1
|
Elliott JL, Kutluay SB. Going beyond Integration: The Emerging Role of HIV-1 Integrase in Virion Morphogenesis. Viruses 2020; 12:E1005. [PMID: 32916894 PMCID: PMC7551943 DOI: 10.3390/v12091005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 integrase enzyme (IN) plays a critical role in the viral life cycle by integrating the reverse-transcribed viral DNA into the host chromosome. This function of IN has been well studied, and the knowledge gained has informed the design of small molecule inhibitors that now form key components of antiretroviral therapy regimens. Recent discoveries unveiled that IN has an under-studied yet equally vital second function in human immunodeficiency virus type 1 (HIV-1) replication. This involves IN binding to the viral RNA genome in virions, which is necessary for proper virion maturation and morphogenesis. Inhibition of IN binding to the viral RNA genome results in mislocalization of the viral genome inside the virus particle, and its premature exposure and degradation in target cells. The roles of IN in integration and virion morphogenesis share a number of common elements, including interaction with viral nucleic acids and assembly of higher-order IN multimers. Herein we describe these two functions of IN within the context of the HIV-1 life cycle, how IN binding to the viral genome is coordinated by the major structural protein, Gag, and discuss the value of targeting the second role of IN in virion morphogenesis.
Collapse
Affiliation(s)
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA;
| |
Collapse
|
2
|
Borrenberghs D, Zurnic I, De Wit F, Acke A, Dirix L, Cereseto A, Debyser Z, Hendrix J. Post-mitotic BET-induced reshaping of integrase quaternary structure supports wild-type MLV integration. Nucleic Acids Res 2019; 47:1195-1210. [PMID: 30445610 PMCID: PMC6379647 DOI: 10.1093/nar/gky1157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 12/29/2022] Open
Abstract
The Moloney murine leukemia virus (MLV) is a prototype gammaretrovirus requiring nuclear disassembly before DNA integration. In the nucleus, integration site selection towards promoter/enhancer elements is mediated by the host factor bromo- and extraterminal domain (BET) proteins (bromodomain (Brd) proteins 2, 3 and 4). MLV-based retroviral vectors are used in gene therapy trials. In some trials leukemia occurred through integration of the MLV vector in close proximity to cellular oncogenes. BET-mediated integration is poorly understood and the nature of integrase oligomers heavily debated. Here, we created wild-type infectious MLV vectors natively incorporating fluorescent labeled IN and performed single-molecule intensity and Förster resonance energy transfer experiments. The nuclear localization of the MLV pre-integration complex neither altered the IN content, nor its quaternary structure. Instead, BET-mediated interaction of the MLV intasome with chromatin in the post-mitotic nucleus reshaped its quaternary structure.
Collapse
Affiliation(s)
- Doortje Borrenberghs
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.,Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Irena Zurnic
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Flore De Wit
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Aline Acke
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Lieve Dirix
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.,Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Anna Cereseto
- Center for Integrative Biology (CIBIO), University of Trento, I-38123 Trento, Italy
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Jelle Hendrix
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.,Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt University, Agoralaan C, B-3590 Diepenbeek, Belgium
| |
Collapse
|
3
|
Thierry E, Deprez E, Delelis O. Different Pathways Leading to Integrase Inhibitors Resistance. Front Microbiol 2017; 7:2165. [PMID: 28123383 PMCID: PMC5225119 DOI: 10.3389/fmicb.2016.02165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022] Open
Abstract
Integrase strand-transfer inhibitors (INSTIs), such as raltegravir (RAL), elvitegravir, or dolutegravir (DTG), are efficient antiretroviral agents used in HIV treatment in order to inhibit retroviral integration. By contrast to RAL treatments leading to well-identified mutation resistance pathways at the integrase level, recent clinical studies report several cases of patients failing DTG treatment without clearly identified resistance mutation in the integrase gene raising questions for the mechanism behind the resistance. These compounds, by impairing the integration of HIV-1 viral DNA into the host DNA, lead to an accumulation of unintegrated circular viral DNA forms. This viral DNA could be at the origin of the INSTI resistance by two different ways. The first one, sustained by a recent report, involves 2-long terminal repeat circles integration and the second one involves expression of accumulated unintegrated viral DNA leading to a basal production of viral particles maintaining the viral information.
Collapse
Affiliation(s)
- Eloïse Thierry
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| | - Eric Deprez
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| | - Olivier Delelis
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| |
Collapse
|
4
|
Thierry E, Deprez E, Delelis O. Different Pathways Leading to Integrase Inhibitors Resistance. Front Microbiol 2016. [PMID: 28123383 DOI: 10.3389/fmicb.2016.02165/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023] Open
Abstract
Integrase strand-transfer inhibitors (INSTIs), such as raltegravir (RAL), elvitegravir, or dolutegravir (DTG), are efficient antiretroviral agents used in HIV treatment in order to inhibit retroviral integration. By contrast to RAL treatments leading to well-identified mutation resistance pathways at the integrase level, recent clinical studies report several cases of patients failing DTG treatment without clearly identified resistance mutation in the integrase gene raising questions for the mechanism behind the resistance. These compounds, by impairing the integration of HIV-1 viral DNA into the host DNA, lead to an accumulation of unintegrated circular viral DNA forms. This viral DNA could be at the origin of the INSTI resistance by two different ways. The first one, sustained by a recent report, involves 2-long terminal repeat circles integration and the second one involves expression of accumulated unintegrated viral DNA leading to a basal production of viral particles maintaining the viral information.
Collapse
Affiliation(s)
- Eloïse Thierry
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| | - Eric Deprez
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| | - Olivier Delelis
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| |
Collapse
|
5
|
Engelman A, Cherepanov P. Retroviral Integrase Structure and DNA Recombination Mechanism. Microbiol Spectr 2015; 2:1-22. [PMID: 25705574 PMCID: PMC4334468 DOI: 10.1128/microbiolspec.mdna3-0024-2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Indexed: 12/13/2022] Open
Abstract
Due to the importance of human immunodeficiency virus type 1 (HIV-1) integrase as a drug target, the biochemistry and structural aspects of retroviral DNA integration have been the focus of intensive research during the past three decades. The retroviral integrase enzyme acts on the linear double-stranded viral DNA product of reverse transcription. Integrase cleaves specific phosphodiester bonds near the viral DNA ends during the 3' processing reaction. The enzyme then uses the resulting viral DNA 3'-OH groups during strand transfer to cut chromosomal target DNA, which simultaneously joins both viral DNA ends to target DNA 5'-phosphates. Both reactions proceed via direct transesterification of scissile phosphodiester bonds by attacking nucleophiles: a water molecule for 3' processing, and the viral DNA 3'-OH for strand transfer. X-ray crystal structures of prototype foamy virus integrase-DNA complexes revealed the architectures of the key nucleoprotein complexes that form sequentially during the integration process and explained the roles of active site metal ions in catalysis. X-ray crystallography furthermore elucidated the mechanism of action of HIV-1 integrase strand transfer inhibitors, which are currently used to treat AIDS patients, and provided valuable insights into the mechanisms of viral drug resistance.
Collapse
Affiliation(s)
- Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline, Avenue, CLS-1010, Boston, MA 02215
| | - Peter Cherepanov
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, Potters Bar, EN6 3LD, United Kingdom
| |
Collapse
|
6
|
Feng L, Larue RC, Slaughter A, Kessl JJ, Kvaratskhelia M. HIV-1 integrase multimerization as a therapeutic target. Curr Top Microbiol Immunol 2015; 389:93-119. [PMID: 25778682 PMCID: PMC4791179 DOI: 10.1007/82_2015_439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multimeric HIV-1 integrase (IN) plays an essential, multifunctional role in virus replication and serves as an important therapeutic target. Structural and biochemical studies have revealed the importance of the ordered interplay between IN molecules for its function. In the presence of viral DNA ends, individual IN subunits assemble into a tetramer and form a stable synaptic complex (SSC), which mediates integration of the reverse transcribed HIV-1 genome into chromatin. Cellular chromatin-associated protein LEDGF/p75 engages the IN tetramer in the SSC and directs HIV-1 integration into active genes. A mechanism to deregulate the productive interplay between IN subunits with small molecule inhibitors has recently received considerable attention. Most notably, allosteric IN inhibitors (ALLINIs) have been shown to bind to the IN dimer interface at the LEDGF/p75 binding pocket, stabilize interacting IN subunits, and promote aberrant, higher order IN multimerization. Consequently, these compounds impair formation of the SSC and associated LEDGF/p75-independent IN catalytic activities as well as inhibit LEDGF/p75 binding to the SSC in vitro. However, in infected cells, ALLINIs more potently impaired correct maturation of virus particles than the integration step. ALLINI treatments induced aberrant, higher order IN multimerization in virions and resulted in eccentric, non-infectious virus particles. These studies have suggested that the correctly ordered IN structure is important for virus particle morphogenesis and highlighted IN multimerization as a plausible therapeutic target for developing new inhibitors to enhance treatment options for HIV-1-infected patients.
Collapse
Affiliation(s)
- Lei Feng
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Ross C. Larue
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Alison Slaughter
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jacques J. Kessl
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Mamuka Kvaratskhelia
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Integrase as a Novel Target for the Inhibition of Human Immunodeficiency Virus Type 1 Infection: Current Status and Future Perspectives. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Yoo GW, Shin CG. Biochemical characteristics of functional domains using feline foamy virus integrase mutants. BMB Rep 2013; 46:53-8. [PMID: 23351385 PMCID: PMC4133822 DOI: 10.5483/bmbrep.2013.46.1.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed deletion mutants and seven point mutants by polymerase chain reaction to investigate the specificity of feline foamy virus integrase functional domains. Complementation reactions were performed for three enzymatic activities such as 3'-end processing, strand transfer, and disintegration. The complementation reactions with deletion mutants showed several activities for 3'-end processing and strand transfer. The conserved central domain and the combination of the N-terminal or C-terminal domains increased disintegration activity significantly. In the complementation reactions between deletion and point mutants, the combination between D107V and deletion mutants revealed 3'-end processing activities, but the combination with others did not have any activity, including strand transfer activities. Disintegration activity increased evenly, except the combination with glutamic acid 200. These results suggest that an intact central domain mediates enzymatic activities but fails to show these activities in the absence of the N-terminal or C-terminal domains.
Collapse
Affiliation(s)
- Gwi-woong Yoo
- Department of Biotechnology, Chung-Ang University, Ansung, Korea
| | | |
Collapse
|
9
|
Serrao E, Thys W, Demeulemeester J, Al-Mawsawi LQ, Christ F, Debyser Z, Neamati N. A symmetric region of the HIV-1 integrase dimerization interface is essential for viral replication. PLoS One 2012; 7:e45177. [PMID: 23028829 PMCID: PMC3445459 DOI: 10.1371/journal.pone.0045177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/17/2012] [Indexed: 01/06/2023] Open
Abstract
HIV-1 integrase (IN) is an important target for contemporary antiretroviral drug design research. Historically, efforts at inactivating the enzyme have focused upon blocking its active site. However, it has become apparent that new classes of allosteric inhibitors will be necessary to advance the antiretroviral field in light of the emergence of viral strains resistant to contemporary clinically used IN drugs. In this study we have characterized the importance of a close network of IN residues, distant from the active site, as important for the obligatory multimerization of the enzyme and viral replication as a whole. Specifically, we have determined that the configuration of six residues within a highly symmetrical region at the IN dimerization interface, composed of a four-tiered aromatic interaction flanked by two salt bridges, significantly contributes to proper HIV-1 replication. Additionally, we have utilized a quantitative luminescence assay to examine IN oligomerization and have determined that there is a very low tolerance for amino acid substitutions along this region. Even conservative residue substitutions negatively impacted IN multimerization, resulting in an inactive viral enzyme and a non-replicative virus. We have shown that there is a very low tolerance for amino acid variation at the symmetrical dimeric interface region characterized in this study, and therefore drugs designed to target the amino acid network detailed here could be expected to yield a significantly reduced number of drug-resistant escape mutations compared to contemporary clinically-evaluated antiretrovirals.
Collapse
Affiliation(s)
- Erik Serrao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Wannes Thys
- Laboratory for Molecular Virology and Gene Therapy, Division of Molecular Medicine, Katholieke Universiteit Leuven, Flanders, Belgium
| | - Jonas Demeulemeester
- Laboratory for Molecular Virology and Gene Therapy, Division of Molecular Medicine, Katholieke Universiteit Leuven, Flanders, Belgium
| | - Laith Q. Al-Mawsawi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Division of Molecular Medicine, Katholieke Universiteit Leuven, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Division of Molecular Medicine, Katholieke Universiteit Leuven, Flanders, Belgium
| | - Nouri Neamati
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Kenyon JC, Lever AML. The molecular biology of feline immunodeficiency virus (FIV). Viruses 2011; 3:2192-213. [PMID: 22163340 PMCID: PMC3230847 DOI: 10.3390/v3112192] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 11/29/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is widespread in feline populations and causes an AIDS-like illness in domestic cats. It is highly prevalent in several endangered feline species. In domestic cats FIV infection is a valuable small animal model for HIV infection. In recent years there has been sa significant increase in interest in FIV, in part to exploit this, but also because of the potential it has as a human gene therapy vector. Though much less studied than HIV there are many parallels in the replication of the two viruses, but also important differences and, despite their likely common origin, the viruses have in some cases used alternative strategies to overcome similar problems. Recent advances in understanding the structure and function of FIV RNA and proteins and their interactions has enhanced our knowledge of FIV replication significantly, however, there are still many gaps. This review summarizes our current knowledge of FIV molecular biology and its similarities with, and differences from, other lentiviruses.
Collapse
Affiliation(s)
- Julia C Kenyon
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | | |
Collapse
|
11
|
|
12
|
The Interaction Between Lentiviral Integrase and LEDGF: Structural and Functional Insights. Viruses 2009; 1:780-801. [PMID: 21994569 PMCID: PMC3185499 DOI: 10.3390/v1030780] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 10/28/2009] [Accepted: 11/06/2009] [Indexed: 01/26/2023] Open
Abstract
Since its initial description as an HIV-1 integrase (IN) interactor seven years ago, LEDGF has become one of the best-characterized host factors involved in viral replication. Results of intensive studies in several laboratories indicated that the protein serves as a targeting factor for the lentiviral DNA integration machinery, and accounts for the characteristic preference of Lentivirus to integrate within active transcription units. The IN-LEDGF interaction has been put forward as a promising target for antiretroviral drug development and as a potential tool to improve safety of lentiviral vectors for use in gene therapy. Additionally, as a natural ligand of lentiviral IN proteins, LEDGF has been successfully used in structural biology studies of retroviral DNA integration. This review focuses on the structural aspects of the IN-LEDGF interaction and their functional consequences.
Collapse
|
13
|
Kessl JJ, McKee CJ, Eidahl JO, Shkriabai N, Katz A, Kvaratskhelia M. HIV-1 Integrase-DNA Recognition Mechanisms. Viruses 2009; 1:713-36. [PMID: 21994566 PMCID: PMC3185514 DOI: 10.3390/v1030713] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 01/24/2023] Open
Abstract
Integration of a reverse transcribed DNA copy of the HIV viral genome into the host chromosome is essential for virus replication. This process is catalyzed by the virally encoded protein integrase. The catalytic activities, which involve DNA cutting and joining steps, have been recapitulated in vitro using recombinant integrase and synthetic DNA substrates. Biochemical and biophysical studies of these model reactions have been pivotal in advancing our understanding of mechanistic details for how IN interacts with viral and target DNAs, and are the focus of the present review.
Collapse
Affiliation(s)
- Jacques J Kessl
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (J.J.K.); (C.J.M.); (J.O.E.), (N.S.); (A.K.)
| | | | | | | | | | | |
Collapse
|
14
|
Kessl JJ, Eidahl JO, Shkriabai N, Zhao Z, McKee CJ, Hess S, Burke TR, Kvaratskhelia M. An allosteric mechanism for inhibiting HIV-1 integrase with a small molecule. Mol Pharmacol 2009; 76:824-32. [PMID: 19638533 PMCID: PMC2769043 DOI: 10.1124/mol.109.058883] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 07/28/2009] [Indexed: 12/30/2022] Open
Abstract
HIV-1 integrase (IN) is a validated target for developing antiretroviral inhibitors. Using affinity acetylation and mass spectrometric (MS) analysis, we previously identified a tetra-acetylated inhibitor (2E)-3-[3,4-bis(acetoxy)phenyl]-2-propenoate-N-[(2E)-3-[3,4-bis(acetyloxy)phenyl]-1-oxo-2-propenyl]-L-serine methyl ester; compound 1] that selectively modified Lys173 at the IN dimer interface. Here we extend our efforts to dissect the mechanism of inhibition and structural features that are important for the selective binding of compound 1. Using a subunit exchange assay, we found that the inhibitor strongly modulates dynamic interactions between IN subunits. Restricting such interactions does not directly interfere with IN binding to DNA substrates or cellular cofactor lens epithelium-derived growth factor, but it compromises the formation of the fully functional nucleoprotein complex. Studies comparing compound 1 with a structurally related IN inhibitor, the tetra-acetylated-chicoric acid derivative (2R,3R)-2,3-bis[[(2E)-3-[3,4-bis(acetyloxy)phenyl]-1-oxo-2-propen-1-yl]oxy]-butanedioic acid (compound 2), indicated striking mechanistic differences between these agents. The structures of the two inhibitors differ only in their central linker regions, with compounds 1 and 2 containing a single methyl ester group and two carboxylic acids, respectively. MS experiments highlighted the importance of these structural differences for selective binding of compound 1 to the IN dimer interface. Moreover, molecular modeling of compound 1 complexed to IN identified a potential inhibitor binding cavity and provided structural clues regarding a possible role of the central methyl ester group in establishing an extensive hydrogen bonding network with both interacting subunits. The proposed mechanism of action and binding site for the small-molecule inhibitor identified in the present study provide an attractive venue for developing allosteric inhibitors of HIV-1 IN.
Collapse
Affiliation(s)
- Jacques J Kessl
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, the Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Integrase and integration: biochemical activities of HIV-1 integrase. Retrovirology 2008; 5:114. [PMID: 19091057 PMCID: PMC2615046 DOI: 10.1186/1742-4690-5-114] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 12/17/2008] [Indexed: 01/12/2023] Open
Abstract
Integration of retroviral DNA is an obligatory step of retrovirus replication because proviral DNA is the template for productive infection. Integrase, a retroviral enzyme, catalyses integration. The process of integration can be divided into two sequential reactions. The first one, named 3'-processing, corresponds to a specific endonucleolytic reaction which prepares the viral DNA extremities to be competent for the subsequent covalent insertion, named strand transfer, into the host cell genome by a trans-esterification reaction. Recently, a novel specific activity of the full length integrase was reported, in vitro, by our group for two retroviral integrases (HIV-1 and PFV-1). This activity of internal cleavage occurs at a specific palindromic sequence mimicking the LTR-LTR junction described into the 2-LTR circles which are peculiar viral DNA forms found during viral infection. Moreover, recent studies demonstrated the existence of a weak palindromic consensus found at the integration sites. Taken together, these data underline the propensity of retroviral integrases for binding symmetrical sequences and give perspectives for targeting specific sequences used for gene therapy.
Collapse
|
16
|
Zhao Z, McKee CJ, Kessl JJ, Santos WL, Daigle JE, Engelman A, Verdine G, Kvaratskhelia M. Subunit-specific protein footprinting reveals significant structural rearrangements and a role for N-terminal Lys-14 of HIV-1 Integrase during viral DNA binding. J Biol Chem 2007; 283:5632-41. [PMID: 18093980 DOI: 10.1074/jbc.m705241200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To identify functional contacts between HIV-1 integrase (IN) and its viral DNA substrate, we devised a new experimental strategy combining the following two methodologies. First, disulfide-mediated cross-linking was used to site-specifically link select core and C-terminal domain amino acids to respective positions in viral DNA. Next, surface topologies of free IN and IN-DNA complexes were compared using Lys- and Arg-selective small chemical modifiers and mass spectrometric analysis. This approach enabled us to dissect specific contacts made by different monomers within the multimeric complex. The foot-printing studies for the first time revealed the importance of a specific N-terminal domain residue, Lys-14, in viral DNA binding. In addition, a DNA-induced conformational change involving the connection between the core and C-terminal domains was observed. Site-directed mutagenesis experiments confirmed the importance of the identified contacts for recombinant IN activities and virus infection. These new findings provided major constraints, enabling us to identify the viral DNA binding channel in the active full-length IN multimer. The experimental approach described here has general application to mapping interactions within functional nucleoprotein complexes.
Collapse
Affiliation(s)
- Zhuojun Zhao
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dobard CW, Briones MS, Chow SA. Molecular mechanisms by which human immunodeficiency virus type 1 integrase stimulates the early steps of reverse transcription. J Virol 2007; 81:10037-46. [PMID: 17626089 PMCID: PMC2045400 DOI: 10.1128/jvi.00519-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Reverse transcriptase (RT) and integrase (IN) are two essential enzymes that play a critical role in synthesis and integration of the retroviral cDNA, respectively. For human immunodeficiency virus type 1 (HIV-1), RT and IN physically interact and certain mutations and deletions of IN result in viruses defective in early steps of reverse transcription. However, the mechanism by which IN affects reverse transcription is not understood. We used a cell-free reverse transcription assay with different primers and compositions of deoxynucleoside triphosphates to differentially monitor the effect of IN on the initiation and elongation modes of reverse transcription. During the initiation mode, addition of IN stimulated RT-catalyzed reverse transcription by fourfold. The stimulation was specific to IN and could not be detected when the full-length IN was replaced with truncated IN derivatives. The IN-stimulated initiation was also restricted to the template-primer complex formed using tRNA(3)(Lys) or short RNA oligonucleotides as the primer and not those formed using DNA oligonucleotides as the primer. Addition of IN also produced a threefold stimulation during the elongation mode, which was not primer dependent. The stimulation of both initiation and elongation by IN was retained in the presence of an RT trap. Furthermore, IN had no effect on steps at or before template-primer annealing, including packaging of viral genomic RNA and tRNA(3)(Lys). Taken together, our results showed that IN acts at early steps of reverse transcription by increasing the processivity of RT and suppressing the formation of the pause products.
Collapse
Affiliation(s)
- Charles W Dobard
- Department of Molecular and Medical Pharmacology, School of Medicine, University of California-Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
18
|
Guiot E, Carayon K, Delelis O, Simon F, Tauc P, Zubin E, Gottikh M, Mouscadet JF, Brochon JC, Deprez E. Relationship between the oligomeric status of HIV-1 integrase on DNA and enzymatic activity. J Biol Chem 2006; 281:22707-19. [PMID: 16774912 DOI: 10.1074/jbc.m602198200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 3'-processing of the extremities of viral DNA is the first of two reactions catalyzed by HIV-1 integrase (IN). High order IN multimers (tetramers) are required for complete integration, but it remains unclear which oligomer is responsible for the 3'-processing reaction. Moreover, IN tends to aggregate, and it is unknown whether the polymerization or aggregation of this enzyme on DNA is detrimental or beneficial for activity. We have developed a fluorescence assay based on anisotropy for monitoring release of the terminal dinucleotide product in real-time. Because the initial anisotropy value obtained after DNA binding and before catalysis depends on the fractional saturation of DNA sites and the size of IN.DNA complexes, this approach can be used to study the relationship between activity and binding/multimerization parameters in the same assay. By increasing the IN:DNA ratio, we found that the anisotropy increased but the 3'-processing activity displayed a characteristic bell-shaped behavior. The anisotropy values obtained in the first phase were predictive of subsequent activity and accounted for the number of complexes. Interestingly, activity peaked and then decreased in the second phase, whereas anisotropy continued to increase. Time-resolved fluorescence anisotropy studies showed that the most competent form for catalysis corresponds to a dimer bound to one viral DNA end, whereas higher order complexes such as aggregates predominate during the second phase when activity drops off. We conclude that a single IN dimer at each extremity of viral DNA molecules is required for 3'-processing, with a dimer of dimers responsible for the subsequent full integration.
Collapse
Affiliation(s)
- Elvire Guiot
- Laboratoire de Biotechnologie et Pharmacologie Genetique Appliquee, CNRS, UMR8113, Ecole Normale Supérieure de Cachan, 61 av du Président Wilson, 94235 Cachan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wielens J, Crosby IT, Chalmers DK. A three-dimensional model of the human immunodeficiency virus type 1 integration complex. J Comput Aided Mol Des 2005; 19:301-17. [PMID: 16184433 DOI: 10.1007/s10822-005-5256-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 04/07/2005] [Indexed: 01/26/2023]
Abstract
While the general features of HIV-1 integrase function are understood, there is still uncertainty about the composition of the integration complex and how integrase interacts with viral and host DNA. We propose an improved model of the integration complex based on current experimental evidence including a comparison with the homologous Tn5 transposase containing bound DNA and an analysis of DNA binding sites using Goodford's GRID. Our model comprises a pair of integrase dimers, two strands of DNA to represent the viral DNA ends and a strand of bent DNA representing the host chromosome. In our model, the terminal four base pairs of each of the viral DNA strands interact with the integrase dimer providing the active site, while bases one turn away interact with a flexible loop (residues 186-194) on the second integrase dimer. We propose that residues E152, Q148 and K156 are involved in the specific recognition of the conserved CA dinucleotide and that the active site mobile loop (residues 140-149) stabilises the integration complex by acting as a barrier to separate the two viral DNA ends. In addition, the residues responsible for DNA binding in our model show a high level of amino acid conservation.
Collapse
Affiliation(s)
- Jerome Wielens
- Department of Medicinal Chemistry, Monash University, 381 Royal Parade, 3052, Parkville, Vic., Australia.
| | | | | |
Collapse
|
20
|
Busschots K, Vercammen J, Emiliani S, Benarous R, Engelborghs Y, Christ F, Debyser Z. The interaction of LEDGF/p75 with integrase is lentivirus-specific and promotes DNA binding. J Biol Chem 2005; 280:17841-7. [PMID: 15749713 DOI: 10.1074/jbc.m411681200] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have previously shown that the p75 isoform of the transcriptional co-activator lens epithelium-derived growth factor (LEDGF) interacts tightly with human immunodeficiency virus (HIV)-1 integrase (IN) and is essential for nuclear targeting of this protein in human cells (Cherepanov, P., Maertens, G., Proost, P., Devreese, B., Van Beeumen, J., Engelborghs, Y., De Clercq, E., and Debyser, Z. (2003) J. Biol. Chem. 278, 372-381; Maertens, G., Cherepanov, P., Pluymers, W., Busschots, K., De Clercq, E., Debyser, Z., and Engelborghs, Y. (2003) J. Biol. Chem. 278, 33528-33539). Here the interaction between recombinant LEDGF/p75 and HIV-1 IN was examined in a pull-down binding test. LEDGF/p75 was shown to increase the solubility of HIV-1 IN. Next, fluorescent correlation spectroscopy was used to measure the interaction of LEDGF/p75 or the complex of HIV-1 IN and LEDGF/p75 with a specific double-stranded DNA oligonucleotide. Whereas LEDGF/p75 displayed only a moderate affinity for DNA, it strongly promoted the binding of HIV-1 IN to DNA. This effect was specific for the p75 isoform of LEDGF and was not seen with p52. In the pull-down assay LEDGF/p75 interacted with HIV-1, HIV-2, and feline immunodeficiency virus IN, but not with the IN of human T-cell lymphotropic virus type 2, Moloney murine leukemia virus, or Rous sarcoma virus. These results strongly suggest that the interaction of LEDGF/p75 with IN is specific to lentiviridae. LEDGF/p75 stimulated the binding of HIV-1 and HIV-2 IN, but not Moloney murine leukemia virus or Rous sarcoma virus IN, to an aspecific DNA. These results provide supporting evidence for our hypothesis that LEDGF/p75 plays a role in the tethering of lentiviral IN to the chromosomal DNA.
Collapse
Affiliation(s)
- Katrien Busschots
- Laboratory for Molecular Virology and Gene Therapy, Katholieke Universiteit Leuven and Interdisciplinary Research Center Katholieke Universiteit Leuven Campus Kortrijk, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | | | | | | | | | | | | |
Collapse
|
21
|
Faure A, Calmels C, Desjobert C, Castroviejo M, Caumont-Sarcos A, Tarrago-Litvak L, Litvak S, Parissi V. HIV-1 integrase crosslinked oligomers are active in vitro. Nucleic Acids Res 2005; 33:977-86. [PMID: 15718297 PMCID: PMC549407 DOI: 10.1093/nar/gki241] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The oligomeric state of active human immunodeficiency virus type 1 (HIV-1) integrase (IN) has not been clearly elucidated. We analyzed the activity of the different purified oligomeric forms of recombinant IN obtained after stabilization by platinum crosslinking. The crosslinked tetramer isolated by gel chromatography was able to catalyze the full-site integration of the two viral LTR ends into a target DNA in vitro, whereas the isolated dimeric form of the enzyme was involved in the processing and integration of only one viral end. Accurate concerted integration by IN tetramers was confirmed by cloning and sequencing. Kinetic studies of DNA-integrase complexes led us to propose a model explaining the formation of an active complex. Our data suggest that the tetrameric IN bound to the viral DNA ends is the minimal complex involved in the concerted integration of both LTRs and should be the oligomeric form targeted by future inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vincent Parissi
- To whom correspondence should be addressed at UMR 5097, CNRS-Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux cedex, France. Tel: +33 0 5 57 57 17 40; Fax: +33 0 5 57 57 17 66;
| |
Collapse
|
22
|
Villanueva RA, Jonsson CB, Jones J, Georgiadis MM, Roth MJ. Differential multimerization of Moloney murine leukemia virus integrase purified under nondenaturing conditions. Virology 2003; 316:146-60. [PMID: 14599799 PMCID: PMC5653259 DOI: 10.1016/s0042-6822(03)00559-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Retroviral integrases (IN) catalyze the integration of the reverse-transcribed viral DNA into the host genome, an essential process leading to virus replication. For Moloney murine leukemia virus (M-MuLV) IN, the limited solubility of the recombinant protein has restricted the development of biophysical and structural analyses. Herein, recombinant M-MuLV IN proteins, either full length or two nonoverlapping domain constructs, were purified under non-denaturing conditions from solubilized bacterial extracts by Ni(2+)-NTA resins. Additionally, WT IN was further purified by heparin chromatography. All of the purified proteins were shown to be active and stable. WT M-MuLV IN chromatographed with a peak corresponding with a dimer by gel filtration chromatography. In contrast, the single point mutant C209A IN migrated predominantly as a tetramer. For both proteins, fractions in equilibrium between dimers and tetramers were competent to assemble concerted two-end integrations and yielded a unique strand-transfer profile in the presence of a 28-mer U5 oligonucleotide substrate, indicative of a distinct conformation within the synaptic complex. This specific target-site selection was not observed with a shorter 20-mer U5 substrate. These studies provide the foundation for biophysical and structural analysis on M-MuLV IN and the mechanism of retroviral integration.
Collapse
Affiliation(s)
- Rodrigo A. Villanueva
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Colleen B. Jonsson
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | - Jennifer Jones
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Monica J. Roth
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
- Corresponding author. Fax +1-732-235-4783. (M.J. Roth)
| |
Collapse
|
23
|
Bischerour J, Leh H, Deprez E, Brochon JC, Mouscadet JF. Disulfide-linked integrase oligomers involving C280 residues are formed in vitro and in vivo but are not essential for human immunodeficiency virus replication. J Virol 2003; 77:135-41. [PMID: 12477818 PMCID: PMC140589 DOI: 10.1128/jvi.77.1.135-141.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 integrase (IN) forms an oligomer that integrates both ends of the viral DNA. The nature of the active oligomer is unclear. Recombinant IN obtained under reducing conditions is always in the form of noncovalent oligomers. However, disulfide-linked oligomers of IN were recently observed within viral particles. We show that IN produced from a baculovirus expression system can form disulfide-linked oligomers. We investigated which residues are responsible for the disulfide bridges and the relationship between the ability to form covalent dimers and IN activity. Only the mutation of residue C280 was sufficient to prevent the formation of intermolecular disulfide bridges in oligomers of recombinant IN. IN activity was studied under and versus nonreducing conditions: the formation of disulfide bridges was not required for the in vitro activities of the enzyme. Moreover, the covalent dimer does not dissociate into individual protomers on disulfide bridge reduction. Instead, IN undergoes a spontaneous multimerization process that yields a homogenous noncovalent tetramer. The C280S mutation also completely abolished the formation of disulfide bonds in the context of the viral particle. Finally, the replication of the mutant virus was investigated in replicating and arrested cells. The infectivity of the virus was not affected by the C280S IN mutation in either dividing or nondividing cells. The disulfide-linked form of the IN oligomers observed in the viral particles is thus not required for viral replication.
Collapse
|
24
|
de Soultrait VR, Caumont A, Durrens P, Calmels C, Parissi V, Recordon P, Bon E, Desjobert C, Tarrago-Litvak L, Fournier M. HIV-1 integrase interacts with yeast microtubule-associated proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1575:40-8. [PMID: 12020817 DOI: 10.1016/s0167-4781(02)00241-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) mediates the insertion of viral DNA into the human genome. In addition to IN, cellular and viral proteins are associated to proviral DNA in the so-called preintegration complex (PIC). We previously reported that the expression of HIV-1 IN in yeast leads to the emergence of a lethal phenotype. This effect may be linked to the IN activity on infected human cells where integration requires the cleavage of genomic DNA. To isolate and characterize potential cellular partners of HIV-1 IN, we used it as a bait in a two-hybrid system with a yeast genomic library. IN interacted with proteins belonging to the microtubule network, or involved in the protein synthesis apparatus. We focused our interest on one of the selected inserts, L2, which corresponds to the C-end half of the yeast STU2p, a microtubule-associated protein (MAP). STU2p is an essential component of the yeast spindle pole body (SPB), which is able to bind microtubules in vitro. After expressing and purifying L2 as a recombinant protein, we showed its binding to IN by ELISA immunodetection. L2 was also able to inhibit IN activity in vitro. In addition, the effect of L2 was tested using the "lethal yeast phenotype". The coexpression of IN and the L2 peptide abolished the lethal phenotype, thus showing important in vivo interactions between IN and L2. The identification of components of the microtubule network associated with IN suggest a role of this complex in the transport of HIV-1 IN present in the PIC to the nucleus, as already described for other human viruses.
Collapse
Affiliation(s)
- Vaea Richard de Soultrait
- UMR 5097 CNRS-Université Victor Segalen Bordeaux 2, BP 103, Bat. 3A-3 Etage, 146 rue Léo Saignat, 33076 Bordeaux X Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Appa RS, Shin CG, Lee P, Chow SA. Role of the nonspecific DNA-binding region and alpha helices within the core domain of retroviral integrase in selecting target DNA sites for integration. J Biol Chem 2001; 276:45848-55. [PMID: 11585830 DOI: 10.1074/jbc.m107365200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Retroviral integrase plays an important role in choosing host chromosomal sites for integration of the cDNA copy of the viral genome. The domain responsible for target site selection has been previously mapped to the central core of the protein (amino acid residues 49-238). Chimeric integrases between human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) were prepared to examine the involvement of a nonspecific DNA-binding region (residues 213-266) and certain alpha helices within the core domain in target site selection. Determination of the distribution and frequency of integration events of the chimeric integrases narrowed the target site-specifying motif to within residues 49-187 and showed that alpha 3 and alpha 4 helices (residues 123-166) were not involved in target site selection. Furthermore, the chimera with the alpha 2 helix (residues 118-121) of FIV identity displayed characteristic integration events from both HIV-1 and FIV integrases. The results indicate that the alpha 2 helix plays a role in target site preference as either part of a larger or multiple target site-specifying motif.
Collapse
Affiliation(s)
- R S Appa
- Department of Molecular and Medical Pharmacology, Molecular Biology Institute, and UCLA AIDS Institute, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
26
|
Yang F, Roth MJ. Assembly and catalysis of concerted two-end integration events by Moloney murine leukemia virus integrase. J Virol 2001; 75:9561-70. [PMID: 11559787 PMCID: PMC114526 DOI: 10.1128/jvi.75.20.9561-9570.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Retroviral integration results in the stable and coordinated insertion of the two termini of the linear viral DNA into the host genome. An in vitro concerted two-end integration reaction catalyzed by the Moloney murine leukemia virus (M-MuLV) integrase (IN) was used to investigate the binding and coordination of the two viral DNA ends. Comparison of the two-end integration and strand transfer assays indicates that zinc is required for efficient concerted integration utilizing plasmid DNA as target. Complementation assays using a pair of nonoverlapping integrase domains, consisting of the HHCC domain and the core/C-terminal region, yielded products containing the correct 4-base target site duplication. The efficiency of the coordinated two-end integration varied depending on the order of addition of the individual protein and DNA components in the complementation assay. Two-end integration was most efficient when the long terminal repeat (LTR) was premixed with either the target DNA or the HHCC domain. The preference for two-end integration through preincubation of the HHCC finger with the viral DNA supports the role of this domain in the recognition and/or positioning of the LTR.
Collapse
Affiliation(s)
- F Yang
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-- Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
27
|
Deprez E, Tauc P, Leh H, Mouscadet JF, Auclair C, Hawkins ME, Brochon JC. DNA binding induces dissociation of the multimeric form of HIV-1 integrase: a time-resolved fluorescence anisotropy study. Proc Natl Acad Sci U S A 2001; 98:10090-5. [PMID: 11504911 PMCID: PMC56920 DOI: 10.1073/pnas.181024498] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Self-assembly of HIV-1 integrase (IN) in solution has been studied previously by time-resolved fluorescence, using tryptophan anisotropy decay. This approach provides information on the size of macromolecules via the determination of rotational correlation times (theta). We have shown that, at submicromolar concentration, IN is characterized by a long rotational correlation time (theta(20 degrees C) = 90-100 ns) corresponding to a high-order oligomeric form, likely a tetramer. In the present work, we investigated the self-assembly properties of the DNA-bound IN by using three independent fluorophores. Under enzymatic assay conditions (10(-7) M IN, 2 x 10(-8) M DNA), using either fluorescein-labeled or fluorescent guanosine analog-containing oligonucleotides that mimic a viral end long terminal repeat sequence, we found that the DNA-IN complex was characterized by shorter theta(20 degrees C) values of 15.5-19.5 and 23-27 ns, calculated from experiments performed at 25 degrees C and 37 degrees C, respectively. These results were confirmed by monitoring the Trp anisotropy decay as a function of the DNA substrate concentration: the theta of IN shifted from 90-100 ns to lower values (<30 ns) upon increasing the DNA concentration. Again, the normalized theta(20 degrees C) values were significantly higher when monitored at 37 degrees C as compared with 25 degrees C. These results indicate that upon binding the viral DNA end, the multimeric enzyme undergoes a dissociation, most likely into a homogeneous monomeric form at 25 degrees C and into a monomer-dimer equilibrium at 37 degrees C.
Collapse
Affiliation(s)
- E Deprez
- Laboratoire de Biotechnologie et Pharmacogénétique Appliquée (Centre National de la Recherche Scientifique-UMR8532), ENS-Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Human immunodeficiency virus Type 1 (HIV-1) integrase is an essential enzyme for the obligatory integration of the viral DNA into the infected cell chromosome. As no cellular homologue of HIV integrase has been identified, this unique HIV-1 enzyme is an attractive target for the development of new therapeutics. Treatment of HIV-1 infection and AIDS currently consists of the use of combinations of HIV-1 inhibitors directed against reverse transcriptase (RT) and protease. However, their numerous side effects and the rapid emergence of drug-resistant variants limit greatly their use in many AIDS patients. In principle, inhibitors of the HIV-1 integrase should be relatively non-toxic and provide additional benefits for AIDS chemotherapy. There have been many major advances in our understanding of the molecular mechanism of the integration reaction, although some critical aspects remain obscure. Several classes of compounds have been screened and further scrutinised for their inhibitory properties against the HIV integrase; however, there are currently no useful inhibitors available clinically for the treatment of AIDS patients. This review describes the current knowledge of the biological functions of the HIV-1 integrase and reports the major classes of integrase inhibitors identified to date.
Collapse
Affiliation(s)
- Khampoune Sayasith
- CRRA, Faculty of Veterinary Medicine, University of Montreal, PO Box 5000, St-Hyacinthe, Quebec, Canada J2S 7C6.
| | | | | |
Collapse
|
29
|
Holmes-Son ML, Appa RS, Chow SA. Molecular genetics and target site specificity of retroviral integration. ADVANCES IN GENETICS 2001; 43:33-69. [PMID: 11037298 DOI: 10.1016/s0065-2660(01)43003-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Integration is an essential step in the life cycle of retroviruses, resulting in the stable joining of the viral cDNA to the host cell chromosomes. While this critical process makes retroviruses an attractive vector for gene delivery, it also presents a potential hazard. The sites where integration occurs are nonspecific. Therefore,it is possible that integration of retroviral DNA will affect host gene expression and disrupt normal cellular functions. The mechanism by which integration sites are chosen is not well understood, and is influenced by several factors, including DNA sequence and structure, DNA-binding proteins, DNA methylation, and transcription. Integrase, the viral enzyme responsible for catalyzing integration, also plays a key role in controlling the choice of target sites. The integrase domain responsible for target site selection has been mapped to the central core region. A better understanding of the interaction between the target-specifying motif of integrase and the target DNA may allow a means to manipulate integration into particular chromosomal sites. Another approach to directing integration is to fuse integrase with a sequence-specific DNA-binding protein, which results in a bias of integration in vitro into the recognition site of the fusion partner. Successful incorporation of the fusion protein into infectious virions and the identification of optimal proteins that can be fused to integrase will advance the development of site-specific vectors. Retroviruses are promising for the delivery of genes in experimental and therapeutic protocols. A better understanding of integration will aid in the design of safer and more effective gene transfer vectors.
Collapse
Affiliation(s)
- M L Holmes-Son
- Department of Molecular and Medical Pharmacology, UCLA AIDS Institute and Molecular Biology Institute, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
30
|
Holmes-Son ML, Chow SA. Integrase-lexA fusion proteins incorporated into human immunodeficiency virus type 1 that contains a catalytically inactive integrase gene are functional to mediate integration. J Virol 2000; 74:11548-56. [PMID: 11090152 PMCID: PMC112435 DOI: 10.1128/jvi.74.24.11548-11556.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2000] [Accepted: 09/19/2000] [Indexed: 11/20/2022] Open
Abstract
Purified fusion proteins made up of a retroviral integrase and a sequence-specific DNA-binding protein have been tested in in vitro assays for their ability to direct integration into specific target sites. To determine whether these fusion proteins can be incorporated into human immunodeficiency virus type 1 (HIV-1) and are functional to mediate integration, we used an in trans approach to deliver various integrase-LexA proteins to an integrase-defective virus containing an integrase mutation at aspartate residue 64. Integrase-LexA, integrase-LexA DNA-binding domain, or N- or C-terminally truncated integrase-LexA proteins were fused to the HIV-1 accessory protein, Vpr. Coexpression of the Vpr fusion proteins and an integrase-defective HIV-1 molecular clone by a producer cell line resulted in efficient incorporation of the fusion protein into the integrase-mutated virus. In addition, each of these viruses was infectious and capable of performing integration, as determined by two independent cellular assays that measure reporter gene expression. With the exception of the N-terminally truncated integrase fused to LexA, which was at about 1%, all of the fusion proteins restored integration to a similar level, at 17 to 24% of that of the wild-type virus. The low level observed with the N-terminally truncated integrase fused to LexA is consistent with previous results implying that the N terminus of integrase is involved in multiple steps of the retroviral life cycle. These data indicate that the integrase-fusion proteins retain catalytic function in the integrase-mutated viruses and demonstrate the feasibility of incorporating integrase fusion proteins into HIV-1 for the development of site-directed retroviral vectors.
Collapse
Affiliation(s)
- M L Holmes-Son
- Department of Molecular and Medical Pharmacology, UCLA AIDS Institute, and Molecular Biology Institute, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
31
|
Eijkelenboom AP, van den Ent FM, Wechselberger R, Plasterk RH, Kaptein R, Boelens R. Refined solution structure of the dimeric N-terminal HHCC domain of HIV-2 integrase. JOURNAL OF BIOMOLECULAR NMR 2000; 18:119-128. [PMID: 11101216 DOI: 10.1023/a:1008342312269] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The solution structure of the dimeric N-terminal domain of HIV-2 integrase (residues 1-55, named IN(1-55)) has been determined using NMR spectroscopy. The structure of the monomer, which was already reported previously [Eijkelenboom et al. (1997) Curr. Biol., 7, 739-746], consists of four alpha-helices and is well defined. Helices alpha1, alpha2 and alpha3 form a three-helix bundle that is stabilized by zinc binding to His12, His16, Cys40 and Cys43. The dimer interface is formed by the N-terminal tail and the first half of helix alpha3. The orientation of the two monomeric units with respect to each other shows considerable variation. 15N relaxation studies have been used to characterize the nature of the intermonomeric disorder. Comparison of the dimer interface with that of the well-defined dimer interface of HIV-1 IN(1-55) shows that the latter is stabilized by additional hydrophobic interactions and a potential salt bridge. Similar interactions cannot be formed in HIV-2 IN(1-55) [Cai et al. (1997) Nat. Struct. Biol., 4, 567-577], where the corresponding residues are positively charged and neutral ones.
Collapse
Affiliation(s)
- A P Eijkelenboom
- Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Leh H, Brodin P, Bischerour J, Deprez E, Tauc P, Brochon JC, LeCam E, Coulaud D, Auclair C, Mouscadet JF. Determinants of Mg2+-dependent activities of recombinant human immunodeficiency virus type 1 integrase. Biochemistry 2000; 39:9285-94. [PMID: 10924121 DOI: 10.1021/bi000398b] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relationship between Mg(2+)-dependent activity and the self-assembly state of HIV-1 integrase was investigated using different protein preparations. The first preparations, IN(CHAPS) and IN(dial), were purified in the presence of detergent, but in the case of IN(dial), the detergent was removed during a final dialysis. The third preparation, IN(zn), was purified without any detergent. The three preparations displayed comparable Mn(2+)-dependent activities. In contrast, the Mg(2+)-dependent activity that reflects a more realistic view of the physiological activity strongly depended on the preparation. IN(CHAPS) was not capable of using Mg(2+) as a cofactor, whereas IN(zn) was highly active under the same conditions. In the accompanying paper [Deprez, E., et al. (2000) Biochemistry 39, 9275-9284], we used time-resolved fluorescence anisotropy to demonstrate that IN(CHAPS) was monomeric at the concentration of enzymatic assays. Here, we show that IN(zn) was homogeneously tetrameric under similar conditions. Moreover, IN(dial) that exhibited an intermediary Mg(2+)-dependent activity existed in a monomer-multimer equilibrium. The level of Mg(2+)- but not Mn(2+)-dependent activity of IN(dial) was altered by addition of detergent which plays a detrimental role in the maintenance of the oligomeric organization. Our results indicate that the ability of integrase to use Mg(2+) as a cofactor is related to its self-assembly state in solution, whereas Mn(2+)-dependent activity is not. Finally, the oligomeric IN(zn) was capable of binding efficiently to DNA regardless of the cationic cofactor, whereas the monomeric IN(CHAPS) strictly required Mn(2+). Thus, we propose that a specific conformation of integrase is a prerequisite for its binding to DNA in the presence of Mg(2+).
Collapse
Affiliation(s)
- H Leh
- Laboratoire de Physicochimie et de Pharmacologie des Macromolécules Biologiques (UMR-CNRS 8532), Villejuif Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Parissi V, Caumont AB, de Soultrait VR, Calmels C, Pichuantes S, Litvak S, Dupont CH. Selection of amino acid substitutions restoring activity of HIV-1 integrase mutated in its catalytic site using the yeast Saccharomyces cerevisiae. J Mol Biol 2000; 295:755-65. [PMID: 10656788 DOI: 10.1006/jmbi.1999.3416] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The integration of proviral DNA into the genome of the host cell is an essential step in the replication of retroviruses. This reaction is catalyzed by a viral-encoded enzyme, the integrase (IN). We have previously shown that human immunodeficiency virus type 1 (HIV-1) IN causes a lethal effect when expressed in yeast cells. This system, called yeast lethal assay, was used as a tool to study IN activity in a cellular context. The yeast lethal assay allowed the selection and characterization of mutations affecting both the lethal phenotype and the in vitro IN activities. IN mutants were produced by random PCR mutagenesis in an IN gene bearing the inactivating D116A mutation in the catalytic site. The corresponding D116A substituted IN does not lead to lethality in yeast. Subsequent selection of mutants able to restore the lethal effect of IN was carried out using the yeast lethal assay. We isolated three mutants presenting a restored phenotype. The mutated IN genes were sequenced and the corresponding proteins were purified to characterize their in vitro activities. The three mutants presented restoration of the in vitro strand transfer activity, while 3' processing was only partially restored.The three mutants differ from D116A IN by at least one amino acid substitution located in the N-terminal domain of the protein, outside of the active site. These new mutated HIV-1 INs may therefore allow a better understanding of the N-terminal domain function in the integration reaction. In addition, these results support our hypothesis that explains the lethal effect as a consequence of the nuclear damage caused by wild-type IN in yeast cells. These data also indicate that the yeast lethal assay can be used as a tool to study the retroviral integration mechanism in a cellular context and to select specific inhibitors.
Collapse
Affiliation(s)
- V Parissi
- Laboratoire REGER, UMR 5097 CNRS-Université Victor Segalen Bordeaux 2, IFR 66 Pathologies Infectieuses. 1, rue Camille Saint Saëns, Bordeaux cedex, 33077, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Eijkelenboom AP, Sprangers R, Hård K, Puras Lutzke RA, Plasterk RH, Boelens R, Kaptein R. Refined solution structure of the C-terminal DNA-binding domain of human immunovirus-1 integrase. Proteins 1999; 36:556-64. [PMID: 10450096 DOI: 10.1002/(sici)1097-0134(19990901)36:4<556::aid-prot18>3.0.co;2-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The structure of the C-terminal DNA-binding domain of human immunovirus-1 integrase has been refined using nuclear magnetic resonance spectroscopy. The protein is a dimer in solution and shows a well-defined dimer interface. The folding topology of the monomer consists of a five-stranded beta-barrel that resembles that of Src homology 3 domains. Compared with our previously reported structure, the structure is now defined far better. The final 42 structures display a back-bone root mean square deviation versus the average of 0.46 A. Correlation of the structure with recent mutagenesis studies suggests two possible models for DNA binding. Proteins 1999;36:556-564.
Collapse
Affiliation(s)
- A P Eijkelenboom
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|