a valuable tool for studies on the mechanisms of leukemia formation.
Collapse
Affiliation(s)
- M Dvorakova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovon. 2, Prague 6, 166 37, Czech Republic
| | | | | | | | | |
Collapse
|
21
|
Bies J, Feiková S, Bottaro DP, Wolff L. Hyperphosphorylation and increased proteolytic breakdown of c-Myb induced by the inhibition of Ser/Thr protein phosphatases. Oncogene 2000; 19:2846-54. [PMID: 10851088 DOI: 10.1038/sj.onc.1203613] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The c-myb proto-oncogene encodes a nuclear phosphoprotein that plays a crucial role in normal hematopoiesis. It is a short-lived transcription factor rapidly degraded by the 26S proteasome. Although it has been shown that instability determinants reside in its carboxyl terminus, the molecular mechanism of c-Myb degradation is unknown. Here, we report the first evidence that phosphorylation plays a role in targeting the protein to the proteasome. Inhibition of cellular serine/threonine protein phosphatase activity by okadaic acid resulted in hyperphosphorylation of c-Myb and extremely rapid turnover. The hyperphosphorylation resulted in a protein with altered properties that was indicative of conformational changes. Its mobility on gel electrophoresis was altered as well as its recognition by specific monoclonal antibody. The altered hyperphosphorylated protein still bound to DNA with an affinity similar to that of the hypophosphorylated form. Phosphorylation of three previously identified sites, serines 11, 12, and 528, does not appear to be involved in the proposed changes in conformation or stability. However, phosphoamino acid analyses of the hyperphosphorylated form of c-Myb revealed increased c-Myb phosphorylation mainly on threonine residues that correlated with other okadaic acid-induced alterations of c-Myb. These findings indicate that Ser/Thr phosphatases prevent conformational changes that may play an important role in controlled degradation of c-Myb. Oncogene (2000) 19, 2846 - 2854
Collapse
Affiliation(s)
- J Bies
- Laboratory of Molecular Virology, Cancer Research Institute, Slovak Academy of Sciences, 833 92 Bratislava, Slovakia
| | | | | | | |
Collapse
|
22
|
Salghetti SE, Muratani M, Wijnen H, Futcher B, Tansey WP. Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis. Proc Natl Acad Sci U S A 2000; 97:3118-23. [PMID: 10706616 PMCID: PMC16202 DOI: 10.1073/pnas.97.7.3118] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Many transcription factors, particularly those involved in the control of cell growth, are unstable proteins destroyed by ubiquitin-mediated proteolysis. In a previous study of sequences targeting the transcription factor Myc for destruction, we observed that the region in Myc signaling ubiquitin-mediated proteolysis overlaps closely with the region in Myc that activates transcription. Here, we present evidence that the overlap of these two activities is not unique to Myc, but reflects a more general phenomenon. We show that a similar overlap of activation domains and destruction elements occurs in other unstable transcription factors and report a close correlation between the ability of an acidic activation domain to activate transcription and to signal proteolysis. We also show that destruction elements from yeast cyclins, when tethered to a DNA-binding domain, activate transcription. The intimate overlap of activation domains and destruction elements reveals an unexpected convergence of two very different processes and suggests that transcription factors may be destroyed because of their ability to activate transcription.
Collapse
Affiliation(s)
- S E Salghetti
- Cold Spring Harbor Laboratory, 1 Bungtown Road, P.O. Box 100, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | |
Collapse
|
23
|
Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis. Proc Natl Acad Sci U S A 2000. [PMID: 10706616 PMCID: PMC16202 DOI: 10.1073/pnas.050007597] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Many transcription factors, particularly those involved in the control of cell growth, are unstable proteins destroyed by ubiquitin-mediated proteolysis. In a previous study of sequences targeting the transcription factor Myc for destruction, we observed that the region in Myc signaling ubiquitin-mediated proteolysis overlaps closely with the region in Myc that activates transcription. Here, we present evidence that the overlap of these two activities is not unique to Myc, but reflects a more general phenomenon. We show that a similar overlap of activation domains and destruction elements occurs in other unstable transcription factors and report a close correlation between the ability of an acidic activation domain to activate transcription and to signal proteolysis. We also show that destruction elements from yeast cyclins, when tethered to a DNA-binding domain, activate transcription. The intimate overlap of activation domains and destruction elements reveals an unexpected convergence of two very different processes and suggests that transcription factors may be destroyed because of their ability to activate transcription.
Collapse
|
24
|
Wang DM, Dubendorff JW, Woo CH, Lipsick JS. Functional analysis of carboxy-terminal deletion mutants of c-Myb. J Virol 1999; 73:5875-86. [PMID: 10364339 PMCID: PMC112648 DOI: 10.1128/jvi.73.7.5875-5886.1999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The c-myb gene is implicated in the differentiation and proliferation of hematopoietic cells. Truncations of the N and/or C terminus of c-Myb, found in v-Myb, can potentiate its transforming ability. Two negative regulatory subregions, located in the C terminus, were mapped previously by using GAL4-c-Myb fusion proteins in transient transfection assays for the transcriptional activation of a GAL4-responsive reporter gene. To dissect the C terminus of c-Myb in terms of its involvement in transcriptional activation and oncogenic transformation, a series of C-terminal deletion mutants of c-Myb were analyzed. In addition, linker insertion mutants within the transactivation domain and/or heptad leucine repeat of c-Myb were examined along with those deletion mutants. In this study, we demonstrated that the removal of both of the two previously mapped negative regulatory subregions from the native form of c-Myb not only supertransactivates a Myb-responsive reporter gene but also potentiates its transforming ability in culture. However, in contrast to previous results, cells transformed by all of the mutants analyzed here except v-Myb itself exhibited the same phenotype as those transformed by c-Myb. The proliferating cells were bipotenial and differentiated into both the granulocytic and monocytic lineages. This result implies that the C terminus of c-Myb alone has no effect on the lineage determination. Finally, the transactivation activities of these mutants correlated with their transforming activities when a mim-1 reporter gene was used but not when a model promoter containing five tandem Myb-binding sites was used. In particular, a very weakly transforming mutant with a linker insertion in the heptad leucine repeat superactivated the model promoter but not the mim-1 reporter gene.
Collapse
Affiliation(s)
- D M Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | | | | | | |
Collapse
|