1
|
Ayele K, Wakimoto H, Nauwynck HJ, Kaufman HL, Rabkin SD, Saha D. Understanding the interplay between oHSV and the host immune system: Implications for therapeutic oncolytic virus development. Mol Ther 2025; 33:1327-1343. [PMID: 39741405 DOI: 10.1016/j.ymthe.2024.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/05/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Oncolytic herpes simplex viruses (oHSV) preferentially replicate in cancer cells while inducing antitumor immunity, and thus, they are often referred to as in situ cancer vaccines. OHSV infection of tumors elicits diverse host immune responses comprising both innate and adaptive components. Although the innate and adaptive immune responses primarily target the tumor, they also contribute to antiviral immunity, limiting viral replication/oncolysis. OHSV-encoded proteins use various mechanisms to evade host antiviral pathways and immune recognition, favoring oHSV replication, oncolysis, and spread. In general, oHSV infection and replication within tumors results in a series of sequential events, such as oncolysis and release of tumor and viral antigens, dendritic cell-mediated antigen presentation, T cell priming and activation, T cell trafficking and infiltration to tumors, and T cell recognition of cancer cells, leading to tumor (and viral) clearance. These sequential events align with all steps of the cancer-immunity cycle. However, a comprehensive understanding of the interplay between oHSV and host immune responses is crucial to optimize oHSV-induced antitumor immunity and efficacy. Therefore, this review aims to elucidate oHSV's communication with innate and adaptive immune systems and use such interactions to improve oHSV's potential as a potent immunovirotherapeutic agent against cancer.
Collapse
Affiliation(s)
- Kalkidan Ayele
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA
| | - Hiroaki Wakimoto
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Howard L Kaufman
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Samuel D Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dipongkor Saha
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA.
| |
Collapse
|
2
|
Erickson NJ, Stavarache M, Tekedereli I, Kaplitt MG, Markert JM. Herpes Simplex Oncolytic Viral Therapy for Malignant Glioma and Mechanisms of Delivery. World Neurosurg 2025; 194:123595. [PMID: 39710201 DOI: 10.1016/j.wneu.2024.123595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
The authors present a comprehensive review on the history and development of oncolytic herpes simplex viral therapies for malignant glioma with a focus on mechanisms of delivery in prior and ongoing clinical trials. This review highlights the advancements made with regard to delivering these therapies to a highly complex immunologic environment in the setting of the blood-brain and blood-tumor barrier in a safe and effective manner.
Collapse
Affiliation(s)
- Nicholas J Erickson
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mihaela Stavarache
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Ibrahim Tekedereli
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael G Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - James M Markert
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
3
|
Wang C, Wang T, Li M, Zhang R, Ugurlu H, Sitti M. Heterogeneous multiple soft millirobots in three-dimensional lumens. SCIENCE ADVANCES 2024; 10:eadq1951. [PMID: 39504364 PMCID: PMC11540014 DOI: 10.1126/sciadv.adq1951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
Miniature soft robots offer opportunities for safe and physically adaptive medical interventions in hard-to-reach regions. Deploying multiple robots could further enhance the efficacy and multifunctionality of these operations. However, multirobot deployment in physiologically relevant three-dimensional (3D) tubular structures is limited by the lack of effective mechanisms for independent control of miniature magnetic soft robots. This work presents a framework leveraging the shape-adaptive robotic design and heterogeneous resistance from robot-lumen interactions to enable magnetic multirobot control. We first compute influence and actuation regions to quantify robot movement. Subsequently, a path planning algorithm generates the trajectory of a permanent magnet for multirobot navigation in 3D lumens. Last, robots are controlled individually in multilayer lumen networks under medical imaging. Demonstrations of multilocation cargo delivery and flow diversion manifest their potential to enhance biomedical functions. This framework offers a solution to multirobot actuation benefiting applications across different miniature robotic devices in complex environments.
Collapse
Affiliation(s)
- Chunxiang Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Tianlu Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Rongjing Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Halim Ugurlu
- Zentrum für Radiologie Heilbronn, 74177 Heilbronn, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
4
|
Iqbal J, Hafeez MH, Amin A, Moradi I, Chhabra A, Iqbal A, Patel T, Shafique MA, Nadeem A, Jamil U. Synergistic effects of herpes oncolytic virus and cyclophosphamide for recurrent malignant glioma: a narrative review. Ann Med Surg (Lond) 2024; 86:5354-5360. [PMID: 39239066 PMCID: PMC11374197 DOI: 10.1097/ms9.0000000000002384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/06/2024] [Indexed: 09/07/2024] Open
Abstract
Gliomas, comprising nearly 80% of brain malignancies, present a formidable challenge with glioblastomas being the most aggressive subtype. Despite multidisciplinary care, including surgery and chemoradiotherapy, the prognosis remains grim, emphasizing the need for innovative treatment strategies. The blood-brain barrier complicates drug access, and the diverse histopathology hinders targeted therapies. Oncolytic herpes viruses (oHSVs), particularly HSV1716, G207, and rQNestin34.5v, show promise in glioma treatment by selectively replicating in tumor cells. Preclinical and clinical studies demonstrate the safety and efficacy of oHSVs, with T-Vec being FDA-approved. However, challenges like viral delivery limitations and antiviral responses persist. The combination of oHSVs and combining cyclophosphamide (CPA) addresses these challenges, demonstrating increased transgene expression and viral activity. The immunosuppressive properties of CPA, particularly in metronomic schedules, enhance oHSV efficacy, supporting the development of this combination for recurrent malignant gliomas. CPA with oHSVs enhances viral oncolysis and extends survival. CPA's immunomodulatory effects, suppressing regulatory T cells, improve oHSV efficiency. While obstacles remain, this synergistic approach offers hope for improved outcomes, necessitating further research and clinical validation.
Collapse
Affiliation(s)
| | | | - Aamir Amin
- Harefield Hospital, Guy's and St Thomas' NHS foundation trust, Harefield, UK
| | - Iman Moradi
- University of British Columbia, Vancouver, BC, Canada
| | | | - Ather Iqbal
- Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore
| | - Tirath Patel
- American University of Antigua College of Medicine, Saint John, Antigua and Barbuda
| | | | | | | |
Collapse
|
5
|
Stergiopoulos GM, Iankov I, Galanis E. Personalizing Oncolytic Immunovirotherapy Approaches. Mol Diagn Ther 2024; 28:153-168. [PMID: 38150172 DOI: 10.1007/s40291-023-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Development of successful cancer therapeutics requires exploration of the differences in genetics, metabolism, and interactions with the immune system among malignant and normal cells. The clinical observation of spontaneous tumor regression following natural infection with microorganism has created the premise of their use as cancer therapeutics. Oncolytic viruses (OVs) originate from viruses with attenuated virulence in humans, well-characterized vaccine strains of known human pathogens, or engineered replication-deficient viral vectors. Their selectivity is based on receptor expression level and post entry restriction factors that favor replication in the tumor, while keeping the normal cells unharmed. Clinical trials have demonstrated a wide range of patient responses to virotherapy, with subgroups of patients significantly benefiting from OV administration. Tumor-specific gene signatures, including antiviral interferon-stimulated gene (ISG) expression profile, have demonstrated a strong correlation with tumor permissiveness to infection. Furthermore, the combination of OVs with immunotherapeutics, including anticancer vaccines and immune checkpoint inhibitors [ICIs, such as anti-PD-1/PD-L1 or anti-CTLA-4 and chimeric antigen receptor (CAR)-T or CAR-NK cells], could synergistically improve the therapeutic outcome. Creating response prediction algorithms represents an important step for the transition to individualized immunovirotherapy approaches in the clinic. Integrative predictors could include tumor mutational burden (TMB), inflammatory gene signature, phenotype of tumor-infiltrating lymphocytes, tumor microenvironment (TME), and immune checkpoint receptor expression on both immune and target cells. Additionally, the gut microbiota has recently been recognized as a systemic immunomodulatory factor and could further be used in the optimization of individualized immunovirotherapy algorithms.
Collapse
Affiliation(s)
| | - Ianko Iankov
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Chen L, Zuo M, Zhou Q, Wang Y. Oncolytic virotherapy in cancer treatment: challenges and optimization prospects. Front Immunol 2023; 14:1308890. [PMID: 38169820 PMCID: PMC10758479 DOI: 10.3389/fimmu.2023.1308890] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Oncolytic viruses (OVs) are emerging cancer therapeutics that offer a multifaceted therapeutic platform for the benefits of replicating and lysing tumor cells, being engineered to express transgenes, modulating the tumor microenvironment (TME), and having a tolerable safety profile that does not overlap with other cancer therapeutics. The mechanism of OVs combined with other antitumor agents is based on immune-mediated attack resistance and might benefit patients who fail to achieve durable responses after immune checkpoint inhibitor (ICI) treatment. In this Review, we summarize data on the OV mechanism and limitations of monotherapy, which are currently in the process of combination partner development, especially with ICIs. We discuss some of the hurdles that have limited the preclinical and clinical development of OVs. We also describe the available data and provide guidance for optimizing OVs in clinical practice, as well as a summary of approved and promising novel OVs with clinical indications.
Collapse
Affiliation(s)
- Lingjuan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Mengsi Zuo
- Department of Oncology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Qin Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yang Wang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan, China
| |
Collapse
|
7
|
Abstract
Oncolytic viruses (OVs) are an emerging class of cancer therapeutics that offer the benefits of selective replication in tumour cells, delivery of multiple eukaryotic transgene payloads, induction of immunogenic cell death and promotion of antitumour immunity, and a tolerable safety profile that largely does not overlap with that of other cancer therapeutics. To date, four OVs and one non-oncolytic virus have been approved for the treatment of cancer globally although talimogene laherparepvec (T-VEC) remains the only widely approved therapy. T-VEC is indicated for the treatment of patients with recurrent melanoma after initial surgery and was initially approved in 2015. An expanding body of data on the clinical experience of patients receiving T-VEC is now becoming available as are data from clinical trials of various other OVs in a range of other cancers. Despite increasing research interest, a better understanding of the underlying biology and pharmacology of OVs is needed to enable the full therapeutic potential of these agents in patients with cancer. In this Review, we summarize the available data and provide guidance on optimizing the use of OVs in clinical practice, with a focus on the clinical experience with T-VEC. We describe data on selected novel OVs that are currently in clinical development, either as monotherapies or as part of combination regimens. We also discuss some of the preclinical, clinical and regulatory hurdles that have thus far limited the development of OVs.
Collapse
|
8
|
The Dilemma of HSV-1 Oncolytic Virus Delivery: The Method Choice and Hurdles. Int J Mol Sci 2023; 24:ijms24043681. [PMID: 36835091 PMCID: PMC9962028 DOI: 10.3390/ijms24043681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Oncolytic viruses (OVs) have emerged as effective gene therapy and immunotherapy drugs. As an important gene delivery platform, the integration of exogenous genes into OVs has become a novel path for the advancement of OV therapy, while the herpes simplex virus type 1 (HSV-1) is the most commonly used. However, the current mode of administration of HSV-1 oncolytic virus is mainly based on the tumor in situ injection, which limits the application of such OV drugs to a certain extent. Intravenous administration offers a solution to the systemic distribution of OV drugs but is ambiguous in terms of efficacy and safety. The main reason is the synergistic role of innate and adaptive immunity of the immune system in the response against the HSV-1 oncolytic virus, which is rapidly cleared by the body's immune system before it reaches the tumor, a process that is accompanied by side effects. This article reviews different administration methods of HSV-1 oncolytic virus in the process of tumor treatment, especially the research progress in intravenous administration. It also discusses immune constraints and solutions of intravenous administration with the intent to provide new insights into HSV-1 delivery for OV therapy.
Collapse
|
9
|
Cheng K, Zhang H, Guo Q, Zhai P, Zhou Y, Yang W, Wang Y, Lu Y, Shen Z, Wu H. Emerging trends and research foci of oncolytic virotherapy for central nervous system tumors: A bibliometric study. Front Immunol 2022; 13:975695. [PMID: 36148235 PMCID: PMC9486718 DOI: 10.3389/fimmu.2022.975695] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 12/19/2022] Open
Abstract
BackgroundCentral nervous system tumor (CNST) is one of the most complicated and lethal forms of human tumors with very limited treatment options. In recent years, growing evidence indicates that oncolytic virotherapy (OVT) has emerged as a promising therapeutic strategy for CNSTs. And a considerable amount of literature on OVT-CNSTs has been published. However, there are still no studies summarizing the global research trends and hotspots of this field through a bibliometric approach. To fulfill this knowledge gap, bibliometric analysis was conducted based on all publications relating to OVT-CNSTs since 2000s.MethodsWe searched the Web of Science Core Collection for all relevant studies published between 2000 and 2022. Four different tools (online analysis platform, R-bibliometrix, CiteSpace and VOSviewer) were used to perform bibliometric analysis and network visualization, including annual publication output, active journals, contribution of countries, institutions, and authors, references, as well as keywords.ResultsA total of 473 articles and reviews were included. The annual number of publications on OVT-CNSTs showed a significant increasing trend. Molecular Therapy and Cancer Research were the most active and co-cited journals, respectively. In terms of contributions, there is no doubt that the United States occupied a leading position with the most publications (n=307, 64.9%) and the highest H-index (57). The institution and author that contributed the largest number of publications were Ohio State University and Chiocca EA, respectively. As can be seen from citation analysis, the current studies mainly focused on preclinical and phase I/II clinical results of various oncolytic virus for CNSTs treatment. Keywords co-occurrence and burst analysis revealed that the following research topics including immunotherapy, T-cells, tumor microenvironment, vaccine, blood-brain-barrier, checkpoint inhibitors, macrophage, stem cell, and recurrent glioblastoma have been research frontiers of this field and also have great potential to continue to be research hotspots in the future.ConclusionThere has been increasing attention on oncolytic viruses for use as CNSTs therapeutics. Oncolytic immunotherapy is a topic of great concern in this field. This bibliometric study provides a comprehensive analysis of the knowledge base, research hotspots, development perspective in the field of OVT-CNSTs, which could become an essential reference for scholars in this area.
Collapse
Affiliation(s)
- Kunming Cheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Zhang
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Qiang Guo
- Department of Orhopaedic Surgery, Baodi Clinical College of Tianjin Medical University, Tianjin, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pengfei Zhai
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of NeuroSpine Surgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Yan Zhou
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Weiguang Yang
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Yanqiu Lu
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yanqiu Lu, ; Zefeng Shen, ; Haiyang Wu,
| | - Zefeng Shen
- Department of Graduate School, Sun Yat-sen University, Sun Yat-Sen Memorial Hospital, Guangzhou, China
- *Correspondence: Yanqiu Lu, ; Zefeng Shen, ; Haiyang Wu,
| | - Haiyang Wu
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
- *Correspondence: Yanqiu Lu, ; Zefeng Shen, ; Haiyang Wu,
| |
Collapse
|
10
|
Hong B, Sahu U, Mullarkey MP, Kaur B. Replication and Spread of Oncolytic Herpes Simplex Virus in Solid Tumors. Viruses 2022; 14:v14010118. [PMID: 35062322 PMCID: PMC8778098 DOI: 10.3390/v14010118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
Oncolytic herpes simplex virus (oHSV) is a highly promising treatment for solid tumors. Intense research and development efforts have led to first-in-class approval for an oHSV for melanoma, but barriers to this promising therapy still exist that limit efficacy. The process of infection, replication and transmission of oHSV in solid tumors is key to obtaining a good lytic destruction of infected cancer cells to kill tumor cells and release tumor antigens that can prime anti-tumor efficacy. Intracellular tumor cell signaling and tumor stromal cells present multiple barriers that resist oHSV activity. Here, we provide a review focused on oncolytic HSV and the essential viral genes that allow for virus replication and spread in order to gain insight into how manipulation of these pathways can be exploited to potentiate oHSV infection and replication among tumor cells.
Collapse
|
11
|
Hofman L, Lawler SE, Lamfers MLM. The Multifaceted Role of Macrophages in Oncolytic Virotherapy. Viruses 2021; 13:v13081570. [PMID: 34452439 PMCID: PMC8402704 DOI: 10.3390/v13081570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
One of the cancer hallmarks is immune evasion mediated by the tumour microenvironment (TME). Oncolytic virotherapy is a form of immunotherapy based on the application of oncolytic viruses (OVs) that selectively replicate in and induce the death of tumour cells. Virotherapy confers reciprocal interaction with the host’s immune system. The aim of this review is to explore the role of macrophage-mediated responses in oncolytic virotherapy efficacy. The approach was to study current scientific literature in this field in order to give a comprehensive overview of the interactions of OVs and macrophages and their effects on the TME. The innate immune system has a central influence on the TME; tumour-associated macrophages (TAMs) generally have immunosuppressive, tumour-supportive properties. In the context of oncolytic virotherapy, macrophages were initially thought to predominantly contribute to anti-viral responses, impeding viral spread. However, macrophages have now also been found to mediate transport of OV particles and, after TME infiltration, to be subjected to a phenotypic shift that renders them pro-inflammatory and tumour-suppressive. These TAMs can present tumour antigens leading to a systemic, durable, adaptive anti-tumour immune response. After phagocytosis, they can recirculate carrying tissue-derived proteins, which potentially enables the monitoring of OV replication in the TME. Their role in therapeutic efficacy is therefore multifaceted, but based on research applying relevant, immunocompetent tumour models, macrophages are considered to have a central function in anti-cancer activity. These novel insights hold important clinical implications. When optimised, oncolytic virotherapy, mediating multifactorial inhibition of cancer immune evasion, could contribute to improved patient survival.
Collapse
Affiliation(s)
- Laura Hofman
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
| | - Sean E. Lawler
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA;
| | - Martine L. M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
- Correspondence: ; Tel.: +31-010-703-5993
| |
Collapse
|
12
|
Podshivalova ES, Semkina AS, Kravchenko DS, Frolova EI, Chumakov SP. Efficient delivery of oncolytic enterovirus by carrier cell line NK-92. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:110-118. [PMID: 33981827 PMCID: PMC8065264 DOI: 10.1016/j.omto.2021.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Many members of the enterovirus family are considered as promising oncolytic agents; however, their systemic administration is largely inefficient due to the rapid neutralization of the virus in the circulation and the barrier functions of the endothelium. We aimed to evaluate natural killer cells as carriers for the delivery of oncolytic enteroviruses, which would combine the effects of cell immunotherapy with virotherapy. We tested four strains of nonpathogenic enteroviruses against the glioblastoma cell line panel and evaluated the produced infectious titers. Next, we explored whether these virus strains could be delivered to the tumor by natural killer cell line NK-92, which is being actively evaluated as a clinically acceptable therapeutic. Several strains of enteroviruses demonstrated oncolytic properties, but only coxsackievirus A7 (CVA7) could replicate in NK-92 cells efficiently. We compared the delivery efficiency of CVA7 in vivo, using NK-92 cells and direct intravenous administration, and found significant advantages of cell delivery even after a single injection. This suggests that the NK-92 cell line can be utilized as a vehicle for the delivery of the oncolytic strain of CVA7, which would improve the clinical potential of this viral oncolytic for the treatment of glioblastoma multiforme and other forms of cancer.
Collapse
Affiliation(s)
| | - Alevtina Sergeevna Semkina
- Department of Medical Nanobiotechnologies, Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow 117997, Russia.,Department of Basic and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Kropotkinskiy 23, Moscow 119991, Russia
| | - Dmitry Sergeevich Kravchenko
- Department of Peptide and Protein Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Elena Ivanovna Frolova
- Department of Peptide and Protein Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Stepan Petrovich Chumakov
- Department of Peptide and Protein Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| |
Collapse
|
13
|
Chiocca EA, Nakashima H, Kasai K, Fernandez SA, Oglesbee M. Preclinical Toxicology of rQNestin34.5v.2: An Oncolytic Herpes Virus with Transcriptional Regulation of the ICP34.5 Neurovirulence Gene. Mol Ther Methods Clin Dev 2020; 17:871-893. [PMID: 32373649 PMCID: PMC7195500 DOI: 10.1016/j.omtm.2020.03.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/25/2020] [Indexed: 12/24/2022]
Abstract
rQNestin34.5v.2 is an oncolytic herpes simplex virus 1 (oHSV) that retains expression of the neurovirulent ICP34.5 gene under glioma-selective transcriptional regulation. To prepare an investigational new drug (IND) application, we performed toxicology and efficacy studies of rQNestin34.5v.2 in mice in the presence or absence of the immunomodulating drug cyclophosphamide (CPA). ICP34.5 allows HSV1 to survive interferon and improves viral replication by dephosphorylation of the eIF-2α translation factor. rQNestin34.5v.2 dephosphorylated eIF-2α in human glioma cells, but not in human normal cells, resulting in significantly higher cytotoxicity and viral replication in the former compared to the latter. In vivo toxicity of rQNestin34.5v.2 was compared with that of wild-type F strain in immunocompetent BALB/c mice and athymic mice by multiple routes of administration in the presence or absence of CPA. A likely no observed adverse effect level (NOAEL) dose for intracranial rQNestin34.5v.2 was estimated, justifying a phase 1 clinical trial in recurrent glioma patients (ClinicalTrials.gov: NCT03152318), after successful submission of an IND.
Collapse
Affiliation(s)
- E. Antonio Chiocca
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hiroshi Nakashima
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kazue Kasai
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Soledad A. Fernandez
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA
| | - Michael Oglesbee
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Pipperger L, Koske I, Wild N, Müllauer B, Krenn D, Stoiber H, Wollmann G, Kimpel J, von Laer D, Bánki Z. Xenoantigen-Dependent Complement-Mediated Neutralization of Lymphocytic Choriomeningitis Virus Glycoprotein-Pseudotyped Vesicular Stomatitis Virus in Human Serum. J Virol 2019; 93:e00567-19. [PMID: 31243134 PMCID: PMC6714799 DOI: 10.1128/jvi.00567-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
Neutralization by antibodies and complement limits the effective dose and thus the therapeutic efficacy of oncolytic viruses after systemic application. We and others previously showed that pseudotyping of oncolytic rhabdoviruses such as maraba virus and vesicular stomatitis virus (VSV) with the lymphocytic choriomeningitis virus glycoprotein (LCMV-GP) results in only a weak induction of neutralizing antibodies. Moreover, LCMV-GP-pseudotyped VSV (VSV-GP) was significantly more stable in normal human serum (NHS) than VSV. Here, we demonstrate that depending on the cell line used for virus production, VSV-GP showed different complement sensitivities in nonimmune NHS. The NHS-mediated titer reduction of VSV-GP was dependent on activation of the classical complement pathway, mainly by natural IgM antibodies against xenoantigens such as galactose-α-(1,3)-galactose (α-Gal) or N-glycolylneuraminic acid (Neu5Gc) expressed on nonhuman production cell lines. VSV-GP produced on human cell lines was stable in NHS. However, VSV-GP generated in transduced human cells expressing α-Gal became sensitive to NHS. Furthermore, GP-specific antibodies induced complement-mediated neutralization of VSV-GP independently of the producer cell line, suggesting that complement regulatory proteins potentially acquired by the virus during the budding process are not sufficient to rescue the virus from antibody-dependent complement-mediated lysis. Thus, our study points to the importance of a careful selection of cell lines for viral vector production for clinical use.IMPORTANCE Systemic application aims to deliver oncolytic viruses to tumors as well as to metastatic lesions. However, we found that xenoantigens incorporated onto the viral surface from nonhuman production cell lines are recognized by natural antibodies in human serum and that the virus is thereby inactivated by complement lysis. Hence, to maximize the effective dose, careful selection of cell lines for virus production is crucial.
Collapse
Affiliation(s)
- Lisa Pipperger
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Iris Koske
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicole Wild
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Brigitte Müllauer
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Krenn
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Guido Wollmann
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothee von Laer
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Ingusci S, Verlengia G, Soukupova M, Zucchini S, Simonato M. Gene Therapy Tools for Brain Diseases. Front Pharmacol 2019; 10:724. [PMID: 31312139 PMCID: PMC6613496 DOI: 10.3389/fphar.2019.00724] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/05/2019] [Indexed: 01/20/2023] Open
Abstract
Neurological disorders affecting the central nervous system (CNS) are still incompletely understood. Many of these disorders lack a cure and are seeking more specific and effective treatments. In fact, in spite of advancements in knowledge of the CNS function, the treatment of neurological disorders with modern medical and surgical approaches remains difficult for many reasons, such as the complexity of the CNS, the limited regenerative capacity of the tissue, and the difficulty in conveying conventional drugs to the organ due to the blood-brain barrier. Gene therapy, allowing the delivery of genetic materials that encodes potential therapeutic molecules, represents an attractive option. Gene therapy can result in a stable or inducible expression of transgene(s), and can allow a nearly specific expression in target cells. In this review, we will discuss the most commonly used tools for the delivery of genetic material in the CNS, including viral and non-viral vectors; their main applications; their advantages and disadvantages. We will discuss mechanisms of genetic regulation through cell-specific and inducible promoters, which allow to express gene products only in specific cells and to control their transcriptional activation. In addition, we will describe the applications to CNS diseases of post-transcriptional regulation systems (RNA interference); of systems allowing spatial or temporal control of expression [optogenetics and Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)]; and of gene editing technologies (CRISPR/Cas9, Zinc finger proteins). Particular attention will be reserved to viral vectors derived from herpes simplex type 1, a potential tool for the delivery and expression of multiple transgene cassettes simultaneously.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Gianluca Verlengia
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Marie Soukupova
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Silvia Zucchini
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy
| | - Michele Simonato
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
16
|
Phan M, Watson MF, Alain T, Diallo JS. Oncolytic Viruses on Drugs: Achieving Higher Therapeutic Efficacy. ACS Infect Dis 2018; 4:1448-1467. [PMID: 30152676 DOI: 10.1021/acsinfecdis.8b00144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past 20 years there has been a dramatic expansion in the testing of oncolytic viruses (OVs) for the treatment of cancer. OVs are unique biotherapeutics that induce multimodal responses toward tumors, from direct cytopathic effects on cancer cells, to tumor associated blood vessel disruption, and ultimately potent stimulation of anti-tumor immune activation. These agents are highly targeted and can be efficacious as cancer treatments resulting in some patients experiencing complete tumor regression and even cures from OV monotherapy. However, most patients have limited responses with viral replication in tumors often found to be modest and transient. To augment OV replication, increase bystander killing of cancer cells, and/or stimulate stronger targeted anti-cancer immune responses, drug combination approaches have taken center stage for translation to the clinic. Here we comprehensively review drugs that have been combined with OVs to increase therapeutic efficacy, examining the proposed mechanisms of action, and we discuss trends in pharmaco-viral immunotherapeutic approaches currently being investigated.
Collapse
Affiliation(s)
- Michael Phan
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Margaret F. Watson
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Children’s Hospital of Eastern Ontario Research Institute, 401 Smyth Road Research Building 2, Second Floor, Room 2119, Ottawa, Ontario K1H 8L1, Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Children’s Hospital of Eastern Ontario Research Institute, 401 Smyth Road Research Building 2, Second Floor, Room 2119, Ottawa, Ontario K1H 8L1, Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
17
|
Bommareddy PK, Peters C, Saha D, Rabkin SD, Kaufman HL. Oncolytic Herpes Simplex Viruses as a Paradigm for the Treatment of Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050254] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Praveen K. Bommareddy
- Department of Surgery, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Cole Peters
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dipongkor Saha
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Samuel D. Rabkin
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Howard L. Kaufman
- Department of Surgery, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| |
Collapse
|
18
|
Yokoda R, Nagalo BM, Vernon B, Oklu R, Albadawi H, DeLeon TT, Zhou Y, Egan JB, Duda DG, Borad MJ. Oncolytic virus delivery: from nano-pharmacodynamics to enhanced oncolytic effect. Oncolytic Virother 2017; 6:39-49. [PMID: 29184854 PMCID: PMC5687448 DOI: 10.2147/ov.s145262] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
With the advancement of a growing number of oncolytic viruses (OVs) to clinical development, drug delivery is becoming an important barrier to overcome for optimal therapeutic benefits. Host immunity, tumor microenvironment and abnormal vascularity contribute to inefficient vector delivery. A number of novel approaches for enhanced OV delivery are under evaluation, including use of nanoparticles, immunomodulatory agents and complex viral–particle ligands along with manipulations of the tumor microenvironment. This field of OV delivery has quickly evolved to bioengineering of complex nanoparticles that could be deposited within the tumor using minimal invasive image-guided delivery. Some of the strategies include ultrasound (US)-mediated cavitation-enhanced extravasation, magnetic viral complexes delivery, image-guided infusions with focused US and targeting photodynamic virotherapy. In addition, strategies that modulate tumor microenvironment to decrease extracellular matrix deposition and increase viral propagation are being used to improve tumor penetration by OVs. Some involve modification of the viral genome to enhance their tumoral penetration potential. Here, we highlight the barriers to oncolytic viral delivery, and discuss the challenges to improving it and the perspectives of establishing new modes of active delivery to achieve enhanced oncolytic effects.
Collapse
Affiliation(s)
- Raquel Yokoda
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Bolni M Nagalo
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Brent Vernon
- Department of Biomedical Engineering, Arizona State University, Tempe
| | - Rahmi Oklu
- Division of Vascular and Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, AZ
| | - Hassan Albadawi
- Division of Vascular and Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, AZ
| | - Thomas T DeLeon
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Yumei Zhou
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Jan B Egan
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Dan G Duda
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Mitesh J Borad
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| |
Collapse
|
19
|
Filley AC, Dey M. Immune System, Friend or Foe of Oncolytic Virotherapy? Front Oncol 2017; 7:106. [PMID: 28589085 PMCID: PMC5440545 DOI: 10.3389/fonc.2017.00106] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/08/2017] [Indexed: 01/25/2023] Open
Abstract
Oncolytic viruses (OVs) are an emerging class of targeted anticancer therapies designed to selectively infect, replicate in, and lyse malignant cells without causing harm to normal, healthy tissues. In addition to direct oncolytic activity, OVs have shown dual promise as immunotherapeutic agents. The presence of viral infection and subsequently generated immunogenic tumor cell death trigger innate and adaptive immune responses that mediate further tumor destruction. However, antiviral immune responses can intrinsically limit OV infection, spread, and overall therapeutic efficacy. Host immune system can act both as a barrier as well as a facilitator and sometimes both at the same time based on the phase of viral infection. Thus, manipulating the host immune system to minimize antiviral responses and viral clearance while still promoting immune-mediated tumor destruction remains a key challenge facing oncolytic virotherapy. Recent clinical trials have established the safety, tolerability, and efficacy of virotherapies in the treatment of a variety of malignancies. Most notably, talimogene laherparepvec (T-VEC), a genetically engineered oncolytic herpesvirus-expressing granulocyte macrophage colony stimulating factor, was recently approved for the treatment of melanoma, representing the first OV to be approved by the FDA as an anticancer therapy in the US. This review discusses OVs and their antitumor properties, their complex interactions with the immune system, synergy between virotherapy and existing cancer treatments, and emerging strategies to augment the efficacy of OVs as anticancer therapies.
Collapse
Affiliation(s)
- Anna C Filley
- Department of Neurosurgery, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Mahua Dey
- Department of Neurosurgery, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
20
|
Sanchala DS, Bhatt LK, Prabhavalkar KS. Oncolytic Herpes Simplex Viral Therapy: A Stride toward Selective Targeting of Cancer Cells. Front Pharmacol 2017; 8:270. [PMID: 28559846 PMCID: PMC5432606 DOI: 10.3389/fphar.2017.00270] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/01/2017] [Indexed: 12/18/2022] Open
Abstract
Oncolytic viral therapy, which makes use of replication-competent lytic viruses, has emerged as a promising modality to treat malignancies. It has shown meaningful outcomes in both solid tumor and hematologic malignancies. Advancements during the last decade, mainly genetic engineering of oncolytic viruses have resulted in improved specificity and efficacy of oncolytic viruses in cancer therapeutics. Oncolytic viral therapy for treating cancer with herpes simplex virus-1 has been of particular interest owing to its range of benefits like: (a) large genome and power to infiltrate in the tumor, (b) easy access to manipulation with the flexibility to insert multiple transgenes, (c) infecting majority of the malignant cell types with quick replication in the infected cells and (d) as Anti-HSV agent to terminate HSV replication. This review provides an exhaustive list of oncolytic herpes simplex virus-1 along with their genetic alterations. It also encompasses the major developments in oncolytic herpes simplex-1 viral therapy and outlines the limitations and drawbacks of oncolytic herpes simplex viral therapy.
Collapse
Affiliation(s)
| | - Lokesh K. Bhatt
- Department of Pharmacology, Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W)Mumbai, India
| | | |
Collapse
|
21
|
Speranza MC, Kasai K, Lawler SE. Preclinical Mouse Models for Analysis of the Therapeutic Potential of Engineered Oncolytic Herpes Viruses. ILAR J 2017; 57:63-72. [PMID: 27034396 DOI: 10.1093/ilar/ilw002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
After more than two decades of research and development, oncolytic herpes viruses (oHSVs) are moving into the spotlight due to recent encouraging clinical trial data. oHSV and other oncolytic viruses function through direct oncolytic cancer cell-killing mechanisms and by stimulating antitumor immunity. As further viruses are developed and optimized for the treatment of various types of cancer, appropriate predictive preclinical models will be of great utility. This review will discuss existing data in this area, focusing on the mouse tumor models that are commonly used.
Collapse
Affiliation(s)
- Maria-Carmela Speranza
- Maria-Carmela Speranza, PhD, is a post-doctoral fellow; Kazue Kasai, PhD, is a Research Specialist; and Sean E. Lawler, PhD, is an Assistant Professor in the Harvey Cushing Neurooncology Laboratories in the Department of Neurosurgery at Brigham and Women's Hospital, Harvard Medical School in Boston, Massachusetts
| | - Kazue Kasai
- Maria-Carmela Speranza, PhD, is a post-doctoral fellow; Kazue Kasai, PhD, is a Research Specialist; and Sean E. Lawler, PhD, is an Assistant Professor in the Harvey Cushing Neurooncology Laboratories in the Department of Neurosurgery at Brigham and Women's Hospital, Harvard Medical School in Boston, Massachusetts
| | - Sean E Lawler
- Maria-Carmela Speranza, PhD, is a post-doctoral fellow; Kazue Kasai, PhD, is a Research Specialist; and Sean E. Lawler, PhD, is an Assistant Professor in the Harvey Cushing Neurooncology Laboratories in the Department of Neurosurgery at Brigham and Women's Hospital, Harvard Medical School in Boston, Massachusetts
| |
Collapse
|
22
|
Saha D, Wakimoto H, Rabkin SD. Oncolytic herpes simplex virus interactions with the host immune system. Curr Opin Virol 2016; 21:26-34. [PMID: 27497296 DOI: 10.1016/j.coviro.2016.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 12/28/2022]
Abstract
Oncolytic viruses (OVs), like oncolytic herpes simplex virus (oHSV), are genetically engineered to selectively replicate in and kill cancer cells, while sparing normal cells. Initial OV infection, cell death, and subsequent OV propagation within the tumor microenvironment leads to a cascade of host responses (innate and adaptive), reflective of natural anti-viral immune responses. These host-virus interactions are critical to the balance between OV activities, anti-viral immune responses limiting OV, and induction of anti-tumor immunity. The host response against oHSV is complex, multifaceted, and modulated by the tumor microenvironment and immunosuppression. As a successful pathogen, HSV has multiple mechanisms to evade such host responses. In this review, we will discuss these mechanisms and HSV evasion, and how they impact oHSV therapy.
Collapse
Affiliation(s)
- Dipongkor Saha
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Hiroaki Wakimoto
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Samuel D Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
23
|
Downs-Canner S, Guo ZS, Ravindranathan R, Breitbach CJ, O'Malley ME, Jones HL, Moon A, McCart JA, Shuai Y, Zeh HJ, Bartlett DL. Phase 1 Study of Intravenous Oncolytic Poxvirus (vvDD) in Patients With Advanced Solid Cancers. Mol Ther 2016; 24:1492-501. [PMID: 27203445 PMCID: PMC5023393 DOI: 10.1038/mt.2016.101] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
We have conducted a phase 1 study of intravenous vvDD, a Western Reserve strain oncolytic vaccinia virus, on 11 patients with standard treatment-refractory advanced colorectal or other solid cancers. The primary endpoints were maximum tolerated dose and associated toxicity while secondary endpoints were pharmacokinetics, pharmacodynamics, immune responses, and antitumor activity. No dose-limiting toxicities and treatment related severe adverse events were observed. The most common adverse events were grades 1/2 flu-like symptoms. Virus genomes were detectable in the blood 15-30 minutes after virus administration in a dose-dependent manner. There was evidence of a prolonged virus replication in tumor tissues in two patients, but no evidence of virus replication in non-tumor tissues, except a healed injury site and an oral thrush. Over 100-fold of anti-viral antibodies were induced in patients' sera. A strong induction of inflammatory and Th1, but not Th2 cytokines, suggested a potent Th1-mediated immunity against the virus and possibly the cancer. One patient showed a mixed response on PET-CT with resolution of some liver metastases, and another patient with cutaneous melanoma demonstrated clinical regression of some lesions. Given the confirmed safety, further trials evaluating intravenous vvDD in combination with therapeutic transgenes, immune checkpoint blockade or complement inhibitors, are warranted.
Collapse
Affiliation(s)
- Stephanie Downs-Canner
- Department of Surgery, University of Pittsburgh School of Medicine, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Zong Sheng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Roshni Ravindranathan
- Department of Surgery, University of Pittsburgh School of Medicine, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | | - Mark E O'Malley
- Department of Surgery, University of Pittsburgh School of Medicine, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Heather L Jones
- Department of Surgery, University of Pittsburgh School of Medicine, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Anne Moon
- SillaJen Biotherapeutics Inc., San Francisco, CA, USA
| | - Judith Andrea McCart
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yongli Shuai
- Biostatistics Facility, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh School of Medicine, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh School of Medicine, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Pol J, Buqué A, Aranda F, Bloy N, Cremer I, Eggermont A, Erbs P, Fucikova J, Galon J, Limacher JM, Preville X, Sautès-Fridman C, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Oncolytic viruses and cancer therapy. Oncoimmunology 2016; 5:e1117740. [PMID: 27057469 PMCID: PMC4801444 DOI: 10.1080/2162402x.2015.1117740] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy relies on the administration of non-pathogenic viral strains that selectively infect and kill malignant cells while favoring the elicitation of a therapeutically relevant tumor-targeting immune response. During the past few years, great efforts have been dedicated to the development of oncolytic viruses with improved specificity and potency. Such an intense wave of investigation has culminated this year in the regulatory approval by the US Food and Drug Administration (FDA) of a genetically engineered oncolytic viral strain for use in melanoma patients. Here, we summarize recent preclinical and clinical advances in oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan Pol
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Norma Bloy
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | | | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | | | | | - Catherine Sautès-Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
25
|
Simpson GR, Relph K, Harrington K, Melcher A, Pandha H. Cancer immunotherapy via combining oncolytic virotherapy with chemotherapy: recent advances. Oncolytic Virother 2016; 5:1-13. [PMID: 27579292 PMCID: PMC4996257 DOI: 10.2147/ov.s66083] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oncolytic viruses are multifunctional anticancer agents with huge clinical potential, and have recently passed the randomized Phase III clinical trial hurdle. Both wild-type and engineered viruses have been selected for targeting of specific cancers, to elicit cytotoxicity, and also to generate antitumor immunity. Single-agent oncolytic virotherapy treatments have resulted in modest effects in the clinic. There is increasing interest in their combination with cytotoxic agents, radiotherapy and immune-checkpoint inhibitors. Similarly to oncolytic viruses, the benefits of chemotherapeutic agents may be that they induce systemic antitumor immunity through the induction of immunogenic cell death of cancer cells. Combining these two treatment modalities has to date resulted in significant potential in vitro and in vivo synergies through various mechanisms without any apparent additional toxicities. Chemotherapy has been and will continue to be integral to the management of advanced cancers. This review therefore focuses on the potential for a number of common cytotoxic agents to be combined with clinically relevant oncolytic viruses. In many cases, this combined approach has already advanced to the clinical trial arena.
Collapse
Affiliation(s)
- Guy R Simpson
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| | - Kate Relph
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| | - Kevin Harrington
- Targeted Therapy, The Institute of Cancer Research/The Royal Marsden NIHR Biomedical Research Centre, London
| | - Alan Melcher
- Targeted and Biological Therapies, Oncology and Clinical Research, Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Hardev Pandha
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| |
Collapse
|
26
|
Marchini A, Scott EM, Rommelaere J. Overcoming Barriers in Oncolytic Virotherapy with HDAC Inhibitors and Immune Checkpoint Blockade. Viruses 2016; 8:v8010009. [PMID: 26751469 PMCID: PMC4728569 DOI: 10.3390/v8010009] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022] Open
Abstract
Oncolytic viruses (OVs) target and destroy cancer cells while sparing their normal counterparts. These viruses have been evaluated in numerous studies at both pre-clinical and clinical levels and the recent Food and Drug Administration (FDA) approval of an oncolytic herpesvirus-based treatment raises optimism that OVs will become a therapeutic option for cancer patients. However, to improve clinical outcome, there is a need to increase OV efficacy. In addition to killing cancer cells directly through lysis, OVs can stimulate the induction of anti-tumour immune responses. The host immune system thus represents a "double-edged sword" for oncolytic virotherapy: on the one hand, a robust anti-viral response will limit OV replication and spread; on the other hand, the immune-mediated component of OV therapy may be its most important anti-cancer mechanism. Although the relative contribution of direct viral oncolysis and indirect, immune-mediated oncosuppression to overall OV efficacy is unclear, it is likely that an initial period of vigorous OV multiplication and lytic activity will most optimally set the stage for subsequent adaptive anti-tumour immunity. In this review, we consider the use of histone deacetylase (HDAC) inhibitors as a means of boosting virus replication and lessening the negative impact of innate immunity on the direct oncolytic effect. We also discuss an alternative approach, aimed at potentiating OV-elicited anti-tumour immunity through the blockade of immune checkpoints. We conclude by proposing a two-phase combinatorial strategy in which initial OV replication and spread is maximised through transient HDAC inhibition, with anti-tumour immune responses subsequently enhanced by immune checkpoint blockade.
Collapse
Affiliation(s)
- Antonio Marchini
- Infection, Inflammation and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| | - Eleanor M Scott
- Infection, Inflammation and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| | - Jean Rommelaere
- Infection, Inflammation and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Yaghchi CA, Zhang Z, Alusi G, Lemoine NR, Wang Y. Vaccinia virus, a promising new therapeutic agent for pancreatic cancer. Immunotherapy 2015; 7:1249-58. [PMID: 26595180 PMCID: PMC4976866 DOI: 10.2217/imt.15.90] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The poor prognosis of pancreatic cancer patients signifies a need for radically new therapeutic strategies. Tumor-targeted oncolytic viruses have emerged as attractive therapeutic candidates for cancer treatment due to their inherent ability to specifically target and lyse tumor cells as well as induce antitumor effects by multiple action mechanisms. Vaccinia virus has several inherent features that make it particularly suitable for use as an oncolytic agent. In this review, we will discuss the potential of vaccinia virus in the management of pancreatic cancer in light of our increased understanding of cellular and immunological mechanisms involved in the disease process as well as our extending knowledge in the biology of vaccinia virus.
Collapse
Affiliation(s)
- Chadwan Al Yaghchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Zhongxian Zhang
- National Centre for International Research in Cell & Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, China
| | - Ghassan Alusi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Nicholas R Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
- National Centre for International Research in Cell & Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, China
| | - Yaohe Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
- National Centre for International Research in Cell & Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, China
| |
Collapse
|
28
|
Pediatric cancer gone viral. Part I: strategies for utilizing oncolytic herpes simplex virus-1 in children. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30017-1. [PMID: 26436135 PMCID: PMC4589755 DOI: 10.1038/mto.2015.15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Progress for improving outcomes in pediatric patients with solid tumors remains slow. In addition, currently available therapies are fraught with numerous side effects, often causing significant life-long morbidity for long-term survivors. The use of viruses to kill tumor cells based on their increased vulnerability to infection is gaining traction, with several viruses moving through early and advanced phase clinical testing. The prospect of increased efficacy and decreased toxicity with these agents is thus attractive for pediatric cancer. In part I of this two-part review, we focus on strategies for utilizing oncolytic engineered herpes simplex virus (HSV) to target pediatric malignancies. We discuss mechanisms of action, routes of delivery, and the role of preexisting immunity on antitumor efficacy. Challenges to maximizing oncolytic HSV in children are examined, and we highlight how these may be overcome through various arming strategies. We review the preclinical and clinical evidence demonstrating safety of a variety of oncolytic HSVs. In Part II, we focus on the antitumor efficacy of oncolytic HSV in pediatric tumor types, pediatric clinical advances made to date, and future prospects for utilizing HSV in pediatric patients with solid tumors.
Collapse
|
29
|
Lawler SE, Chiocca EA. Oncolytic Virus-Mediated Immunotherapy: A Combinatorial Approach for Cancer Treatment. J Clin Oncol 2015. [PMID: 26215964 DOI: 10.1200/jco.2015.62.5244] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sean E Lawler
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | |
Collapse
|
30
|
Kaufmann JK, Chiocca EA. Oncolytic virotherapy for gliomas: steps toward the future. CNS Oncol 2015; 2:389-92. [PMID: 25054659 DOI: 10.2217/cns.13.35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Johanna K Kaufmann
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Harvard Institutes of Medicine, Room 914, Boston, MA 02115, USA
| | | |
Collapse
|
31
|
Evgin L, Acuna SA, Tanese de Souza C, Marguerie M, Lemay CG, Ilkow CS, Findlay CS, Falls T, Parato KA, Hanwell D, Goldstein A, Lopez R, Lafrance S, Breitbach CJ, Kirn D, Atkins H, Auer RC, Thurman JM, Stahl GL, Lambris JD, Bell JC, McCart JA. Complement inhibition prevents oncolytic vaccinia virus neutralization in immune humans and cynomolgus macaques. Mol Ther 2015; 23:1066-1076. [PMID: 25807289 DOI: 10.1038/mt.2015.49] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses (OVs) have shown promising clinical activity when administered by direct intratumoral injection. However, natural barriers in the blood, including antibodies and complement, are likely to limit the ability to repeatedly administer OVs by the intravenous route. We demonstrate here that for a prototype of the clinical vaccinia virus based product Pexa-Vec, the neutralizing activity of antibodies elicited by smallpox vaccination, as well as the anamnestic response in hyperimmune virus treated cancer patients, is strictly dependent on the activation of complement. In immunized rats, complement depletion stabilized vaccinia virus in the blood and led to improved delivery to tumors. Complement depletion also enhanced tumor infection when virus was directly injected into tumors in immunized animals. The feasibility and safety of using a complement inhibitor, CP40, in combination with vaccinia virus was tested in cynomolgus macaques. CP40 pretreatment elicited an average 10-fold increase in infectious titer in the blood early after the infusion and prolonged the time during which infectious virus was detectable in the blood of animals with preexisting immunity. Capitalizing on the complement dependence of antivaccinia antibody with adjunct complement inhibitors may increase the infectious dose of oncolytic vaccinia virus delivered to tumors in virus in immune hosts.
Collapse
Affiliation(s)
- Laura Evgin
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sergio A Acuna
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Monique Marguerie
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Chantal G Lemay
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Carolina S Ilkow
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - C Scott Findlay
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Theresa Falls
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kelley A Parato
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David Hanwell
- Animal Resources Centre, University Health Network, Toronto, Ontario, Canada
| | - Alyssa Goldstein
- Animal Resources Centre, University Health Network, Toronto, Ontario, Canada
| | - Roberto Lopez
- Animal Resources Centre, University Health Network, Toronto, Ontario, Canada
| | - Sandra Lafrance
- Animal Resources Centre, University Health Network, Toronto, Ontario, Canada
| | | | | | - Harold Atkins
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Rebecca C Auer
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joshua M Thurman
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Gregory L Stahl
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, Massachusetts, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John C Bell
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| | - J Andrea McCart
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Mount Sinai Hospital and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Galluzzi L, Vacchelli E, Pedro JMBS, Buqué A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, Apte RN, Aranda F, Ayyoub M, Beckhove P, Blay JY, Bracci L, Caignard A, Castelli C, Cavallo F, Celis E, Cerundolo V, Clayton A, Colombo MP, Coussens L, Dhodapkar MV, Eggermont AM, Fearon DT, Fridman WH, Fučíková J, Gabrilovich DI, Galon J, Garg A, Ghiringhelli F, Giaccone G, Gilboa E, Gnjatic S, Hoos A, Hosmalin A, Jäger D, Kalinski P, Kärre K, Kepp O, Kiessling R, Kirkwood JM, Klein E, Knuth A, Lewis CE, Liblau R, Lotze MT, Lugli E, Mach JP, Mattei F, Mavilio D, Melero I, Melief CJ, Mittendorf EA, Moretta L, Odunsi A, Okada H, Palucka AK, Peter ME, Pienta KJ, Porgador A, Prendergast GC, Rabinovich GA, Restifo NP, Rizvi N, Sautès-Fridman C, Schreiber H, Seliger B, Shiku H, Silva-Santos B, Smyth MJ, Speiser DE, Spisek R, Srivastava PK, Talmadge JE, Tartour E, Van Der Burg SH, Van Den Eynde BJ, Vile R, Wagner H, Weber JS, Whiteside TL, Wolchok JD, Zitvogel L, Zou W, Kroemer G. Classification of current anticancer immunotherapies. Oncotarget 2014; 5:12472-508. [PMID: 25537519 PMCID: PMC4350348 DOI: 10.18632/oncotarget.2998] [Citation(s) in RCA: 331] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/15/2014] [Indexed: 11/25/2022] Open
Abstract
During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into "passive" and "active" based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Erika Vacchelli
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - José-Manuel Bravo-San Pedro
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Laura Senovilla
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Elisa Elena Baracco
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Medicine, Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Norma Bloy
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Medicine, Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Francesca Castoldi
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Medicine, Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
- Sotio a.c., Prague, Czech Republic
| | - Jean-Pierre Abastado
- Pole d'innovation thérapeutique en oncologie, Institut de Recherches Internationales Servier, Suresnes, France
| | - Patrizia Agostinis
- Cell Death Research and Therapy (CDRT) Laboratory, Dept. of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Ron N. Apte
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Fernando Aranda
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maha Ayyoub
- INSERM, U1102, Saint Herblain, France
- Institut de Cancérologie de l'Ouest, Saint Herblain, France
| | - Philipp Beckhove
- Translational Immunology Division, German Cancer Research Center, Heidelberg, Germany
| | - Jean-Yves Blay
- Equipe 11, Centre Léon Bérard (CLR), Lyon, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Laura Bracci
- Dept. of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Anne Caignard
- INSERM, U1160, Paris, France
- Groupe Hospitalier Saint Louis-Lariboisière - F. Vidal, Paris, France
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Dept. of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Federica Cavallo
- Molecular Biotechnology Center, Dept. of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Estaban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Regents University Cancer Center, Augusta, GA, USA
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Aled Clayton
- Institute of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
- Velindre Cancer Centre, Cardiff, UK
| | - Mario P. Colombo
- Unit of Immunotherapy of Human Tumors, Dept. of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Lisa Coussens
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Madhav V. Dhodapkar
- Sect. of Hematology and Immunobiology, Yale Cancer Center, Yale University, New Haven, CT, USA
| | | | | | - Wolf H. Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | - Jitka Fučíková
- Sotio a.c., Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Dmitry I. Gabrilovich
- Dept. of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | - Abhishek Garg
- Cell Death Research and Therapy (CDRT) Laboratory, Dept. of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - François Ghiringhelli
- INSERM, UMR866, Dijon, France
- Centre Georges François Leclerc, Dijon, France
- Université de Bourgogne, Dijon, France
| | - Giuseppe Giaccone
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Eli Gilboa
- Dept. of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sacha Gnjatic
- Sect. of Hematology/Oncology, Immunology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Axel Hoos
- Glaxo Smith Kline, Cancer Immunotherapy Consortium, Collegeville, PA, USA
| | - Anne Hosmalin
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- INSERM, U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Hôpital Cochin, AP-HP, Paris, France
| | - Dirk Jäger
- National Center for Tumor Diseases, University Medical Center Heidelberg, Heidelberg, Germany
| | - Pawel Kalinski
- Dept. of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
- Dept. of Immunology and Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Klas Kärre
- Dept. of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Oliver Kepp
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Rolf Kiessling
- Dept. of Oncology, Karolinska Institute Hospital, Stockholm, Sweden
| | - John M. Kirkwood
- University of Pittsburgh Cancer Institute Laboratory, Pittsburgh, PA, USA
| | - Eva Klein
- Dept. of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Alexander Knuth
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Claire E. Lewis
- Academic Unit of Inflammation and Tumour Targeting, Dept. of Oncology, University of Sheffield Medical School, Sheffield, UK
| | - Roland Liblau
- INSERM, UMR1043, Toulouse, France
- CNRS, UMR5282, Toulouse, France
- Laboratoire d'Immunologie, CHU Toulouse, Université Toulouse II, Toulouse, France
| | - Michael T. Lotze
- Dept. of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Enrico Lugli
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Institute, Rozzano, Italy
| | - Jean-Pierre Mach
- Dept. of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Fabrizio Mattei
- Dept. of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Institute, Rozzano, Italy
- Dept. of Medical Biotechnologies and Translational Medicine, University of Milan, Rozzano, Italy
| | - Ignacio Melero
- Dept. of Immunology, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Dept. of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Cornelis J. Melief
- ISA Therapeutics, Leiden, The Netherlands
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Elizabeth A. Mittendorf
- Research Dept. of Surgical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Adekunke Odunsi
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Hideho Okada
- Dept. of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Marcus E. Peter
- Div. of Hematology/Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Kenneth J. Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Angel Porgador
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - George C. Prendergast
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
- Dept. of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Philadelphia, PA, USA
- Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gabriel A. Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Nicholas P. Restifo
- National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Naiyer Rizvi
- Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Catherine Sautès-Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | - Hans Schreiber
- Dept. of Pathology, The Cancer Research Center, The University of Chicago, Chicago, IL, USA
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Hiroshi Shiku
- Dept. of Immuno-GeneTherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Mark J. Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Daniel E. Speiser
- Dept. of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Cancer Research Center, Lausanne, Switzerland
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Pramod K. Srivastava
- Dept. of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
- Carole and Ray Neag Comprehensive Cancer Center, Farmington, CT, USA
| | - James E. Talmadge
- Laboratory of Transplantation Immunology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eric Tartour
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- INSERM, U970, Paris, France
- Paris-Cardiovascular Research Center (PARCC), Paris, France
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | | | - Benoît J. Van Den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, Brussels, Belgium
- Université Catholique de Louvain, Brussels, Belgium
| | - Richard Vile
- Dept. of Molecular Medicine and Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Hermann Wagner
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | - Jeffrey S. Weber
- Donald A. Adam Comprehensive Melanoma Research Center, Moffitt Cancer Center, Tampa, FL, USA
| | - Theresa L. Whiteside
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jedd D. Wolchok
- Dept. of Medicine and Ludwig Center, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, Villejuif, France
- Centre d'Investigation Clinique Biothérapie 507 (CICBT507), Gustave Roussy Cancer Campus, Villejuif, France
| | - Weiping Zou
- University of Michigan, School of Medicine, Ann Arbor, MI, USA
| | - Guido Kroemer
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| |
Collapse
|
33
|
Forbes NE, Krishnan R, Diallo JS. Pharmacological modulation of anti-tumor immunity induced by oncolytic viruses. Front Oncol 2014; 4:191. [PMID: 25101247 PMCID: PMC4108035 DOI: 10.3389/fonc.2014.00191] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/07/2014] [Indexed: 01/05/2023] Open
Abstract
Oncolytic viruses (OVs) not only kill cancer cells by direct lysis but also generate a significant anti-tumor immune response that allows for prolonged cancer control and in some cases cures. How to best stimulate this effect is a subject of intense investigation in the OV field. While pharmacological manipulation of the cellular innate anti-viral immune response has been shown by several groups to improve viral oncolysis and spread, it is increasingly clear that pharmacological agents can also impact the anti-tumor immune response generated by OVs and related tumor vaccination strategies. This review covers recent progress in using pharmacological agents to improve the activity of OVs and their ability to generate robust anti-tumor immune responses.
Collapse
Affiliation(s)
- Nicole E Forbes
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Ramya Krishnan
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
34
|
Nguyen A, Ho L, Wan Y. Chemotherapy and Oncolytic Virotherapy: Advanced Tactics in the War against Cancer. Front Oncol 2014; 4:145. [PMID: 24967214 PMCID: PMC4052116 DOI: 10.3389/fonc.2014.00145] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/28/2014] [Indexed: 01/10/2023] Open
Abstract
Cancer is a traitorous archenemy that threatens our survival. Its ability to evade detection and adapt to various cancer therapies means that it is a moving target that becomes increasingly difficult to attack. Through technological advancements, we have developed sophisticated weapons to fight off tumor growth and invasion. However, if we are to stand a chance in this war against cancer, advanced tactics will be required to maximize the use of our available resources. Oncolytic viruses (OVs) are multi-functional cancer-fighters that can be engineered to suit many different strategies; in particular, their retooling can facilitate increased capacity for direct tumor killing (oncolytic virotherapy) and elicit adaptive antitumor immune responses (oncolytic immunotherapy). However, administration of these modified OVs alone, rarely induces successful regression of established tumors. This may be attributed to host antiviral immunity that acts to eliminate viral particles, as well as the capacity for tumors to adapt to therapeutic selective pressure. It has been shown that various chemotherapeutic drugs with distinct functional properties can potentiate the antitumor efficacy of OVs. In this review, we summarize the chemotherapeutic combinatorial strategies used to optimize virally induced destruction of tumors. With a particular focus on pharmaceutical immunomodulators, we discuss how specific therapeutic contexts may alter the effects of these synergistic combinations and their implications for future clinical use.
Collapse
Affiliation(s)
- Andrew Nguyen
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University , Hamilton, ON , Canada
| | - Louisa Ho
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University , Hamilton, ON , Canada
| | - Yonghong Wan
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University , Hamilton, ON , Canada
| |
Collapse
|
35
|
Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch:: Oncolytic viruses for cancer therapy. Oncoimmunology 2014; 3:e28694. [PMID: 25097804 PMCID: PMC4091053 DOI: 10.4161/onci.28694] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/11/2022] Open
Abstract
Oncolytic viruses are natural or genetically modified viral species that selectively infect and kill neoplastic cells. Such an innate or exogenously conferred specificity has generated considerable interest around the possibility to employ oncolytic viruses as highly targeted agents that would mediate cancer cell-autonomous anticancer effects. Accumulating evidence, however, suggests that the therapeutic potential of oncolytic virotherapy is not a simple consequence of the cytopathic effect, but strongly relies on the induction of an endogenous immune response against transformed cells. In line with this notion, superior anticancer effects are being observed when oncolytic viruses are engineered to express (or co-administered with) immunostimulatory molecules. Although multiple studies have shown that oncolytic viruses are well tolerated by cancer patients, the full-blown therapeutic potential of oncolytic virotherapy, especially when implemented in the absence of immunostimulatory interventions, remains unclear. Here, we cover the latest advances in this active area of translational investigation, summarizing high-impact studies that have been published during the last 12 months and discussing clinical trials that have been initiated in the same period to assess the therapeutic potential of oncolytic virotherapy in oncological indications.
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Norma Bloy
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | | | | | | | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
| |
Collapse
|
36
|
Abstract
Despite extensive research, current glioma therapies are still unsatisfactory, and novel approaches are pressingly needed. In recent years, both nonreplicative viral vectors and replicating oncolytic viruses have been developed for brain cancer treatment, and the mechanistic background of their cytotoxicity has been unveiled. A growing number of clinical trials have convincingly established viral therapies to be safe in glioma patients, and maximum tolerated doses have generally not been reached. However, evidence for therapeutic benefit has been limited: new generations of therapeutic vectors need to be developed in order to target not only tumor cells but also the complex surrounding microenvironment. Such therapies could also direct long-lasting immune responses toward the tumor while reducing early antiviral reactions. Furthermore, viral delivery methods are to be improved and viral spread within the tumor will have to be enhanced. Here, we will review the outcome of completed glioma virus therapy trials as well as highlight the ongoing clinical activities. On this basis, we will give an overview of the numerous strategies to enhance therapeutic efficacy of new-generation viruses and novel treatment regimens. Finally, we will conclude with approaches that may be crucial to the development of successful glioma therapies in the future.
Collapse
Affiliation(s)
| | - E. Antonio Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
37
|
Abstract
Early-stage clinical trials of oncolytic virotherapy have reported the safety of several virus platforms, and viruses from three families have progressed to advanced efficacy trials. In addition, preclinical studies have established proof-of-principle for many new genetic engineering strategies. Thus, the virotherapy field now has available a diverse collection of viruses that are equipped to address unmet clinical needs owing to improved systemic administration, greater tumour specificity and enhanced oncolytic efficacy. The current key challenge for the field is to develop viruses that replicate with greater efficiency within tumours while achieving therapeutic synergy with currently available treatments.
Collapse
Affiliation(s)
- Tanner S Miest
- 1] Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA. [2] Virology and Gene Therapy Track, Mayo Graduate School, Rochester, Minnesota 55905, USA
| | - Roberto Cattaneo
- 1] Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA. [2] Virology and Gene Therapy Track, Mayo Graduate School, Rochester, Minnesota 55905, USA
| |
Collapse
|
38
|
STAT1 interaction with E3-14.7K in monocytes affects the efficacy of oncolytic adenovirus. J Virol 2013; 88:2291-300. [PMID: 24335311 DOI: 10.1128/jvi.02829-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oncolytic viruses based on adenovirus type 5 (Ad5) have been developed as a new class of therapeutic agents for cancers that are resistant to conventional therapies. Clinical experience shows that these agents are safe, but virotherapy alone has not achieved long-term cure in cancer patients. The vast majority of oncolytic adenoviruses used in clinical trials to date have deletion of the E3B genes. It has been demonstrated that the antitumor potency of the E3B-deleted mutant (dl309) is inferior to adenovirus with E3B genes intact. Tumors treated with dl309 show markedly greater macrophage infiltration than E3B-intact adenovirus. However, the functional mechanisms for this were not previously known. Here, we demonstrate that deletion of E3B genes increases production of chemokines by monocytes after adenovirus infection and increases monocyte migration. The E3B 14,700-Da protein (E3B-14.7K) inhibits STAT1 function by preventing its phosphorylation and nuclear translocation. The STAT1 inhibitor, fludarabine, rescues the effect of E3B-14.7K deletion by downregulating target chemokine expression in human and murine monocytes and results in an enhanced antitumor efficacy with dl309 in vivo. These findings have important implications for clinical use of E3B-deleted oncolytic adenovirus and other E3B-deleted adenovirus vector-based therapy.
Collapse
|
39
|
Meisen WH, Kaur B. How can we trick the immune system into overcoming the detrimental effects of oncolytic viral therapy to treat glioblastoma? Expert Rev Neurother 2013; 13:341-3. [PMID: 23545048 DOI: 10.1586/ern.13.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
40
|
Toxicology and Biodistribution Studies for MGH2.1, an Oncolytic Virus that Expresses Two Prodrug-activating Genes, in Combination with Prodrugs. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e113. [PMID: 23922029 PMCID: PMC3759737 DOI: 10.1038/mtna.2013.38] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/01/2013] [Indexed: 01/06/2023]
Abstract
MGH2.1 is a herpes simplex virus type 1 (HSV1) oncolytic virus that expresses two prodrug-activating transgenes: the cyclophosphamide (CPA)-activating cytochrome P4502B1 (CYP2B1) and the CPT11-activating secreted human intestinal carboxylesterase (shiCE). Toxicology and biodistribution of MGH2.1 in the presence/absence of prodrugs was evaluated in mice. MGH2.1 ± prodrugs was cytotoxic to human glioma cells, but not to normal cells. Pharmacokinetically, intracranial MGH2.1 did not significantly alter the metabolism of intraperitoneally (i.p.) administered prodrugs in mouse plasma, brain, or liver. MGH2.1 did not induce an acute inflammatory reaction. MGH2.1 DNA was detected in brains of mice inoculated with 108 pfus for up to 60 days. However, only one animal showed evidence of viral gene expression at this time. Expression of virally encoded genes was restricted to brain. Intracranial inoculation of MGH2.1 did not induce lethality at 108 pfus in the absence of prodrugs and at 106 pfus in the presence of prodrugs. This study provides safety and toxicology data justifying a possible clinical trial of intratumoral injection of MGH2.1 with peripheral administration of CPA and/or CPT11 prodrugs in humans with malignant gliomas.
Collapse
|
41
|
Abstract
Oncolytic virotherapy is a new strategy to reduce tumor burden through selective virus replication in rapidly proliferating cells. Oncolytic viruses are members of at least ten virus families, each with its advantages and disadvantages. Here, I briefly review the recent advances and key challenges, as exemplified by the best-studied platforms. Recent advances include preclinical proof of feasibility, clinical evidence of tolerability and effectiveness, and the development of new strategies to improve efficacy. These include engineered tumor selectivity and expression of antitumorigenic genes that could function independently of virus replication, identification of combinatorial therapies that accelerate intratumoral virus propagation, and modification of immune responses and vascular delivery for treatment of metastatic disease. Key challenges are to select "winners" from the distinct oncolytic platforms that can stimulate anti-cancer immunity without affecting virus replication and can lyse cancer stem cells, which are most likely responsible for tumor maintenance, aggressiveness, and recurrence. Preventing the emergence of resistant tumor cells during virotherapy through the activation of multiple death pathways, the development of a better understanding of the mechanisms of cancer stem-cell lysis, and the development of more meaningful preclinical animal models are additional challenges for the next-generation of engineered viruses.
Collapse
Affiliation(s)
- Laure Aurelian
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Abstract
Genetically engineered tumor-selective vaccinia virus (VV) has been demonstrated to be a highly effective oncolytic agent, but immune clearance may limit its therapeutic potential. As previously demonstrated, immunosuppression can lead to significant enhancement of viral recovery and therapeutic effect, but the magnitude of complement-mediated viral inactivation has not been fully elucidated and warrants further investigation. Using fluorescent microscopy and quantitative plaque assays, we have determined complement's key role in viral clearance and its multi-faceted means to pathogen destruction. Complement can lead to direct viral destruction and inhibition of viral uptake into cells, even in the absence of anti-vaccinia antibodies. Our data demonstrate C5 to be integral to the clearance pathway, and its inhibition by Staphylococcal superantigen-like protein leads to a 90-fold and 150-fold enhancement of VV infectivity in both the presence and absence of anti-VV antibodies, respectively. This study suggests that complement inhibition may reduce vaccinia viral neutralization and may be critical to future in vivo work.
Collapse
|
43
|
Vacchelli E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Oncolytic viruses for cancer therapy. Oncoimmunology 2013; 2:e24612. [PMID: 23894720 PMCID: PMC3716755 DOI: 10.4161/onci.24612] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 12/13/2022] Open
Abstract
Oncolytic virotherapy is emerging as a promising approach for the treatment of several neoplasms. The term "oncolytic viruses" is generally employed to indicate naturally occurring or genetically engineered attenuated viral particles that cause the demise of malignant cells while sparing their non-transformed counterparts. From a conceptual standpoint, oncolytic viruses differ from so-called "oncotropic viruses" in that only the former are able to kill cancer cells, even though both display a preferential tropism for malignant tissues. Of note, such a specificity can originate at several different steps of the viral cycle, including the entry of virions (transductional specificity) as well as their intracellular survival and replication (post-transcriptional and transcriptional specificity). During the past two decades, a large array of replication-competent and replication-incompetent oncolytic viruses has been developed and engineered to express gene products that would specifically promote the death of infected (cancer) cells. However, contrarily to long-standing beliefs, the antineoplastic activity of oncolytic viruses is not a mere consequence of the cytopathic effect, i.e., the lethal outcome of an intense, productive viral infection, but rather involves the elicitation of an antitumor immune response. In line with this notion, oncolytic viruses genetically modified to drive the local production of immunostimulatory cytokines exert more robust therapeutic effects than their non-engineered counterparts. Moreover, the efficacy of oncolytic virotherapy is significantly improved by some extent of initial immunosuppression (facilitating viral replication and spread) followed by the administration of immunostimulatory molecules (boosting antitumor immune responses). In this Trial Watch, we will discuss the results of recent clinical trials that have evaluated/are evaluating the safety and antineoplastic potential of oncolytic virotherapy.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Wennier ST, Liu J, McFadden G. Bugs and drugs: oncolytic virotherapy in combination with chemotherapy. Curr Pharm Biotechnol 2013; 13:1817-33. [PMID: 21740354 DOI: 10.2174/138920112800958850] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 09/18/2010] [Indexed: 12/16/2022]
Abstract
Single agent therapies are rarely successful in treating cancer, particularly at metastatic or end stages, and survival rates with monotherapies alone are generally poor. The combination of multiple therapies to treat cancer has already driven significant improvements in the standard of care treatments for many types of cancers. The first combination treatments exploited for cancer therapy involved the use of several cytotoxic chemotherapy agents. Later, with the development of more targeted agents, the use of novel, less toxic drugs, in combination with the more classic cytotoxic drugs has proven advantageous for certain cancer types. Recently, the combination of oncolytic virotherapy with chemotherapy has shown that the use of these two therapies with very distinct anti-tumor mechanisms may also lead to synergistic interactions that ultimately result in increased therapeutic effects not achievable by either therapy alone. The mechanisms of synergy between oncolytic viruses (OVs) and chemotherapeutic agents are just starting to be elucidated. It is evident, however, that the success of these OV-drug combinations depends greatly on the particular OV, the drug(s) selected, and the cancer type targeted. This review summarizes the different OV-drug combinations investigated to date, including the use of second generation armed OVs, which have been studied with the specific purpose of generating synergistic interactions with particular chemotherapy agents. The known mechanisms of synergy between these OV-drug combinations are also summarized. The importance of further investigating these mechanisms of synergy will be critical in order to maximize the therapeutic efficacy of OV-drug combination therapies in the future.
Collapse
Affiliation(s)
- Sonia Tusell Wennier
- Department of Molecular Genetics and Microbiology, University of Florida, 1600 SW Archer Rd, P.O. Box 100266 Gainesville, FL 32610, USA
| | | | | |
Collapse
|
45
|
PEGylation of vesicular stomatitis virus extends virus persistence in blood circulation of passively immunized mice. J Virol 2013; 87:3752-9. [PMID: 23325695 DOI: 10.1128/jvi.02832-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We are developing oncolytic vesicular stomatitis viruses (VSVs) for systemic treatment of multiple myeloma, an incurable malignancy of antibody-secreting plasma cells that are specifically localized in the bone marrow. One of the presumed advantages for using VSV as an oncolytic virus is that human infections are rare and preexisting anti-VSV immunity is typically lacking in cancer patients, which is very important for clinical success. However, our studies show that nonimmune human and mouse serum can neutralize clinical-grade VSV, reducing the titer by up to 4 log units in 60 min. In addition, we show that neutralizing anti-VSV antibodies negate the antitumor efficacy of VSV, a concern for repeat VSV administration. We have investigated the potential use of covalent modification of VSV with polyethylene glycol (PEG) or a function-spacer-lipid (FSL)-PEG construct to inhibit serum neutralization and to limit hepatosplenic sequestration of systemically delivered VSV. We report that in mice passively immunized with neutralizing anti-VSV antibodies, PEGylation of VSV improved the persistence of VSV in the blood circulation, maintaining a more than 1-log-unit increase in VSV genome copies for up to 1 h compared to the genome copy numbers for the non-PEGylated virus, which was mostly cleared within 10 min after intravenous injection. We are currently investigating if this increase in PEGylated VSV circulating half-life can translate to increased virus delivery and better efficacy in mouse models of multiple myeloma.
Collapse
|
46
|
Hastie E, Grdzelishvili VZ. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J Gen Virol 2012; 93:2529-2545. [PMID: 23052398 PMCID: PMC4091291 DOI: 10.1099/vir.0.046672-0] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virus (OV) therapy is an emerging anti-cancer approach that utilizes viruses to preferentially infect and kill cancer cells, while not harming healthy cells. Vesicular stomatitis virus (VSV) is a prototypic non-segmented, negative-strand RNA virus with inherent OV qualities. Antiviral responses induced by type I interferon pathways are believed to be impaired in most cancer cells, making them more susceptible to VSV than normal cells. Several other factors make VSV a promising OV candidate for clinical use, including its well-studied biology, a small, easily manipulated genome, relative independence of a receptor or cell cycle, cytoplasmic replication without risk of host-cell transformation, and lack of pre-existing immunity in humans. Moreover, various VSV-based recombinant viruses have been engineered via reverse genetics to improve oncoselectivity, safety, oncotoxicity and stimulation of tumour-specific immunity. Alternative delivery methods are also being studied to minimize premature immune clearance of VSV. OV treatment as a monotherapy is being explored, although many studies have employed VSV in combination with radiotherapy, chemotherapy or other OVs. Preclinical studies with various cancers have demonstrated that VSV is a promising OV; as a result, a human clinical trial using VSV is currently in progress.
Collapse
Affiliation(s)
- Eric Hastie
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Valery Z Grdzelishvili
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
47
|
Incorporation of host complement regulatory proteins into Newcastle disease virus enhances complement evasion. J Virol 2012; 86:12708-16. [PMID: 22973037 DOI: 10.1128/jvi.00886-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Newcastle disease virus (NDV), an avian paramyxovirus, is inherently tumor selective and is currently being considered as a clinical oncolytic virus and vaccine vector. In this study, we analyzed the effect of complement on the neutralization of NDV purified from embryonated chicken eggs, a common source for virus production. Fresh normal human serum (NHS) neutralized NDV by multiple pathways of complement activation, independent of neutralizing antibodies. Neutralization was associated with C3 deposition and the activation of C2, C3, C4, and C5 components. Interestingly, NDV grown in mammalian cell lines was resistant to complement neutralization by NHS. To confirm whether the incorporation of regulators of complement activity (RCA) into the viral envelope afforded complement resistance, we grew NDV in CHO cells stably transfected with CD46 or HeLa cells, which strongly express CD46 and CD55. NDV grown in RCA-expressing cells was resistant to complement by incorporating CD46 and CD55 on virions. Mammalian CD46 and CD55 molecules on virions exhibited homologous restriction, since chicken sera devoid of neutralizing antibodies to NDV were able to effectively neutralize these virions. The incorporation of chicken RCA into NDV produced in embryonated eggs similarly provided species specificity toward chicken sera.
Collapse
|
48
|
Abstract
Oncolytic virotherapy is an emerging treatment modality that uses replication-competent viruses to destroy cancers. Recent advances include preclinical proof of feasibility for a single-shot virotherapy cure, identification of drugs that accelerate intratumoral virus propagation, strategies to maximize the immunotherapeutic action of oncolytic viruses and clinical confirmation of a critical viremic threshold for vascular delivery and intratumoral virus replication. The primary clinical milestone has been completion of accrual in a phase 3 trial of intratumoral herpes simplex virus therapy using talimogene laherparepvec for metastatic melanoma. Key challenges for the field are to select 'winners' from a burgeoning number of oncolytic platforms and engineered derivatives, to transiently suppress but then unleash the power of the immune system to maximize both virus spread and anticancer immunity, to develop more meaningful preclinical virotherapy models and to manufacture viruses with orders-of-magnitude higher yields than is currently possible.
Collapse
|
49
|
Zeyaullah M, Patro M, Ahmad I, Ibraheem K, Sultan P, Nehal M, Ali A. Oncolytic viruses in the treatment of cancer: a review of current strategies. Pathol Oncol Res 2012; 18:771-81. [PMID: 22714538 DOI: 10.1007/s12253-012-9548-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 05/30/2012] [Indexed: 12/18/2022]
Abstract
Oncolytic viruses are live, replication-competent viruses that replicate selectively in tumor cells leading to the destruction of the tumor cells. Tumor-selective replicating viruses offer appealing advantages over conventional cancer therapy and are promising a new approach for the treatment of human cancer. The development of virotherapeutics is based on several strategies. Virotherapy is not a new concept, but recent technical advances in the genetic modification of oncolytic viruses have improved their tumor specificity, leading to the development of new weapons for the war against cancer. Clinical trials with oncolytic viruses demonstrate the safety and feasibility of an effective virotherapeutic approach. Strategies to overcome potential obstacles and challenges to virotherapy are currently being explored. Systemic administrations of oncolytic viruses will successfully extend novel treatment against a range of tumors. Combination therapy has shown some encouraging antitumor responses by eliciting strong immunity against established cancer.
Collapse
Affiliation(s)
- Md Zeyaullah
- Department of Microbiology, Faculty of Medicine, Omar Al-Mukhtar University, Al-Baida, Libya.
| | | | | | | | | | | | | |
Collapse
|
50
|
Incorporation of the B18R gene of vaccinia virus into an oncolytic herpes simplex virus improves antitumor activity. Mol Ther 2012; 20:1871-81. [PMID: 22692498 DOI: 10.1038/mt.2012.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Interferon (IFN) antiviral defense mechanism plays a critical role in controlling virus infection. It thus represents a formidable hurdle for virotherapy. Despite the reported ability of herpes simplex virus (HSV) to counteract this defense, the duration and extent of HSV infection in vivo is still largely dictated by host's IFN activity status. Because the HSV genes that have been reported to block IFN activity mainly act intracellularly, we hypothesized that their inhibitory effect could be enhanced by exploiting a gene whose product acts extracellularly. The B18R gene from vaccinia virus encodes a secreted decoy receptor with a broad antagonizing effect against type I IFNs. We therefore cloned B18R into an HSV-1-based oncolytic virus to generate Synco-B18R. In the presence of increased IFN levels in vitro, Synco-B18R largely retained its oncolytic effect, whereas the tumor-killing ability of the parental virus, Synco-2D, was severely compromised. When injected intratumorally in vivo, Synco-B18R showed significantly greater oncolytic activity than Synco-2D. Our results suggest that incorporation of the vaccinia virus B18R gene can safely potentiate the antitumor effect of an oncolytic HSV, and that similar strategies may be useful with other types of oncolytic viruses.
Collapse
|